Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 /* | |
| 2 * Copyright 2015 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #include "SkCodec_libbmp.h" | |
| 9 #include "SkColorPriv.h" | |
| 10 #include "SkColorTable.h" | |
| 11 #include "SkEndian.h" | |
| 12 #include "SkStream.h" | |
| 13 | |
| 14 #include <algorithm> | |
| 15 | |
| 16 /* | |
| 17 * | |
| 18 * Get a byte from the buffer | |
| 19 * | |
| 20 */ | |
| 21 uint8_t get_byte(uint8_t* buffer, uint32_t i) { | |
| 22 return buffer[i]; | |
| 23 } | |
| 24 | |
| 25 /* | |
| 26 * | |
| 27 * Get a short from the buffer | |
| 28 * | |
| 29 */ | |
| 30 uint16_t get_short(uint8_t* buffer, uint32_t i) { | |
| 31 uint16_t result; | |
| 32 memcpy(&result, &(buffer[i]), 2); | |
| 33 #ifdef SK_CPU_BENDIAN | |
| 34 return SkEndianSwap16(result); | |
| 35 #else | |
| 36 return result; | |
| 37 #endif | |
| 38 } | |
| 39 | |
| 40 /* | |
| 41 * | |
| 42 * Get an int from the buffer | |
| 43 * | |
| 44 */ | |
| 45 uint32_t get_int(uint8_t* buffer, uint32_t i) { | |
| 46 uint32_t result; | |
| 47 memcpy(&result, &(buffer[i]), 4); | |
| 48 #ifdef SK_CPU_BENDIAN | |
| 49 return SkEndianSwap32(result); | |
| 50 #else | |
| 51 return result; | |
| 52 #endif | |
| 53 } | |
| 54 | |
| 55 /* | |
| 56 * | |
| 57 * Defines the version and type of the second bitmap header | |
| 58 * | |
| 59 */ | |
| 60 enum BitmapHeaderType { | |
| 61 kInfoV1_BitmapHeaderType, | |
| 62 kInfoV2_BitmapHeaderType, | |
| 63 kInfoV3_BitmapHeaderType, | |
| 64 kInfoV4_BitmapHeaderType, | |
| 65 kInfoV5_BitmapHeaderType, | |
| 66 kOS2V1_BitmapHeaderType, | |
| 67 kOS2VX_BitmapHeaderType, | |
| 68 kUnknown_BitmapHeaderType | |
| 69 }; | |
| 70 | |
| 71 /* | |
| 72 * | |
| 73 * Possible bitmap compression types | |
| 74 * | |
| 75 */ | |
| 76 enum BitmapCompressionMethod { | |
| 77 kNone_BitmapCompressionMethod = 0, | |
| 78 k8BitRLE_BitmapCompressionMethod = 1, | |
| 79 k4BitRLE_BitmapCompressionMethod = 2, | |
| 80 kBitMasks_BitmapCompressionMethod = 3, | |
| 81 kJpeg_BitmapCompressionMethod = 4, | |
| 82 kPng_BitmapCompressionMethod = 5, | |
| 83 kAlphaBitMasks_BitmapCompressionMethod = 6, | |
| 84 kCMYK_BitmapCompressionMethod = 11, | |
| 85 kCMYK8BitRLE_BitmapCompressionMethod = 12, | |
| 86 kCMYK4BitRLE_BitmapCompressionMethod = 13 | |
| 87 }; | |
| 88 | |
| 89 /* | |
| 90 * | |
| 91 * Checks the start of the stream to see if the image is a bitmap | |
| 92 * | |
| 93 */ | |
| 94 bool SkBmpCodec::IsBmp(SkStream* stream) { | |
| 95 // TODO: Support "IC", "PT", "CI", "CP", "BA" | |
| 96 // TODO: ICO files may contain a BMP and need to use this decoder | |
| 97 const char bmpSig[] = { 'B', 'M' }; | |
| 98 char buffer[sizeof(bmpSig)]; | |
| 99 return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && | |
| 100 !memcmp(buffer, bmpSig, sizeof(bmpSig)); | |
| 101 } | |
| 102 | |
| 103 /* | |
| 104 * | |
| 105 * Assumes IsBmp was called and returned true | |
| 106 * Creates a bitmap decoder | |
| 107 * Reads enough of the stream to determine the image format | |
| 108 * | |
| 109 */ | |
| 110 SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { | |
| 111 // Header size constants | |
| 112 static const uint32_t kBmpHeaderBytes = 14; | |
| 113 static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; | |
| 114 static const uint32_t kBmpOS2V1Bytes = 12; | |
| 115 static const uint32_t kBmpOS2V2Bytes = 64; | |
| 116 static const uint32_t kBmpInfoBaseBytes = 16; | |
| 117 static const uint32_t kBmpInfoV1Bytes = 40; | |
| 118 static const uint32_t kBmpInfoV2Bytes = 52; | |
| 119 static const uint32_t kBmpInfoV3Bytes = 56; | |
| 120 static const uint32_t kBmpInfoV4Bytes = 108; | |
| 121 static const uint32_t kBmpInfoV5Bytes = 124; | |
| 122 static const uint32_t kBmpMaskBytes = 12; | |
| 123 | |
| 124 // Read the first header and the size of the second header | |
| 125 SkAutoTDeleteArray<uint8_t> hBuffer( | |
| 126 SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); | |
| 127 if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != | |
| 128 kBmpHeaderBytesPlusFour) { | |
| 129 SkDebugf("Error: unable to read first bitmap header.\n"); | |
| 130 return NULL; | |
