OLD | NEW |
(Empty) | |
| 1 ; Test how we handle eliding ptrtoint instructions. |
| 2 |
| 3 ; RUN: llvm-as < %s | pnacl-freeze \ |
| 4 ; RUN: | pnacl-bcanalyzer -dump-records \ |
| 5 ; RUN: | FileCheck %s -check-prefix=PF2 |
| 6 |
| 7 ; RUN: llvm-as < %s | pnacl-freeze -allow-local-symbol-tables \ |
| 8 ; RUN: | pnacl-thaw -allow-local-symbol-tables \ |
| 9 ; RUN: | llvm-dis - | FileCheck %s -check-prefix=TD2 |
| 10 |
| 11 ; ------------------------------------------------------ |
| 12 |
| 13 declare i32 @bar(i32) |
| 14 |
| 15 @bytes = internal global [4 x i8] c"abcd" |
| 16 |
| 17 ; ------------------------------------------------------ |
| 18 |
| 19 ; Show simple case where we use ptrtoint |
| 20 define void @AllocCastSimple() { |
| 21 %1 = alloca i8, i32 4, align 8 |
| 22 %2 = ptrtoint i8* %1 to i32 |
| 23 %3 = bitcast [4 x i8]* @bytes to i32* |
| 24 store i32 %2, i32* %3, align 1 |
| 25 ret void |
| 26 } |
| 27 |
| 28 ; TD2: define void @AllocCastSimple() { |
| 29 ; TD2-NEXT: %1 = alloca i8, i32 4, align 8 |
| 30 ; TD2-NEXT: %2 = ptrtoint i8* %1 to i32 |
| 31 ; TD2-NEXT: %3 = bitcast [4 x i8]* @bytes to i32* |
| 32 ; TD2-NEXT: store i32 %2, i32* %3, align 1 |
| 33 ; TD2-NEXT: ret void |
| 34 ; TD2-NEXT: } |
| 35 |
| 36 ; PF2: <FUNCTION_BLOCK> |
| 37 ; PF2: </CONSTANTS_BLOCK> |
| 38 ; PF2-NEXT: <INST_ALLOCA op0=1 op1=4/> |
| 39 ; PF2-NEXT: <INST_STORE op0=3 op1=1 op2=1/> |
| 40 ; PF2-NEXT: <INST_RET/> |
| 41 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 42 |
| 43 ; ------------------------------------------------------ |
| 44 |
| 45 ; Same as above, but with the cast order changed. Shows |
| 46 ; that we always inject casts back in a fixed order. Hence, |
| 47 ; the casts will be reversed. |
| 48 define void @AllocCastSimpleReversed() { |
| 49 %1 = alloca i8, i32 4, align 8 |
| 50 %2 = bitcast [4 x i8]* @bytes to i32* |
| 51 %3 = ptrtoint i8* %1 to i32 |
| 52 store i32 %3, i32* %2, align 1 |
| 53 ret void |
| 54 } |
| 55 |
| 56 ; TD2: define void @AllocCastSimpleReversed() { |
| 57 ; TD2-NEXT: %1 = alloca i8, i32 4, align 8 |
| 58 ; TD2-NEXT: %2 = ptrtoint i8* %1 to i32 |
| 59 ; TD2-NEXT: %3 = bitcast [4 x i8]* @bytes to i32* |
| 60 ; TD2-NEXT: store i32 %2, i32* %3, align 1 |
| 61 ; TD2-NEXT: ret void |
| 62 ; TD2-NEXT: } |
| 63 |
| 64 ; PF2: <FUNCTION_BLOCK> |
| 65 ; PF2: </CONSTANTS_BLOCK> |
| 66 ; PF2-NEXT: <INST_ALLOCA op0=1 op1=4/> |
| 67 ; PF2-NEXT: <INST_STORE op0=3 op1=1 op2=1/> |
| 68 ; PF2-NEXT: <INST_RET/> |
| 69 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 70 |
| 71 ; ------------------------------------------------------ |
| 72 |
| 73 ; Show case where we delete ptrtoint because they aren't used. |
| 74 define void @AllocCastDelete() { |
| 75 %1 = alloca i8, i32 4, align 8 |
| 76 %2 = ptrtoint i8* %1 to i32 |
| 77 %3 = alloca i8, i32 4, align 8 |
| 78 %4 = ptrtoint i8* %3 to i32 |
| 79 ret void |
| 80 } |
| 81 |
| 82 ; TD2: define void @AllocCastDelete() { |
| 83 ; TD2-NEXT: %1 = alloca i8, i32 4, align 8 |
| 84 ; TD2-NEXT: %2 = alloca i8, i32 4, align 8 |
| 85 ; TD2-NEXT: ret void |
| 86 ; TD2-NEXT: } |
| 87 |
| 88 ; PF2: <FUNCTION_BLOCK> |
| 89 ; PF2: </CONSTANTS_BLOCK> |
| 90 ; PF2-NEXT: <INST_ALLOCA op0=1 op1=4/> |
| 91 ; PF2-NEXT: <INST_ALLOCA op0=2 op1=4/> |
| 92 ; PF2-NEXT: <INST_RET/> |
| 93 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 94 |
| 95 ; ------------------------------------------------------ |
| 96 |
| 97 ; Show case where we have optimized the ptrtoint (and bitcast) into a |
| 98 ; single instruction, and will only be inserted before the first use |
| 99 ; in the block. |
| 100 define void @AllocCastOpt() { |
| 101 %1 = alloca i8, i32 4, align 8 |
