OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "media/filters/audio_renderer_impl.h" | |
6 | |
7 #include <math.h> | |
8 | |
9 #include <algorithm> | |
10 | |
11 #include "base/bind.h" | |
12 #include "base/callback.h" | |
13 #include "base/callback_helpers.h" | |
14 #include "base/logging.h" | |
15 #include "base/metrics/histogram.h" | |
16 #include "base/single_thread_task_runner.h" | |
17 #include "media/base/audio_buffer.h" | |
18 #include "media/base/audio_buffer_converter.h" | |
19 #include "media/base/audio_hardware_config.h" | |
20 #include "media/base/audio_splicer.h" | |
21 #include "media/base/bind_to_current_loop.h" | |
22 #include "media/base/demuxer_stream.h" | |
23 #include "media/filters/audio_clock.h" | |
24 #include "media/filters/decrypting_demuxer_stream.h" | |
25 | |
26 namespace media { | |
27 | |
28 namespace { | |
29 | |
30 enum AudioRendererEvent { | |
31 INITIALIZED, | |
32 RENDER_ERROR, | |
33 RENDER_EVENT_MAX = RENDER_ERROR, | |
34 }; | |
35 | |
36 void HistogramRendererEvent(AudioRendererEvent event) { | |
37 UMA_HISTOGRAM_ENUMERATION( | |
38 "Media.AudioRendererEvents", event, RENDER_EVENT_MAX + 1); | |
39 } | |
40 | |
41 } // namespace | |
42 | |
43 AudioRendererImpl::AudioRendererImpl( | |
44 const scoped_refptr<base::SingleThreadTaskRunner>& task_runner, | |
45 media::AudioRendererSink* sink, | |
46 ScopedVector<AudioDecoder> decoders, | |
47 const AudioHardwareConfig& hardware_config, | |
48 const scoped_refptr<MediaLog>& media_log) | |
49 : task_runner_(task_runner), | |
50 expecting_config_changes_(false), | |
51 sink_(sink), | |
52 audio_buffer_stream_( | |
53 new AudioBufferStream(task_runner, decoders.Pass(), media_log)), | |
54 hardware_config_(hardware_config), | |
55 playback_rate_(0), | |
56 state_(kUninitialized), | |
57 buffering_state_(BUFFERING_HAVE_NOTHING), | |
58 rendering_(false), | |
59 sink_playing_(false), | |
60 pending_read_(false), | |
61 received_end_of_stream_(false), | |
62 rendered_end_of_stream_(false), | |
63 weak_factory_(this) { | |
64 audio_buffer_stream_->set_splice_observer(base::Bind( | |
65 &AudioRendererImpl::OnNewSpliceBuffer, weak_factory_.GetWeakPtr())); | |
66 audio_buffer_stream_->set_config_change_observer(base::Bind( | |
67 &AudioRendererImpl::OnConfigChange, weak_factory_.GetWeakPtr())); | |
68 } | |
69 | |
70 AudioRendererImpl::~AudioRendererImpl() { | |
71 DVLOG(1) << __FUNCTION__; | |
72 DCHECK(task_runner_->BelongsToCurrentThread()); | |
73 | |
74 // If Render() is in progress, this call will wait for Render() to finish. | |
75 // After this call, the |sink_| will not call back into |this| anymore. | |
76 sink_->Stop(); | |
77 | |
78 if (!init_cb_.is_null()) | |
79 base::ResetAndReturn(&init_cb_).Run(PIPELINE_ERROR_ABORT); | |
80 } | |
81 | |
82 void AudioRendererImpl::StartTicking() { | |
83 DVLOG(1) << __FUNCTION__; | |
84 DCHECK(task_runner_->BelongsToCurrentThread()); | |
85 DCHECK(!rendering_); | |
86 rendering_ = true; | |
87 | |
88 base::AutoLock auto_lock(lock_); | |
89 // Wait for an eventual call to SetPlaybackRate() to start rendering. | |
90 if (playback_rate_ == 0) { | |
91 DCHECK(!sink_playing_); | |
92 return; | |
93 } | |
94 | |
95 StartRendering_Locked(); | |
96 } | |
97 | |
98 void AudioRendererImpl::StartRendering_Locked() { | |