| 131 } | |
| 132 //uint16_t signature = get_short(hBuffer, 0); | |
| 133 | |
| 134 // The total bytes in the bmp file | |
| 135 // We only need to use this value for RLE decoding, so we will only check | |
| 136 // that it is valid in the RLE case. | |
| 137 const uint32_t totalBytes = get_int(hBuffer.get(), 2); | |
| 138 | |
| 139 //uint32_t reserved = get_int(hBuffer, 6); | |
| 140 | |
| 141 // The offset from the start of the file where the pixel data begins | |
| 142 const uint32_t offset = get_int(hBuffer.get(), 10); | |
| 143 if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { | |
| 144 SkDebugf("Error: invalid starting location for pixel data\n"); | |
| 145 return NULL; | |
| 146 } | |
| 147 | |
| 148 // The size of the second (info) header in bytes | |
| 149 // The size is the first field of the second header, so we have already | |
| 150 // read the first four infoBytes. | |
| 151 const uint32_t infoBytes = get_int(hBuffer.get(), 14); | |
| 152 if (infoBytes < kBmpOS2V1Bytes) { | |
| 153 SkDebugf("Error: invalid second header size.\n"); | |
| 154 return NULL; | |
| 155 } | |
| 156 const uint32_t infoBytesRemaining = infoBytes - 4; | |
| 157 hBuffer.free(); | |
| 158 | |
| 159 // Read the second header | |
| 160 SkAutoTDeleteArray<uint8_t> iBuffer( | |
| 161 SkNEW_ARRAY(uint8_t, infoBytesRemaining)); | |
| 162 if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { | |
| 163 SkDebugf("Error: unable to read second bitmap header.\n"); | |
| 164 return NULL; | |
| 165 } | |
| 166 | |
| 167 // The number of bits used per pixel in the pixel data | |
| 168 uint16_t bitsPerPixel; | |
| 169 | |
| 170 // The compression method for the pixel data | |
| 171 uint32_t compression = kNone_BitmapCompressionMethod; | |
| 172 | |
| 173 // Number of colors in the color table, defaults to 0 or max (see below) | |
| 174 uint32_t numColors = 0; | |
| 175 | |
| 176 // Bytes per color in the color table, early versions use 3, most use 4 | |
| 177 uint32_t bytesPerColor; | |
| 178 | |
| 179 // The image width and height | |
| 180 int width, height; | |
| 181 | |
| 182 // Determine image information depending on second header format | |
| 183 BitmapHeaderType headerType; | |
| 184 if (infoBytes >= kBmpInfoBaseBytes) { | |
| 185 // Check the version of the header | |
| 186 switch (infoBytes) { | |
| 187 case kBmpInfoV1Bytes: | |
| 188 headerType = kInfoV1_BitmapHeaderType; | |
| 189 break; | |
| 190 case kBmpInfoV2Bytes: | |
| 191 headerType = kInfoV2_BitmapHeaderType; | |
| 192 break; | |
| 193 case kBmpInfoV3Bytes: | |
| 194 headerType = kInfoV3_BitmapHeaderType; | |
| 195 break; | |
| 196 case kBmpInfoV4Bytes: | |
| 197 headerType = kInfoV4_BitmapHeaderType; | |
| 198 break; | |
| 199 case kBmpInfoV5Bytes: | |
| 200 headerType = kInfoV5_BitmapHeaderType; | |
| 201 break; | |
| 202 case 16: | |
| 203 case 20: | |
| 204 case 24: | |
| 205 case 28: | |
| 206 case 32: | |
| 207 case 36: | |
| 208 case 42: | |
| 209 case 46: | |
| 210 case 48: | |
| 211 case 60: | |
| 212 case kBmpOS2V2Bytes: | |
| 213 headerType = kOS2VX_BitmapHeaderType; | |
| 214 break; | |
| 215 default: | |
| 216 // We do not signal an error here because there is the | |
| 217 // possibility of new or undocumented bmp header types. Most | |
| 218 // of the newer versions of bmp headers are similar to and | |
| 219 // build off of the older versions, so we may still be able to | |
| 220 // decode the bmp. | |
| 221 SkDebugf("Warning: unknown bmp header format.\n"); | |
| 222 headerType = kUnknown_BitmapHeaderType; | |
| 223 break; | |
| 224 } | |
| 225 SkASSERT(infoBytesRemaining >= 12); | |
|
scroggo
2015/02/28 00:25:13
Could you add a comment explaining why you know th
| |
| 226 width = get_int(iBuffer.get(), 0); | |
| 227 height = get_int(iBuffer.get(), 4); | |
| 228 //uint16_t planes = get_short(iBuffer, 8); | |
| 229 bitsPerPixel = get_short(iBuffer.get(), 10); | |
| 230 | |
| 231 // Some versions do not have this field, so we check before | |
| 232 // overwriting the default value. | |
| 233 if (infoBytesRemaining >= 16) { | |
|
scroggo
2015/02/28 00:25:13
If this is not true, can we go ahead and return?
