| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "sandbox/linux/bpf_dsl/bpf_dsl.h" | |
| 6 | |
| 7 #include <errno.h> | |
| 8 #include <fcntl.h> | |
| 9 #include <pthread.h> | |
| 10 #include <sched.h> | |
| 11 #include <signal.h> | |
| 12 #include <sys/prctl.h> | |
| 13 #include <sys/ptrace.h> | |
| 14 #include <sys/syscall.h> | |
| 15 #include <sys/time.h> | |
| 16 #include <sys/types.h> | |
| 17 #include <sys/utsname.h> | |
| 18 #include <unistd.h> | |
| 19 #include <sys/socket.h> | |
| 20 | |
| 21 #if defined(ANDROID) | |
| 22 // Work-around for buggy headers in Android's NDK | |
| 23 #define __user | |
| 24 #endif | |
| 25 #include <linux/futex.h> | |
| 26 | |
| 27 #include "base/bind.h" | |
| 28 #include "base/logging.h" | |
| 29 #include "base/macros.h" | |
| 30 #include "base/memory/scoped_ptr.h" | |
| 31 #include "base/posix/eintr_wrapper.h" | |
| 32 #include "base/synchronization/waitable_event.h" | |
| 33 #include "base/sys_info.h" | |
| 34 #include "base/threading/thread.h" | |
| 35 #include "build/build_config.h" | |
| 36 #include "sandbox/linux/bpf_dsl/policy.h" | |
| 37 #include "sandbox/linux/seccomp-bpf/bpf_tests.h" | |
| 38 #include "sandbox/linux/seccomp-bpf/die.h" | |
| 39 #include "sandbox/linux/seccomp-bpf/errorcode.h" | |
| 40 #include "sandbox/linux/seccomp-bpf/linux_seccomp.h" | |
| 41 #include "sandbox/linux/seccomp-bpf/sandbox_bpf.h" | |
| 42 #include "sandbox/linux/seccomp-bpf/syscall.h" | |
| 43 #include "sandbox/linux/seccomp-bpf/trap.h" | |
| 44 #include "sandbox/linux/services/linux_syscalls.h" | |
| 45 #include "sandbox/linux/services/syscall_wrappers.h" | |
| 46 #include "sandbox/linux/syscall_broker/broker_file_permission.h" | |
| 47 #include "sandbox/linux/syscall_broker/broker_process.h" | |
| 48 #include "sandbox/linux/tests/scoped_temporary_file.h" | |
| 49 #include "sandbox/linux/tests/unit_tests.h" | |
| 50 #include "testing/gtest/include/gtest/gtest.h" | |
| 51 | |
| 52 // Workaround for Android's prctl.h file. | |
| 53 #ifndef PR_GET_ENDIAN | |
| 54 #define PR_GET_ENDIAN 19 | |
| 55 #endif | |
| 56 #ifndef PR_CAPBSET_READ | |
| 57 #define PR_CAPBSET_READ 23 | |
| 58 #define PR_CAPBSET_DROP 24 | |
| 59 #endif | |
| 60 | |
| 61 namespace sandbox { | |
| 62 namespace bpf_dsl { | |
| 63 | |
| 64 namespace { | |
| 65 | |
| 66 const int kExpectedReturnValue = 42; | |
| 67 const char kSandboxDebuggingEnv[] = "CHROME_SANDBOX_DEBUGGING"; | |
| 68 | |
| 69 // Set the global environment to allow the use of UnsafeTrap() policies. | |
| 70 void EnableUnsafeTraps() { | |
| 71 // The use of UnsafeTrap() causes us to print a warning message. This is | |
| 72 // generally desirable, but it results in the unittest failing, as it doesn't | |
| 73 // expect any messages on "stderr". So, temporarily disable messages. The | |
| 74 // BPF_TEST() is guaranteed to turn messages back on, after the policy | |
| 75 // function has completed. | |
| 76 setenv(kSandboxDebuggingEnv, "t", 0); | |
| 77 Die::SuppressInfoMessages(true); | |
| 78 } | |
| 79 | |
| 80 // BPF_TEST does a lot of the boiler-plate code around setting up a | |
| 81 // policy and optional passing data between the caller, the policy and | |
| 82 // any Trap() handlers. This is great for writing short and concise tests, | |
| 83 // and it helps us accidentally forgetting any of the crucial steps in | |
| 84 // setting up the sandbox. But it wouldn't hurt to have at least one test | |
| 85 // that explicitly walks through all these steps. | |
| 86 | |
| 87 intptr_t IncreaseCounter(const struct arch_seccomp_data& args, void* aux) { | |
| 88 BPF_ASSERT(aux); | |
| 89 int* counter = static_cast<int*>(aux); | |
| 90 return (*counter)++; | |
| 91 } | |
| 92 | |
| 93 class VerboseAPITestingPolicy : public Policy { | |
| 94 public: | |
| 95 explicit VerboseAPITestingPolicy(int* counter_ptr) | |
| 96 : counter_ptr_(counter_ptr) {} | |
| 97 ~VerboseAPITestingPolicy() override {} | |
| 98 | |
| 99 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 100 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 101 if (sysno == __NR_uname) { | |
| 102 return Trap(IncreaseCounter, counter_ptr_); | |
| 103 } | |
| 104 return Allow(); | |
| 105 } | |
| 106 | |
| 107 private: | |
| 108 int* counter_ptr_; | |
| 109 | |
| 110 DISALLOW_COPY_AND_ASSIGN(VerboseAPITestingPolicy); | |
| 111 }; | |
| 112 | |
| 113 SANDBOX_TEST(SandboxBPF, DISABLE_ON_TSAN(VerboseAPITesting)) { | |
| 114 if (SandboxBPF::SupportsSeccompSandbox( | |
| 115 SandboxBPF::SeccompLevel::SINGLE_THREADED)) { | |
| 116 static int counter = 0; | |
| 117 | |
| 118 SandboxBPF sandbox(new VerboseAPITestingPolicy(&counter)); | |
| 119 BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::SeccompLevel::SINGLE_THREADED)); | |
| 120 | |
| 121 BPF_ASSERT_EQ(0, counter); | |
| 122 BPF_ASSERT_EQ(0, syscall(__NR_uname, 0)); | |
| 123 BPF_ASSERT_EQ(1, counter); | |
| 124 BPF_ASSERT_EQ(1, syscall(__NR_uname, 0)); | |
| 125 BPF_ASSERT_EQ(2, counter); | |
| 126 } | |
| 127 } | |
| 128 | |
| 129 // A simple blacklist test | |
| 130 | |
| 131 class BlacklistNanosleepPolicy : public Policy { | |
| 132 public: | |
| 133 BlacklistNanosleepPolicy() {} | |
| 134 ~BlacklistNanosleepPolicy() override {} | |
| 135 | |
| 136 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 137 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 138 switch (sysno) { | |
| 139 case __NR_nanosleep: | |
| 140 return Error(EACCES); | |
| 141 default: | |
| 142 return Allow(); | |
| 143 } | |
| 144 } | |
| 145 | |
| 146 static void AssertNanosleepFails() { | |
| 147 const struct timespec ts = {0, 0}; | |
| 148 errno = 0; | |
| 149 BPF_ASSERT_EQ(-1, HANDLE_EINTR(syscall(__NR_nanosleep, &ts, NULL))); | |
| 150 BPF_ASSERT_EQ(EACCES, errno); | |
| 151 } | |
| 152 | |
| 153 private: | |
| 154 DISALLOW_COPY_AND_ASSIGN(BlacklistNanosleepPolicy); | |
| 155 }; | |
| 156 | |
| 157 BPF_TEST_C(SandboxBPF, ApplyBasicBlacklistPolicy, BlacklistNanosleepPolicy) { | |
| 158 BlacklistNanosleepPolicy::AssertNanosleepFails(); | |
| 159 } | |
| 160 | |
| 161 BPF_TEST_C(SandboxBPF, UseVsyscall, BlacklistNanosleepPolicy) { | |
| 162 time_t current_time; | |
| 163 // time() is implemented as a vsyscall. With an older glibc, with | |
| 164 // vsyscall=emulate and some versions of the seccomp BPF patch | |
| 165 // we may get SIGKILL-ed. Detect this! | |
| 166 BPF_ASSERT_NE(static_cast<time_t>(-1), time(¤t_time)); | |
| 167 } | |
| 168 | |
| 169 // Now do a simple whitelist test | |
| 170 | |
| 171 class WhitelistGetpidPolicy : public Policy { | |
| 172 public: | |
| 173 WhitelistGetpidPolicy() {} | |
| 174 ~WhitelistGetpidPolicy() override {} | |
| 175 | |
| 176 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 177 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 178 switch (sysno) { | |
| 179 case __NR_getpid: | |
| 180 case __NR_exit_group: | |
| 181 return Allow(); | |
| 182 default: | |
| 183 return Error(ENOMEM); | |
| 184 } | |
| 185 } | |
| 186 | |
| 187 private: | |
| 188 DISALLOW_COPY_AND_ASSIGN(WhitelistGetpidPolicy); | |
| 189 }; | |
| 190 | |
| 191 BPF_TEST_C(SandboxBPF, ApplyBasicWhitelistPolicy, WhitelistGetpidPolicy) { | |
| 192 // getpid() should be allowed | |
| 193 errno = 0; | |
| 194 BPF_ASSERT(sys_getpid() > 0); | |
| 195 BPF_ASSERT(errno == 0); | |
| 196 | |
| 197 // getpgid() should be denied | |
| 198 BPF_ASSERT(getpgid(0) == -1); | |
| 199 BPF_ASSERT(errno == ENOMEM); | |
| 200 } | |
| 201 | |
| 202 // A simple blacklist policy, with a SIGSYS handler | |
| 203 intptr_t EnomemHandler(const struct arch_seccomp_data& args, void* aux) { | |
| 204 // We also check that the auxiliary data is correct | |
| 205 SANDBOX_ASSERT(aux); | |
| 206 *(static_cast<int*>(aux)) = kExpectedReturnValue; | |
| 207 return -ENOMEM; | |
| 208 } | |
| 209 | |
| 210 class BlacklistNanosleepTrapPolicy : public Policy { | |
| 211 public: | |
| 212 explicit BlacklistNanosleepTrapPolicy(int* aux) : aux_(aux) {} | |
| 213 ~BlacklistNanosleepTrapPolicy() override {} | |
| 214 | |
| 215 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 216 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 217 switch (sysno) { | |
| 218 case __NR_nanosleep: | |
| 219 return Trap(EnomemHandler, aux_); | |
| 220 default: | |
| 221 return Allow(); | |
| 222 } | |
| 223 } | |
| 224 | |
| 225 private: | |
| 226 int* aux_; | |
| 227 | |
| 228 DISALLOW_COPY_AND_ASSIGN(BlacklistNanosleepTrapPolicy); | |
| 229 }; | |
| 230 | |
| 231 BPF_TEST(SandboxBPF, | |
| 232 BasicBlacklistWithSigsys, | |
| 233 BlacklistNanosleepTrapPolicy, | |
| 234 int /* (*BPF_AUX) */) { | |
| 235 // getpid() should work properly | |
| 236 errno = 0; | |
| 237 BPF_ASSERT(sys_getpid() > 0); | |
| 238 BPF_ASSERT(errno == 0); | |
| 239 | |
| 240 // Our Auxiliary Data, should be reset by the signal handler | |
| 241 *BPF_AUX = -1; | |
| 242 const struct timespec ts = {0, 0}; | |
| 243 BPF_ASSERT(syscall(__NR_nanosleep, &ts, NULL) == -1); | |
| 244 BPF_ASSERT(errno == ENOMEM); | |
| 245 | |
| 246 // We expect the signal handler to modify AuxData | |
| 247 BPF_ASSERT(*BPF_AUX == kExpectedReturnValue); | |
| 248 } | |
| 249 | |
| 250 // A simple test that verifies we can return arbitrary errno values. | |
| 251 | |
| 252 class ErrnoTestPolicy : public Policy { | |
| 253 public: | |
| 254 ErrnoTestPolicy() {} | |
| 255 ~ErrnoTestPolicy() override {} | |
| 256 | |
| 257 ResultExpr EvaluateSyscall(int sysno) const override; | |
| 258 | |
| 259 private: | |
| 260 DISALLOW_COPY_AND_ASSIGN(ErrnoTestPolicy); | |
| 261 }; | |
| 262 | |
| 263 ResultExpr ErrnoTestPolicy::EvaluateSyscall(int sysno) const { | |
| 264 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 265 switch (sysno) { | |
| 266 case __NR_dup3: // dup2 is a wrapper of dup3 in android | |
| 267 #if defined(__NR_dup2) | |
| 268 case __NR_dup2: | |
| 269 #endif | |
| 270 // Pretend that dup2() worked, but don't actually do anything. | |
| 271 return Error(0); | |
| 272 case __NR_setuid: | |
| 273 #if defined(__NR_setuid32) | |
| 274 case __NR_setuid32: | |
| 275 #endif | |
| 276 // Return errno = 1. | |
| 277 return Error(1); | |
| 278 case __NR_setgid: | |
| 279 #if defined(__NR_setgid32) | |
| 280 case __NR_setgid32: | |
| 281 #endif | |
| 282 // Return maximum errno value (typically 4095). | |
| 283 return Error(ErrorCode::ERR_MAX_ERRNO); | |
| 284 case __NR_uname: | |
| 285 // Return errno = 42; | |
| 286 return Error(42); | |
| 287 default: | |
| 288 return Allow(); | |
| 289 } | |
| 290 } | |
| 291 | |
| 292 BPF_TEST_C(SandboxBPF, ErrnoTest, ErrnoTestPolicy) { | |
| 293 // Verify that dup2() returns success, but doesn't actually run. | |
| 294 int fds[4]; | |
| 295 BPF_ASSERT(pipe(fds) == 0); | |
| 296 BPF_ASSERT(pipe(fds + 2) == 0); | |
| 297 BPF_ASSERT(dup2(fds[2], fds[0]) == 0); | |
| 298 char buf[1] = {}; | |
| 299 BPF_ASSERT(write(fds[1], "\x55", 1) == 1); | |
| 300 BPF_ASSERT(write(fds[3], "\xAA", 1) == 1); | |
| 301 BPF_ASSERT(read(fds[0], buf, 1) == 1); | |
| 302 | |
| 303 // If dup2() executed, we will read \xAA, but it dup2() has been turned | |
| 304 // into a no-op by our policy, then we will read \x55. | |
| 305 BPF_ASSERT(buf[0] == '\x55'); | |
| 306 | |
| 307 // Verify that we can return the minimum and maximum errno values. | |
| 308 errno = 0; | |
| 309 BPF_ASSERT(setuid(0) == -1); | |
| 310 BPF_ASSERT(errno == 1); | |
| 311 | |
| 312 // On Android, errno is only supported up to 255, otherwise errno | |
| 313 // processing is skipped. | |
| 314 // We work around this (crbug.com/181647). | |
| 315 if (sandbox::IsAndroid() && setgid(0) != -1) { | |
| 316 errno = 0; | |
| 317 BPF_ASSERT(setgid(0) == -ErrorCode::ERR_MAX_ERRNO); | |
| 318 BPF_ASSERT(errno == 0); | |
| 319 } else { | |
| 320 errno = 0; | |