| 102 %2 = bitcast [4 x i8]* @bytes to i32* |
| 103 %3 = ptrtoint i8* %1 to i32 |
| 104 store i32 %3, i32* %2, align 1 |
| 105 store i32 %3, i32* %2, align 1 |
| 106 ret void |
| 107 } |
| 108 |
| 109 ; TD2: define void @AllocCastOpt() { |
| 110 ; TD2-NEXT: %1 = alloca i8, i32 4, align 8 |
| 111 ; TD2-NEXT: %2 = ptrtoint i8* %1 to i32 |
| 112 ; TD2-NEXT: %3 = bitcast [4 x i8]* @bytes to i32* |
| 113 ; TD2-NEXT: store i32 %2, i32* %3, align 1 |
| 114 ; TD2-NEXT: store i32 %2, i32* %3, align 1 |
| 115 ; TD2-NEXT: ret void |
| 116 ; TD2-NEXT: } |
| 117 |
| 118 ; PF2: <FUNCTION_BLOCK> |
| 119 ; PF2: </CONSTANTS_BLOCK> |
| 120 ; PF2-NEXT: <INST_ALLOCA op0=1 op1=4/> |
| 121 ; PF2-NEXT: <INST_STORE op0=3 op1=1 op2=1/> |
| 122 ; PF2-NEXT: <INST_STORE op0=3 op1=1 op2=1/> |
| 123 ; PF2-NEXT: <INST_RET/> |
| 124 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 125 |
| 126 ; ------------------------------------------------------ |
| 127 |
| 128 ; Show case where ptrtoint (and bitcast) for store are not immediately |
| 129 ; before the store, the casts will be moved to the store. |
| 130 define void @AllocCastMove(i32) { |
| 131 %2 = alloca i8, i32 4, align 8 |
| 132 %3 = bitcast [4 x i8]* @bytes to i32* |
| 133 %4 = ptrtoint i8* %2 to i32 |
| 134 %5 = add i32 %0, 1 |
| 135 store i32 %4, i32* %3, align 1 |
| 136 ret void |
| 137 } |
| 138 |
| 139 ; TD2: define void @AllocCastMove(i32) { |
| 140 ; TD2-NEXT: %2 = alloca i8, i32 4, align 8 |
| 141 ; TD2-NEXT: %3 = add i32 %0, 1 |
| 142 ; TD2-NEXT: %4 = ptrtoint i8* %2 to i32 |
| 143 ; TD2-NEXT: %5 = bitcast [4 x i8]* @bytes to i32* |
| 144 ; TD2-NEXT: store i32 %4, i32* %5, align 1 |
| 145 ; TD2-NEXT: ret void |
| 146 ; TD2-NEXT: } |
| 147 |
| 148 ; PF2: <FUNCTION_BLOCK> |
| 149 ; PF2: </CONSTANTS_BLOCK> |
| 150 ; PF2-NEXT: <INST_ALLOCA op0=2 op1=4/> |
| 151 ; PF2-NEXT: <INST_BINOP op0=4 op1=2 op2=0/> |
| 152 ; PF2-NEXT: <INST_STORE op0=6 op1=2 op2=1/> |
| 153 ; PF2-NEXT: <INST_RET/> |
| 154 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 155 |
| 156 ; ------------------------------------------------------ |
| 157 |
| 158 ; Show case where ptrtoint on global variable is merged in a store, and |
| 159 ; order is kept. |
| 160 define void @StoreGlobal() { |
| 161 %1 = alloca i8, i32 4, align 8 |
| 162 %2 = ptrtoint [4 x i8]* @bytes to i32 |
| 163 %3 = bitcast i8* %1 to i32* |
| 164 store i32 %2, i32* %3, align 1 |
| 165 ret void |
| 166 } |
| 167 |
| 168 ; TD2: define void @StoreGlobal() { |
| 169 ; TD2-NEXT: %1 = alloca i8, i32 4, align 8 |
| 170 ; TD2-NEXT: %2 = ptrtoint [4 x i8]* @bytes to i32 |
| 171 ; TD2-NEXT: %3 = bitcast i8* %1 to i32* |
| 172 ; TD2-NEXT: store i32 %2, i32* %3, align 1 |
| 173 ; TD2-NEXT: ret void |
| 174 ; TD2-NEXT: } |
| 175 |
| 176 ; PF2: <FUNCTION_BLOCK> |
| 177 ; PF2: </CONSTANTS_BLOCK> |
| 178 ; PF2-NEXT: <INST_ALLOCA op0=1 op1=4/> |
| 179 ; PF2-NEXT: <INST_STORE op0=1 op1=3 op2=1/> |
| 180 ; PF2-NEXT: <INST_RET/> |
| 181 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 182 |
| 183 ; ------------------------------------------------------ |
| 184 |
| 185 ; Same as above, but with cast order reversed. |
| 186 define void @StoreGlobalCastsReversed() { |
| 187 %1 = alloca i8, i32 4, align 8 |
| 188 %2 = bitcast i8* %1 to i32* |
| 189 %3 = ptrtoint [4 x i8]* @bytes to i32 |
| 190 store i32 %3, i32* %2, align 1 |
| 191 ret void |
| 192 } |
| 193 |
| 194 ; TD2: define void @StoreGlobalCastsReversed() { |
| 195 ; TD2-NEXT: %1 = alloca i8, i32 4, align 8 |
| 196 ; TD2-NEXT: %2 = ptrtoint [4 x i8]* @bytes to i32 |
| 197 ; TD2-NEXT: %3 = bitcast i8* %1 to i32* |
| 198 ; TD2-NEXT: store i32 %2, i32* %3, align 1 |
| 199 ; TD2-NEXT: ret void |
| 200 ; TD2-NEXT: } |