99 DVLOG(1) << __FUNCTION__; | |
100 DCHECK(task_runner_->BelongsToCurrentThread()); | |
101 DCHECK_EQ(state_, kPlaying); | |
102 DCHECK(!sink_playing_); | |
103 DCHECK_NE(playback_rate_, 0); | |
104 lock_.AssertAcquired(); | |
105 | |
106 sink_playing_ = true; | |
107 | |
108 base::AutoUnlock auto_unlock(lock_); | |
109 sink_->Play(); | |
110 } | |
111 | |
112 void AudioRendererImpl::StopTicking() { | |
113 DVLOG(1) << __FUNCTION__; | |
114 DCHECK(task_runner_->BelongsToCurrentThread()); | |
115 DCHECK(rendering_); | |
116 rendering_ = false; | |
117 | |
118 base::AutoLock auto_lock(lock_); | |
119 // Rendering should have already been stopped with a zero playback rate. | |
120 if (playback_rate_ == 0) { | |
121 DCHECK(!sink_playing_); | |
122 return; | |
123 } | |
124 | |
125 StopRendering_Locked(); | |
126 } | |
127 | |
128 void AudioRendererImpl::StopRendering_Locked() { | |
129 DCHECK(task_runner_->BelongsToCurrentThread()); | |
130 DCHECK_EQ(state_, kPlaying); | |
131 DCHECK(sink_playing_); | |
132 lock_.AssertAcquired(); | |
133 | |
134 sink_playing_ = false; | |
135 | |
136 base::AutoUnlock auto_unlock(lock_); | |
137 sink_->Pause(); | |
138 } | |
139 | |
140 void AudioRendererImpl::SetMediaTime(base::TimeDelta time) { | |
141 DVLOG(1) << __FUNCTION__ << "(" << time << ")"; | |
142 DCHECK(task_runner_->BelongsToCurrentThread()); | |
143 | |
144 base::AutoLock auto_lock(lock_); | |
145 DCHECK(!rendering_); | |
146 DCHECK_EQ(state_, kFlushed); | |
147 | |
148 start_timestamp_ = time; | |
149 ended_timestamp_ = kInfiniteDuration(); | |
150 last_render_ticks_ = base::TimeTicks(); | |
151 first_packet_timestamp_ = kNoTimestamp(); | |
152 audio_clock_.reset(new AudioClock(time, audio_parameters_.sample_rate())); | |
153 } | |
154 | |
155 base::TimeDelta AudioRendererImpl::CurrentMediaTime() { | |
156 // In practice the Render() method is called with a high enough frequency | |
157 // that returning only the front timestamp is good enough and also prevents | |
158 // returning values that go backwards in time. | |
159 base::TimeDelta current_media_time; | |
160 { | |
161 base::AutoLock auto_lock(lock_); | |
162 current_media_time = audio_clock_->front_timestamp(); | |
163 } | |
164 | |
165 DVLOG(2) << __FUNCTION__ << ": " << current_media_time; | |
166 return current_media_time; | |
167 } | |
168 | |
169 base::TimeDelta AudioRendererImpl::CurrentMediaTimeForSyncingVideo() { | |
170 DVLOG(3) << __FUNCTION__; | |
171 | |
172 base::AutoLock auto_lock(lock_); | |
173 if (last_render_ticks_.is_null()) | |
174 return audio_clock_->front_timestamp(); | |
175 | |
176 return audio_clock_->TimestampSinceWriting(base::TimeTicks::Now() - | |
177 last_render_ticks_); | |
178 } | |
179 | |
180 TimeSource* AudioRendererImpl::GetTimeSource() { | |
181 return this; | |
182 } | |
183 | |
184 void AudioRendererImpl::Flush(const base::Closure& callback) { | |
185 DVLOG(1) << __FUNCTION__; | |
186 DCHECK(task_runner_->BelongsToCurrentThread()); | |
187 | |
188 base::AutoLock auto_lock(lock_); | |
189 DCHECK_EQ(state_, kPlaying); | |
190 DCHECK(flush_cb_.is_null()); | |
191 | |
192 flush_cb_ = callback; | |
193 ChangeState_Locked(kFlushing); | |
194 | |
195 if (pending_read_) | |
196 return; | |
197 | |
198 ChangeState_Locked(kFlushed); | |
199 DoFlush_Locked(); | |