| 321 BPF_ASSERT(setgid(0) == -1); | |
| 322 BPF_ASSERT(errno == ErrorCode::ERR_MAX_ERRNO); | |
| 323 } | |
| 324 | |
| 325 // Finally, test an errno in between the minimum and maximum. | |
| 326 errno = 0; | |
| 327 struct utsname uts_buf; | |
| 328 BPF_ASSERT(uname(&uts_buf) == -1); | |
| 329 BPF_ASSERT(errno == 42); | |
| 330 } | |
| 331 | |
| 332 // Testing the stacking of two sandboxes | |
| 333 | |
| 334 class StackingPolicyPartOne : public Policy { | |
| 335 public: | |
| 336 StackingPolicyPartOne() {} | |
| 337 ~StackingPolicyPartOne() override {} | |
| 338 | |
| 339 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 340 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 341 switch (sysno) { | |
| 342 case __NR_getppid: { | |
| 343 const Arg<int> arg(0); | |
| 344 return If(arg == 0, Allow()).Else(Error(EPERM)); | |
| 345 } | |
| 346 default: | |
| 347 return Allow(); | |
| 348 } | |
| 349 } | |
| 350 | |
| 351 private: | |
| 352 DISALLOW_COPY_AND_ASSIGN(StackingPolicyPartOne); | |
| 353 }; | |
| 354 | |
| 355 class StackingPolicyPartTwo : public Policy { | |
| 356 public: | |
| 357 StackingPolicyPartTwo() {} | |
| 358 ~StackingPolicyPartTwo() override {} | |
| 359 | |
| 360 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 361 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 362 switch (sysno) { | |
| 363 case __NR_getppid: { | |
| 364 const Arg<int> arg(0); | |
| 365 return If(arg == 0, Error(EINVAL)).Else(Allow()); | |
| 366 } | |
| 367 default: | |
| 368 return Allow(); | |
| 369 } | |
| 370 } | |
| 371 | |
| 372 private: | |
| 373 DISALLOW_COPY_AND_ASSIGN(StackingPolicyPartTwo); | |
| 374 }; | |
| 375 | |
| 376 BPF_TEST_C(SandboxBPF, StackingPolicy, StackingPolicyPartOne) { | |
| 377 errno = 0; | |
| 378 BPF_ASSERT(syscall(__NR_getppid, 0) > 0); | |
| 379 BPF_ASSERT(errno == 0); | |
| 380 | |
| 381 BPF_ASSERT(syscall(__NR_getppid, 1) == -1); | |
| 382 BPF_ASSERT(errno == EPERM); | |
| 383 | |
| 384 // Stack a second sandbox with its own policy. Verify that we can further | |
| 385 // restrict filters, but we cannot relax existing filters. | |
| 386 SandboxBPF sandbox(new StackingPolicyPartTwo()); | |
| 387 BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::SeccompLevel::SINGLE_THREADED)); | |
| 388 | |
| 389 errno = 0; | |
| 390 BPF_ASSERT(syscall(__NR_getppid, 0) == -1); | |
| 391 BPF_ASSERT(errno == EINVAL); | |
| 392 | |
| 393 BPF_ASSERT(syscall(__NR_getppid, 1) == -1); | |
| 394 BPF_ASSERT(errno == EPERM); | |
| 395 } | |
| 396 | |
| 397 // A more complex, but synthetic policy. This tests the correctness of the BPF | |
| 398 // program by iterating through all syscalls and checking for an errno that | |
| 399 // depends on the syscall number. Unlike the Verifier, this exercises the BPF | |
| 400 // interpreter in the kernel. | |
| 401 | |
| 402 // We try to make sure we exercise optimizations in the BPF compiler. We make | |
| 403 // sure that the compiler can have an opportunity to coalesce syscalls with | |
| 404 // contiguous numbers and we also make sure that disjoint sets can return the | |
| 405 // same errno. | |
| 406 int SysnoToRandomErrno(int sysno) { | |
| 407 // Small contiguous sets of 3 system calls return an errno equal to the | |
| 408 // index of that set + 1 (so that we never return a NUL errno). | |
| 409 return ((sysno & ~3) >> 2) % 29 + 1; | |
| 410 } | |
| 411 | |
| 412 class SyntheticPolicy : public Policy { | |
| 413 public: | |
| 414 SyntheticPolicy() {} | |
| 415 ~SyntheticPolicy() override {} | |
| 416 | |
| 417 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 418 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 419 if (sysno == __NR_exit_group || sysno == __NR_write) { | |
| 420 // exit_group() is special, we really need it to work. | |
| 421 // write() is needed for BPF_ASSERT() to report a useful error message. | |
| 422 return Allow(); | |
| 423 } | |
| 424 return Error(SysnoToRandomErrno(sysno)); | |
| 425 } | |
| 426 | |
| 427 private: | |
| 428 DISALLOW_COPY_AND_ASSIGN(SyntheticPolicy); | |
| 429 }; | |
| 430 | |
| 431 BPF_TEST_C(SandboxBPF, SyntheticPolicy, SyntheticPolicy) { | |
| 432 // Ensure that that kExpectedReturnValue + syscallnumber + 1 does not int | |
| 433 // overflow. | |
| 434 BPF_ASSERT(std::numeric_limits<int>::max() - kExpectedReturnValue - 1 >= | |
| 435 static_cast<int>(MAX_PUBLIC_SYSCALL)); | |
| 436 | |
| 437 for (int syscall_number = static_cast<int>(MIN_SYSCALL); | |
| 438 syscall_number <= static_cast<int>(MAX_PUBLIC_SYSCALL); | |
| 439 ++syscall_number) { | |
| 440 if (syscall_number == __NR_exit_group || syscall_number == __NR_write) { | |
| 441 // exit_group() is special | |
| 442 continue; | |
| 443 } | |
| 444 errno = 0; | |
| 445 BPF_ASSERT(syscall(syscall_number) == -1); | |
| 446 BPF_ASSERT(errno == SysnoToRandomErrno(syscall_number)); | |
| 447 } | |
| 448 } | |
| 449 | |
| 450 #if defined(__arm__) | |
| 451 // A simple policy that tests whether ARM private system calls are supported | |
| 452 // by our BPF compiler and by the BPF interpreter in the kernel. | |
| 453 | |
| 454 // For ARM private system calls, return an errno equal to their offset from | |
| 455 // MIN_PRIVATE_SYSCALL plus 1 (to avoid NUL errno). | |
| 456 int ArmPrivateSysnoToErrno(int sysno) { | |
| 457 if (sysno >= static_cast<int>(MIN_PRIVATE_SYSCALL) && | |
| 458 sysno <= static_cast<int>(MAX_PRIVATE_SYSCALL)) { | |
| 459 return (sysno - MIN_PRIVATE_SYSCALL) + 1; | |
| 460 } else { | |
| 461 return ENOSYS; | |
| 462 } | |
| 463 } | |
| 464 | |
| 465 class ArmPrivatePolicy : public Policy { | |
| 466 public: | |
| 467 ArmPrivatePolicy() {} | |
| 468 ~ArmPrivatePolicy() override {} | |
| 469 | |
| 470 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 471 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 472 // Start from |__ARM_NR_set_tls + 1| so as not to mess with actual | |
| 473 // ARM private system calls. | |
| 474 if (sysno >= static_cast<int>(__ARM_NR_set_tls + 1) && | |
| 475 sysno <= static_cast<int>(MAX_PRIVATE_SYSCALL)) { | |
| 476 return Error(ArmPrivateSysnoToErrno(sysno)); | |
| 477 } | |
| 478 return Allow(); | |
| 479 } | |
| 480 | |
| 481 private: | |
| 482 DISALLOW_COPY_AND_ASSIGN(ArmPrivatePolicy); | |
| 483 }; | |
| 484 | |
| 485 BPF_TEST_C(SandboxBPF, ArmPrivatePolicy, ArmPrivatePolicy) { | |
| 486 for (int syscall_number = static_cast<int>(__ARM_NR_set_tls + 1); | |
| 487 syscall_number <= static_cast<int>(MAX_PRIVATE_SYSCALL); | |
| 488 ++syscall_number) { | |
| 489 errno = 0; | |
| 490 BPF_ASSERT(syscall(syscall_number) == -1); | |
| 491 BPF_ASSERT(errno == ArmPrivateSysnoToErrno(syscall_number)); | |
| 492 } | |
| 493 } | |
| 494 #endif // defined(__arm__) | |
| 495 | |
| 496 intptr_t CountSyscalls(const struct arch_seccomp_data& args, void* aux) { | |
| 497 // Count all invocations of our callback function. | |
| 498 ++*reinterpret_cast<int*>(aux); | |
| 499 | |
| 500 // Verify that within the callback function all filtering is temporarily | |
| 501 // disabled. | |
| 502 BPF_ASSERT(sys_getpid() > 1); | |
| 503 | |
| 504 // Verify that we can now call the underlying system call without causing | |
| 505 // infinite recursion. | |
| 506 return SandboxBPF::ForwardSyscall(args); | |
| 507 } | |
| 508 | |
| 509 class GreyListedPolicy : public Policy { | |
| 510 public: | |
| 511 explicit GreyListedPolicy(int* aux) : aux_(aux) { | |
| 512 // Set the global environment for unsafe traps once. | |
| 513 EnableUnsafeTraps(); | |
| 514 } | |
| 515 ~GreyListedPolicy() override {} | |
| 516 | |
| 517 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 518 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 519 // Some system calls must always be allowed, if our policy wants to make | |
| 520 // use of UnsafeTrap() | |
| 521 if (SandboxBPF::IsRequiredForUnsafeTrap(sysno)) { | |
| 522 return Allow(); | |
| 523 } else if (sysno == __NR_getpid) { | |
| 524 // Disallow getpid() | |
| 525 return Error(EPERM); | |
| 526 } else { | |
| 527 // Allow (and count) all other system calls. | |
| 528 return UnsafeTrap(CountSyscalls, aux_); | |
| 529 } | |
| 530 } | |
| 531 | |
| 532 private: | |
| 533 int* aux_; | |
| 534 | |
| 535 DISALLOW_COPY_AND_ASSIGN(GreyListedPolicy); | |
| 536 }; | |
| 537 | |
| 538 BPF_TEST(SandboxBPF, GreyListedPolicy, GreyListedPolicy, int /* (*BPF_AUX) */) { | |
| 539 BPF_ASSERT(sys_getpid() == -1); | |
| 540 BPF_ASSERT(errno == EPERM); | |
| 541 BPF_ASSERT(*BPF_AUX == 0); | |
| 542 BPF_ASSERT(syscall(__NR_geteuid) == syscall(__NR_getuid)); | |
| 543 BPF_ASSERT(*BPF_AUX == 2); | |
| 544 char name[17] = {}; | |
| 545 BPF_ASSERT(!syscall(__NR_prctl, | |
| 546 PR_GET_NAME, | |
| 547 name, | |
| 548 (void*)NULL, | |
| 549 (void*)NULL, | |
| 550 (void*)NULL)); | |
| 551 BPF_ASSERT(*BPF_AUX == 3); | |
| 552 BPF_ASSERT(*name); | |
| 553 } | |
| 554 | |
| 555 SANDBOX_TEST(SandboxBPF, EnableUnsafeTrapsInSigSysHandler) { | |
| 556 // Disabling warning messages that could confuse our test framework. | |
| 557 setenv(kSandboxDebuggingEnv, "t", 0); | |
| 558 Die::SuppressInfoMessages(true); | |
| 559 | |
| 560 unsetenv(kSandboxDebuggingEnv); | |
| 561 SANDBOX_ASSERT(Trap::EnableUnsafeTrapsInSigSysHandler() == false); | |
| 562 setenv(kSandboxDebuggingEnv, "", 1); | |
| 563 SANDBOX_ASSERT(Trap::EnableUnsafeTrapsInSigSysHandler() == false); | |
| 564 setenv(kSandboxDebuggingEnv, "t", 1); | |
| 565 SANDBOX_ASSERT(Trap::EnableUnsafeTrapsInSigSysHandler() == true); | |
| 566 } | |
| 567 | |
| 568 intptr_t PrctlHandler(const struct arch_seccomp_data& args, void*) { | |
| 569 if (args.args[0] == PR_CAPBSET_DROP && static_cast<int>(args.args[1]) == -1) { | |
| 570 // prctl(PR_CAPBSET_DROP, -1) is never valid. The kernel will always | |
| 571 // return an error. But our handler allows this call. | |
| 572 return 0; | |
| 573 } else { | |
| 574 return SandboxBPF::ForwardSyscall(args); | |
| 575 } | |
| 576 } | |
| 577 | |
| 578 class PrctlPolicy : public Policy { | |
| 579 public: | |
| 580 PrctlPolicy() {} | |
| 581 ~PrctlPolicy() override {} | |
| 582 | |
| 583 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 584 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 585 setenv(kSandboxDebuggingEnv, "t", 0); | |
| 586 Die::SuppressInfoMessages(true); | |
| 587 | |
| 588 if (sysno == __NR_prctl) { | |
| 589 // Handle prctl() inside an UnsafeTrap() | |
| 590 return UnsafeTrap(PrctlHandler, NULL); | |
| 591 } | |
| 592 | |
| 593 // Allow all other system calls. | |
| 594 return Allow(); | |
| 595 } | |
| 596 | |
| 597 private: | |
| 598 DISALLOW_COPY_AND_ASSIGN(PrctlPolicy); | |
| 599 }; | |
| 600 | |
| 601 BPF_TEST_C(SandboxBPF, ForwardSyscall, PrctlPolicy) { | |
| 602 // This call should never be allowed. But our policy will intercept it and | |
| 603 // let it pass successfully. | |
| 604 BPF_ASSERT( | |
| 605 !prctl(PR_CAPBSET_DROP, -1, (void*)NULL, (void*)NULL, (void*)NULL)); | |
| 606 | |
| 607 // Verify that the call will fail, if it makes it all the way to the kernel. | |
| 608 BPF_ASSERT( | |
| 609 prctl(PR_CAPBSET_DROP, -2, (void*)NULL, (void*)NULL, (void*)NULL) == -1); | |
| 610 | |
| 611 // And verify that other uses of prctl() work just fine. | |
| 612 char name[17] = {}; | |
| 613 BPF_ASSERT(!syscall(__NR_prctl, | |
| 614 PR_GET_NAME, | |
| 615 name, | |
| 616 (void*)NULL, | |
| 617 (void*)NULL, | |
| 618 (void*)NULL)); | |
| 619 BPF_ASSERT(*name); | |
| 620 | |
| 621 // Finally, verify that system calls other than prctl() are completely | |
| 622 // unaffected by our policy. | |
| 623 struct utsname uts = {}; | |
| 624 BPF_ASSERT(!uname(&uts)); | |
| 625 BPF_ASSERT(!strcmp(uts.sysname, "Linux")); | |
| 626 } | |
| 627 | |
| 628 intptr_t AllowRedirectedSyscall(const struct arch_seccomp_data& args, void*) { | |