| 201 |
| 202 ; PF2: <FUNCTION_BLOCK> |
| 203 ; PF2: </CONSTANTS_BLOCK> |
| 204 ; PF2-NEXT: <INST_ALLOCA op0=1 op1=4/> |
| 205 ; PF2-NEXT: <INST_STORE op0=1 op1=3 op2=1/> |
| 206 ; PF2-NEXT: <INST_RET/> |
| 207 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 208 |
| 209 ; ------------------------------------------------------ |
| 210 |
| 211 ; Show that we will move the ptrtoint of a global to the use. |
| 212 define i32 @StoreGlobalMovePtr2Int() { |
| 213 %1 = ptrtoint [4 x i8]* @bytes to i32 |
| 214 %2 = alloca i8, i32 4, align 8 |
| 215 %3 = bitcast i8* %2 to i32* |
| 216 store i32 %1, i32* %3, align 1 |
| 217 ret i32 0 |
| 218 } |
| 219 |
| 220 ; TD2: define i32 @StoreGlobalMovePtr2Int() { |
| 221 ; TD2-NEXT: %1 = alloca i8, i32 4, align 8 |
| 222 ; TD2-NEXT: %2 = ptrtoint [4 x i8]* @bytes to i32 |
| 223 ; TD2-NEXT: %3 = bitcast i8* %1 to i32* |
| 224 ; TD2-NEXT: store i32 %2, i32* %3, align 1 |
| 225 ; TD2-NEXT: ret i32 0 |
| 226 ; TD2-NEXT: } |
| 227 |
| 228 ; PF2: <FUNCTION_BLOCK> |
| 229 ; PF2: </CONSTANTS_BLOCK> |
| 230 ; PF2-NEXT: <INST_ALLOCA op0=2 op1=4/> |
| 231 ; PF2-NEXT: <INST_STORE op0=1 op1=4 op2=1/> |
| 232 ; PF2-NEXT: <INST_RET op0=2/> |
| 233 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 234 |
| 235 ; ------------------------------------------------------ |
| 236 |
| 237 ; Show that we handle add instructions with pointer casts. |
| 238 define void @CastAddAlloca() { |
| 239 %1 = alloca i8, i32 4, align 8 |
| 240 %2 = ptrtoint i8* %1 to i32 |
| 241 |
| 242 ; Simple add. |
| 243 %3 = add i32 1, 2 |
| 244 |
| 245 ; Cast first. |
| 246 %4 = add i32 %2, 2 |
| 247 |
| 248 ; Cast second. |
| 249 %5 = add i32 1, %2 |
| 250 |
| 251 ; Cast both. |
| 252 %6 = add i32 %2, %2 |
| 253 |
| 254 ret void |
| 255 } |
| 256 |
| 257 ; TD2: define void @CastAddAlloca() { |
| 258 ; TD2-NEXT: %1 = alloca i8, i32 4, align 8 |
| 259 ; TD2-NEXT: %2 = add i32 1, 2 |
| 260 ; TD2-NEXT: %3 = ptrtoint i8* %1 to i32 |
| 261 ; TD2-NEXT: %4 = add i32 %3, 2 |
| 262 ; TD2-NEXT: %5 = add i32 1, %3 |
| 263 ; TD2-NEXT: %6 = add i32 %3, %3 |
| 264 ; TD2-NEXT: ret void |
| 265 ; TD2-NEXT: } |
| 266 |
| 267 ; PF2: <FUNCTION_BLOCK> |
| 268 ; PF2: </CONSTANTS_BLOCK> |
| 269 ; PF2-NEXT: <INST_ALLOCA op0=1 op1=4/> |
| 270 ; PF2-NEXT: <INST_BINOP op0=4 op1=3 op2=0/> |
| 271 ; PF2-NEXT: <INST_BINOP op0=2 op1=4 op2=0/> |
| 272 ; PF2-NEXT: <INST_BINOP op0=6 op1=3 op2=0/> |
| 273 ; PF2-NEXT: <INST_BINOP op0=4 op1=4 op2=0/> |
| 274 ; PF2-NEXT: <INST_RET/> |
| 275 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 276 |
| 277 ; ------------------------------------------------------ |
| 278 |
| 279 ; Show that we handle add instructions with pointer casts. |
| 280 define void @CastAddGlobal() { |
| 281 %1 = ptrtoint [4 x i8]* @bytes to i32 |
| 282 |
| 283 ; Simple Add. |
| 284 %2 = add i32 1, 2 |
| 285 |
| 286 ; Cast first. |
| 287 %3 = add i32 %1, 2 |
| 288 |
| 289 ; Cast Second. |
| 290 %4 = add i32 1, %1 |
| 291 |
| 292 ; Cast both. |
| 293 %5 = add i32 %1, %1 |
| 294 ret void |
| 295 } |
| 296 |
| 297 ; TD2: define void @CastAddGlobal() { |
| 298 ; TD2-NEXT: %1 = add i32 1, 2 |
| 299 ; TD2-NEXT: %2 = ptrtoint [4 x i8]* @bytes to i32 |
| 300 ; TD2-NEXT: %3 = add i32 %2, 2 |
| 301 ; TD2-NEXT: %4 = add i32 1, %2 |
| 302 ; TD2-NEXT: %5 = add i32 %2, %2 |
| 303 ; TD2-NEXT: ret void |
| 304 ; TD2-NEXT: } |
| 305 |
| 306 ; PF2: <FUNCTION_BLOCK> |
| 307 ; PF2: </CONSTANTS_BLOCK> |
| 308 ; PF2-NEXT: <INST_BINOP op0=2 op1=1 op2=0/> |
| 309 ; PF2-NEXT: <INST_BINOP op0=4 op1=2 op2=0/> |
| 310 ; PF2-NEXT: <INST_BINOP op0=4 op1=5 op2=0/> |
| 311 ; PF2-NEXT: <INST_BINOP op0=6 op1=6 op2=0/> |
| 312 ; PF2-NEXT: <INST_RET/> |