200 } | |
201 | |
202 void AudioRendererImpl::DoFlush_Locked() { | |
203 DCHECK(task_runner_->BelongsToCurrentThread()); | |
204 lock_.AssertAcquired(); | |
205 | |
206 DCHECK(!pending_read_); | |
207 DCHECK_EQ(state_, kFlushed); | |
208 | |
209 audio_buffer_stream_->Reset(base::Bind(&AudioRendererImpl::ResetDecoderDone, | |
210 weak_factory_.GetWeakPtr())); | |
211 } | |
212 | |
213 void AudioRendererImpl::ResetDecoderDone() { | |
214 DCHECK(task_runner_->BelongsToCurrentThread()); | |
215 { | |
216 base::AutoLock auto_lock(lock_); | |
217 | |
218 DCHECK_EQ(state_, kFlushed); | |
219 DCHECK(!flush_cb_.is_null()); | |
220 | |
221 received_end_of_stream_ = false; | |
222 rendered_end_of_stream_ = false; | |
223 | |
224 // Flush() may have been called while underflowed/not fully buffered. | |
225 if (buffering_state_ != BUFFERING_HAVE_NOTHING) | |
226 SetBufferingState_Locked(BUFFERING_HAVE_NOTHING); | |
227 | |
228 splicer_->Reset(); | |
229 if (buffer_converter_) | |
230 buffer_converter_->Reset(); | |
231 algorithm_->FlushBuffers(); | |
232 } | |
233 | |
234 // Changes in buffering state are always posted. Flush callback must only be | |
235 // run after buffering state has been set back to nothing. | |
236 task_runner_->PostTask(FROM_HERE, base::ResetAndReturn(&flush_cb_)); | |
237 } | |
238 | |
239 void AudioRendererImpl::StartPlaying() { | |
240 DVLOG(1) << __FUNCTION__; | |
241 DCHECK(task_runner_->BelongsToCurrentThread()); | |
242 | |
243 base::AutoLock auto_lock(lock_); | |
244 DCHECK(!sink_playing_); | |
245 DCHECK_EQ(state_, kFlushed); | |
246 DCHECK_EQ(buffering_state_, BUFFERING_HAVE_NOTHING); | |
247 DCHECK(!pending_read_) << "Pending read must complete before seeking"; | |
248 | |
249 ChangeState_Locked(kPlaying); | |
250 AttemptRead_Locked(); | |
251 } | |
252 | |
253 void AudioRendererImpl::Initialize( | |
254 DemuxerStream* stream, | |
255 const PipelineStatusCB& init_cb, | |
256 const SetDecryptorReadyCB& set_decryptor_ready_cb, | |
257 const StatisticsCB& statistics_cb, | |
258 const BufferingStateCB& buffering_state_cb, | |
259 const base::Closure& ended_cb, | |
260 const PipelineStatusCB& error_cb) { | |
261 DVLOG(1) << __FUNCTION__; | |
262 DCHECK(task_runner_->BelongsToCurrentThread()); | |
263 DCHECK(stream); | |
264 DCHECK_EQ(stream->type(), DemuxerStream::AUDIO); | |
265 DCHECK(!init_cb.is_null()); | |
266 DCHECK(!statistics_cb.is_null()); | |
267 DCHECK(!buffering_state_cb.is_null()); | |
268 DCHECK(!ended_cb.is_null()); | |
269 DCHECK(!error_cb.is_null()); | |
270 DCHECK_EQ(kUninitialized, state_); | |
271 DCHECK(sink_.get()); | |
272 | |
273 state_ = kInitializing; | |
274 | |
275 // Always post |init_cb_| because |this| could be destroyed if initialization | |
276 // failed. | |
277 init_cb_ = BindToCurrentLoop(init_cb); | |
278 | |
279 buffering_state_cb_ = buffering_state_cb; | |
280 ended_cb_ = ended_cb; | |
281 error_cb_ = error_cb; | |
282 | |
283 expecting_config_changes_ = stream->SupportsConfigChanges(); | |
284 if (!expecting_config_changes_) { | |
285 // The actual buffer size is controlled via the size of the AudioBus | |
286 // provided to Render(), so just choose something reasonable here for looks. | |
287 int buffer_size = stream->audio_decoder_config().samples_per_second() / 100; | |