| 629 return SandboxBPF::ForwardSyscall(args); | |
| 630 } | |
| 631 | |
| 632 class RedirectAllSyscallsPolicy : public Policy { | |
| 633 public: | |
| 634 RedirectAllSyscallsPolicy() {} | |
| 635 ~RedirectAllSyscallsPolicy() override {} | |
| 636 | |
| 637 ResultExpr EvaluateSyscall(int sysno) const override; | |
| 638 | |
| 639 private: | |
| 640 DISALLOW_COPY_AND_ASSIGN(RedirectAllSyscallsPolicy); | |
| 641 }; | |
| 642 | |
| 643 ResultExpr RedirectAllSyscallsPolicy::EvaluateSyscall(int sysno) const { | |
| 644 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 645 setenv(kSandboxDebuggingEnv, "t", 0); | |
| 646 Die::SuppressInfoMessages(true); | |
| 647 | |
| 648 // Some system calls must always be allowed, if our policy wants to make | |
| 649 // use of UnsafeTrap() | |
| 650 if (SandboxBPF::IsRequiredForUnsafeTrap(sysno)) | |
| 651 return Allow(); | |
| 652 return UnsafeTrap(AllowRedirectedSyscall, NULL); | |
| 653 } | |
| 654 | |
| 655 int bus_handler_fd_ = -1; | |
| 656 | |
| 657 void SigBusHandler(int, siginfo_t* info, void* void_context) { | |
| 658 BPF_ASSERT(write(bus_handler_fd_, "\x55", 1) == 1); | |
| 659 } | |
| 660 | |
| 661 BPF_TEST_C(SandboxBPF, SigBus, RedirectAllSyscallsPolicy) { | |
| 662 // We use the SIGBUS bit in the signal mask as a thread-local boolean | |
| 663 // value in the implementation of UnsafeTrap(). This is obviously a bit | |
| 664 // of a hack that could conceivably interfere with code that uses SIGBUS | |
| 665 // in more traditional ways. This test verifies that basic functionality | |
| 666 // of SIGBUS is not impacted, but it is certainly possibly to construe | |
| 667 // more complex uses of signals where our use of the SIGBUS mask is not | |
| 668 // 100% transparent. This is expected behavior. | |
| 669 int fds[2]; | |
| 670 BPF_ASSERT(socketpair(AF_UNIX, SOCK_STREAM, 0, fds) == 0); | |
| 671 bus_handler_fd_ = fds[1]; | |
| 672 struct sigaction sa = {}; | |
| 673 sa.sa_sigaction = SigBusHandler; | |
| 674 sa.sa_flags = SA_SIGINFO; | |
| 675 BPF_ASSERT(sigaction(SIGBUS, &sa, NULL) == 0); | |
| 676 raise(SIGBUS); | |
| 677 char c = '\000'; | |
| 678 BPF_ASSERT(read(fds[0], &c, 1) == 1); | |
| 679 BPF_ASSERT(close(fds[0]) == 0); | |
| 680 BPF_ASSERT(close(fds[1]) == 0); | |
| 681 BPF_ASSERT(c == 0x55); | |
| 682 } | |
| 683 | |
| 684 BPF_TEST_C(SandboxBPF, SigMask, RedirectAllSyscallsPolicy) { | |
| 685 // Signal masks are potentially tricky to handle. For instance, if we | |
| 686 // ever tried to update them from inside a Trap() or UnsafeTrap() handler, | |
| 687 // the call to sigreturn() at the end of the signal handler would undo | |
| 688 // all of our efforts. So, it makes sense to test that sigprocmask() | |
| 689 // works, even if we have a policy in place that makes use of UnsafeTrap(). | |
| 690 // In practice, this works because we force sigprocmask() to be handled | |
| 691 // entirely in the kernel. | |
| 692 sigset_t mask0, mask1, mask2; | |
| 693 | |
| 694 // Call sigprocmask() to verify that SIGUSR2 wasn't blocked, if we didn't | |
| 695 // change the mask (it shouldn't have been, as it isn't blocked by default | |
| 696 // in POSIX). | |
| 697 // | |
| 698 // Use SIGUSR2 because Android seems to use SIGUSR1 for some purpose. | |
| 699 sigemptyset(&mask0); | |
| 700 BPF_ASSERT(!sigprocmask(SIG_BLOCK, &mask0, &mask1)); | |
| 701 BPF_ASSERT(!sigismember(&mask1, SIGUSR2)); | |
| 702 | |
| 703 // Try again, and this time we verify that we can block it. This | |
| 704 // requires a second call to sigprocmask(). | |
| 705 sigaddset(&mask0, SIGUSR2); | |
| 706 BPF_ASSERT(!sigprocmask(SIG_BLOCK, &mask0, NULL)); | |
| 707 BPF_ASSERT(!sigprocmask(SIG_BLOCK, NULL, &mask2)); | |
| 708 BPF_ASSERT(sigismember(&mask2, SIGUSR2)); | |
| 709 } | |
| 710 | |
| 711 BPF_TEST_C(SandboxBPF, UnsafeTrapWithErrno, RedirectAllSyscallsPolicy) { | |
| 712 // An UnsafeTrap() (or for that matter, a Trap()) has to report error | |
| 713 // conditions by returning an exit code in the range -1..-4096. This | |
| 714 // should happen automatically if using ForwardSyscall(). If the TrapFnc() | |
| 715 // uses some other method to make system calls, then it is responsible | |
| 716 // for computing the correct return code. | |
| 717 // This test verifies that ForwardSyscall() does the correct thing. | |
| 718 | |
| 719 // The glibc system wrapper will ultimately set errno for us. So, from normal | |
| 720 // userspace, all of this should be completely transparent. | |
| 721 errno = 0; | |
| 722 BPF_ASSERT(close(-1) == -1); | |
| 723 BPF_ASSERT(errno == EBADF); | |
| 724 | |
| 725 // Explicitly avoid the glibc wrapper. This is not normally the way anybody | |
| 726 // would make system calls, but it allows us to verify that we don't | |
| 727 // accidentally mess with errno, when we shouldn't. | |
| 728 errno = 0; | |
| 729 struct arch_seccomp_data args = {}; | |
| 730 args.nr = __NR_close; | |
| 731 args.args[0] = -1; | |
| 732 BPF_ASSERT(SandboxBPF::ForwardSyscall(args) == -EBADF); | |
| 733 BPF_ASSERT(errno == 0); | |
| 734 } | |
| 735 | |
| 736 bool NoOpCallback() { | |
| 737 return true; | |
| 738 } | |
| 739 | |
| 740 // Test a trap handler that makes use of a broker process to open(). | |
| 741 | |
| 742 class InitializedOpenBroker { | |
| 743 public: | |
| 744 InitializedOpenBroker() : initialized_(false) { | |
| 745 std::vector<syscall_broker::BrokerFilePermission> permissions; | |
| 746 permissions.push_back( | |
| 747 syscall_broker::BrokerFilePermission::ReadOnly("/proc/allowed")); | |
| 748 permissions.push_back( | |
| 749 syscall_broker::BrokerFilePermission::ReadOnly("/proc/cpuinfo")); | |
| 750 | |
| 751 broker_process_.reset( | |
| 752 new syscall_broker::BrokerProcess(EPERM, permissions)); | |
| 753 BPF_ASSERT(broker_process() != NULL); | |
| 754 BPF_ASSERT(broker_process_->Init(base::Bind(&NoOpCallback))); | |
| 755 | |
| 756 initialized_ = true; | |
| 757 } | |
| 758 bool initialized() { return initialized_; } | |
| 759 class syscall_broker::BrokerProcess* broker_process() { | |
| 760 return broker_process_.get(); | |
| 761 } | |
| 762 | |
| 763 private: | |
| 764 bool initialized_; | |
| 765 scoped_ptr<class syscall_broker::BrokerProcess> broker_process_; | |
| 766 DISALLOW_COPY_AND_ASSIGN(InitializedOpenBroker); | |
| 767 }; | |
| 768 | |
| 769 intptr_t BrokerOpenTrapHandler(const struct arch_seccomp_data& args, | |
| 770 void* aux) { | |
| 771 BPF_ASSERT(aux); | |
| 772 syscall_broker::BrokerProcess* broker_process = | |
| 773 static_cast<syscall_broker::BrokerProcess*>(aux); | |
| 774 switch (args.nr) { | |
| 775 case __NR_faccessat: // access is a wrapper of faccessat in android | |
| 776 BPF_ASSERT(static_cast<int>(args.args[0]) == AT_FDCWD); | |
| 777 return broker_process->Access(reinterpret_cast<const char*>(args.args[1]), | |
| 778 static_cast<int>(args.args[2])); | |
| 779 #if defined(__NR_access) | |
| 780 case __NR_access: | |
| 781 return broker_process->Access(reinterpret_cast<const char*>(args.args[0]), | |
| 782 static_cast<int>(args.args[1])); | |
| 783 #endif | |
| 784 #if defined(__NR_open) | |
| 785 case __NR_open: | |
| 786 return broker_process->Open(reinterpret_cast<const char*>(args.args[0]), | |
| 787 static_cast<int>(args.args[1])); | |
| 788 #endif | |
| 789 case __NR_openat: | |
| 790 // We only call open() so if we arrive here, it's because glibc uses | |
| 791 // the openat() system call. | |
| 792 BPF_ASSERT(static_cast<int>(args.args[0]) == AT_FDCWD); | |
| 793 return broker_process->Open(reinterpret_cast<const char*>(args.args[1]), | |
| 794 static_cast<int>(args.args[2])); | |
| 795 default: | |
| 796 BPF_ASSERT(false); | |
| 797 return -ENOSYS; | |
| 798 } | |
| 799 } | |
| 800 | |
| 801 class DenyOpenPolicy : public Policy { | |
| 802 public: | |
| 803 explicit DenyOpenPolicy(InitializedOpenBroker* iob) : iob_(iob) {} | |
| 804 ~DenyOpenPolicy() override {} | |
| 805 | |
| 806 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 807 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 808 | |
| 809 switch (sysno) { | |
| 810 case __NR_faccessat: | |
| 811 #if defined(__NR_access) | |
| 812 case __NR_access: | |
| 813 #endif | |
| 814 #if defined(__NR_open) | |
| 815 case __NR_open: | |
| 816 #endif | |
| 817 case __NR_openat: | |
| 818 // We get a InitializedOpenBroker class, but our trap handler wants | |
| 819 // the syscall_broker::BrokerProcess object. | |
| 820 return Trap(BrokerOpenTrapHandler, iob_->broker_process()); | |
| 821 default: | |
| 822 return Allow(); | |
| 823 } | |
| 824 } | |
| 825 | |
| 826 private: | |
| 827 InitializedOpenBroker* iob_; | |
| 828 | |
| 829 DISALLOW_COPY_AND_ASSIGN(DenyOpenPolicy); | |
| 830 }; | |
| 831 | |
| 832 // We use a InitializedOpenBroker class, so that we can run unsandboxed | |
| 833 // code in its constructor, which is the only way to do so in a BPF_TEST. | |
| 834 BPF_TEST(SandboxBPF, | |
| 835 UseOpenBroker, | |
| 836 DenyOpenPolicy, | |
| 837 InitializedOpenBroker /* (*BPF_AUX) */) { | |
| 838 BPF_ASSERT(BPF_AUX->initialized()); | |
| 839 syscall_broker::BrokerProcess* broker_process = BPF_AUX->broker_process(); | |
| 840 BPF_ASSERT(broker_process != NULL); | |
| 841 | |
| 842 // First, use the broker "manually" | |
| 843 BPF_ASSERT(broker_process->Open("/proc/denied", O_RDONLY) == -EPERM); | |
| 844 BPF_ASSERT(broker_process->Access("/proc/denied", R_OK) == -EPERM); | |
| 845 BPF_ASSERT(broker_process->Open("/proc/allowed", O_RDONLY) == -ENOENT); | |
| 846 BPF_ASSERT(broker_process->Access("/proc/allowed", R_OK) == -ENOENT); | |
| 847 | |
| 848 // Now use glibc's open() as an external library would. | |
| 849 BPF_ASSERT(open("/proc/denied", O_RDONLY) == -1); | |
| 850 BPF_ASSERT(errno == EPERM); | |
| 851 | |
| 852 BPF_ASSERT(open("/proc/allowed", O_RDONLY) == -1); | |
| 853 BPF_ASSERT(errno == ENOENT); | |
| 854 | |
| 855 // Also test glibc's openat(), some versions of libc use it transparently | |
| 856 // instead of open(). | |
| 857 BPF_ASSERT(openat(AT_FDCWD, "/proc/denied", O_RDONLY) == -1); | |
| 858 BPF_ASSERT(errno == EPERM); | |
| 859 | |
| 860 BPF_ASSERT(openat(AT_FDCWD, "/proc/allowed", O_RDONLY) == -1); | |
| 861 BPF_ASSERT(errno == ENOENT); | |
| 862 | |
| 863 // And test glibc's access(). | |
| 864 BPF_ASSERT(access("/proc/denied", R_OK) == -1); | |
| 865 BPF_ASSERT(errno == EPERM); | |
| 866 | |
| 867 BPF_ASSERT(access("/proc/allowed", R_OK) == -1); | |
| 868 BPF_ASSERT(errno == ENOENT); | |
| 869 | |
| 870 // This is also white listed and does exist. | |
| 871 int cpu_info_access = access("/proc/cpuinfo", R_OK); | |
| 872 BPF_ASSERT(cpu_info_access == 0); | |
| 873 int cpu_info_fd = open("/proc/cpuinfo", O_RDONLY); | |
| 874 BPF_ASSERT(cpu_info_fd >= 0); | |
| 875 char buf[1024]; | |
| 876 BPF_ASSERT(read(cpu_info_fd, buf, sizeof(buf)) > 0); | |
| 877 } | |
| 878 | |
| 879 // Simple test demonstrating how to use SandboxBPF::Cond() | |
| 880 | |
| 881 class SimpleCondTestPolicy : public Policy { | |
| 882 public: | |
| 883 SimpleCondTestPolicy() {} | |
| 884 ~SimpleCondTestPolicy() override {} | |
| 885 | |
| 886 ResultExpr EvaluateSyscall(int sysno) const override; | |
| 887 | |
| 888 private: | |
| 889 DISALLOW_COPY_AND_ASSIGN(SimpleCondTestPolicy); | |
| 890 }; | |
| 891 | |
| 892 ResultExpr SimpleCondTestPolicy::EvaluateSyscall(int sysno) const { | |
| 893 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 894 | |
| 895 // We deliberately return unusual errno values upon failure, so that we | |
| 896 // can uniquely test for these values. In a "real" policy, you would want | |
| 897 // to return more traditional values. | |
| 898 int flags_argument_position = -1; | |
| 899 switch (sysno) { | |
| 900 #if defined(__NR_open) | |