| 313 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 314 |
| 315 ; ------------------------------------------------------ |
| 316 |
| 317 ; Show that we can handle pointer conversions for other scalar binary operators. |
| 318 define void @CastBinop() { |
| 319 %1 = alloca i8, i32 4, align 8 |
| 320 %2 = ptrtoint i8* %1 to i32 |
| 321 %3 = ptrtoint [4 x i8]* @bytes to i32 |
| 322 %4 = sub i32 %2, %3 |
| 323 %5 = mul i32 %2, %3 |
| 324 %6 = udiv i32 %2, %3 |
| 325 %7 = urem i32 %2, %3 |
| 326 %8 = srem i32 %2, %3 |
| 327 %9 = shl i32 %2, %3 |
| 328 %10 = lshr i32 %2, %3 |
| 329 %11 = ashr i32 %2, %3 |
| 330 %12 = and i32 %2, %3 |
| 331 %13 = or i32 %2, %3 |
| 332 %14 = xor i32 %2, %3 |
| 333 ret void |
| 334 } |
| 335 |
| 336 ; TD2: define void @CastBinop() { |
| 337 ; TD2-NEXT: %1 = alloca i8, i32 4, align 8 |
| 338 ; TD2-NEXT: %2 = ptrtoint i8* %1 to i32 |
| 339 ; TD2-NEXT: %3 = ptrtoint [4 x i8]* @bytes to i32 |
| 340 ; TD2-NEXT: %4 = sub i32 %2, %3 |
| 341 ; TD2-NEXT: %5 = mul i32 %2, %3 |
| 342 ; TD2-NEXT: %6 = udiv i32 %2, %3 |
| 343 ; TD2-NEXT: %7 = urem i32 %2, %3 |
| 344 ; TD2-NEXT: %8 = srem i32 %2, %3 |
| 345 ; TD2-NEXT: %9 = shl i32 %2, %3 |
| 346 ; TD2-NEXT: %10 = lshr i32 %2, %3 |
| 347 ; TD2-NEXT: %11 = ashr i32 %2, %3 |
| 348 ; TD2-NEXT: %12 = and i32 %2, %3 |
| 349 ; TD2-NEXT: %13 = or i32 %2, %3 |
| 350 ; TD2-NEXT: %14 = xor i32 %2, %3 |
| 351 ; TD2-NEXT: ret void |
| 352 ; TD2-NEXT: } |
| 353 |
| 354 ; PF2: <FUNCTION_BLOCK> |
| 355 ; PF2: </CONSTANTS_BLOCK> |
| 356 ; PF2-NEXT: <INST_ALLOCA op0=1 op1=4/> |
| 357 ; PF2-NEXT: <INST_BINOP op0=1 op1=3 op2=1/> |
| 358 ; PF2-NEXT: <INST_BINOP op0=2 op1=4 op2=2/> |
| 359 ; PF2-NEXT: <INST_BINOP op0=3 op1=5 op2=3/> |
| 360 ; PF2-NEXT: <INST_BINOP op0=4 op1=6 op2=5/> |
| 361 ; PF2-NEXT: <INST_BINOP op0=5 op1=7 op2=6/> |
| 362 ; PF2-NEXT: <INST_BINOP op0=6 op1=8 op2=7/> |
| 363 ; PF2-NEXT: <INST_BINOP op0=7 op1=9 op2=8/> |
| 364 ; PF2-NEXT: <INST_BINOP op0=8 op1=10 op2=9/> |
| 365 ; PF2-NEXT: <INST_BINOP op0=9 op1=11 op2=10/> |
| 366 ; PF2-NEXT: <INST_BINOP op0=10 op1=12 op2=11/> |
| 367 ; PF2-NEXT: <INST_BINOP op0=11 op1=13 op2=12/> |
| 368 ; PF2-NEXT: <INST_RET/> |
| 369 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 370 |
| 371 ; ------------------------------------------------------ |
| 372 |
| 373 ; Show that we handle (non-special) bitcasts by converting pointer |
| 374 ; casts to integer. |
| 375 define void @TestCasts() { |
| 376 %1 = alloca i8, i32 4, align 8 |
| 377 %2 = ptrtoint i8* %1 to i32 |
| 378 |
| 379 %3 = trunc i32 257 to i8 |
| 380 %4 = trunc i32 %2 to i8 |
| 381 |
| 382 %5 = zext i32 257 to i64 |
| 383 %6 = zext i32 %2 to i64 |
| 384 |
| 385 %7 = sext i32 -1 to i64 |
| 386 %8 = sext i32 %2 to i64 |
| 387 |
| 388 %9 = uitofp i32 1 to float |
| 389 %10 = uitofp i32 %2 to float |
| 390 |
| 391 %11 = sitofp i32 -1 to float |
| 392 %12 = sitofp i32 %2 to float |
| 393 ret void |
| 394 } |
| 395 |
| 396 ; TD2: define void @TestCasts() { |
| 397 ; TD2-NEXT: %1 = alloca i8, i32 4, align 8 |
| 398 ; TD2-NEXT: %2 = trunc i32 257 to i8 |
| 399 ; TD2-NEXT: %3 = ptrtoint i8* %1 to i32 |
| 400 ; TD2-NEXT: %4 = trunc i32 %3 to i8 |
| 401 ; TD2-NEXT: %5 = zext i32 257 to i64 |
| 402 ; TD2-NEXT: %6 = zext i32 %3 to i64 |
| 403 ; TD2-NEXT: %7 = sext i32 -1 to i64 |
| 404 ; TD2-NEXT: %8 = sext i32 %3 to i64 |
| 405 ; TD2-NEXT: %9 = uitofp i32 1 to float |
| 406 ; TD2-NEXT: %10 = uitofp i32 %3 to float |
| 407 ; TD2-NEXT: %11 = sitofp i32 -1 to float |
| 408 ; TD2-NEXT: %12 = sitofp i32 %3 to float |
| 409 ; TD2-NEXT: ret void |
| 410 ; TD2-NEXT: } |
| 411 |
| 412 ; PF2: <FUNCTION_BLOCK> |
| 413 ; PF2: </CONSTANTS_BLOCK> |
| 414 ; PF2-NEXT: <INST_ALLOCA op0=2 op1=4/> |