288 audio_parameters_.Reset( | |
289 AudioParameters::AUDIO_PCM_LOW_LATENCY, | |
290 stream->audio_decoder_config().channel_layout(), | |
291 ChannelLayoutToChannelCount( | |
292 stream->audio_decoder_config().channel_layout()), | |
293 stream->audio_decoder_config().samples_per_second(), | |
294 stream->audio_decoder_config().bits_per_channel(), | |
295 buffer_size); | |
296 buffer_converter_.reset(); | |
297 } else { | |
298 // TODO(rileya): Support hardware config changes | |
299 const AudioParameters& hw_params = hardware_config_.GetOutputConfig(); | |
300 audio_parameters_.Reset( | |
301 hw_params.format(), | |
302 // Always use the source's channel layout and channel count to avoid | |
303 // premature downmixing (http://crbug.com/379288), platform specific | |
304 // issues around channel layouts (http://crbug.com/266674), and | |
305 // unnecessary upmixing overhead. | |
306 stream->audio_decoder_config().channel_layout(), | |
307 ChannelLayoutToChannelCount( | |
308 stream->audio_decoder_config().channel_layout()), | |
309 hw_params.sample_rate(), | |
310 hw_params.bits_per_sample(), | |
311 hardware_config_.GetHighLatencyBufferSize()); | |
312 } | |
313 | |
314 audio_clock_.reset( | |
315 new AudioClock(base::TimeDelta(), audio_parameters_.sample_rate())); | |
316 | |
317 audio_buffer_stream_->Initialize( | |
318 stream, base::Bind(&AudioRendererImpl::OnAudioBufferStreamInitialized, | |
319 weak_factory_.GetWeakPtr()), | |
320 set_decryptor_ready_cb, statistics_cb); | |
321 } | |
322 | |
323 void AudioRendererImpl::OnAudioBufferStreamInitialized(bool success) { | |
324 DVLOG(1) << __FUNCTION__ << ": " << success; | |
325 DCHECK(task_runner_->BelongsToCurrentThread()); | |
326 | |
327 base::AutoLock auto_lock(lock_); | |
328 | |
329 if (!success) { | |
330 state_ = kUninitialized; | |
331 base::ResetAndReturn(&init_cb_).Run(DECODER_ERROR_NOT_SUPPORTED); | |
332 return; | |
333 } | |
334 | |
335 if (!audio_parameters_.IsValid()) { | |
336 DVLOG(1) << __FUNCTION__ << ": Invalid audio parameters: " | |
337 << audio_parameters_.AsHumanReadableString(); | |
338 ChangeState_Locked(kUninitialized); | |
339 base::ResetAndReturn(&init_cb_).Run(PIPELINE_ERROR_INITIALIZATION_FAILED); | |
340 return; | |
341 } | |
342 | |
343 if (expecting_config_changes_) | |
344 buffer_converter_.reset(new AudioBufferConverter(audio_parameters_)); | |
345 splicer_.reset(new AudioSplicer(audio_parameters_.sample_rate())); | |
346 | |
347 // We're all good! Continue initializing the rest of the audio renderer | |
348 // based on the decoder format. | |
349 algorithm_.reset(new AudioRendererAlgorithm()); | |
350 algorithm_->Initialize(audio_parameters_); | |
351 | |
352 ChangeState_Locked(kFlushed); | |
353 | |
354 HistogramRendererEvent(INITIALIZED); | |
355 | |
356 { | |
357 base::AutoUnlock auto_unlock(lock_); | |
358 sink_->Initialize(audio_parameters_, this); | |
359 sink_->Start(); | |
360 | |
361 // Some sinks play on start... | |
362 sink_->Pause(); | |
363 } | |
364 | |
365 DCHECK(!sink_playing_); | |
366 base::ResetAndReturn(&init_cb_).Run(PIPELINE_OK); | |
367 } | |
368 | |
369 void AudioRendererImpl::SetVolume(float volume) { | |
370 DCHECK(task_runner_->BelongsToCurrentThread()); | |
371 DCHECK(sink_.get()); | |
372 sink_->SetVolume(volume); | |
373 } | |