| 901 case __NR_open: | |
| 902 flags_argument_position = 1; | |
| 903 #endif | |
| 904 case __NR_openat: { // open can be a wrapper for openat(2). | |
| 905 if (sysno == __NR_openat) | |
| 906 flags_argument_position = 2; | |
| 907 | |
| 908 // Allow opening files for reading, but don't allow writing. | |
| 909 static_assert(O_RDONLY == 0, "O_RDONLY must be all zero bits"); | |
| 910 const Arg<int> flags(flags_argument_position); | |
| 911 return If((flags & O_ACCMODE) != 0, Error(EROFS)).Else(Allow()); | |
| 912 } | |
| 913 case __NR_prctl: { | |
| 914 // Allow prctl(PR_SET_DUMPABLE) and prctl(PR_GET_DUMPABLE), but | |
| 915 // disallow everything else. | |
| 916 const Arg<int> option(0); | |
| 917 return If(option == PR_SET_DUMPABLE || option == PR_GET_DUMPABLE, Allow()) | |
| 918 .Else(Error(ENOMEM)); | |
| 919 } | |
| 920 default: | |
| 921 return Allow(); | |
| 922 } | |
| 923 } | |
| 924 | |
| 925 BPF_TEST_C(SandboxBPF, SimpleCondTest, SimpleCondTestPolicy) { | |
| 926 int fd; | |
| 927 BPF_ASSERT((fd = open("/proc/self/comm", O_RDWR)) == -1); | |
| 928 BPF_ASSERT(errno == EROFS); | |
| 929 BPF_ASSERT((fd = open("/proc/self/comm", O_RDONLY)) >= 0); | |
| 930 close(fd); | |
| 931 | |
| 932 int ret; | |
| 933 BPF_ASSERT((ret = prctl(PR_GET_DUMPABLE)) >= 0); | |
| 934 BPF_ASSERT(prctl(PR_SET_DUMPABLE, 1 - ret) == 0); | |
| 935 BPF_ASSERT(prctl(PR_GET_ENDIAN, &ret) == -1); | |
| 936 BPF_ASSERT(errno == ENOMEM); | |
| 937 } | |
| 938 | |
| 939 // This test exercises the SandboxBPF::Cond() method by building a complex | |
| 940 // tree of conditional equality operations. It then makes system calls and | |
| 941 // verifies that they return the values that we expected from our BPF | |
| 942 // program. | |
| 943 class EqualityStressTest { | |
| 944 public: | |
| 945 EqualityStressTest() { | |
| 946 // We want a deterministic test | |
| 947 srand(0); | |
| 948 | |
| 949 // Iterates over system call numbers and builds a random tree of | |
| 950 // equality tests. | |
| 951 // We are actually constructing a graph of ArgValue objects. This | |
| 952 // graph will later be used to a) compute our sandbox policy, and | |
| 953 // b) drive the code that verifies the output from the BPF program. | |
| 954 static_assert( | |
| 955 kNumTestCases < (int)(MAX_PUBLIC_SYSCALL - MIN_SYSCALL - 10), | |
| 956 "kNumTestCases must be significantly smaller than the number " | |
| 957 "of system calls"); | |
| 958 for (int sysno = MIN_SYSCALL, end = kNumTestCases; sysno < end; ++sysno) { | |
| 959 if (IsReservedSyscall(sysno)) { | |
| 960 // Skip reserved system calls. This ensures that our test frame | |
| 961 // work isn't impacted by the fact that we are overriding | |
| 962 // a lot of different system calls. | |
| 963 ++end; | |
| 964 arg_values_.push_back(NULL); | |
| 965 } else { | |
| 966 arg_values_.push_back( | |
| 967 RandomArgValue(rand() % kMaxArgs, 0, rand() % kMaxArgs)); | |
| 968 } | |
| 969 } | |
| 970 } | |
| 971 | |
| 972 ~EqualityStressTest() { | |
| 973 for (std::vector<ArgValue*>::iterator iter = arg_values_.begin(); | |
| 974 iter != arg_values_.end(); | |
| 975 ++iter) { | |
| 976 DeleteArgValue(*iter); | |
| 977 } | |
| 978 } | |
| 979 | |
| 980 ResultExpr Policy(int sysno) { | |
| 981 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 982 if (sysno < 0 || sysno >= (int)arg_values_.size() || | |
| 983 IsReservedSyscall(sysno)) { | |
| 984 // We only return ErrorCode values for the system calls that | |
| 985 // are part of our test data. Every other system call remains | |
| 986 // allowed. | |
| 987 return Allow(); | |
| 988 } else { | |
| 989 // ToErrorCode() turns an ArgValue object into an ErrorCode that is | |
| 990 // suitable for use by a sandbox policy. | |
| 991 return ToErrorCode(arg_values_[sysno]); | |
| 992 } | |
| 993 } | |
| 994 | |
| 995 void VerifyFilter() { | |
| 996 // Iterate over all system calls. Skip the system calls that have | |
| 997 // previously been determined as being reserved. | |
| 998 for (int sysno = 0; sysno < (int)arg_values_.size(); ++sysno) { | |
| 999 if (!arg_values_[sysno]) { | |
| 1000 // Skip reserved system calls. | |
| 1001 continue; | |
| 1002 } | |
| 1003 // Verify that system calls return the values that we expect them to | |
| 1004 // return. This involves passing different combinations of system call | |
| 1005 // parameters in order to exercise all possible code paths through the | |
| 1006 // BPF filter program. | |
| 1007 // We arbitrarily start by setting all six system call arguments to | |
| 1008 // zero. And we then recursive traverse our tree of ArgValues to | |
| 1009 // determine the necessary combinations of parameters. | |
| 1010 intptr_t args[6] = {}; | |
| 1011 Verify(sysno, args, *arg_values_[sysno]); | |
| 1012 } | |
| 1013 } | |
| 1014 | |
| 1015 private: | |
| 1016 struct ArgValue { | |
| 1017 int argno; // Argument number to inspect. | |
| 1018 int size; // Number of test cases (must be > 0). | |
| 1019 struct Tests { | |
| 1020 uint32_t k_value; // Value to compare syscall arg against. | |
| 1021 int err; // If non-zero, errno value to return. | |
| 1022 struct ArgValue* arg_value; // Otherwise, more args needs inspecting. | |
| 1023 }* tests; | |
| 1024 int err; // If none of the tests passed, this is what | |
| 1025 struct ArgValue* arg_value; // we'll return (this is the "else" branch). | |
| 1026 }; | |
| 1027 | |
| 1028 bool IsReservedSyscall(int sysno) { | |
| 1029 // There are a handful of system calls that we should never use in our | |
| 1030 // test cases. These system calls are needed to allow the test framework | |
| 1031 // to run properly. | |
| 1032 // If we wanted to write fully generic code, there are more system calls | |
| 1033 // that could be listed here, and it is quite difficult to come up with a | |
| 1034 // truly comprehensive list. After all, we are deliberately making system | |
| 1035 // calls unavailable. In practice, we have a pretty good idea of the system | |
| 1036 // calls that will be made by this particular test. So, this small list is | |
| 1037 // sufficient. But if anybody copy'n'pasted this code for other uses, they | |
| 1038 // would have to review that the list. | |
| 1039 return sysno == __NR_read || sysno == __NR_write || sysno == __NR_exit || | |
| 1040 sysno == __NR_exit_group || sysno == __NR_restart_syscall; | |
| 1041 } | |
| 1042 | |
| 1043 ArgValue* RandomArgValue(int argno, int args_mask, int remaining_args) { | |
| 1044 // Create a new ArgValue and fill it with random data. We use as bit mask | |
| 1045 // to keep track of the system call parameters that have previously been | |
| 1046 // set; this ensures that we won't accidentally define a contradictory | |
| 1047 // set of equality tests. | |
| 1048 struct ArgValue* arg_value = new ArgValue(); | |
| 1049 args_mask |= 1 << argno; | |
| 1050 arg_value->argno = argno; | |
| 1051 | |
| 1052 // Apply some restrictions on just how complex our tests can be. | |
| 1053 // Otherwise, we end up with a BPF program that is too complicated for | |
| 1054 // the kernel to load. | |
| 1055 int fan_out = kMaxFanOut; | |
| 1056 if (remaining_args > 3) { | |
| 1057 fan_out = 1; | |
| 1058 } else if (remaining_args > 2) { | |
| 1059 fan_out = 2; | |
| 1060 } | |
| 1061 | |
| 1062 // Create a couple of different test cases with randomized values that | |
| 1063 // we want to use when comparing system call parameter number "argno". | |
| 1064 arg_value->size = rand() % fan_out + 1; | |
| 1065 arg_value->tests = new ArgValue::Tests[arg_value->size]; | |
| 1066 | |
| 1067 uint32_t k_value = rand(); | |
| 1068 for (int n = 0; n < arg_value->size; ++n) { | |
| 1069 // Ensure that we have unique values | |
| 1070 k_value += rand() % (RAND_MAX / (kMaxFanOut + 1)) + 1; | |
| 1071 | |
| 1072 // There are two possible types of nodes. Either this is a leaf node; | |
| 1073 // in that case, we have completed all the equality tests that we | |
| 1074 // wanted to perform, and we can now compute a random "errno" value that | |
| 1075 // we should return. Or this is part of a more complex boolean | |
| 1076 // expression; in that case, we have to recursively add tests for some | |
| 1077 // of system call parameters that we have not yet included in our | |
| 1078 // tests. | |
| 1079 arg_value->tests[n].k_value = k_value; | |
| 1080 if (!remaining_args || (rand() & 1)) { | |
| 1081 arg_value->tests[n].err = (rand() % 1000) + 1; | |
| 1082 arg_value->tests[n].arg_value = NULL; | |
| 1083 } else { | |
| 1084 arg_value->tests[n].err = 0; | |
| 1085 arg_value->tests[n].arg_value = | |
| 1086 RandomArgValue(RandomArg(args_mask), args_mask, remaining_args - 1); | |
| 1087 } | |
| 1088 } | |
| 1089 // Finally, we have to define what we should return if none of the | |
| 1090 // previous equality tests pass. Again, we can either deal with a leaf | |
| 1091 // node, or we can randomly add another couple of tests. | |
| 1092 if (!remaining_args || (rand() & 1)) { | |
| 1093 arg_value->err = (rand() % 1000) + 1; | |
| 1094 arg_value->arg_value = NULL; | |
| 1095 } else { | |
| 1096 arg_value->err = 0; | |
| 1097 arg_value->arg_value = | |
| 1098 RandomArgValue(RandomArg(args_mask), args_mask, remaining_args - 1); | |
| 1099 } | |
| 1100 // We have now built a new (sub-)tree of ArgValues defining a set of | |
| 1101 // boolean expressions for testing random system call arguments against | |
| 1102 // random values. Return this tree to our caller. | |
| 1103 return arg_value; | |
| 1104 } | |
| 1105 | |
| 1106 int RandomArg(int args_mask) { | |
| 1107 // Compute a random system call parameter number. | |
| 1108 int argno = rand() % kMaxArgs; | |
| 1109 | |
| 1110 // Make sure that this same parameter number has not previously been | |
| 1111 // used. Otherwise, we could end up with a test that is impossible to | |
| 1112 // satisfy (e.g. args[0] == 1 && args[0] == 2). | |
| 1113 while (args_mask & (1 << argno)) { | |
| 1114 argno = (argno + 1) % kMaxArgs; | |
| 1115 } | |
| 1116 return argno; | |
| 1117 } | |
| 1118 | |
| 1119 void DeleteArgValue(ArgValue* arg_value) { | |
| 1120 // Delete an ArgValue and all of its child nodes. This requires | |
| 1121 // recursively descending into the tree. | |
| 1122 if (arg_value) { | |
| 1123 if (arg_value->size) { | |
| 1124 for (int n = 0; n < arg_value->size; ++n) { | |
| 1125 if (!arg_value->tests[n].err) { | |
| 1126 DeleteArgValue(arg_value->tests[n].arg_value); | |
| 1127 } | |
| 1128 } | |
| 1129 delete[] arg_value->tests; | |
| 1130 } | |
| 1131 if (!arg_value->err) { | |
| 1132 DeleteArgValue(arg_value->arg_value); | |
| 1133 } | |
| 1134 delete arg_value; | |
| 1135 } | |
| 1136 } | |
| 1137 | |
| 1138 ResultExpr ToErrorCode(ArgValue* arg_value) { | |
| 1139 // Compute the ResultExpr that should be returned, if none of our | |
| 1140 // tests succeed (i.e. the system call parameter doesn't match any | |
| 1141 // of the values in arg_value->tests[].k_value). | |
| 1142 ResultExpr err; | |
| 1143 if (arg_value->err) { | |
| 1144 // If this was a leaf node, return the errno value that we expect to | |
| 1145 // return from the BPF filter program. | |
| 1146 err = Error(arg_value->err); | |
| 1147 } else { | |
| 1148 // If this wasn't a leaf node yet, recursively descend into the rest | |
| 1149 // of the tree. This will end up adding a few more SandboxBPF::Cond() | |
| 1150 // tests to our ErrorCode. | |
| 1151 err = ToErrorCode(arg_value->arg_value); | |
| 1152 } | |
| 1153 | |
| 1154 // Now, iterate over all the test cases that we want to compare against. | |
| 1155 // This builds a chain of SandboxBPF::Cond() tests | |
| 1156 // (aka "if ... elif ... elif ... elif ... fi") | |
| 1157 for (int n = arg_value->size; n-- > 0;) { | |