msarett
2015/03/02 15:00:13
We can't. There are valid images without this hea
| |
| 234 compression = get_int(iBuffer.get(), 12); | |
| 235 } | |
| 236 //uint32_t imageBytes = get_int(iBuffer, 16); | |
| 237 //uint32_t horizontalResolution = get_int(iBuffer, 20); | |
| 238 //uint32_t verticalResolution = get_int(iBuffer, 24); | |
| 239 | |
| 240 // Some versions do not have this field, so we check before | |
| 241 // overwriting the default value. | |
| 242 if (infoBytesRemaining >= 32) { | |
| 243 numColors = get_int(iBuffer.get(), 28); | |
| 244 } | |
| 245 //uint32_t importantColors = get_int(iBuffer, infoBytes - 4, 32); | |
| 246 bytesPerColor = 4; | |
| 247 } else if (infoBytes >= kBmpOS2V1Bytes) { | |
| 248 // The OS2V1 is treated separately because it has a unique format | |
| 249 headerType = kOS2V1_BitmapHeaderType; | |
| 250 width = (int) get_short(iBuffer.get(), 0); | |
| 251 height = (int) get_short(iBuffer.get(), 2); | |
| 252 //uint16_t planes = get_short(iBuffer.get(), 4); | |
| 253 bitsPerPixel = get_short(iBuffer.get(), 6); | |
| 254 bytesPerColor = 3; | |
| 255 } else { | |
| 256 // There are no valid bmp headers | |
| 257 SkDebugf("Error: second bitmap header size is invalid.\n"); | |
| 258 return NULL; | |
| 259 } | |
| 260 | |
| 261 // Check for valid dimensions from header | |
| 262 static const uint32_t kBmpMaxDim = 1 << 16; | |
| 263 SkSwizzler::RowOrder rowOrder = SkSwizzler::kBottomUp_RowOrder; | |
| 264 if (height < 0) { | |
| 265 height = -height; | |
| 266 rowOrder = SkSwizzler::kTopDown_RowOrder; | |
| 267 } | |
| 268 if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) { | |
| 269 // TODO: Decide if we want to support really large bmps. | |
| 270 SkDebugf("Error: invalid bitmap dimensions.\n"); | |
| 271 return NULL; | |
| 272 } | |
| 273 | |
| 274 // Create mask struct | |
| 275 SkSwizzler::ColorMasks masks; | |
| 276 masks.redMask = 0; | |
| 277 masks.greenMask = 0; | |
| 278 masks.blueMask = 0; | |
| 279 masks.alphaMask = 0; | |
| 280 | |
| 281 // Determine the input compression format and set bit masks if necessary | |
| 282 uint32_t maskBytes = 0; | |
| 283 BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; | |
| 284 switch (compression) { | |
| 285 case kNone_BitmapCompressionMethod: | |
| 286 inputFormat = kStandard_BitmapInputFormat; | |
| 287 // Always respect alpha mask in V4+ | |
| 288 if (kInfoV4_BitmapHeaderType == headerType || | |
| 289 kInfoV5_BitmapHeaderType == headerType) { | |
| 290 SkASSERT(infoBytesRemaining > 52); | |
|
scroggo
2015/02/28 00:25:13
(I think this comment corresponds to this code:)
| |
| 291 masks.alphaMask = get_int(iBuffer.get(), 48); | |
| 292 } | |
| 293 break; | |
| 294 case k8BitRLE_BitmapCompressionMethod: | |
| 295 if (bitsPerPixel != 8) { | |
| 296 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
| 297 bitsPerPixel = 8; | |
| 298 } | |
| 299 inputFormat = kRLE_BitmapInputFormat; | |
| 300 break; | |
| 301 case k4BitRLE_BitmapCompressionMethod: | |
| 302 if (bitsPerPixel != 4) { | |
| 303 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
| 304 bitsPerPixel = 4; | |
| 305 } | |
| 306 inputFormat = kRLE_BitmapInputFormat; | |
| 307 break; | |
| 308 case kAlphaBitMasks_BitmapCompressionMethod: | |
| 309 case kBitMasks_BitmapCompressionMethod: | |
| 310 // Load the masks | |
| 311 inputFormat = kBitMask_BitmapInputFormat; | |
| 312 switch (headerType) { | |
| 313 case kInfoV1_BitmapHeaderType: { | |
| 314 // The V1 header stores the bit masks after the header | |
| 315 SkAutoTDeleteArray<uint8_t> mBuffer( | |
| 316 SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); | |
| 317 if (stream->read(mBuffer.get(), kBmpMaskBytes) != | |
| 318 kBmpMaskBytes) { | |
| 319 SkDebugf("Error: unable to read bit masks.\n"); | |
| 320 return NULL; | |
| 321 } | |