374 | |
375 void AudioRendererImpl::DecodedAudioReady( | |
376 AudioBufferStream::Status status, | |
377 const scoped_refptr<AudioBuffer>& buffer) { | |
378 DVLOG(2) << __FUNCTION__ << "(" << status << ")"; | |
379 DCHECK(task_runner_->BelongsToCurrentThread()); | |
380 | |
381 base::AutoLock auto_lock(lock_); | |
382 DCHECK(state_ != kUninitialized); | |
383 | |
384 CHECK(pending_read_); | |
385 pending_read_ = false; | |
386 | |
387 if (status == AudioBufferStream::ABORTED || | |
388 status == AudioBufferStream::DEMUXER_READ_ABORTED) { | |
389 HandleAbortedReadOrDecodeError(false); | |
390 return; | |
391 } | |
392 | |
393 if (status == AudioBufferStream::DECODE_ERROR) { | |
394 HandleAbortedReadOrDecodeError(true); | |
395 return; | |
396 } | |
397 | |
398 DCHECK_EQ(status, AudioBufferStream::OK); | |
399 DCHECK(buffer.get()); | |
400 | |
401 if (state_ == kFlushing) { | |
402 ChangeState_Locked(kFlushed); | |
403 DoFlush_Locked(); | |
404 return; | |
405 } | |
406 | |
407 if (expecting_config_changes_) { | |
408 DCHECK(buffer_converter_); | |
409 buffer_converter_->AddInput(buffer); | |
410 while (buffer_converter_->HasNextBuffer()) { | |
411 if (!splicer_->AddInput(buffer_converter_->GetNextBuffer())) { | |
412 HandleAbortedReadOrDecodeError(true); | |
413 return; | |
414 } | |
415 } | |
416 } else { | |
417 if (!splicer_->AddInput(buffer)) { | |
418 HandleAbortedReadOrDecodeError(true); | |
419 return; | |
420 } | |
421 } | |
422 | |
423 if (!splicer_->HasNextBuffer()) { | |
424 AttemptRead_Locked(); | |
425 return; | |
426 } | |
427 | |
428 bool need_another_buffer = false; | |
429 while (splicer_->HasNextBuffer()) | |
430 need_another_buffer = HandleSplicerBuffer_Locked(splicer_->GetNextBuffer()); | |
431 | |
432 if (!need_another_buffer && !CanRead_Locked()) | |
433 return; | |
434 | |
435 AttemptRead_Locked(); | |
436 } | |
437 | |
438 bool AudioRendererImpl::HandleSplicerBuffer_Locked( | |
439 const scoped_refptr<AudioBuffer>& buffer) { | |
440 lock_.AssertAcquired(); | |
441 if (buffer->end_of_stream()) { | |
442 received_end_of_stream_ = true; | |
443 } else { | |
444 if (state_ == kPlaying) { | |
445 if (IsBeforeStartTime(buffer)) | |
446 return true; | |
447 | |
448 // Trim off any additional time before the start timestamp. | |
449 const base::TimeDelta trim_time = start_timestamp_ - buffer->timestamp(); | |
450 if (trim_time > base::TimeDelta()) { | |
451 buffer->TrimStart(buffer->frame_count() * | |
452 (static_cast<double>(trim_time.InMicroseconds()) / | |
453 buffer->duration().InMicroseconds())); | |
454 } | |
455 // If the entire buffer was trimmed, request a new one. | |
456 if (!buffer->frame_count()) | |
457 return true; | |
458 } | |
459 | |
460 if (state_ != kUninitialized) | |
461 algorithm_->EnqueueBuffer(buffer); | |
462 } | |
463 | |
464 // Store the timestamp of the first packet so we know when to start actual | |
465 // audio playback. | |
466 if (first_packet_timestamp_ == kNoTimestamp()) | |
467 first_packet_timestamp_ = buffer->timestamp(); | |
468 | |
469 switch (state_) { | |
470 case kUninitialized: | |
471 case kInitializing: | |
472 case kFlushing: | |
473 NOTREACHED(); | |
474 return false; | |
475 | |
476 case kFlushed: | |
477 DCHECK(!pending_read_); | |
478 return false; | |
479 | |
480 case kPlaying: | |
