OLD | NEW |
| (Empty) |
1 // Copyright 2014 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include <sched.h> | |
6 #include <stdio.h> | |
7 #include <string.h> | |
8 #include <sys/socket.h> | |
9 #include <sys/syscall.h> | |
10 #include <sys/wait.h> | |
11 #include <unistd.h> | |
12 | |
13 #include <vector> | |
14 | |
15 #include "base/files/scoped_file.h" | |
16 #include "base/logging.h" | |
17 #include "base/memory/scoped_vector.h" | |
18 #include "base/posix/eintr_wrapper.h" | |
19 #include "base/posix/unix_domain_socket_linux.h" | |
20 #include "base/process/process.h" | |
21 #include "sandbox/linux/services/syscall_wrappers.h" | |
22 #include "sandbox/linux/tests/unit_tests.h" | |
23 | |
24 // Additional tests for base's UnixDomainSocket to make sure it behaves | |
25 // correctly in the presence of sandboxing functionality (e.g., receiving | |
26 // PIDs across namespaces). | |
27 | |
28 namespace sandbox { | |
29 | |
30 namespace { | |
31 | |
32 const char kHello[] = "hello"; | |
33 | |
34 // If the calling process isn't root, then try using unshare(CLONE_NEWUSER) | |
35 // to fake it. | |
36 void FakeRoot() { | |
37 // If we're already root, then allow test to proceed. | |
38 if (geteuid() == 0) | |
39 return; | |
40 | |
41 // Otherwise hope the kernel supports unprivileged namespaces. | |
42 if (unshare(CLONE_NEWUSER) == 0) | |
43 return; | |
44 | |
45 printf("Permission to use CLONE_NEWPID missing; skipping test.\n"); | |
46 UnitTests::IgnoreThisTest(); | |
47 } | |
48 | |
49 void WaitForExit(pid_t pid) { | |
50 int status; | |
51 CHECK_EQ(pid, HANDLE_EINTR(waitpid(pid, &status, 0))); | |
52 CHECK(WIFEXITED(status)); | |
53 CHECK_EQ(0, WEXITSTATUS(status)); | |
54 } | |
55 | |
56 base::ProcessId GetParentProcessId(base::ProcessId pid) { | |
57 // base::GetParentProcessId() is defined as taking a ProcessHandle instead of | |
58 // a ProcessId, even though it's a POSIX-only function and IDs and Handles | |
59 // are both simply pid_t on POSIX... :/ | |
60 base::Process process = base::Process::Open(pid); | |
61 CHECK(process.IsValid()); | |
62 base::ProcessId ret = base::GetParentProcessId(process.Handle()); | |
63 return ret; | |
64 } | |
65 | |
66 // SendHello sends a "hello" to socket fd, and then blocks until the recipient | |
67 // acknowledges it by calling RecvHello. | |
68 void SendHello(int fd) { | |
69 int pipe_fds[2]; | |
70 CHECK_EQ(0, pipe(pipe_fds)); | |
71 base::ScopedFD read_pipe(pipe_fds[0]); | |
72 base::ScopedFD write_pipe(pipe_fds[1]); | |
73 | |
74 std::vector<int> send_fds; | |
75 send_fds.push_back(write_pipe.get()); | |
76 CHECK(UnixDomainSocket::SendMsg(fd, kHello, sizeof(kHello), send_fds)); | |
77 | |
78 write_pipe.reset(); | |
79 | |
80 // Block until receiver closes their end of the pipe. | |
81 char ch; | |
82 CHECK_EQ(0, HANDLE_EINTR(read(read_pipe.get(), &ch, 1))); | |
83 } | |
84 | |
85 // RecvHello receives and acknowledges a "hello" on socket fd, and returns the | |
86 // process ID of the sender in sender_pid. Optionally, write_pipe can be used | |
87 // to return a file descriptor, and the acknowledgement will be delayed until | |
88 // the descriptor is closed. | |
89 // (Implementation details: SendHello allocates a new pipe, sends us the writing | |
90 // end alongside the "hello" message, and then blocks until we close the writing | |
91 // end of the pipe.) | |
92 void RecvHello(int fd, | |
93 base::ProcessId* sender_pid, | |
94 base::ScopedFD* write_pipe = NULL) { | |
95 // Extra receiving buffer space to make sure we really received only | |
96 // sizeof(kHello) bytes and it wasn't just truncated to fit the buffer. | |
97 char buf[sizeof(kHello) + 1]; | |
98 ScopedVector<base::ScopedFD> message_fds; | |
99 ssize_t n = UnixDomainSocket::RecvMsgWithPid( | |
100 fd, buf, sizeof(buf), &message_fds, sender_pid); | |
101 CHECK_EQ(sizeof(kHello), static_cast<size_t>(n)); | |
102 CHECK_EQ(0, memcmp(buf, kHello, sizeof(kHello))); | |
103 CHECK_EQ(1U, message_fds.size()); | |
104 if (write_pipe) | |
105 write_pipe->swap(*message_fds[0]); | |
106 } | |
107 | |
108 // Check that receiving PIDs works across a fork(). | |
109 SANDBOX_TEST(UnixDomainSocketTest, Fork) { | |
110 int fds[2]; | |
111 CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds)); | |
112 base::ScopedFD recv_sock(fds[0]); | |
113 base::ScopedFD send_sock(fds[1]); | |
114 | |
115 CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get())); | |
116 | |
117 const pid_t pid = fork(); | |
118 CHECK_NE(-1, pid); | |
119 if (pid == 0) { | |
120 // Child process. | |
121 recv_sock.reset(); | |