| 322 maskBytes = kBmpMaskBytes; | |
| 323 masks.redMask = get_int(mBuffer.get(), 0); | |
| 324 masks.greenMask = get_int(mBuffer.get(), 4); | |
| 325 masks.blueMask = get_int(mBuffer.get(), 8); | |
| 326 break; | |
| 327 } | |
| 328 case kInfoV4_BitmapHeaderType: | |
| 329 case kInfoV5_BitmapHeaderType: | |
| 330 SkASSERT(infoBytesRemaining >= 52); | |
| 331 masks.alphaMask = get_int(iBuffer.get(), 48); | |
| 332 // Intentional fall through | |
| 333 case kInfoV2_BitmapHeaderType: | |
| 334 case kInfoV3_BitmapHeaderType: | |
| 335 SkASSERT(infoBytesRemaining >= 48); | |
| 336 masks.redMask = get_int(iBuffer.get(), 36); | |
| 337 masks.greenMask = get_int(iBuffer.get(), 40); | |
| 338 masks.blueMask = get_int(iBuffer.get(), 44); | |
| 339 break; | |
| 340 case kOS2VX_BitmapHeaderType: | |
| 341 // TODO: Decide if we intend to support this. | |
| 342 // It is unsupported in the previous version and | |
| 343 // in chromium. I have not come across a test case | |
| 344 // that uses this format. | |
| 345 SkDebugf("Error: huffman format unsupported.\n"); | |
| 346 return NULL; | |
| 347 default: | |
| 348 SkDebugf("Error: invalid bmp bit masks header.\n"); | |
| 349 return NULL; | |
| 350 } | |
| 351 break; | |
| 352 case kJpeg_BitmapCompressionMethod: | |
| 353 if (24 == bitsPerPixel) { | |
| 354 inputFormat = kRLE_BitmapInputFormat; | |
| 355 break; | |
| 356 } | |
| 357 case kPng_BitmapCompressionMethod: | |
| 358 // TODO: Decide if we intend to support this. | |
| 359 // It is unsupported in the previous version and | |
| 360 // in chromium. I think it is used mostly for printers. | |
| 361 SkDebugf("Error: compression format not supported.\n"); | |
| 362 return NULL; | |
| 363 case kCMYK_BitmapCompressionMethod: | |
| 364 case kCMYK8BitRLE_BitmapCompressionMethod: | |
| 365 case kCMYK4BitRLE_BitmapCompressionMethod: | |
| 366 // TODO: Same as above. | |
| 367 SkDebugf("Error: CMYK not supported for bitmap decoding.\n"); | |
| 368 return NULL; | |
| 369 default: | |
| 370 SkDebugf("Error: invalid format for bitmap decoding.\n"); | |
| 371 return NULL; | |
| 372 } | |
| 373 iBuffer.free(); | |
| 374 | |
| 375 // Check for valid bits per pixel input | |
| 376 switch (bitsPerPixel) { | |
| 377 // In addition to more standard pixel compression formats, bmp supports | |
| 378 // the use of bit masks to determine pixel components. The bmp standard | |
| 379 // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), | |
| 380 // which does not map well to any Skia color formats. For this reason, | |
| 381 // we will always enable mask mode with 16 bits per pixel. | |
| 382 case 16: | |
| 383 if (kBitMask_BitmapInputFormat != inputFormat) { | |
| 384 masks.redMask = 0x7C00; | |
| 385 masks.greenMask = 0x03E0; | |
| 386 masks.blueMask = 0x001F; | |
| 387 } | |
| 388 break; | |
| 389 case 1: | |
| 390 case 2: | |
| 391 case 4: | |
| 392 case 8: | |
| 393 case 24: | |
| 394 case 32: | |
| 395 break; | |
| 396 default: | |
| 397 SkDebugf("Error: invalid input value for bits per pixel.\n"); | |
| 398 return NULL; | |
| 399 } | |
| 400 | |
| 401 // Process the color table | |
| 402 uint32_t colorBytes = 0; | |
| 403 SkPMColor* colorTable = NULL; | |
| 404 if (bitsPerPixel < 16) { | |
| 405 // Verify the number of colors for the color table | |
| 406 const int maxColors = 1 << bitsPerPixel; | |
| 407 // Zero is a default for maxColors | |
| 408 // Also set numColors to maxColors when input is too large | |
| 409 if (numColors <= 0 || numColors > maxColors) { | |
| 410 numColors = maxColors; | |
| 411 } | |
| 412 colorTable = SkNEW_ARRAY(SkPMColor, maxColors); | |
| 413 | |
| 414 // Construct the color table | |
| 415 colorBytes = numColors * bytesPerColor; | |
| 416 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); | |
| 417 if (stream->read(cBuffer.get(), colorBytes) != colorBytes) { | |