| 1158 ResultExpr matched; | |
| 1159 // Again, we distinguish between leaf nodes and subtrees. | |
| 1160 if (arg_value->tests[n].err) { | |
| 1161 matched = Error(arg_value->tests[n].err); | |
| 1162 } else { | |
| 1163 matched = ToErrorCode(arg_value->tests[n].arg_value); | |
| 1164 } | |
| 1165 // For now, all of our tests are limited to 32bit. | |
| 1166 // We have separate tests that check the behavior of 32bit vs. 64bit | |
| 1167 // conditional expressions. | |
| 1168 const Arg<uint32_t> arg(arg_value->argno); | |
| 1169 err = If(arg == arg_value->tests[n].k_value, matched).Else(err); | |
| 1170 } | |
| 1171 return err; | |
| 1172 } | |
| 1173 | |
| 1174 void Verify(int sysno, intptr_t* args, const ArgValue& arg_value) { | |
| 1175 uint32_t mismatched = 0; | |
| 1176 // Iterate over all the k_values in arg_value.tests[] and verify that | |
| 1177 // we see the expected return values from system calls, when we pass | |
| 1178 // the k_value as a parameter in a system call. | |
| 1179 for (int n = arg_value.size; n-- > 0;) { | |
| 1180 mismatched += arg_value.tests[n].k_value; | |
| 1181 args[arg_value.argno] = arg_value.tests[n].k_value; | |
| 1182 if (arg_value.tests[n].err) { | |
| 1183 VerifyErrno(sysno, args, arg_value.tests[n].err); | |
| 1184 } else { | |
| 1185 Verify(sysno, args, *arg_value.tests[n].arg_value); | |
| 1186 } | |
| 1187 } | |
| 1188 // Find a k_value that doesn't match any of the k_values in | |
| 1189 // arg_value.tests[]. In most cases, the current value of "mismatched" | |
| 1190 // would fit this requirement. But on the off-chance that it happens | |
| 1191 // to collide, we double-check. | |
| 1192 try_again: | |
| 1193 for (int n = arg_value.size; n-- > 0;) { | |
| 1194 if (mismatched == arg_value.tests[n].k_value) { | |
| 1195 ++mismatched; | |
| 1196 goto try_again; | |
| 1197 } | |
| 1198 } | |
| 1199 // Now verify that we see the expected return value from system calls, | |
| 1200 // if we pass a value that doesn't match any of the conditions (i.e. this | |
| 1201 // is testing the "else" clause of the conditions). | |
| 1202 args[arg_value.argno] = mismatched; | |
| 1203 if (arg_value.err) { | |
| 1204 VerifyErrno(sysno, args, arg_value.err); | |
| 1205 } else { | |
| 1206 Verify(sysno, args, *arg_value.arg_value); | |
| 1207 } | |
| 1208 // Reset args[arg_value.argno]. This is not technically needed, but it | |
| 1209 // makes it easier to reason about the correctness of our tests. | |
| 1210 args[arg_value.argno] = 0; | |
| 1211 } | |
| 1212 | |
| 1213 void VerifyErrno(int sysno, intptr_t* args, int err) { | |
| 1214 // We installed BPF filters that return different errno values | |
| 1215 // based on the system call number and the parameters that we decided | |
| 1216 // to pass in. Verify that this condition holds true. | |
| 1217 BPF_ASSERT( | |
| 1218 Syscall::Call( | |
| 1219 sysno, args[0], args[1], args[2], args[3], args[4], args[5]) == | |
| 1220 -err); | |
| 1221 } | |
| 1222 | |
| 1223 // Vector of ArgValue trees. These trees define all the possible boolean | |
| 1224 // expressions that we want to turn into a BPF filter program. | |
| 1225 std::vector<ArgValue*> arg_values_; | |
| 1226 | |
| 1227 // Don't increase these values. We are pushing the limits of the maximum | |
| 1228 // BPF program that the kernel will allow us to load. If the values are | |
| 1229 // increased too much, the test will start failing. | |
| 1230 #if defined(__aarch64__) | |
| 1231 static const int kNumTestCases = 30; | |
| 1232 #else | |
| 1233 static const int kNumTestCases = 40; | |
| 1234 #endif | |
| 1235 static const int kMaxFanOut = 3; | |
| 1236 static const int kMaxArgs = 6; | |
| 1237 }; | |
| 1238 | |
| 1239 class EqualityStressTestPolicy : public Policy { | |
| 1240 public: | |
| 1241 explicit EqualityStressTestPolicy(EqualityStressTest* aux) : aux_(aux) {} | |
| 1242 ~EqualityStressTestPolicy() override {} | |
| 1243 | |
| 1244 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 1245 return aux_->Policy(sysno); | |
| 1246 } | |
| 1247 | |
| 1248 private: | |
| 1249 EqualityStressTest* aux_; | |
| 1250 | |
| 1251 DISALLOW_COPY_AND_ASSIGN(EqualityStressTestPolicy); | |
| 1252 }; | |
| 1253 | |
| 1254 BPF_TEST(SandboxBPF, | |
| 1255 EqualityTests, | |
| 1256 EqualityStressTestPolicy, | |
| 1257 EqualityStressTest /* (*BPF_AUX) */) { | |
| 1258 BPF_AUX->VerifyFilter(); | |
| 1259 } | |
| 1260 | |
| 1261 class EqualityArgumentWidthPolicy : public Policy { | |
| 1262 public: | |
| 1263 EqualityArgumentWidthPolicy() {} | |
| 1264 ~EqualityArgumentWidthPolicy() override {} | |
| 1265 | |
| 1266 ResultExpr EvaluateSyscall(int sysno) const override; | |
| 1267 | |
| 1268 private: | |
| 1269 DISALLOW_COPY_AND_ASSIGN(EqualityArgumentWidthPolicy); | |
| 1270 }; | |
| 1271 | |
| 1272 ResultExpr EqualityArgumentWidthPolicy::EvaluateSyscall(int sysno) const { | |
| 1273 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 1274 if (sysno == __NR_uname) { | |
| 1275 const Arg<int> option(0); | |
| 1276 const Arg<uint32_t> arg32(1); | |
| 1277 const Arg<uint64_t> arg64(1); | |
| 1278 return Switch(option) | |
| 1279 .Case(0, If(arg32 == 0x55555555, Error(1)).Else(Error(2))) | |
| 1280 #if __SIZEOF_POINTER__ > 4 | |
| 1281 .Case(1, If(arg64 == 0x55555555AAAAAAAAULL, Error(1)).Else(Error(2))) | |
| 1282 #endif | |
| 1283 .Default(Error(3)); | |
| 1284 } | |
| 1285 return Allow(); | |
| 1286 } | |
| 1287 | |
| 1288 BPF_TEST_C(SandboxBPF, EqualityArgumentWidth, EqualityArgumentWidthPolicy) { | |
| 1289 BPF_ASSERT(Syscall::Call(__NR_uname, 0, 0x55555555) == -1); | |
| 1290 BPF_ASSERT(Syscall::Call(__NR_uname, 0, 0xAAAAAAAA) == -2); | |
| 1291 #if __SIZEOF_POINTER__ > 4 | |
| 1292 // On 32bit machines, there is no way to pass a 64bit argument through the | |
| 1293 // syscall interface. So, we have to skip the part of the test that requires | |
| 1294 // 64bit arguments. | |
| 1295 BPF_ASSERT(Syscall::Call(__NR_uname, 1, 0x55555555AAAAAAAAULL) == -1); | |
| 1296 BPF_ASSERT(Syscall::Call(__NR_uname, 1, 0x5555555500000000ULL) == -2); | |
| 1297 BPF_ASSERT(Syscall::Call(__NR_uname, 1, 0x5555555511111111ULL) == -2); | |
| 1298 BPF_ASSERT(Syscall::Call(__NR_uname, 1, 0x11111111AAAAAAAAULL) == -2); | |
| 1299 #endif | |
| 1300 } | |
| 1301 | |
| 1302 #if __SIZEOF_POINTER__ > 4 | |
| 1303 // On 32bit machines, there is no way to pass a 64bit argument through the | |
| 1304 // syscall interface. So, we have to skip the part of the test that requires | |
| 1305 // 64bit arguments. | |
| 1306 BPF_DEATH_TEST_C(SandboxBPF, | |
| 1307 EqualityArgumentUnallowed64bit, | |
| 1308 DEATH_MESSAGE("Unexpected 64bit argument detected"), | |
| 1309 EqualityArgumentWidthPolicy) { | |
| 1310 Syscall::Call(__NR_uname, 0, 0x5555555555555555ULL); | |
| 1311 } | |
| 1312 #endif | |
| 1313 | |
| 1314 class EqualityWithNegativeArgumentsPolicy : public Policy { | |
| 1315 public: | |
| 1316 EqualityWithNegativeArgumentsPolicy() {} | |
| 1317 ~EqualityWithNegativeArgumentsPolicy() override {} | |
| 1318 | |
| 1319 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 1320 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 1321 if (sysno == __NR_uname) { | |
| 1322 // TODO(mdempsky): This currently can't be Arg<int> because then | |
| 1323 // 0xFFFFFFFF will be treated as a (signed) int, and then when | |
| 1324 // Arg::EqualTo casts it to uint64_t, it will be sign extended. | |
| 1325 const Arg<unsigned> arg(0); | |
| 1326 return If(arg == 0xFFFFFFFF, Error(1)).Else(Error(2)); | |
| 1327 } | |
| 1328 return Allow(); | |
| 1329 } | |
| 1330 | |
| 1331 private: | |
| 1332 DISALLOW_COPY_AND_ASSIGN(EqualityWithNegativeArgumentsPolicy); | |
| 1333 }; | |
| 1334 | |
| 1335 BPF_TEST_C(SandboxBPF, | |
| 1336 EqualityWithNegativeArguments, | |
| 1337 EqualityWithNegativeArgumentsPolicy) { | |
| 1338 BPF_ASSERT(Syscall::Call(__NR_uname, 0xFFFFFFFF) == -1); | |
| 1339 BPF_ASSERT(Syscall::Call(__NR_uname, -1) == -1); | |
| 1340 BPF_ASSERT(Syscall::Call(__NR_uname, -1LL) == -1); | |
| 1341 } | |
| 1342 | |
| 1343 #if __SIZEOF_POINTER__ > 4 | |
| 1344 BPF_DEATH_TEST_C(SandboxBPF, | |
| 1345 EqualityWithNegative64bitArguments, | |
| 1346 DEATH_MESSAGE("Unexpected 64bit argument detected"), | |
| 1347 EqualityWithNegativeArgumentsPolicy) { | |
| 1348 // When expecting a 32bit system call argument, we look at the MSB of the | |
| 1349 // 64bit value and allow both "0" and "-1". But the latter is allowed only | |
| 1350 // iff the LSB was negative. So, this death test should error out. | |
| 1351 BPF_ASSERT(Syscall::Call(__NR_uname, 0xFFFFFFFF00000000LL) == -1); | |
| 1352 } | |
| 1353 #endif | |
| 1354 | |
| 1355 class AllBitTestPolicy : public Policy { | |
| 1356 public: | |
| 1357 AllBitTestPolicy() {} | |
| 1358 ~AllBitTestPolicy() override {} | |
| 1359 | |
| 1360 ResultExpr EvaluateSyscall(int sysno) const override; | |
| 1361 | |
| 1362 private: | |
| 1363 static ResultExpr HasAllBits32(uint32_t bits); | |
| 1364 static ResultExpr HasAllBits64(uint64_t bits); | |
| 1365 | |
| 1366 DISALLOW_COPY_AND_ASSIGN(AllBitTestPolicy); | |
| 1367 }; | |
| 1368 | |
| 1369 ResultExpr AllBitTestPolicy::HasAllBits32(uint32_t bits) { | |
| 1370 if (bits == 0) { | |
| 1371 return Error(1); | |
| 1372 } | |
| 1373 const Arg<uint32_t> arg(1); | |
| 1374 return If((arg & bits) == bits, Error(1)).Else(Error(0)); | |
| 1375 } | |
| 1376 | |
| 1377 ResultExpr AllBitTestPolicy::HasAllBits64(uint64_t bits) { | |
| 1378 if (bits == 0) { | |
| 1379 return Error(1); | |
| 1380 } | |
| 1381 const Arg<uint64_t> arg(1); | |
| 1382 return If((arg & bits) == bits, Error(1)).Else(Error(0)); | |
| 1383 } | |
| 1384 | |
| 1385 ResultExpr AllBitTestPolicy::EvaluateSyscall(int sysno) const { | |
| 1386 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 1387 // Test masked-equality cases that should trigger the "has all bits" | |
| 1388 // peephole optimizations. We try to find bitmasks that could conceivably | |
| 1389 // touch corner cases. | |
| 1390 // For all of these tests, we override the uname(). We can make use with | |
| 1391 // a single system call number, as we use the first system call argument to | |
| 1392 // select the different bit masks that we want to test against. | |
| 1393 if (sysno == __NR_uname) { | |
| 1394 const Arg<int> option(0); | |
| 1395 return Switch(option) | |
| 1396 .Case(0, HasAllBits32(0x0)) | |
| 1397 .Case(1, HasAllBits32(0x1)) | |
| 1398 .Case(2, HasAllBits32(0x3)) | |
| 1399 .Case(3, HasAllBits32(0x80000000)) | |
| 1400 #if __SIZEOF_POINTER__ > 4 | |
| 1401 .Case(4, HasAllBits64(0x0)) | |
| 1402 .Case(5, HasAllBits64(0x1)) | |
| 1403 .Case(6, HasAllBits64(0x3)) | |
| 1404 .Case(7, HasAllBits64(0x80000000)) | |
| 1405 .Case(8, HasAllBits64(0x100000000ULL)) | |
| 1406 .Case(9, HasAllBits64(0x300000000ULL)) | |
| 1407 .Case(10, HasAllBits64(0x100000001ULL)) | |
| 1408 #endif | |
| 1409 .Default(Kill("Invalid test case number")); | |
| 1410 } | |
| 1411 return Allow(); | |
| 1412 } | |
| 1413 | |
| 1414 // Define a macro that performs tests using our test policy. | |
| 1415 // NOTE: Not all of the arguments in this macro are actually used! | |
| 1416 // They are here just to serve as documentation of the conditions | |
| 1417 // implemented in the test policy. | |
| 1418 // Most notably, "op" and "mask" are unused by the macro. If you want | |
| 1419 // to make changes to these values, you will have to edit the | |
| 1420 // test policy instead. | |
| 1421 #define BITMASK_TEST(testcase, arg, op, mask, expected_value) \ | |
| 1422 BPF_ASSERT(Syscall::Call(__NR_uname, (testcase), (arg)) == (expected_value)) | |
| 1423 | |
| 1424 // Our uname() system call returns ErrorCode(1) for success and | |