| 415 ; PF2-NEXT: <INST_CAST op0=5 op1={{.*}} op2=0/> |
| 416 ; PF2-NEXT: <INST_CAST op0=2 op1={{.*}} op2=0/> |
| 417 ; PF2-NEXT: <INST_CAST op0=7 op1={{.*}} op2=1/> |
| 418 ; PF2-NEXT: <INST_CAST op0=4 op1={{.*}} op2=1/> |
| 419 ; PF2-NEXT: <INST_CAST op0=8 op1={{.*}} op2=2/> |
| 420 ; PF2-NEXT: <INST_CAST op0=6 op1={{.*}} op2=2/> |
| 421 ; PF2-NEXT: <INST_CAST op0=8 op1={{.*}} op2=5/> |
| 422 ; PF2-NEXT: <INST_CAST op0=8 op1={{.*}} op2=5/> |
| 423 ; PF2-NEXT: <INST_CAST op0=12 op1={{.*}} op2=6/> |
| 424 ; PF2-NEXT: <INST_CAST op0=10 op1={{.*}} op2=6/> |
| 425 ; PF2-NEXT: <INST_RET/> |
| 426 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 427 |
| 428 ; ------------------------------------------------------ |
| 429 |
| 430 ; Show that we elide a ptrtoint cast for a call. |
| 431 define void @TestSavedPtrToInt() { |
| 432 %1 = alloca i8, i32 4, align 8 |
| 433 %2 = ptrtoint i8* %1 to i32 |
| 434 %3 = add i32 %2, 0 |
| 435 %4 = call i32 @bar(i32 %2) |
| 436 ret void |
| 437 } |
| 438 |
| 439 ; TD2: define void @TestSavedPtrToInt() { |
| 440 ; TD2-NEXT: %1 = alloca i8, i32 4, align 8 |
| 441 ; TD2-NEXT: %2 = ptrtoint i8* %1 to i32 |
| 442 ; TD2-NEXT: %3 = add i32 %2, 0 |
| 443 ; TD2-NEXT: %4 = call i32 @bar(i32 %2) |
| 444 ; TD2-NEXT: ret void |
| 445 ; TD2-NEXT: } |
| 446 |
| 447 ; PF2: <FUNCTION_BLOCK> |
| 448 ; PF2: </CONSTANTS_BLOCK> |
| 449 ; PF2-NEXT: <INST_ALLOCA op0=2 op1=4/> |
| 450 ; PF2-NEXT: <INST_BINOP op0=1 op1=2 op2=0/> |
| 451 ; PF2-NEXT: <INST_CALL op0=0 op1=25 op2=2/> |
| 452 ; PF2-NEXT: <INST_RET/> |
| 453 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 454 |
| 455 ; ------------------------------------------------------ |
| 456 |
| 457 ; Show that we can handle pointer conversions for icmp. |
| 458 define void @CastIcmp() { |
| 459 %1 = alloca i8, i32 4, align 8 |
| 460 %2 = ptrtoint i8* %1 to i32 |
| 461 %3 = ptrtoint [4 x i8]* @bytes to i32 |
| 462 %4 = icmp eq i32 1, 2 |
| 463 %5 = icmp eq i32 %2, 2 |
| 464 %6 = icmp eq i32 1, %3 |
| 465 %7 = icmp eq i32 %2, %3 |
| 466 %8 = icmp eq i32 %3, %2 |
| 467 ret void |
| 468 } |
| 469 |
| 470 ; TD2: define void @CastIcmp() { |
| 471 ; TD2-NEXT: %1 = alloca i8, i32 4, align 8 |
| 472 ; TD2-NEXT: %2 = icmp eq i32 1, 2 |
| 473 ; TD2-NEXT: %3 = ptrtoint i8* %1 to i32 |
| 474 ; TD2-NEXT: %4 = icmp eq i32 %3, 2 |
| 475 ; TD2-NEXT: %5 = ptrtoint [4 x i8]* @bytes to i32 |
| 476 ; TD2-NEXT: %6 = icmp eq i32 1, %5 |
| 477 ; TD2-NEXT: %7 = icmp eq i32 %3, %5 |
| 478 ; TD2-NEXT: %8 = icmp eq i32 %5, %3 |
| 479 ; TD2-NEXT: ret void |
| 480 ; TD2-NEXT: } |
| 481 |
| 482 ; PF2: <FUNCTION_BLOCK> |
| 483 ; PF2: </CONSTANTS_BLOCK> |
| 484 ; PF2-NEXT: <INST_ALLOCA op0=1 op1=4/> |
| 485 ; PF2-NEXT: <INST_CMP2 op0=4 op1=3 op2=32/> |
| 486 ; PF2-NEXT: <INST_CMP2 op0=2 op1=4 op2=32/> |
| 487 ; PF2-NEXT: <INST_CMP2 op0=6 op1=7 op2=32/> |
| 488 ; PF2-NEXT: <INST_CMP2 op0=4 op1=8 op2=32/> |
| 489 ; PF2-NEXT: <INST_CMP2 op0=9 op1=5 op2=32/> |
| 490 ; PF2-NEXT: <INST_RET/> |
| 491 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 492 |
| 493 ; ------------------------------------------------------ |
| 494 |
| 495 ; Show that we can handle pointer conversions for Select. |
| 496 define void @CastSelect() { |
| 497 %1 = alloca i8, i32 4, align 8 |
| 498 %2 = ptrtoint i8* %1 to i32 |
| 499 %3 = ptrtoint [4 x i8]* @bytes to i32 |
| 500 %4 = select i1 true, i32 1, i32 2 |
| 501 %5 = select i1 true, i32 %2, i32 2 |
| 502 %6 = select i1 true, i32 1, i32 %3 |
| 503 %7 = select i1 true, i32 %2, i32 %3 |
| 504 %8 = select i1 true, i32 %3, i32 %2 |
| 505 ret void |
| 506 } |
| 507 |
| 508 ; TD2: define void @CastSelect() { |
| 509 ; TD2-NEXT: %1 = alloca i8, i32 4, align 8 |