| 418 SkDebugf("Error: unable to read color table.\n"); | |
| 419 return NULL; | |
| 420 } | |
| 421 // We must respect the alpha channel for V4 and V5. However, if it is | |
| 422 // all zeros, we will display the image as opaque rather than | |
| 423 // transparent. This may require redoing some of the processing. | |
| 424 bool seenNonZeroAlpha = false; | |
| 425 uint32_t i = 0; | |
| 426 for (; i < numColors; i++) { | |
| 427 uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor); | |
| 428 uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1); | |
| 429 uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2); | |
| 430 uint8_t alpha = 0xFF; | |
| 431 if (kInfoV4_BitmapHeaderType == headerType || | |
| 432 kInfoV5_BitmapHeaderType == headerType) { | |
| 433 alpha = (masks.alphaMask >> 24) & | |
| 434 get_byte(cBuffer.get(), i*bytesPerColor + 3); | |
| 435 if (!alpha && !seenNonZeroAlpha) { | |
| 436 alpha = 0xFF; | |
| 437 } else { | |
| 438 // If we see a non-zero alpha, we restart the loop | |
| 439 seenNonZeroAlpha = true; | |
| 440 i = -1; | |
| 441 } | |
| 442 } | |
| 443 colorTable[i] = SkPreMultiplyColor(SkColorSetARGBInline(alpha, | |
| 444 red, green, blue)); | |
| 445 } | |
| 446 // To avoid segmentation faults on bad pixel data, fill the end of the | |
| 447 // color table with black. This is the same the behavior as the | |
| 448 // chromium decoder. | |
| 449 for (; i < maxColors; i++) { | |
| 450 colorTable[i] = SkPackARGB32(0xFF, 0, 0, 0); | |
| 451 } | |
| 452 } else { | |
| 453 // We will not use the color table if bitsPerPixel >= 16, but if there | |
| 454 // is a color table, we may need to skip the color table bytes. | |
| 455 if (numColors <= 1 << 8) { | |
|
scroggo
2015/02/28 00:25:13
Nit: I find this more legible with parentheses:
(
| |
| 456 colorBytes = numColors * bytesPerColor; | |
| 457 if (stream->skip(colorBytes) != colorBytes) { | |
| 458 SkDebugf("Error: Could not skip color table bytes.\n"); | |
| 459 return NULL; | |
| 460 } | |
| 461 } | |
| 462 } | |
| 463 | |
| 464 // Ensure that the stream now points to the start of the pixel array | |
| 465 uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes; | |
| 466 if (bytesRead <= offset) { | |
|
scroggo
2015/02/28 00:25:13
nit: This is more readable if you reverse the if:
| |
| 467 if (stream->skip(offset - bytesRead) != offset - bytesRead) { | |
| 468 SkDebugf("Error: unable to skip to image data.\n"); | |
| 469 return NULL; | |
| 470 } | |
| 471 } else { | |
| 472 SkDebugf("Error: pixel data offset less than header size.\n"); | |
| 473 return NULL; | |
| 474 } | |
| 475 | |
| 476 // Remaining bytes is only used for RLE | |
| 477 const int remainingBytes = totalBytes - offset; | |
| 478 if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) { | |
| 479 SkDebugf("Error: RLE requires valid input size.\n"); | |
| 480 return NULL; | |
| 481 } | |
| 482 | |
| 483 // Return the codec | |
| 484 // Use of image info for input format does not make sense given | |
| 485 // that the possible bitmap input formats do not match up with | |
| 486 // Skia color types. Instead we use ImageInfo for width and height, | |
| 487 // and other fields for input format information. | |
| 488 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, | |
| 489 kN32_SkColorType, kPremul_SkAlphaType); | |
| 490 return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, | |
| 491 inputFormat, masks, colorTable, rowOrder, | |
| 492 remainingBytes)); | |
| 493 } | |
| 494 | |
| 495 /* | |
| 496 * | |
| 497 * Creates an instance of the decoder | |
| 498 * Called only by NewFromStream | |
| 499 * | |
| 500 */ | |
| 501 SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, | |
| 502 uint16_t bitsPerPixel, BitmapInputFormat inputFormat, | |