481 if (buffer->end_of_stream() || algorithm_->IsQueueFull()) { | |
482 if (buffering_state_ == BUFFERING_HAVE_NOTHING) | |
483 SetBufferingState_Locked(BUFFERING_HAVE_ENOUGH); | |
484 return false; | |
485 } | |
486 return true; | |
487 } | |
488 return false; | |
489 } | |
490 | |
491 void AudioRendererImpl::AttemptRead() { | |
492 base::AutoLock auto_lock(lock_); | |
493 AttemptRead_Locked(); | |
494 } | |
495 | |
496 void AudioRendererImpl::AttemptRead_Locked() { | |
497 DCHECK(task_runner_->BelongsToCurrentThread()); | |
498 lock_.AssertAcquired(); | |
499 | |
500 if (!CanRead_Locked()) | |
501 return; | |
502 | |
503 pending_read_ = true; | |
504 audio_buffer_stream_->Read(base::Bind(&AudioRendererImpl::DecodedAudioReady, | |
505 weak_factory_.GetWeakPtr())); | |
506 } | |
507 | |
508 bool AudioRendererImpl::CanRead_Locked() { | |
509 lock_.AssertAcquired(); | |
510 | |
511 switch (state_) { | |
512 case kUninitialized: | |
513 case kInitializing: | |
514 case kFlushing: | |
515 case kFlushed: | |
516 return false; | |
517 | |
518 case kPlaying: | |
519 break; | |
520 } | |
521 | |
522 return !pending_read_ && !received_end_of_stream_ && | |
523 !algorithm_->IsQueueFull(); | |
524 } | |
525 | |
526 void AudioRendererImpl::SetPlaybackRate(float playback_rate) { | |
527 DVLOG(1) << __FUNCTION__ << "(" << playback_rate << ")"; | |
528 DCHECK(task_runner_->BelongsToCurrentThread()); | |
529 DCHECK_GE(playback_rate, 0); | |
530 DCHECK(sink_.get()); | |
531 | |
532 base::AutoLock auto_lock(lock_); | |
533 | |
534 // We have two cases here: | |
535 // Play: current_playback_rate == 0 && playback_rate != 0 | |
536 // Pause: current_playback_rate != 0 && playback_rate == 0 | |
537 float current_playback_rate = playback_rate_; | |
538 playback_rate_ = playback_rate; | |
539 | |
540 if (!rendering_) | |
541 return; | |
542 | |
543 if (current_playback_rate == 0 && playback_rate != 0) { | |
544 StartRendering_Locked(); | |
545 return; | |
546 } | |
547 | |
548 if (current_playback_rate != 0 && playback_rate == 0) { | |
549 StopRendering_Locked(); | |
550 return; | |
551 } | |
552 } | |
553 | |
554 bool AudioRendererImpl::IsBeforeStartTime( | |
555 const scoped_refptr<AudioBuffer>& buffer) { | |
556 DCHECK_EQ(state_, kPlaying); | |
557 return buffer.get() && !buffer->end_of_stream() && | |
558 (buffer->timestamp() + buffer->duration()) < start_timestamp_; | |
559 } | |
560 | |
561 int AudioRendererImpl::Render(AudioBus* audio_bus, | |
562 int audio_delay_milliseconds) { | |
563 const int requested_frames = audio_bus->frames(); | |
564 base::TimeDelta playback_delay = base::TimeDelta::FromMilliseconds( | |
565 audio_delay_milliseconds); | |
566 const int delay_frames = static_cast<int>(playback_delay.InSecondsF() * | |
567 audio_parameters_.sample_rate()); | |
568 int frames_written = 0; | |
569 { | |
570 base::AutoLock auto_lock(lock_); | |
571 last_render_ticks_ = base::TimeTicks::Now(); | |
572 | |
573 // Ensure Stop() hasn't destroyed our |algorithm_| on the pipeline thread. | |
574 if (!algorithm_) { | |
575 audio_clock_->WroteAudio( | |
576 0, requested_frames, delay_frames, playback_rate_); | |
577 return 0; | |
578 } | |
579 | |
580 if (playback_rate_ == 0) { | |
581 audio_clock_->WroteAudio( | |
582 0, requested_frames, delay_frames, playback_rate_); | |