| 510 ; TD2-NEXT: %2 = select i1 true, i32 1, i32 2 |
| 511 ; TD2-NEXT: %3 = ptrtoint i8* %1 to i32 |
| 512 ; TD2-NEXT: %4 = select i1 true, i32 %3, i32 2 |
| 513 ; TD2-NEXT: %5 = ptrtoint [4 x i8]* @bytes to i32 |
| 514 ; TD2-NEXT: %6 = select i1 true, i32 1, i32 %5 |
| 515 ; TD2-NEXT: %7 = select i1 true, i32 %3, i32 %5 |
| 516 ; TD2-NEXT: %8 = select i1 true, i32 %5, i32 %3 |
| 517 ; TD2-NEXT: ret void |
| 518 ; TD2-NEXT: } |
| 519 |
| 520 ; PF2: <FUNCTION_BLOCK> |
| 521 ; PF2: </CONSTANTS_BLOCK> |
| 522 ; PF2-NEXT: <INST_ALLOCA op0=2 op1=4/> |
| 523 ; PF2-NEXT: <INST_VSELECT op0=5 op1=4 op2=2/> |
| 524 ; PF2-NEXT: <INST_VSELECT op0=2 op1=5 op2=3/> |
| 525 ; PF2-NEXT: <INST_VSELECT op0=7 op1=8 op2=4/> |
| 526 ; PF2-NEXT: <INST_VSELECT op0=4 op1=9 op2=5/> |
| 527 ; PF2-NEXT: <INST_VSELECT op0=10 op1=5 op2=6/> |
| 528 ; PF2-NEXT: <INST_RET/> |
| 529 ; PF2-NEXT: </FUNCTION_BLOCK> |
| 530 |
| 531 ; ------------------------------------------------------ |
| 532 |
| 533 ; Show that if a phi node refers to a pointer cast, we add |
| 534 ; them at the end of the incoming block. |
| 535 define void @PhiBackwardRefs(i1) { |
| 536 %2 = alloca i8, i32 4, align 8 |
| 537 %3 = bitcast i8* %2 to i32* |
| 538 %4 = alloca i8, i32 4, align 8 |
| 539 %5 = ptrtoint i8* %4 to i32 |
| 540 br i1 %0, label %true, label %false |
| 541 |
| 542 true: |
| 543 %6 = load i32* %3 |
| 544 br label %merge |
| 545 |
| 546 false: |
| 547 %7 = load i32* %3 |
| 548 br label %merge |
| 549 |
| 550 merge: |
| 551 %8 = phi i32 [%5, %true], [%5, %false] |
| 552 %9 = phi i32 [%6, %true], [%7, %false] |
| 553 ret void |
| 554 } |
| 555 |
| 556 ; TD2: define void @PhiBackwardRefs(i1) { |
| 557 ; TD2-NEXT: %2 = alloca i8, i32 4, align 8 |
| 558 ; TD2-NEXT: %3 = alloca i8, i32 4, align 8 |
| 559 ; TD2-NEXT: br i1 %0, label %true, label %false |
| 560 ; TD2: true: |
| 561 ; TD2-NEXT: %4 = bitcast i8* %2 to i32* |
| 562 ; TD2-NEXT: %5 = load i32* %4 |
| 563 ; TD2-NEXT: %6 = ptrtoint i8* %3 to i32 |
| 564 ; TD2-NEXT: br label %merge |
| 565 ; TD2: false: |
| 566 ; TD2-NEXT: %7 = bitcast i8* %2 to i32* |
| 567 ; TD2-NEXT: %8 = load i32* %7 |
| 568 ; TD2-NEXT: %9 = ptrtoint i8* %3 to i32 |
| 569 ; TD2-NEXT: br label %merge |
| 570 ; TD2: merge: |
| 571 ; TD2-NEXT: %10 = phi i32 [ %6, %true ], [ %9, %false ] |
| 572 ; TD2-NEXT: %11 = phi i32 [ %5, %true ], [ %8, %false ] |
| 573 ; TD2-NEXT: ret void |
| 574 ; TD2-NEXT: } |
| 575 |
| 576 ; PF2: <FUNCTION_BLOCK> |
| 577 ; PF2: </CONSTANTS_BLOCK> |
| 578 ; PF2-NEXT: <INST_ALLOCA op0=1 op1=4/> |
| 579 ; PF2-NEXT: <INST_ALLOCA op0=2 op1=4/> |
| 580 ; PF2-NEXT: <INST_BR op0=1 op1=2 op2=4/> |
| 581 ; PF2-NEXT: <INST_LOAD op0=2 op1=0 op2=0/> |
| 582 ; PF2-NEXT: <INST_BR op0=3/> |
| 583 ; PF2-NEXT: <INST_LOAD op0=3 op1=0 op2=0/> |
| 584 ; PF2-NEXT: <INST_BR op0=3/> |
| 585 ; PF2-NEXT: <INST_PHI op0=0 op1=6 op2=1 op3=6 op4=2/> |
| 586 ; PF2-NEXT: <INST_PHI op0=0 op1=6 op2=1 op3=4 op4=2/> |
| 587 ; PF2-NEXT: <INST_RET/> |
| 588 ; PF2: </FUNCTION_BLOCK> |
| 589 |
| 590 ; ------------------------------------------------------ |
| 591 |
| 592 ; Like PhiBackwardRefs except the phi nodes forward reference |
| 593 ; instructions instead of backwards references. |
| 594 define void @PhiForwardRefs(i1) { |
| 595 br label %start |
| 596 |
| 597 merge: |
| 598 %2 = phi i32 [%9, %true], [%9, %false] |
| 599 %3 = phi i32 [%4, %true], [%5, %false] |
| 600 ret void |
| 601 |
| 602 true: |
| 603 %4 = load i32* %7 |
| 604 br label %merge |
| 605 |
| 606 false: |
| 607 %5 = load i32* %7 |
| 608 br label %merge |
| 609 |
| 610 start: |
| 611 %6 = alloca i8, i32 4, align 8 |
| 612 %7 = bitcast i8* %6 to i32* |
| 613 %8 = alloca i8, i32 4, align 8 |