| 503 SkSwizzler::ColorMasks masks, SkPMColor* colorTable, | |
| 504 SkSwizzler::RowOrder rowOrder, | |
| 505 const uint32_t remainingBytes) | |
| 506 : INHERITED(info, stream) | |
| 507 , fBitsPerPixel(bitsPerPixel) | |
| 508 , fInputFormat(inputFormat) | |
| 509 , fBitMasks(masks) | |
| 510 , fColorTable(colorTable) | |
| 511 , fRowOrder(rowOrder) | |
| 512 , fRemainingBytes(remainingBytes) | |
| 513 {} | |
| 514 | |
| 515 /* | |
| 516 * | |
| 517 * Initiates the bitmap decode | |
| 518 * | |
| 519 */ | |
| 520 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, | |
| 521 void* dst, size_t dstRowBytes, | |
| 522 SkPMColor*, int*) { | |
| 523 // This version of the decoder does not support scaling | |
| 524 if (dstInfo.dimensions() != getOriginalInfo().dimensions()) { | |
| 525 SkDebugf("Error: scaling not supported.\n"); | |
| 526 return kInvalidScale; | |
| 527 } | |
| 528 | |
| 529 switch (fInputFormat) { | |
| 530 case kRLE_BitmapInputFormat: | |
| 531 return decodeRLE(dstInfo, dst, dstRowBytes); | |
| 532 case kBitMask_BitmapInputFormat: | |
| 533 case kStandard_BitmapInputFormat: | |
| 534 return decode(dstInfo, dst, dstRowBytes); | |
| 535 default: | |
| 536 SkDebugf("Error: unknown bitmap input format.\n"); | |
| 537 return kInvalidInput; | |
| 538 } | |
| 539 } | |
| 540 | |
| 541 /* | |
| 542 * | |
| 543 * Performs the bitmap decoding for standard and bit masks input format | |
| 544 * | |
| 545 */ | |
| 546 SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, | |
| 547 void* dst, uint32_t dstRowBytes) { | |
| 548 // Set constant values | |
| 549 const int width = dstInfo.width(); | |
| 550 const int height = dstInfo.height(); | |
| 551 const uint32_t pixelsPerByte = 8 / fBitsPerPixel; | |
| 552 const uint32_t bytesPerPixel = fBitsPerPixel / 8; | |
| 553 const uint32_t unpaddedRowBytes = fBitsPerPixel < 16 ? | |
| 554 (width + pixelsPerByte - 1) / pixelsPerByte : width * bytesPerPixel; | |
| 555 const uint32_t paddedRowBytes = (unpaddedRowBytes + 3) & (~3); | |
| 556 const uint32_t alphaMask = fBitMasks.alphaMask; | |
| 557 | |
| 558 // Get swizzler configuration | |
| 559 SkSwizzler::SrcConfig config; | |
| 560 switch (fBitsPerPixel) { | |
| 561 case 1: | |
| 562 config = SkSwizzler::kIndex1; | |
| 563 break; | |
| 564 case 2: | |
| 565 config = SkSwizzler::kIndex2; | |
| 566 break; | |
| 567 case 4: | |
| 568 config = SkSwizzler::kIndex4; | |
| 569 break; | |
| 570 case 8: | |
| 571 config = SkSwizzler::kIndex; | |
| 572 break; | |
| 573 case 16: | |
| 574 config = SkSwizzler::kMask16; | |
| 575 break; | |
| 576 case 24: | |
| 577 if (kBitMask_BitmapInputFormat == fInputFormat) { | |
| 578 config = SkSwizzler::kMask24; | |
| 579 } else { | |
| 580 config = SkSwizzler::kBGR; | |
| 581 } | |
| 582 break; | |
| 583 case 32: | |
| 584 if (kBitMask_BitmapInputFormat == fInputFormat) { | |
| 585 config = SkSwizzler::kMask32; | |
| 586 } else if (!alphaMask) { | |
| 587 config = SkSwizzler::kBGRX; | |
| 588 } else { | |
| 589 config = SkSwizzler::kBGRA; | |
| 590 } | |
| 591 break; | |
| 592 default: | |
| 593 SkASSERT(false); | |
| 594 return kInvalidInput; | |
| 595 } | |
| 596 | |
| 597 // If zeroAlpha is kNormal, it indicates that the image will be | |
| 598 // considered as encoded. If kTransparentAsOpaque, we will respect the | |
| 599 // value of the alpha channel if it is nonzero for any of the pixels. | |
| 600 // However, if it is always zero, we will consider the image opaque instead | |
| 601 // of transparent. This may require redoing some of the decoding. | |
| 602 SkSwizzler::ZeroAlpha zeroAlpha = SkSwizzler::kNormal_ZeroAlpha; | |
| 603 if (alphaMask) { | |
| 604 zeroAlpha = SkSwizzler::kTransparentAsOpaque_ZeroAlpha; | |
| 605 } | |
| 606 | |
| 607 // Create swizzler | |
| 608 SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(), | |