| 1425 // ErrorCode(0) for failure. Syscall::Call() turns this into an | |
| 1426 // exit code of -1 or 0. | |
| 1427 #define EXPECT_FAILURE 0 | |
| 1428 #define EXPECT_SUCCESS -1 | |
| 1429 | |
| 1430 // A couple of our tests behave differently on 32bit and 64bit systems, as | |
| 1431 // there is no way for a 32bit system call to pass in a 64bit system call | |
| 1432 // argument "arg". | |
| 1433 // We expect these tests to succeed on 64bit systems, but to tail on 32bit | |
| 1434 // systems. | |
| 1435 #define EXPT64_SUCCESS (sizeof(void*) > 4 ? EXPECT_SUCCESS : EXPECT_FAILURE) | |
| 1436 BPF_TEST_C(SandboxBPF, AllBitTests, AllBitTestPolicy) { | |
| 1437 // 32bit test: all of 0x0 (should always be true) | |
| 1438 BITMASK_TEST( 0, 0, ALLBITS32, 0, EXPECT_SUCCESS); | |
| 1439 BITMASK_TEST( 0, 1, ALLBITS32, 0, EXPECT_SUCCESS); | |
| 1440 BITMASK_TEST( 0, 3, ALLBITS32, 0, EXPECT_SUCCESS); | |
| 1441 BITMASK_TEST( 0, 0xFFFFFFFFU, ALLBITS32, 0, EXPECT_SUCCESS); | |
| 1442 BITMASK_TEST( 0, -1LL, ALLBITS32, 0, EXPECT_SUCCESS); | |
| 1443 | |
| 1444 // 32bit test: all of 0x1 | |
| 1445 BITMASK_TEST( 1, 0, ALLBITS32, 0x1, EXPECT_FAILURE); | |
| 1446 BITMASK_TEST( 1, 1, ALLBITS32, 0x1, EXPECT_SUCCESS); | |
| 1447 BITMASK_TEST( 1, 2, ALLBITS32, 0x1, EXPECT_FAILURE); | |
| 1448 BITMASK_TEST( 1, 3, ALLBITS32, 0x1, EXPECT_SUCCESS); | |
| 1449 | |
| 1450 // 32bit test: all of 0x3 | |
| 1451 BITMASK_TEST( 2, 0, ALLBITS32, 0x3, EXPECT_FAILURE); | |
| 1452 BITMASK_TEST( 2, 1, ALLBITS32, 0x3, EXPECT_FAILURE); | |
| 1453 BITMASK_TEST( 2, 2, ALLBITS32, 0x3, EXPECT_FAILURE); | |
| 1454 BITMASK_TEST( 2, 3, ALLBITS32, 0x3, EXPECT_SUCCESS); | |
| 1455 BITMASK_TEST( 2, 7, ALLBITS32, 0x3, EXPECT_SUCCESS); | |
| 1456 | |
| 1457 // 32bit test: all of 0x80000000 | |
| 1458 BITMASK_TEST( 3, 0, ALLBITS32, 0x80000000, EXPECT_FAILURE); | |
| 1459 BITMASK_TEST( 3, 0x40000000U, ALLBITS32, 0x80000000, EXPECT_FAILURE); | |
| 1460 BITMASK_TEST( 3, 0x80000000U, ALLBITS32, 0x80000000, EXPECT_SUCCESS); | |
| 1461 BITMASK_TEST( 3, 0xC0000000U, ALLBITS32, 0x80000000, EXPECT_SUCCESS); | |
| 1462 BITMASK_TEST( 3, -0x80000000LL, ALLBITS32, 0x80000000, EXPECT_SUCCESS); | |
| 1463 | |
| 1464 #if __SIZEOF_POINTER__ > 4 | |
| 1465 // 64bit test: all of 0x0 (should always be true) | |
| 1466 BITMASK_TEST( 4, 0, ALLBITS64, 0, EXPECT_SUCCESS); | |
| 1467 BITMASK_TEST( 4, 1, ALLBITS64, 0, EXPECT_SUCCESS); | |
| 1468 BITMASK_TEST( 4, 3, ALLBITS64, 0, EXPECT_SUCCESS); | |
| 1469 BITMASK_TEST( 4, 0xFFFFFFFFU, ALLBITS64, 0, EXPECT_SUCCESS); | |
| 1470 BITMASK_TEST( 4, 0x100000000LL, ALLBITS64, 0, EXPECT_SUCCESS); | |
| 1471 BITMASK_TEST( 4, 0x300000000LL, ALLBITS64, 0, EXPECT_SUCCESS); | |
| 1472 BITMASK_TEST( 4,0x8000000000000000LL, ALLBITS64, 0, EXPECT_SUCCESS); | |
| 1473 BITMASK_TEST( 4, -1LL, ALLBITS64, 0, EXPECT_SUCCESS); | |
| 1474 | |
| 1475 // 64bit test: all of 0x1 | |
| 1476 BITMASK_TEST( 5, 0, ALLBITS64, 1, EXPECT_FAILURE); | |
| 1477 BITMASK_TEST( 5, 1, ALLBITS64, 1, EXPECT_SUCCESS); | |
| 1478 BITMASK_TEST( 5, 2, ALLBITS64, 1, EXPECT_FAILURE); | |
| 1479 BITMASK_TEST( 5, 3, ALLBITS64, 1, EXPECT_SUCCESS); | |
| 1480 BITMASK_TEST( 5, 0x100000000LL, ALLBITS64, 1, EXPECT_FAILURE); | |
| 1481 BITMASK_TEST( 5, 0x100000001LL, ALLBITS64, 1, EXPECT_SUCCESS); | |
| 1482 BITMASK_TEST( 5, 0x100000002LL, ALLBITS64, 1, EXPECT_FAILURE); | |
| 1483 BITMASK_TEST( 5, 0x100000003LL, ALLBITS64, 1, EXPECT_SUCCESS); | |
| 1484 | |
| 1485 // 64bit test: all of 0x3 | |
| 1486 BITMASK_TEST( 6, 0, ALLBITS64, 3, EXPECT_FAILURE); | |
| 1487 BITMASK_TEST( 6, 1, ALLBITS64, 3, EXPECT_FAILURE); | |
| 1488 BITMASK_TEST( 6, 2, ALLBITS64, 3, EXPECT_FAILURE); | |
| 1489 BITMASK_TEST( 6, 3, ALLBITS64, 3, EXPECT_SUCCESS); | |
| 1490 BITMASK_TEST( 6, 7, ALLBITS64, 3, EXPECT_SUCCESS); | |
| 1491 BITMASK_TEST( 6, 0x100000000LL, ALLBITS64, 3, EXPECT_FAILURE); | |
| 1492 BITMASK_TEST( 6, 0x100000001LL, ALLBITS64, 3, EXPECT_FAILURE); | |
| 1493 BITMASK_TEST( 6, 0x100000002LL, ALLBITS64, 3, EXPECT_FAILURE); | |
| 1494 BITMASK_TEST( 6, 0x100000003LL, ALLBITS64, 3, EXPECT_SUCCESS); | |
| 1495 BITMASK_TEST( 6, 0x100000007LL, ALLBITS64, 3, EXPECT_SUCCESS); | |
| 1496 | |
| 1497 // 64bit test: all of 0x80000000 | |
| 1498 BITMASK_TEST( 7, 0, ALLBITS64, 0x80000000, EXPECT_FAILURE); | |
| 1499 BITMASK_TEST( 7, 0x40000000U, ALLBITS64, 0x80000000, EXPECT_FAILURE); | |
| 1500 BITMASK_TEST( 7, 0x80000000U, ALLBITS64, 0x80000000, EXPECT_SUCCESS); | |
| 1501 BITMASK_TEST( 7, 0xC0000000U, ALLBITS64, 0x80000000, EXPECT_SUCCESS); | |
| 1502 BITMASK_TEST( 7, -0x80000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS); | |
| 1503 BITMASK_TEST( 7, 0x100000000LL, ALLBITS64, 0x80000000, EXPECT_FAILURE); | |
| 1504 BITMASK_TEST( 7, 0x140000000LL, ALLBITS64, 0x80000000, EXPECT_FAILURE); | |
| 1505 BITMASK_TEST( 7, 0x180000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS); | |
| 1506 BITMASK_TEST( 7, 0x1C0000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS); | |
| 1507 BITMASK_TEST( 7, -0x180000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS); | |
| 1508 | |
| 1509 // 64bit test: all of 0x100000000 | |
| 1510 BITMASK_TEST( 8, 0x000000000LL, ALLBITS64,0x100000000, EXPECT_FAILURE); | |
| 1511 BITMASK_TEST( 8, 0x100000000LL, ALLBITS64,0x100000000, EXPT64_SUCCESS); | |
| 1512 BITMASK_TEST( 8, 0x200000000LL, ALLBITS64,0x100000000, EXPECT_FAILURE); | |
| 1513 BITMASK_TEST( 8, 0x300000000LL, ALLBITS64,0x100000000, EXPT64_SUCCESS); | |
| 1514 BITMASK_TEST( 8, 0x000000001LL, ALLBITS64,0x100000000, EXPECT_FAILURE); | |
| 1515 BITMASK_TEST( 8, 0x100000001LL, ALLBITS64,0x100000000, EXPT64_SUCCESS); | |
| 1516 BITMASK_TEST( 8, 0x200000001LL, ALLBITS64,0x100000000, EXPECT_FAILURE); | |
| 1517 BITMASK_TEST( 8, 0x300000001LL, ALLBITS64,0x100000000, EXPT64_SUCCESS); | |
| 1518 | |
| 1519 // 64bit test: all of 0x300000000 | |
| 1520 BITMASK_TEST( 9, 0x000000000LL, ALLBITS64,0x300000000, EXPECT_FAILURE); | |
| 1521 BITMASK_TEST( 9, 0x100000000LL, ALLBITS64,0x300000000, EXPECT_FAILURE); | |
| 1522 BITMASK_TEST( 9, 0x200000000LL, ALLBITS64,0x300000000, EXPECT_FAILURE); | |
| 1523 BITMASK_TEST( 9, 0x300000000LL, ALLBITS64,0x300000000, EXPT64_SUCCESS); | |
| 1524 BITMASK_TEST( 9, 0x700000000LL, ALLBITS64,0x300000000, EXPT64_SUCCESS); | |
| 1525 BITMASK_TEST( 9, 0x000000001LL, ALLBITS64,0x300000000, EXPECT_FAILURE); | |
| 1526 BITMASK_TEST( 9, 0x100000001LL, ALLBITS64,0x300000000, EXPECT_FAILURE); | |
| 1527 BITMASK_TEST( 9, 0x200000001LL, ALLBITS64,0x300000000, EXPECT_FAILURE); | |
| 1528 BITMASK_TEST( 9, 0x300000001LL, ALLBITS64,0x300000000, EXPT64_SUCCESS); | |
| 1529 BITMASK_TEST( 9, 0x700000001LL, ALLBITS64,0x300000000, EXPT64_SUCCESS); | |
| 1530 | |
| 1531 // 64bit test: all of 0x100000001 | |
| 1532 BITMASK_TEST(10, 0x000000000LL, ALLBITS64,0x100000001, EXPECT_FAILURE); | |
| 1533 BITMASK_TEST(10, 0x000000001LL, ALLBITS64,0x100000001, EXPECT_FAILURE); | |
| 1534 BITMASK_TEST(10, 0x100000000LL, ALLBITS64,0x100000001, EXPECT_FAILURE); | |
| 1535 BITMASK_TEST(10, 0x100000001LL, ALLBITS64,0x100000001, EXPT64_SUCCESS); | |
| 1536 BITMASK_TEST(10, 0xFFFFFFFFU, ALLBITS64,0x100000001, EXPECT_FAILURE); | |
| 1537 BITMASK_TEST(10, -1L, ALLBITS64,0x100000001, EXPT64_SUCCESS); | |
| 1538 #endif | |
| 1539 } | |
| 1540 | |
| 1541 class AnyBitTestPolicy : public Policy { | |
| 1542 public: | |
| 1543 AnyBitTestPolicy() {} | |
| 1544 ~AnyBitTestPolicy() override {} | |
| 1545 | |
| 1546 ResultExpr EvaluateSyscall(int sysno) const override; | |
| 1547 | |
| 1548 private: | |
| 1549 static ResultExpr HasAnyBits32(uint32_t); | |
| 1550 static ResultExpr HasAnyBits64(uint64_t); | |
| 1551 | |
| 1552 DISALLOW_COPY_AND_ASSIGN(AnyBitTestPolicy); | |
| 1553 }; | |
| 1554 | |
| 1555 ResultExpr AnyBitTestPolicy::HasAnyBits32(uint32_t bits) { | |
| 1556 if (bits == 0) { | |
| 1557 return Error(0); | |
| 1558 } | |
| 1559 const Arg<uint32_t> arg(1); | |
| 1560 return If((arg & bits) != 0, Error(1)).Else(Error(0)); | |
| 1561 } | |
| 1562 | |
| 1563 ResultExpr AnyBitTestPolicy::HasAnyBits64(uint64_t bits) { | |
| 1564 if (bits == 0) { | |
| 1565 return Error(0); | |
| 1566 } | |
| 1567 const Arg<uint64_t> arg(1); | |
| 1568 return If((arg & bits) != 0, Error(1)).Else(Error(0)); | |
| 1569 } | |
| 1570 | |
| 1571 ResultExpr AnyBitTestPolicy::EvaluateSyscall(int sysno) const { | |
| 1572 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 1573 // Test masked-equality cases that should trigger the "has any bits" | |
| 1574 // peephole optimizations. We try to find bitmasks that could conceivably | |
| 1575 // touch corner cases. | |
| 1576 // For all of these tests, we override the uname(). We can make use with | |
| 1577 // a single system call number, as we use the first system call argument to | |
| 1578 // select the different bit masks that we want to test against. | |
| 1579 if (sysno == __NR_uname) { | |
| 1580 const Arg<int> option(0); | |
| 1581 return Switch(option) | |
| 1582 .Case(0, HasAnyBits32(0x0)) | |
| 1583 .Case(1, HasAnyBits32(0x1)) | |
| 1584 .Case(2, HasAnyBits32(0x3)) | |
| 1585 .Case(3, HasAnyBits32(0x80000000)) | |
| 1586 #if __SIZEOF_POINTER__ > 4 | |
| 1587 .Case(4, HasAnyBits64(0x0)) | |
| 1588 .Case(5, HasAnyBits64(0x1)) | |
| 1589 .Case(6, HasAnyBits64(0x3)) | |
| 1590 .Case(7, HasAnyBits64(0x80000000)) | |
| 1591 .Case(8, HasAnyBits64(0x100000000ULL)) | |
| 1592 .Case(9, HasAnyBits64(0x300000000ULL)) | |
| 1593 .Case(10, HasAnyBits64(0x100000001ULL)) | |
| 1594 #endif | |
| 1595 .Default(Kill("Invalid test case number")); | |
| 1596 } | |
| 1597 return Allow(); | |
| 1598 } | |
| 1599 | |
| 1600 BPF_TEST_C(SandboxBPF, AnyBitTests, AnyBitTestPolicy) { | |
| 1601 // 32bit test: any of 0x0 (should always be false) | |
| 1602 BITMASK_TEST( 0, 0, ANYBITS32, 0x0, EXPECT_FAILURE); | |
| 1603 BITMASK_TEST( 0, 1, ANYBITS32, 0x0, EXPECT_FAILURE); | |
| 1604 BITMASK_TEST( 0, 3, ANYBITS32, 0x0, EXPECT_FAILURE); | |
| 1605 BITMASK_TEST( 0, 0xFFFFFFFFU, ANYBITS32, 0x0, EXPECT_FAILURE); | |
| 1606 BITMASK_TEST( 0, -1LL, ANYBITS32, 0x0, EXPECT_FAILURE); | |
| 1607 | |
| 1608 // 32bit test: any of 0x1 | |
| 1609 BITMASK_TEST( 1, 0, ANYBITS32, 0x1, EXPECT_FAILURE); | |
| 1610 BITMASK_TEST( 1, 1, ANYBITS32, 0x1, EXPECT_SUCCESS); | |
| 1611 BITMASK_TEST( 1, 2, ANYBITS32, 0x1, EXPECT_FAILURE); | |
| 1612 BITMASK_TEST( 1, 3, ANYBITS32, 0x1, EXPECT_SUCCESS); | |
| 1613 | |
| 1614 // 32bit test: any of 0x3 | |
| 1615 BITMASK_TEST( 2, 0, ANYBITS32, 0x3, EXPECT_FAILURE); | |
| 1616 BITMASK_TEST( 2, 1, ANYBITS32, 0x3, EXPECT_SUCCESS); | |
| 1617 BITMASK_TEST( 2, 2, ANYBITS32, 0x3, EXPECT_SUCCESS); | |
| 1618 BITMASK_TEST( 2, 3, ANYBITS32, 0x3, EXPECT_SUCCESS); | |
| 1619 BITMASK_TEST( 2, 7, ANYBITS32, 0x3, EXPECT_SUCCESS); | |
| 1620 | |
| 1621 // 32bit test: any of 0x80000000 | |
| 1622 BITMASK_TEST( 3, 0, ANYBITS32, 0x80000000, EXPECT_FAILURE); | |
| 1623 BITMASK_TEST( 3, 0x40000000U, ANYBITS32, 0x80000000, EXPECT_FAILURE); | |
| 1624 BITMASK_TEST( 3, 0x80000000U, ANYBITS32, 0x80000000, EXPECT_SUCCESS); | |
| 1625 BITMASK_TEST( 3, 0xC0000000U, ANYBITS32, 0x80000000, EXPECT_SUCCESS); | |
| 1626 BITMASK_TEST( 3, -0x80000000LL, ANYBITS32, 0x80000000, EXPECT_SUCCESS); | |
| 1627 | |
| 1628 #if __SIZEOF_POINTER__ > 4 | |
| 1629 // 64bit test: any of 0x0 (should always be false) | |
| 1630 BITMASK_TEST( 4, 0, ANYBITS64, 0x0, EXPECT_FAILURE); | |
| 1631 BITMASK_TEST( 4, 1, ANYBITS64, 0x0, EXPECT_FAILURE); | |
| 1632 BITMASK_TEST( 4, 3, ANYBITS64, 0x0, EXPECT_FAILURE); | |
| 1633 BITMASK_TEST( 4, 0xFFFFFFFFU, ANYBITS64, 0x0, EXPECT_FAILURE); | |
| 1634 BITMASK_TEST( 4, 0x100000000LL, ANYBITS64, 0x0, EXPECT_FAILURE); | |
| 1635 BITMASK_TEST( 4, 0x300000000LL, ANYBITS64, 0x0, EXPECT_FAILURE); | |