| 614 %9 = ptrtoint i8* %8 to i32 |
| 615 br i1 %0, label %true, label %false |
| 616 } |
| 617 |
| 618 ; TD2: define void @PhiForwardRefs(i1) { |
| 619 ; TD2-NEXT: br label %start |
| 620 ; TD2: merge |
| 621 ; TD2-NEXT: %2 = phi i32 [ %11, %true ], [ %11, %false ] |
| 622 ; TD2-NEXT: %3 = phi i32 [ %5, %true ], [ %7, %false ] |
| 623 ; TD2-NEXT: ret void |
| 624 ; TD2: true: |
| 625 ; TD2-NEXT: %4 = inttoptr i32 %9 to i32* |
| 626 ; TD2-NEXT: %5 = load i32* %4 |
| 627 ; TD2-NEXT: br label %merge |
| 628 ; TD2: false: |
| 629 ; TD2-NEXT: %6 = inttoptr i32 %9 to i32* |
| 630 ; TD2-NEXT: %7 = load i32* %6 |
| 631 ; TD2-NEXT: br label %merge |
| 632 ; TD2: start: |
| 633 ; TD2-NEXT: %8 = alloca i8, i32 4, align 8 |
| 634 ; TD2-NEXT: %9 = ptrtoint i8* %8 to i32 |
| 635 ; TD2-NEXT: %10 = alloca i8, i32 4, align 8 |
| 636 ; TD2-NEXT: %11 = ptrtoint i8* %10 to i32 |
| 637 ; TD2-NEXT: br i1 %0, label %true, label %false |
| 638 ; TD2-NEXT: } |
| 639 |
| 640 ; PF2: <FUNCTION_BLOCK> |
| 641 ; PF2: </CONSTANTS_BLOCK> |
| 642 ; PF2-NEXT: <INST_BR op0=4/> |
| 643 ; PF2-NEXT: <FORWARDTYPEREF op0=28 op1=0/> |
| 644 ; PF2-NEXT: <INST_PHI op0=0 op1=11 op2=2 op3=11 op4=3/> |
| 645 ; PF2-NEXT: <FORWARDTYPEREF op0=25 op1=0/> |
| 646 ; PF2-NEXT: <FORWARDTYPEREF op0=26 op1=0/> |
| 647 ; PF2-NEXT: <INST_PHI op0=0 op1=3 op2=2 op3=5 op4=3/> |
| 648 ; PF2-NEXT: <INST_RET/> |
| 649 ; PF2-NEXT: <FORWARDTYPEREF op0=27 op1=0/> |
| 650 ; PF2-NEXT: <INST_LOAD op0=4294967294 op1=0 op2=0/> |
| 651 ; PF2-NEXT: <INST_BR op0=1/> |
| 652 ; PF2-NEXT: <INST_LOAD op0=4294967295 op1=0 op2=0/> |
| 653 ; PF2-NEXT: <INST_BR op0=1/> |
| 654 ; PF2-NEXT: <INST_ALLOCA op0=5 op1=4/> |
| 655 ; PF2-NEXT: <INST_ALLOCA op0=6 op1=4/> |
| 656 ; PF2-NEXT: <INST_BR op0=2 op1=3 op2=8/> |
| 657 ; PF2: </FUNCTION_BLOCK> |
| 658 |
| 659 ; ------------------------------------------------------ |
| 660 |
| 661 ; Show that if a phi node incoming block already has a pointer cast, |
| 662 ; we use it instead of adding one at the end of the block. In this |
| 663 ; example, we reuse instruction %7 in block true for phi node %10. |
| 664 define void @PhiMergeCast(i1) { |
| 665 %2 = alloca i8, i32 4, align 8 |
| 666 %3 = bitcast i8* %2 to i32* |
| 667 %4 = alloca i8, i32 4, align 8 |
| 668 %5 = ptrtoint i8* %4 to i32 |
| 669 br i1 %0, label %true, label %false |
| 670 |
| 671 true: |
| 672 %6 = load i32* %3 |
| 673 %7 = ptrtoint i8* %4 to i32 |
| 674 %8 = add i32 %6, %7 |
| 675 br label %merge |
| 676 |
| 677 false: |
| 678 %9 = load i32* %3 |
| 679 br label %merge |
| 680 |
| 681 merge: |
| 682 %10 = phi i32 [%5, %true], [%5, %false] |
| 683 %11 = phi i32 [%6, %true], [%9, %false] |
| 684 ret void |
| 685 } |
| 686 |
| 687 ; TD2: define void @PhiMergeCast(i1) { |
| 688 ; TD2-NEXT: %2 = alloca i8, i32 4, align 8 |
| 689 ; TD2-NEXT: %3 = alloca i8, i32 4, align 8 |
| 690 ; TD2-NEXT: br i1 %0, label %true, label %false |
| 691 ; TD2: true: |
| 692 ; TD2-NEXT: %4 = bitcast i8* %2 to i32* |
| 693 ; TD2-NEXT: %5 = load i32* %4 |
| 694 ; TD2-NEXT: %6 = ptrtoint i8* %3 to i32 |
| 695 ; TD2-NEXT: %7 = add i32 %5, %6 |
| 696 ; TD2-NEXT: br label %merge |
| 697 ; TD2: false: |
| 698 ; TD2-NEXT: %8 = bitcast i8* %2 to i32* |
| 699 ; TD2-NEXT: %9 = load i32* %8 |
| 700 ; TD2-NEXT: %10 = ptrtoint i8* %3 to i32 |
| 701 ; TD2-NEXT: br label %merge |
| 702 ; TD2: merge: |
| 703 ; TD2-NEXT: %11 = phi i32 [ %6, %true ], [ %10, %false ] |
| 704 ; TD2-NEXT: %12 = phi i32 [ %5, %true ], [ %9, %false ] |
| 705 ; TD2-NEXT: ret void |
| 706 ; TD2-NEXT: } |
| 707 |
| 708 ; PF2: <FUNCTION_BLOCK> |
| 709 ; PF2: </CONSTANTS_BLOCK> |
| 710 ; PF2-NEXT: <INST_ALLOCA op0=1 op1=4/> |
| 711 ; PF2-NEXT: <INST_ALLOCA op0=2 op1=4/> |