| 609 dstInfo, dst, dstRowBytes, false, fBitMasks, zeroAlpha, | |
| 610 fRowOrder); | |
| 611 | |
| 612 // Allocate space for a row buffer and a source for the swizzler | |
| 613 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, paddedRowBytes)); | |
| 614 | |
| 615 // Iterate over rows of the image | |
| 616 for (uint32_t y = 0; y < height; y++) { | |
| 617 // Read a row of the input | |
| 618 if (stream()->read(srcBuffer.get(), paddedRowBytes) != paddedRowBytes) { | |
| 619 return kIncompleteInput; | |
| 620 } | |
| 621 | |
| 622 // Decode the row in destination format | |
| 623 swizzler->next(srcBuffer.get()); | |
| 624 } | |
| 625 | |
| 626 // Finished decoding the entire image | |
| 627 return kSuccess; | |
| 628 } | |
| 629 | |
| 630 /* | |
| 631 * | |
| 632 * Set an RLE pixel using the color table | |
| 633 * | |
| 634 */ | |
| 635 void SkBmpCodec::setRLEPixel(SkPMColor* dst, uint32_t dstRowBytes, int height, | |
| 636 uint32_t x, uint32_t y, uint8_t index) { | |
| 637 if (SkSwizzler::kBottomUp_RowOrder == fRowOrder) { | |
| 638 y = height - y - 1; | |
| 639 } | |
| 640 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes); | |
| 641 dstRow[x] = fColorTable.get()[index]; | |
| 642 } | |
| 643 | |
| 644 /* | |
| 645 * | |
| 646 * Performs the bitmap decoding for RLE input format | |
| 647 * RLE decoding is performed all at once, rather than a one row at a time | |
| 648 * | |
| 649 */ | |
| 650 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, | |
| 651 void* dst, uint32_t dstRowBytes) { | |
| 652 // Set RLE flags | |
| 653 static const uint8_t RLE_ESCAPE = 0; | |
| 654 static const uint8_t RLE_EOL = 0; | |
| 655 static const uint8_t RLE_EOF = 1; | |
| 656 static const uint8_t RLE_DELTA = 2; | |
| 657 | |
| 658 // Set constant values | |
| 659 const int width = dstInfo.width(); | |
| 660 const int height = dstInfo.height(); | |
| 661 const uint32_t pixelsPerByte = 8 / fBitsPerPixel; | |
| 662 const uint32_t bytesPerPixel = fBitsPerPixel / 8; | |
| 663 | |
| 664 // Input buffer parameters | |
| 665 uint32_t i = 0; | |
| 666 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes)); | |
| 667 uint32_t totalBytes = stream()->read(buffer.get(), fRemainingBytes); | |
| 668 if (totalBytes < fRemainingBytes) { | |
| 669 SkDebugf("Warning: incomplete RLE file.\n"); | |
| 670 } else if (totalBytes <= 0) { | |
| 671 SkDebugf("Error: could not read RLE image data.\n"); | |
| 672 return kInvalidInput; | |
| 673 } | |
| 674 | |
| 675 // Destination parameters | |
| 676 uint32_t x = 0; | |
| 677 uint32_t y = 0; | |
| 678 // If the code skips pixels, remaining pixels are transparent or black | |
| 679 // TODO: Skip this is memory was already zeroed. | |
| 680 memset(dst, 0, dstRowBytes * height); | |
| 681 SkPMColor* dstPtr = (SkPMColor*) dst; | |
| 682 | |
| 683 while (true) { | |
| 684 // Every entry takes at least two bytes | |
| 685 if (totalBytes - i < 2) { | |
| 686 SkDebugf("Warning: incomplete RLE input.\n"); | |
| 687 return kIncompleteInput; | |
| 688 } | |
| 689 | |
| 690 // Read the two bytes and verify we have not reached end of image | |
| 691 const uint8_t count = buffer.get()[i++]; | |
| 692 const uint8_t code = buffer.get()[i++]; | |
| 693 if ((count || (code != RLE_EOF)) && y >= height) { | |
| 694 SkDebugf("Warning: invalid RLE input.\n"); | |
| 695 return kInvalidInput; | |
| 696 } | |
| 697 | |
| 698 // Perform decoding | |
| 699 if (RLE_ESCAPE == count) { | |
| 700 switch (code) { | |
| 701 case RLE_EOL: | |
| 702 x = 0; | |
| 703 y++; | |
| 704 break; | |
| 705 case RLE_EOF: | |
| 706 return kSuccess; | |
| 707 case RLE_DELTA: { | |
| 708 // Two bytes are needed to specify delta | |
| 709 if (totalBytes - i < 2) { | |
| 710 SkDebugf("Warning: incomplete RLE input\n"); | |
| 711 return kIncompleteInput; | |