583 return 0; | |
584 } | |
585 | |
586 // Mute audio by returning 0 when not playing. | |
587 if (state_ != kPlaying) { | |
588 audio_clock_->WroteAudio( | |
589 0, requested_frames, delay_frames, playback_rate_); | |
590 return 0; | |
591 } | |
592 | |
593 // Delay playback by writing silence if we haven't reached the first | |
594 // timestamp yet; this can occur if the video starts before the audio. | |
595 if (algorithm_->frames_buffered() > 0) { | |
596 DCHECK(first_packet_timestamp_ != kNoTimestamp()); | |
597 const base::TimeDelta play_delay = | |
598 first_packet_timestamp_ - audio_clock_->back_timestamp(); | |
599 if (play_delay > base::TimeDelta()) { | |
600 DCHECK_EQ(frames_written, 0); | |
601 frames_written = | |
602 std::min(static_cast<int>(play_delay.InSecondsF() * | |
603 audio_parameters_.sample_rate()), | |
604 requested_frames); | |
605 audio_bus->ZeroFramesPartial(0, frames_written); | |
606 } | |
607 | |
608 // If there's any space left, actually render the audio; this is where the | |
609 // aural magic happens. | |
610 if (frames_written < requested_frames) { | |
611 frames_written += algorithm_->FillBuffer( | |
612 audio_bus, frames_written, requested_frames - frames_written, | |
613 playback_rate_); | |
614 } | |
615 } | |
616 | |
617 // We use the following conditions to determine end of playback: | |
618 // 1) Algorithm can not fill the audio callback buffer | |
619 // 2) We received an end of stream buffer | |
620 // 3) We haven't already signalled that we've ended | |
621 // 4) We've played all known audio data sent to hardware | |
622 // | |
623 // We use the following conditions to determine underflow: | |
624 // 1) Algorithm can not fill the audio callback buffer | |
625 // 2) We have NOT received an end of stream buffer | |
626 // 3) We are in the kPlaying state | |
627 // | |
628 // Otherwise the buffer has data we can send to the device. | |
629 // | |
630 // Per the TimeSource API the media time should always increase even after | |
631 // we've rendered all known audio data. Doing so simplifies scenarios where | |
632 // we have other sources of media data that need to be scheduled after audio | |
633 // data has ended. | |
634 // | |
635 // That being said, we don't want to advance time when underflowed as we | |
636 // know more decoded frames will eventually arrive. If we did, we would | |
637 // throw things out of sync when said decoded frames arrive. | |
638 int frames_after_end_of_stream = 0; | |
639 if (frames_written == 0) { | |
640 if (received_end_of_stream_) { | |
641 if (ended_timestamp_ == kInfiniteDuration()) | |
642 ended_timestamp_ = audio_clock_->back_timestamp(); | |
643 frames_after_end_of_stream = requested_frames; | |
644 } else if (state_ == kPlaying && | |
645 buffering_state_ != BUFFERING_HAVE_NOTHING) { | |
646 algorithm_->IncreaseQueueCapacity(); | |
647 SetBufferingState_Locked(BUFFERING_HAVE_NOTHING); | |
648 } | |
649 } | |
650 | |
651 audio_clock_->WroteAudio(frames_written + frames_after_end_of_stream, | |
652 requested_frames, | |
653 delay_frames, | |
654 playback_rate_); | |
655 | |
656 if (CanRead_Locked()) { | |
657 task_runner_->PostTask(FROM_HERE, | |
658 base::Bind(&AudioRendererImpl::AttemptRead, | |
659 weak_factory_.GetWeakPtr())); | |