| 712 ; PF2-NEXT: <INST_BR op0=1 op1=2 op2=4/> |
| 713 ; PF2-NEXT: <INST_LOAD op0=2 op1=0 op2=0/> |
| 714 ; PF2-NEXT: <INST_BINOP op0=1 op1=2 op2=0/> |
| 715 ; PF2-NEXT: <INST_BR op0=3/> |
| 716 ; PF2-NEXT: <INST_LOAD op0=4 op1=0 op2=0/> |
| 717 ; PF2-NEXT: <INST_BR op0=3/> |
| 718 ; PF2-NEXT: <INST_PHI op0=0 op1=8 op2=1 op3=8 op4=2/> |
| 719 ; PF2-NEXT: <INST_PHI op0=0 op1=8 op2=1 op3=4 op4=2/> |
| 720 ; PF2-NEXT: <INST_RET/> |
| 721 ; PF2: </FUNCTION_BLOCK> |
| 722 |
| 723 ; ------------------------------------------------------ |
| 724 |
| 725 ; Show that we must introduce a cast reference for each |
| 726 ; reachable block, but one is sufficient. |
| 727 define void @LongReachingCasts(i1) { |
| 728 %2 = alloca i8, i32 4, align 8 |
| 729 %3 = ptrtoint i8* %2 to i32 |
| 730 %4 = bitcast [4 x i8]* @bytes to i32* |
| 731 br i1 %0, label %Split1, label %Split2 |
| 732 |
| 733 Split1: |
| 734 br i1 %0, label %b1, label %b2 |
| 735 |
| 736 Split2: |
| 737 br i1 %0, label %b3, label %b4 |
| 738 |
| 739 b1: |
| 740 store i32 %3, i32* %4, align 1 |
| 741 store i32 %3, i32* %4, align 1 |
| 742 ret void |
| 743 |
| 744 b2: |
| 745 store i32 %3, i32* %4, align 1 |
| 746 store i32 %3, i32* %4, align 1 |
| 747 ret void |
| 748 |
| 749 b3: |
| 750 store i32 %3, i32* %4, align 1 |
| 751 store i32 %3, i32* %4, align 1 |
| 752 ret void |
| 753 |
| 754 b4: |
| 755 store i32 %3, i32* %4, align 1 |
| 756 store i32 %3, i32* %4, align 1 |
| 757 ret void |
| 758 } |
| 759 |
| 760 ; TD2: define void @LongReachingCasts(i1) { |
| 761 ; TD2-NEXT: %2 = alloca i8, i32 4, align 8 |
| 762 ; TD2-NEXT: br i1 %0, label %Split1, label %Split2 |
| 763 ; TD2: Split1: |
| 764 ; TD2-NEXT: br i1 %0, label %b1, label %b2 |
| 765 ; TD2: Split2: |
| 766 ; TD2-NEXT: br i1 %0, label %b3, label %b4 |
| 767 ; TD2: b1: |
| 768 ; TD2-NEXT: %3 = ptrtoint i8* %2 to i32 |
| 769 ; TD2-NEXT: %4 = bitcast [4 x i8]* @bytes to i32* |
| 770 ; TD2-NEXT: store i32 %3, i32* %4, align 1 |
| 771 ; TD2-NEXT: store i32 %3, i32* %4, align 1 |
| 772 ; TD2-NEXT: ret void |
| 773 ; TD2: b2: |
| 774 ; TD2-NEXT: %5 = ptrtoint i8* %2 to i32 |
| 775 ; TD2-NEXT: %6 = bitcast [4 x i8]* @bytes to i32* |
| 776 ; TD2-NEXT: store i32 %5, i32* %6, align 1 |
| 777 ; TD2-NEXT: store i32 %5, i32* %6, align 1 |
| 778 ; TD2-NEXT: ret void |
| 779 ; TD2: b3: |
| 780 ; TD2-NEXT: %7 = ptrtoint i8* %2 to i32 |
| 781 ; TD2-NEXT: %8 = bitcast [4 x i8]* @bytes to i32* |
| 782 ; TD2-NEXT: store i32 %7, i32* %8, align 1 |
| 783 ; TD2-NEXT: store i32 %7, i32* %8, align 1 |
| 784 ; TD2-NEXT: ret void |
| 785 ; TD2: b4: |
| 786 ; TD2-NEXT: %9 = ptrtoint i8* %2 to i32 |
| 787 ; TD2-NEXT: %10 = bitcast [4 x i8]* @bytes to i32* |
| 788 ; TD2-NEXT: store i32 %9, i32* %10, align 1 |
| 789 ; TD2-NEXT: store i32 %9, i32* %10, align 1 |
| 790 ; TD2-NEXT: ret void |
| 791 ; TD2-NEXT: } |
| 792 |
| 793 ; PF2: <FUNCTION_BLOCK> |
| 794 ; PF2: </CONSTANTS_BLOCK> |
| 795 ; PF2-NEXT: <INST_ALLOCA op0=1 op1=4/> |
| 796 ; PF2-NEXT: <INST_BR op0=1 op1=2 op2=3/> |
| 797 ; PF2-NEXT: <INST_BR op0=3 op1=4 op2=3/> |
| 798 ; PF2-NEXT: <INST_BR op0=5 op1=6 op2=3/> |
| 799 ; PF2-NEXT: <INST_STORE op0=4 op1=1 op2=1/> |
| 800 ; PF2-NEXT: <INST_STORE op0=4 op1=1 op2=1/> |
| 801 ; PF2-NEXT: <INST_RET/> |
| 802 ; PF2-NEXT: <INST_STORE op0=4 op1=1 op2=1/> |
| 803 ; PF2-NEXT: <INST_STORE op0=4 op1=1 op2=1/> |
| 804 ; PF2-NEXT: <INST_RET/> |
| 805 ; PF2-NEXT: <INST_STORE op0=4 op1=1 op2=1/> |
| 806 ; PF2-NEXT: <INST_STORE op0=4 op1=1 op2=1/> |
| 807 ; PF2-NEXT: <INST_RET/> |
| 808 ; PF2-NEXT: <INST_STORE op0=4 op1=1 op2=1/> |
| 809 ; PF2-NEXT: <INST_STORE op0=4 op1=1 op2=1/> |
| 810 ; PF2-NEXT: <INST_RET/> |
| 811 ; PF2: </FUNCTION_BLOCK> |
OLD | NEW |