| 1636 BITMASK_TEST( 4,0x8000000000000000LL, ANYBITS64, 0x0, EXPECT_FAILURE); | |
| 1637 BITMASK_TEST( 4, -1LL, ANYBITS64, 0x0, EXPECT_FAILURE); | |
| 1638 | |
| 1639 // 64bit test: any of 0x1 | |
| 1640 BITMASK_TEST( 5, 0, ANYBITS64, 0x1, EXPECT_FAILURE); | |
| 1641 BITMASK_TEST( 5, 1, ANYBITS64, 0x1, EXPECT_SUCCESS); | |
| 1642 BITMASK_TEST( 5, 2, ANYBITS64, 0x1, EXPECT_FAILURE); | |
| 1643 BITMASK_TEST( 5, 3, ANYBITS64, 0x1, EXPECT_SUCCESS); | |
| 1644 BITMASK_TEST( 5, 0x100000001LL, ANYBITS64, 0x1, EXPECT_SUCCESS); | |
| 1645 BITMASK_TEST( 5, 0x100000000LL, ANYBITS64, 0x1, EXPECT_FAILURE); | |
| 1646 BITMASK_TEST( 5, 0x100000002LL, ANYBITS64, 0x1, EXPECT_FAILURE); | |
| 1647 BITMASK_TEST( 5, 0x100000003LL, ANYBITS64, 0x1, EXPECT_SUCCESS); | |
| 1648 | |
| 1649 // 64bit test: any of 0x3 | |
| 1650 BITMASK_TEST( 6, 0, ANYBITS64, 0x3, EXPECT_FAILURE); | |
| 1651 BITMASK_TEST( 6, 1, ANYBITS64, 0x3, EXPECT_SUCCESS); | |
| 1652 BITMASK_TEST( 6, 2, ANYBITS64, 0x3, EXPECT_SUCCESS); | |
| 1653 BITMASK_TEST( 6, 3, ANYBITS64, 0x3, EXPECT_SUCCESS); | |
| 1654 BITMASK_TEST( 6, 7, ANYBITS64, 0x3, EXPECT_SUCCESS); | |
| 1655 BITMASK_TEST( 6, 0x100000000LL, ANYBITS64, 0x3, EXPECT_FAILURE); | |
| 1656 BITMASK_TEST( 6, 0x100000001LL, ANYBITS64, 0x3, EXPECT_SUCCESS); | |
| 1657 BITMASK_TEST( 6, 0x100000002LL, ANYBITS64, 0x3, EXPECT_SUCCESS); | |
| 1658 BITMASK_TEST( 6, 0x100000003LL, ANYBITS64, 0x3, EXPECT_SUCCESS); | |
| 1659 BITMASK_TEST( 6, 0x100000007LL, ANYBITS64, 0x3, EXPECT_SUCCESS); | |
| 1660 | |
| 1661 // 64bit test: any of 0x80000000 | |
| 1662 BITMASK_TEST( 7, 0, ANYBITS64, 0x80000000, EXPECT_FAILURE); | |
| 1663 BITMASK_TEST( 7, 0x40000000U, ANYBITS64, 0x80000000, EXPECT_FAILURE); | |
| 1664 BITMASK_TEST( 7, 0x80000000U, ANYBITS64, 0x80000000, EXPECT_SUCCESS); | |
| 1665 BITMASK_TEST( 7, 0xC0000000U, ANYBITS64, 0x80000000, EXPECT_SUCCESS); | |
| 1666 BITMASK_TEST( 7, -0x80000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS); | |
| 1667 BITMASK_TEST( 7, 0x100000000LL, ANYBITS64, 0x80000000, EXPECT_FAILURE); | |
| 1668 BITMASK_TEST( 7, 0x140000000LL, ANYBITS64, 0x80000000, EXPECT_FAILURE); | |
| 1669 BITMASK_TEST( 7, 0x180000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS); | |
| 1670 BITMASK_TEST( 7, 0x1C0000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS); | |
| 1671 BITMASK_TEST( 7, -0x180000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS); | |
| 1672 | |
| 1673 // 64bit test: any of 0x100000000 | |
| 1674 BITMASK_TEST( 8, 0x000000000LL, ANYBITS64,0x100000000, EXPECT_FAILURE); | |
| 1675 BITMASK_TEST( 8, 0x100000000LL, ANYBITS64,0x100000000, EXPT64_SUCCESS); | |
| 1676 BITMASK_TEST( 8, 0x200000000LL, ANYBITS64,0x100000000, EXPECT_FAILURE); | |
| 1677 BITMASK_TEST( 8, 0x300000000LL, ANYBITS64,0x100000000, EXPT64_SUCCESS); | |
| 1678 BITMASK_TEST( 8, 0x000000001LL, ANYBITS64,0x100000000, EXPECT_FAILURE); | |
| 1679 BITMASK_TEST( 8, 0x100000001LL, ANYBITS64,0x100000000, EXPT64_SUCCESS); | |
| 1680 BITMASK_TEST( 8, 0x200000001LL, ANYBITS64,0x100000000, EXPECT_FAILURE); | |
| 1681 BITMASK_TEST( 8, 0x300000001LL, ANYBITS64,0x100000000, EXPT64_SUCCESS); | |
| 1682 | |
| 1683 // 64bit test: any of 0x300000000 | |
| 1684 BITMASK_TEST( 9, 0x000000000LL, ANYBITS64,0x300000000, EXPECT_FAILURE); | |
| 1685 BITMASK_TEST( 9, 0x100000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); | |
| 1686 BITMASK_TEST( 9, 0x200000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); | |
| 1687 BITMASK_TEST( 9, 0x300000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); | |
| 1688 BITMASK_TEST( 9, 0x700000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); | |
| 1689 BITMASK_TEST( 9, 0x000000001LL, ANYBITS64,0x300000000, EXPECT_FAILURE); | |
| 1690 BITMASK_TEST( 9, 0x100000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); | |
| 1691 BITMASK_TEST( 9, 0x200000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); | |
| 1692 BITMASK_TEST( 9, 0x300000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); | |
| 1693 BITMASK_TEST( 9, 0x700000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); | |
| 1694 | |
| 1695 // 64bit test: any of 0x100000001 | |
| 1696 BITMASK_TEST( 10, 0x000000000LL, ANYBITS64,0x100000001, EXPECT_FAILURE); | |
| 1697 BITMASK_TEST( 10, 0x000000001LL, ANYBITS64,0x100000001, EXPECT_SUCCESS); | |
| 1698 BITMASK_TEST( 10, 0x100000000LL, ANYBITS64,0x100000001, EXPT64_SUCCESS); | |
| 1699 BITMASK_TEST( 10, 0x100000001LL, ANYBITS64,0x100000001, EXPECT_SUCCESS); | |
| 1700 BITMASK_TEST( 10, 0xFFFFFFFFU, ANYBITS64,0x100000001, EXPECT_SUCCESS); | |
| 1701 BITMASK_TEST( 10, -1L, ANYBITS64,0x100000001, EXPECT_SUCCESS); | |
| 1702 #endif | |
| 1703 } | |
| 1704 | |
| 1705 class MaskedEqualTestPolicy : public Policy { | |
| 1706 public: | |
| 1707 MaskedEqualTestPolicy() {} | |
| 1708 ~MaskedEqualTestPolicy() override {} | |
| 1709 | |
| 1710 ResultExpr EvaluateSyscall(int sysno) const override; | |
| 1711 | |
| 1712 private: | |
| 1713 static ResultExpr MaskedEqual32(uint32_t mask, uint32_t value); | |
| 1714 static ResultExpr MaskedEqual64(uint64_t mask, uint64_t value); | |
| 1715 | |
| 1716 DISALLOW_COPY_AND_ASSIGN(MaskedEqualTestPolicy); | |
| 1717 }; | |
| 1718 | |
| 1719 ResultExpr MaskedEqualTestPolicy::MaskedEqual32(uint32_t mask, uint32_t value) { | |
| 1720 const Arg<uint32_t> arg(1); | |
| 1721 return If((arg & mask) == value, Error(1)).Else(Error(0)); | |
| 1722 } | |
| 1723 | |
| 1724 ResultExpr MaskedEqualTestPolicy::MaskedEqual64(uint64_t mask, uint64_t value) { | |
| 1725 const Arg<uint64_t> arg(1); | |
| 1726 return If((arg & mask) == value, Error(1)).Else(Error(0)); | |
| 1727 } | |
| 1728 | |
| 1729 ResultExpr MaskedEqualTestPolicy::EvaluateSyscall(int sysno) const { | |
| 1730 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 1731 | |
| 1732 if (sysno == __NR_uname) { | |
| 1733 const Arg<int> option(0); | |
| 1734 return Switch(option) | |
| 1735 .Case(0, MaskedEqual32(0x00ff00ff, 0x005500aa)) | |
| 1736 #if __SIZEOF_POINTER__ > 4 | |
| 1737 .Case(1, MaskedEqual64(0x00ff00ff00000000, 0x005500aa00000000)) | |
| 1738 .Case(2, MaskedEqual64(0x00ff00ff00ff00ff, 0x005500aa005500aa)) | |
| 1739 #endif | |
| 1740 .Default(Kill("Invalid test case number")); | |
| 1741 } | |
| 1742 | |
| 1743 return Allow(); | |
| 1744 } | |
| 1745 | |
| 1746 #define MASKEQ_TEST(rulenum, arg, expected_result) \ | |
| 1747 BPF_ASSERT(Syscall::Call(__NR_uname, (rulenum), (arg)) == (expected_result)) | |
| 1748 | |
| 1749 BPF_TEST_C(SandboxBPF, MaskedEqualTests, MaskedEqualTestPolicy) { | |
| 1750 // Allowed: 0x__55__aa | |
| 1751 MASKEQ_TEST(0, 0x00000000, EXPECT_FAILURE); | |
| 1752 MASKEQ_TEST(0, 0x00000001, EXPECT_FAILURE); | |
| 1753 MASKEQ_TEST(0, 0x00000003, EXPECT_FAILURE); | |
| 1754 MASKEQ_TEST(0, 0x00000100, EXPECT_FAILURE); | |
| 1755 MASKEQ_TEST(0, 0x00000300, EXPECT_FAILURE); | |
| 1756 MASKEQ_TEST(0, 0x005500aa, EXPECT_SUCCESS); | |
| 1757 MASKEQ_TEST(0, 0x005500ab, EXPECT_FAILURE); | |
| 1758 MASKEQ_TEST(0, 0x005600aa, EXPECT_FAILURE); | |
| 1759 MASKEQ_TEST(0, 0x005501aa, EXPECT_SUCCESS); | |
| 1760 MASKEQ_TEST(0, 0x005503aa, EXPECT_SUCCESS); | |
| 1761 MASKEQ_TEST(0, 0x555500aa, EXPECT_SUCCESS); | |
| 1762 MASKEQ_TEST(0, 0xaa5500aa, EXPECT_SUCCESS); | |
| 1763 | |
| 1764 #if __SIZEOF_POINTER__ > 4 | |
| 1765 // Allowed: 0x__55__aa________ | |
| 1766 MASKEQ_TEST(1, 0x0000000000000000, EXPECT_FAILURE); | |
| 1767 MASKEQ_TEST(1, 0x0000000000000010, EXPECT_FAILURE); | |
| 1768 MASKEQ_TEST(1, 0x0000000000000050, EXPECT_FAILURE); | |
| 1769 MASKEQ_TEST(1, 0x0000000100000000, EXPECT_FAILURE); | |
| 1770 MASKEQ_TEST(1, 0x0000000300000000, EXPECT_FAILURE); | |
| 1771 MASKEQ_TEST(1, 0x0000010000000000, EXPECT_FAILURE); | |
| 1772 MASKEQ_TEST(1, 0x0000030000000000, EXPECT_FAILURE); | |
| 1773 MASKEQ_TEST(1, 0x005500aa00000000, EXPECT_SUCCESS); | |
| 1774 MASKEQ_TEST(1, 0x005500ab00000000, EXPECT_FAILURE); | |
| 1775 MASKEQ_TEST(1, 0x005600aa00000000, EXPECT_FAILURE); | |
| 1776 MASKEQ_TEST(1, 0x005501aa00000000, EXPECT_SUCCESS); | |
| 1777 MASKEQ_TEST(1, 0x005503aa00000000, EXPECT_SUCCESS); | |
| 1778 MASKEQ_TEST(1, 0x555500aa00000000, EXPECT_SUCCESS); | |
| 1779 MASKEQ_TEST(1, 0xaa5500aa00000000, EXPECT_SUCCESS); | |
| 1780 MASKEQ_TEST(1, 0xaa5500aa00000000, EXPECT_SUCCESS); | |
| 1781 MASKEQ_TEST(1, 0xaa5500aa0000cafe, EXPECT_SUCCESS); | |
| 1782 | |
| 1783 // Allowed: 0x__55__aa__55__aa | |
| 1784 MASKEQ_TEST(2, 0x0000000000000000, EXPECT_FAILURE); | |
| 1785 MASKEQ_TEST(2, 0x0000000000000010, EXPECT_FAILURE); | |
| 1786 MASKEQ_TEST(2, 0x0000000000000050, EXPECT_FAILURE); | |
| 1787 MASKEQ_TEST(2, 0x0000000100000000, EXPECT_FAILURE); | |
| 1788 MASKEQ_TEST(2, 0x0000000300000000, EXPECT_FAILURE); | |
| 1789 MASKEQ_TEST(2, 0x0000010000000000, EXPECT_FAILURE); | |
| 1790 MASKEQ_TEST(2, 0x0000030000000000, EXPECT_FAILURE); | |
| 1791 MASKEQ_TEST(2, 0x00000000005500aa, EXPECT_FAILURE); | |
| 1792 MASKEQ_TEST(2, 0x005500aa00000000, EXPECT_FAILURE); | |
| 1793 MASKEQ_TEST(2, 0x005500aa005500aa, EXPECT_SUCCESS); | |
| 1794 MASKEQ_TEST(2, 0x005500aa005700aa, EXPECT_FAILURE); | |
| 1795 MASKEQ_TEST(2, 0x005700aa005500aa, EXPECT_FAILURE); | |
| 1796 MASKEQ_TEST(2, 0x005500aa004500aa, EXPECT_FAILURE); | |
| 1797 MASKEQ_TEST(2, 0x004500aa005500aa, EXPECT_FAILURE); | |
| 1798 MASKEQ_TEST(2, 0x005512aa005500aa, EXPECT_SUCCESS); | |
| 1799 MASKEQ_TEST(2, 0x005500aa005534aa, EXPECT_SUCCESS); | |
| 1800 MASKEQ_TEST(2, 0xff5500aa0055ffaa, EXPECT_SUCCESS); | |
| 1801 #endif | |
| 1802 } | |
| 1803 | |
| 1804 intptr_t PthreadTrapHandler(const struct arch_seccomp_data& args, void* aux) { | |
| 1805 if (args.args[0] != (CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | SIGCHLD)) { | |
| 1806 // We expect to get called for an attempt to fork(). No need to log that | |
| 1807 // call. But if we ever get called for anything else, we want to verbosely | |
| 1808 // print as much information as possible. | |
| 1809 const char* msg = (const char*)aux; | |
| 1810 printf( | |
| 1811 "Clone() was called with unexpected arguments\n" | |
| 1812 " nr: %d\n" | |
| 1813 " 1: 0x%llX\n" | |
| 1814 " 2: 0x%llX\n" | |
| 1815 " 3: 0x%llX\n" | |
| 1816 " 4: 0x%llX\n" | |
| 1817 " 5: 0x%llX\n" | |
| 1818 " 6: 0x%llX\n" | |
| 1819 "%s\n", | |
| 1820 args.nr, | |
| 1821 (long long)args.args[0], | |
| 1822 (long long)args.args[1], | |
| 1823 (long long)args.args[2], | |
| 1824 (long long)args.args[3], | |
| 1825 (long long)args.args[4], | |
| 1826 (long long)args.args[5], | |
| 1827 msg); | |
| 1828 } | |
| 1829 return -EPERM; | |
| 1830 } | |
| 1831 | |
| 1832 class PthreadPolicyEquality : public Policy { | |
| 1833 public: | |
| 1834 PthreadPolicyEquality() {} | |
| 1835 ~PthreadPolicyEquality() override {} | |
| 1836 | |
| 1837 ResultExpr EvaluateSyscall(int sysno) const override; | |
| 1838 | |
| 1839 private: | |
| 1840 DISALLOW_COPY_AND_ASSIGN(PthreadPolicyEquality); | |
| 1841 }; | |
| 1842 | |
| 1843 ResultExpr PthreadPolicyEquality::EvaluateSyscall(int sysno) const { | |
| 1844 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 1845 // This policy allows creating threads with pthread_create(). But it | |
| 1846 // doesn't allow any other uses of clone(). Most notably, it does not | |
| 1847 // allow callers to implement fork() or vfork() by passing suitable flags | |
| 1848 // to the clone() system call. | |
| 1849 if (sysno == __NR_clone) { | |
| 1850 // We have seen two different valid combinations of flags. Glibc | |
| 1851 // uses the more modern flags, sets the TLS from the call to clone(), and | |
| 1852 // uses futexes to monitor threads. Android's C run-time library, doesn't | |
| 1853 // do any of this, but it sets the obsolete (and no-op) CLONE_DETACHED. | |
| 1854 // More recent versions of Android don't set CLONE_DETACHED anymore, so | |