660 } | |
661 | |
662 if (audio_clock_->front_timestamp() >= ended_timestamp_ && | |
663 !rendered_end_of_stream_) { | |
664 rendered_end_of_stream_ = true; | |
665 task_runner_->PostTask(FROM_HERE, ended_cb_); | |
666 } | |
667 } | |
668 | |
669 DCHECK_LE(frames_written, requested_frames); | |
670 return frames_written; | |
671 } | |
672 | |
673 void AudioRendererImpl::OnRenderError() { | |
674 // UMA data tells us this happens ~0.01% of the time. Trigger an error instead | |
675 // of trying to gracefully fall back to a fake sink. It's very likely | |
676 // OnRenderError() should be removed and the audio stack handle errors without | |
677 // notifying clients. See http://crbug.com/234708 for details. | |
678 HistogramRendererEvent(RENDER_ERROR); | |
679 // Post to |task_runner_| as this is called on the audio callback thread. | |
680 task_runner_->PostTask(FROM_HERE, | |
681 base::Bind(error_cb_, PIPELINE_ERROR_DECODE)); | |
682 } | |
683 | |
684 void AudioRendererImpl::HandleAbortedReadOrDecodeError(bool is_decode_error) { | |
685 DCHECK(task_runner_->BelongsToCurrentThread()); | |
686 lock_.AssertAcquired(); | |
687 | |
688 PipelineStatus status = is_decode_error ? PIPELINE_ERROR_DECODE : PIPELINE_OK; | |
689 switch (state_) { | |
690 case kUninitialized: | |
691 case kInitializing: | |
692 NOTREACHED(); | |
693 return; | |
694 case kFlushing: | |
695 ChangeState_Locked(kFlushed); | |
696 if (status == PIPELINE_OK) { | |
697 DoFlush_Locked(); | |
698 return; | |
699 } | |
700 | |
701 error_cb_.Run(status); | |
702 base::ResetAndReturn(&flush_cb_).Run(); | |
703 return; | |
704 | |
705 case kFlushed: | |
706 case kPlaying: | |
707 if (status != PIPELINE_OK) | |
708 error_cb_.Run(status); | |
709 return; | |
710 } | |
711 } | |
712 | |
713 void AudioRendererImpl::ChangeState_Locked(State new_state) { | |
714 DVLOG(1) << __FUNCTION__ << " : " << state_ << " -> " << new_state; | |
715 lock_.AssertAcquired(); | |
716 state_ = new_state; | |
717 } | |
718 | |
719 void AudioRendererImpl::OnNewSpliceBuffer(base::TimeDelta splice_timestamp) { | |
720 DCHECK(task_runner_->BelongsToCurrentThread()); | |
721 splicer_->SetSpliceTimestamp(splice_timestamp); | |
722 } | |
723 | |
724 void AudioRendererImpl::OnConfigChange() { | |
725 DCHECK(task_runner_->BelongsToCurrentThread()); | |
726 DCHECK(expecting_config_changes_); | |
727 buffer_converter_->ResetTimestampState(); | |
728 // Drain flushed buffers from the converter so the AudioSplicer receives all | |
729 // data ahead of any OnNewSpliceBuffer() calls. Since discontinuities should | |
730 // only appear after config changes, AddInput() should never fail here. | |
731 while (buffer_converter_->HasNextBuffer()) | |
732 CHECK(splicer_->AddInput(buffer_converter_->GetNextBuffer())); | |
733 } | |
734 | |
735 void AudioRendererImpl::SetBufferingState_Locked( | |
736 BufferingState buffering_state) { | |
737 DVLOG(1) << __FUNCTION__ << " : " << buffering_state_ << " -> " | |
738 << buffering_state; | |
739 DCHECK_NE(buffering_state_, buffering_state); | |
740 lock_.AssertAcquired(); | |
741 buffering_state_ = buffering_state; | |
742 | |
743 task_runner_->PostTask(FROM_HERE, | |
744 base::Bind(buffering_state_cb_, buffering_state_)); | |
745 } | |
746 | |
747 } // namespace media | |
OLD | NEW |