122 SendHello(send_sock.get()); | |
123 _exit(0); | |
124 } | |
125 | |
126 // Parent process. | |
127 send_sock.reset(); | |
128 | |
129 base::ProcessId sender_pid; | |
130 RecvHello(recv_sock.get(), &sender_pid); | |
131 CHECK_EQ(pid, sender_pid); | |
132 | |
133 WaitForExit(pid); | |
134 } | |
135 | |
136 // Similar to Fork above, but forking the child into a new pid namespace. | |
137 SANDBOX_TEST(UnixDomainSocketTest, Namespace) { | |
138 FakeRoot(); | |
139 | |
140 int fds[2]; | |
141 CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds)); | |
142 base::ScopedFD recv_sock(fds[0]); | |
143 base::ScopedFD send_sock(fds[1]); | |
144 | |
145 CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get())); | |
146 | |
147 const pid_t pid = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0); | |
148 CHECK_NE(-1, pid); | |
149 if (pid == 0) { | |
150 // Child process. | |
151 recv_sock.reset(); | |
152 | |
153 // Check that we think we're pid 1 in our new namespace. | |
154 CHECK_EQ(1, sys_getpid()); | |
155 | |
156 SendHello(send_sock.get()); | |
157 _exit(0); | |
158 } | |
159 | |
160 // Parent process. | |
161 send_sock.reset(); | |
162 | |
163 base::ProcessId sender_pid; | |
164 RecvHello(recv_sock.get(), &sender_pid); | |
165 CHECK_EQ(pid, sender_pid); | |
166 | |
167 WaitForExit(pid); | |
168 } | |
169 | |
170 // Again similar to Fork, but now with nested PID namespaces. | |
171 SANDBOX_TEST(UnixDomainSocketTest, DoubleNamespace) { | |
172 FakeRoot(); | |
173 | |
174 int fds[2]; | |
175 CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds)); | |
176 base::ScopedFD recv_sock(fds[0]); | |
177 base::ScopedFD send_sock(fds[1]); | |
178 | |
179 CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get())); | |
180 | |
181 const pid_t pid = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0); | |
182 CHECK_NE(-1, pid); | |
183 if (pid == 0) { | |
184 // Child process. | |
185 recv_sock.reset(); | |
186 | |
187 const pid_t pid2 = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0); | |
188 CHECK_NE(-1, pid2); | |
189 | |
190 if (pid2 != 0) { | |
191 // Wait for grandchild to run to completion; see comments below. | |
192 WaitForExit(pid2); | |
193 | |
194 // Fallthrough once grandchild has sent its hello and exited. | |
195 } | |
196 | |
197 // Check that we think we're pid 1. | |
198 CHECK_EQ(1, sys_getpid()); | |
199 | |
200 SendHello(send_sock.get()); | |
201 _exit(0); | |
202 } | |
203 | |
204 // Parent process. | |
205 send_sock.reset(); | |
206 | |
207 // We have two messages to receive: first from the grand-child, | |
208 // then from the child. | |
209 for (unsigned iteration = 0; iteration < 2; ++iteration) { | |
210 base::ProcessId sender_pid; | |
211 base::ScopedFD pipe_fd; | |
212 RecvHello(recv_sock.get(), &sender_pid, &pipe_fd); | |
213 | |
214 // We need our child and grandchild processes to both be alive for | |
215 // GetParentProcessId() to return a valid pid, hence the pipe trickery. | |
216 // (On the first iteration, grandchild is blocked reading from the pipe | |
217 // until we close it, and child is blocked waiting for grandchild to exit.) | |
218 switch (iteration) { | |
219 case 0: // Grandchild's message | |
220 // Check that sender_pid refers to our grandchild by checking that pid | |
221 // (our child) is its parent. | |
222 CHECK_EQ(pid, GetParentProcessId(sender_pid)); | |
223 break; | |
224 case 1: // Child's message | |
225 CHECK_EQ(pid, sender_pid); | |
226 break; | |
227 default: | |
228 NOTREACHED(); | |
229 } | |
230 } | |
231 | |
232 WaitForExit(pid); | |
233 } | |
234 | |
235 // Tests that GetPeerPid() returns 0 if the peer does not exist in caller's | |
236 // namespace. | |
237 SANDBOX_TEST(UnixDomainSocketTest, ImpossiblePid) { | |
238 FakeRoot(); | |
239 | |
240 int fds[2]; | |
241 CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds)); | |
242 base::ScopedFD send_sock(fds[0]); | |
243 base::ScopedFD recv_sock(fds[1]); | |
244 | |
245 CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get())); | |
246 | |
247 const pid_t pid = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0); | |
248 CHECK_NE(-1, pid); | |
249 if (pid == 0) { | |
250 // Child process. | |
251 send_sock.reset(); | |
252 | |
253 base::ProcessId sender_pid; | |
254 RecvHello(recv_sock.get(), &sender_pid); | |
255 CHECK_EQ(0, sender_pid); | |
256 _exit(0); | |
257 } | |
258 | |
259 // Parent process. | |
260 recv_sock.reset(); | |
261 SendHello(send_sock.get()); | |
262 WaitForExit(pid); | |
263 } | |
264 | |
265 } // namespace | |
266 | |
267 } // namespace sandbox | |
OLD | NEW |