| 712 } | |
| 713 // Modify x and y | |
| 714 const uint8_t dx = buffer.get()[i++]; | |
| 715 const uint8_t dy = buffer.get()[i++]; | |
| 716 x += dx; | |
| 717 y += dy; | |
| 718 if (x > width || y > height) { | |
| 719 SkDebugf("Warning: invalid RLE input.\n"); | |
| 720 return kInvalidInput; | |
| 721 } | |
| 722 break; | |
| 723 } | |
| 724 default: { // Absolute mode | |
| 725 // Check that we have enough bytes and that there are | |
| 726 // enough pixels remaining in the row | |
| 727 const uint32_t unpaddedBytes = fBitsPerPixel < 16 ? | |
| 728 (code + pixelsPerByte - 1) / pixelsPerByte : | |
| 729 code * bytesPerPixel; | |
| 730 const uint32_t paddedBytes = | |
| 731 (unpaddedBytes + 1) & (~1); | |
| 732 if (x + code > width || totalBytes - i < paddedBytes) { | |
| 733 SkDebugf("Warning: invalid RLE input.\n"); | |
| 734 return kInvalidInput; | |
| 735 } | |
| 736 // Use the color table to set the coded number of pixels | |
| 737 uint8_t num = code; | |
| 738 while (num > 0) { | |
| 739 switch(fBitsPerPixel) { | |
| 740 case 4: { | |
| 741 uint8_t val = buffer.get()[i++]; | |
| 742 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | |
| 743 val >> 4); | |
| 744 num--; | |
| 745 if (num) { | |
| 746 setRLEPixel(dstPtr, dstRowBytes, height, | |
| 747 x++, y, val & 0xF); | |
| 748 num--; | |
| 749 } | |
| 750 break; | |
| 751 } | |
| 752 case 8: | |
| 753 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | |
| 754 buffer.get()[i++]); | |
| 755 num--; | |
| 756 break; | |
| 757 case 24: { | |
| 758 uint8_t blue = buffer.get()[i++]; | |
| 759 uint8_t green = buffer.get()[i++]; | |
| 760 uint8_t red = buffer.get()[i++]; | |
| 761 SkPMColor color = SkPackARGB32( | |
|
scroggo
2015/02/28 00:25:13
I think this one should be SkPreMultiplyARGB (Pack
| |
| 762 0xFF, red, green, blue); | |
| 763 SkPMColor* dstRow = SkTAddOffset<SkPMColor>( | |
| 764 dstPtr, y * dstRowBytes); | |
| 765 dstRow[x++] = color; | |
| 766 num--; | |
| 767 } | |
| 768 default: | |
| 769 SkDebugf("Error: invalid RLE bpp.\n"); | |
| 770 return kInvalidInput; | |
| 771 } | |
| 772 } | |
| 773 // Skip a byte if necessary to maintain alignment | |
| 774 if (unpaddedBytes & 1) { | |
| 775 i++; | |
| 776 } | |
| 777 break; | |
| 778 } | |
| 779 } | |
| 780 } else { // Encoded mode | |
| 781 // Ensure we do not move past the end of the row | |
| 782 const uint32_t endX = SkTMin<uint32_t>(x + count, (uint32_t) width); | |
|
scroggo
2015/02/28 00:25:13
Do you still need algorithm? (I assume you had it
| |
| 783 | |
| 784 if (24 == fBitsPerPixel) { | |
| 785 // Check that there is enough data | |
| 786 if (totalBytes - i < 2) { | |
| 787 SkDebugf("Warning: incomplete RLE input\n"); | |
| 788 return kIncompleteInput; | |
| 789 } | |
| 790 | |
| 791 // Fill the pixels up to endX with the specified color | |
| 792 uint8_t blue = code; | |
| 793 uint8_t green = buffer.get()[i++]; | |
| 794 uint8_t red = buffer.get()[i++]; | |
| 795 SkPMColor color = SkPackARGB32(0xFF, red, green, blue); | |
| 796 SkPMColor* dstRow = | |
| 797 SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes); | |
| 798 while (x < endX) { | |
| 799 dstRow[x++] = color; | |
| 800 } | |
| 801 } else { | |
| 802 // RLE8 has one color index that gets repeated | |
| 803 // RLE4 has two color indexes in the upper and lower 4 bits of | |
| 804 // the bytes, which are alternated | |
| 805 uint8_t indices[2] = { code, code }; | |
| 806 if (4 == fBitsPerPixel) { | |
| 807 indices[0] >>= 4; | |
| 808 indices[1] &= 0xf; | |
| 809 } | |
| 810 | |
| 811 // Set the indicated number of pixels | |
| 812 for (int which = 0; x < endX; x++) { | |
| 813 setRLEPixel(dstPtr, dstRowBytes, height, x, y, | |
| 814 indices[which]); | |
| 815 which = !which; | |
| 816 } | |
| 817 } | |
| 818 } | |
| 819 } | |
| 820 } | |
| OLD | NEW |