| 1855 // the last case accounts for that. | |
| 1856 // The following policy is very strict. It only allows the exact masks | |
| 1857 // that we have seen in known implementations. It is probably somewhat | |
| 1858 // stricter than what we would want to do. | |
| 1859 const uint64_t kGlibcCloneMask = CLONE_VM | CLONE_FS | CLONE_FILES | | |
| 1860 CLONE_SIGHAND | CLONE_THREAD | | |
| 1861 CLONE_SYSVSEM | CLONE_SETTLS | | |
| 1862 CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID; | |
| 1863 const uint64_t kBaseAndroidCloneMask = CLONE_VM | CLONE_FS | CLONE_FILES | | |
| 1864 CLONE_SIGHAND | CLONE_THREAD | | |
| 1865 CLONE_SYSVSEM; | |
| 1866 const Arg<unsigned long> flags(0); | |
| 1867 return If(flags == kGlibcCloneMask || | |
| 1868 flags == (kBaseAndroidCloneMask | CLONE_DETACHED) || | |
| 1869 flags == kBaseAndroidCloneMask, | |
| 1870 Allow()).Else(Trap(PthreadTrapHandler, "Unknown mask")); | |
| 1871 } | |
| 1872 | |
| 1873 return Allow(); | |
| 1874 } | |
| 1875 | |
| 1876 class PthreadPolicyBitMask : public Policy { | |
| 1877 public: | |
| 1878 PthreadPolicyBitMask() {} | |
| 1879 ~PthreadPolicyBitMask() override {} | |
| 1880 | |
| 1881 ResultExpr EvaluateSyscall(int sysno) const override; | |
| 1882 | |
| 1883 private: | |
| 1884 static BoolExpr HasAnyBits(const Arg<unsigned long>& arg, unsigned long bits); | |
| 1885 static BoolExpr HasAllBits(const Arg<unsigned long>& arg, unsigned long bits); | |
| 1886 | |
| 1887 DISALLOW_COPY_AND_ASSIGN(PthreadPolicyBitMask); | |
| 1888 }; | |
| 1889 | |
| 1890 BoolExpr PthreadPolicyBitMask::HasAnyBits(const Arg<unsigned long>& arg, | |
| 1891 unsigned long bits) { | |
| 1892 return (arg & bits) != 0; | |
| 1893 } | |
| 1894 | |
| 1895 BoolExpr PthreadPolicyBitMask::HasAllBits(const Arg<unsigned long>& arg, | |
| 1896 unsigned long bits) { | |
| 1897 return (arg & bits) == bits; | |
| 1898 } | |
| 1899 | |
| 1900 ResultExpr PthreadPolicyBitMask::EvaluateSyscall(int sysno) const { | |
| 1901 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 1902 // This policy allows creating threads with pthread_create(). But it | |
| 1903 // doesn't allow any other uses of clone(). Most notably, it does not | |
| 1904 // allow callers to implement fork() or vfork() by passing suitable flags | |
| 1905 // to the clone() system call. | |
| 1906 if (sysno == __NR_clone) { | |
| 1907 // We have seen two different valid combinations of flags. Glibc | |
| 1908 // uses the more modern flags, sets the TLS from the call to clone(), and | |
| 1909 // uses futexes to monitor threads. Android's C run-time library, doesn't | |
| 1910 // do any of this, but it sets the obsolete (and no-op) CLONE_DETACHED. | |
| 1911 // The following policy allows for either combination of flags, but it | |
| 1912 // is generally a little more conservative than strictly necessary. We | |
| 1913 // err on the side of rather safe than sorry. | |
| 1914 // Very noticeably though, we disallow fork() (which is often just a | |
| 1915 // wrapper around clone()). | |
| 1916 const unsigned long kMandatoryFlags = CLONE_VM | CLONE_FS | CLONE_FILES | | |
| 1917 CLONE_SIGHAND | CLONE_THREAD | | |
| 1918 CLONE_SYSVSEM; | |
| 1919 const unsigned long kFutexFlags = | |
| 1920 CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID; | |
| 1921 const unsigned long kNoopFlags = CLONE_DETACHED; | |
| 1922 const unsigned long kKnownFlags = | |
| 1923 kMandatoryFlags | kFutexFlags | kNoopFlags; | |
| 1924 | |
| 1925 const Arg<unsigned long> flags(0); | |
| 1926 return If(HasAnyBits(flags, ~kKnownFlags), | |
| 1927 Trap(PthreadTrapHandler, "Unexpected CLONE_XXX flag found")) | |
| 1928 .ElseIf(!HasAllBits(flags, kMandatoryFlags), | |
| 1929 Trap(PthreadTrapHandler, | |
| 1930 "Missing mandatory CLONE_XXX flags " | |
| 1931 "when creating new thread")) | |
| 1932 .ElseIf( | |
| 1933 !HasAllBits(flags, kFutexFlags) && HasAnyBits(flags, kFutexFlags), | |
| 1934 Trap(PthreadTrapHandler, | |
| 1935 "Must set either all or none of the TLS and futex bits in " | |
| 1936 "call to clone()")) | |
| 1937 .Else(Allow()); | |
| 1938 } | |
| 1939 | |
| 1940 return Allow(); | |
| 1941 } | |
| 1942 | |
| 1943 static void* ThreadFnc(void* arg) { | |
| 1944 ++*reinterpret_cast<int*>(arg); | |
| 1945 Syscall::Call(__NR_futex, arg, FUTEX_WAKE, 1, 0, 0, 0); | |
| 1946 return NULL; | |
| 1947 } | |
| 1948 | |
| 1949 static void PthreadTest() { | |
| 1950 // Attempt to start a joinable thread. This should succeed. | |
| 1951 pthread_t thread; | |
| 1952 int thread_ran = 0; | |
| 1953 BPF_ASSERT(!pthread_create(&thread, NULL, ThreadFnc, &thread_ran)); | |
| 1954 BPF_ASSERT(!pthread_join(thread, NULL)); | |
| 1955 BPF_ASSERT(thread_ran); | |
| 1956 | |
| 1957 // Attempt to start a detached thread. This should succeed. | |
| 1958 thread_ran = 0; | |
| 1959 pthread_attr_t attr; | |
| 1960 BPF_ASSERT(!pthread_attr_init(&attr)); | |
| 1961 BPF_ASSERT(!pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)); | |
| 1962 BPF_ASSERT(!pthread_create(&thread, &attr, ThreadFnc, &thread_ran)); | |
| 1963 BPF_ASSERT(!pthread_attr_destroy(&attr)); | |
| 1964 while (Syscall::Call(__NR_futex, &thread_ran, FUTEX_WAIT, 0, 0, 0, 0) == | |
| 1965 -EINTR) { | |
| 1966 } | |
| 1967 BPF_ASSERT(thread_ran); | |
| 1968 | |
| 1969 // Attempt to fork() a process using clone(). This should fail. We use the | |
| 1970 // same flags that glibc uses when calling fork(). But we don't actually | |
| 1971 // try calling the fork() implementation in the C run-time library, as | |
| 1972 // run-time libraries other than glibc might call __NR_fork instead of | |
| 1973 // __NR_clone, and that would introduce a bogus test failure. | |
| 1974 int pid; | |
| 1975 BPF_ASSERT(Syscall::Call(__NR_clone, | |
| 1976 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | SIGCHLD, | |
| 1977 0, | |
| 1978 0, | |
| 1979 &pid) == -EPERM); | |
| 1980 } | |
| 1981 | |
| 1982 BPF_TEST_C(SandboxBPF, PthreadEquality, PthreadPolicyEquality) { | |
| 1983 PthreadTest(); | |
| 1984 } | |
| 1985 | |
| 1986 BPF_TEST_C(SandboxBPF, PthreadBitMask, PthreadPolicyBitMask) { | |
| 1987 PthreadTest(); | |
| 1988 } | |
| 1989 | |
| 1990 // libc might not define these even though the kernel supports it. | |
| 1991 #ifndef PTRACE_O_TRACESECCOMP | |
| 1992 #define PTRACE_O_TRACESECCOMP 0x00000080 | |
| 1993 #endif | |
| 1994 | |
| 1995 #ifdef PTRACE_EVENT_SECCOMP | |
| 1996 #define IS_SECCOMP_EVENT(status) ((status >> 16) == PTRACE_EVENT_SECCOMP) | |
| 1997 #else | |
| 1998 // When Debian/Ubuntu backported seccomp-bpf support into earlier kernels, they | |
| 1999 // changed the value of PTRACE_EVENT_SECCOMP from 7 to 8, since 7 was taken by | |
| 2000 // PTRACE_EVENT_STOP (upstream chose to renumber PTRACE_EVENT_STOP to 128). If | |
| 2001 // PTRACE_EVENT_SECCOMP isn't defined, we have no choice but to consider both | |
| 2002 // values here. | |
| 2003 #define IS_SECCOMP_EVENT(status) ((status >> 16) == 7 || (status >> 16) == 8) | |
| 2004 #endif | |
| 2005 | |
| 2006 #if defined(__arm__) | |
| 2007 #ifndef PTRACE_SET_SYSCALL | |
| 2008 #define PTRACE_SET_SYSCALL 23 | |
| 2009 #endif | |
| 2010 #endif | |
| 2011 | |
| 2012 #if defined(__aarch64__) | |
| 2013 #ifndef PTRACE_GETREGS | |
| 2014 #define PTRACE_GETREGS 12 | |
| 2015 #endif | |
| 2016 #endif | |
| 2017 | |
| 2018 #if defined(__aarch64__) | |
| 2019 #ifndef PTRACE_SETREGS | |
| 2020 #define PTRACE_SETREGS 13 | |
| 2021 #endif | |
| 2022 #endif | |
| 2023 | |
| 2024 // Changes the syscall to run for a child being sandboxed using seccomp-bpf with | |
| 2025 // PTRACE_O_TRACESECCOMP. Should only be called when the child is stopped on | |
| 2026 // PTRACE_EVENT_SECCOMP. | |
| 2027 // | |
| 2028 // regs should contain the current set of registers of the child, obtained using | |
| 2029 // PTRACE_GETREGS. | |
| 2030 // | |
| 2031 // Depending on the architecture, this may modify regs, so the caller is | |
| 2032 // responsible for committing these changes using PTRACE_SETREGS. | |
| 2033 long SetSyscall(pid_t pid, regs_struct* regs, int syscall_number) { | |
| 2034 #if defined(__arm__) | |
| 2035 // On ARM, the syscall is changed using PTRACE_SET_SYSCALL. We cannot use the | |
| 2036 // libc ptrace call as the request parameter is an enum, and | |
| 2037 // PTRACE_SET_SYSCALL may not be in the enum. | |
| 2038 return syscall(__NR_ptrace, PTRACE_SET_SYSCALL, pid, NULL, syscall_number); | |
| 2039 #endif | |
| 2040 | |
| 2041 SECCOMP_PT_SYSCALL(*regs) = syscall_number; | |
| 2042 return 0; | |
| 2043 } | |
| 2044 | |
| 2045 const uint16_t kTraceData = 0xcc; | |
| 2046 | |
| 2047 class TraceAllPolicy : public Policy { | |
| 2048 public: | |
| 2049 TraceAllPolicy() {} | |
| 2050 ~TraceAllPolicy() override {} | |
| 2051 | |
| 2052 ResultExpr EvaluateSyscall(int system_call_number) const override { | |
| 2053 return Trace(kTraceData); | |
| 2054 } | |
| 2055 | |
| 2056 private: | |
| 2057 DISALLOW_COPY_AND_ASSIGN(TraceAllPolicy); | |
| 2058 }; | |
| 2059 | |
| 2060 SANDBOX_TEST(SandboxBPF, DISABLE_ON_TSAN(SeccompRetTrace)) { | |
| 2061 if (!SandboxBPF::SupportsSeccompSandbox( | |
| 2062 SandboxBPF::SeccompLevel::SINGLE_THREADED)) { | |
| 2063 return; | |
| 2064 } | |
| 2065 | |
| 2066 // This test is disabled on arm due to a kernel bug. | |
| 2067 // See https://code.google.com/p/chromium/issues/detail?id=383977 | |
| 2068 #if defined(__arm__) || defined(__aarch64__) | |
| 2069 printf("This test is currently disabled on ARM32/64 due to a kernel bug."); | |
| 2070 return; | |
| 2071 #endif | |
| 2072 | |
| 2073 #if defined(__mips__) | |
| 2074 // TODO: Figure out how to support specificity of handling indirect syscalls | |
| 2075 // in this test and enable it. | |
| 2076 printf("This test is currently disabled on MIPS."); | |
| 2077 return; | |
| 2078 #endif | |
| 2079 | |
| 2080 pid_t pid = fork(); | |
| 2081 BPF_ASSERT_NE(-1, pid); | |
| 2082 if (pid == 0) { | |
| 2083 pid_t my_pid = getpid(); | |
| 2084 BPF_ASSERT_NE(-1, ptrace(PTRACE_TRACEME, -1, NULL, NULL)); | |
| 2085 BPF_ASSERT_EQ(0, raise(SIGSTOP)); | |
| 2086 SandboxBPF sandbox(new TraceAllPolicy); | |
| 2087 BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::SeccompLevel::SINGLE_THREADED)); | |
| 2088 | |
| 2089 // getpid is allowed. | |
| 2090 BPF_ASSERT_EQ(my_pid, sys_getpid()); | |
| 2091 | |
| 2092 // write to stdout is skipped and returns a fake value. | |
| 2093 BPF_ASSERT_EQ(kExpectedReturnValue, | |
| 2094 syscall(__NR_write, STDOUT_FILENO, "A", 1)); | |
| 2095 | |
| 2096 // kill is rewritten to exit(kExpectedReturnValue). | |
| 2097 syscall(__NR_kill, my_pid, SIGKILL); | |
| 2098 | |
| 2099 // Should not be reached. | |
| 2100 BPF_ASSERT(false); | |
| 2101 } | |
| 2102 | |
| 2103 int status; | |
| 2104 BPF_ASSERT(HANDLE_EINTR(waitpid(pid, &status, WUNTRACED)) != -1); | |
| 2105 BPF_ASSERT(WIFSTOPPED(status)); | |
| 2106 | |
| 2107 BPF_ASSERT_NE(-1, | |
| 2108 ptrace(PTRACE_SETOPTIONS, | |
| 2109 pid, | |
| 2110 NULL, | |
| 2111 reinterpret_cast<void*>(PTRACE_O_TRACESECCOMP))); | |
| 2112 BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT, pid, NULL, NULL)); | |
| 2113 while (true) { | |
| 2114 BPF_ASSERT(HANDLE_EINTR(waitpid(pid, &status, 0)) != -1); | |
| 2115 if (WIFEXITED(status) || WIFSIGNALED(status)) { | |
| 2116 BPF_ASSERT(WIFEXITED(status)); | |
| 2117 BPF_ASSERT_EQ(kExpectedReturnValue, WEXITSTATUS(status)); | |
| 2118 break; | |
| 2119 } | |
| 2120 | |
| 2121 if (!WIFSTOPPED(status) || WSTOPSIG(status) != SIGTRAP || | |
| 2122 !IS_SECCOMP_EVENT(status)) { | |
| 2123 BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT, pid, NULL, NULL)); | |
| 2124 continue; | |
| 2125 } | |
| 2126 | |
| 2127 unsigned long data; | |
| 2128 BPF_ASSERT_NE(-1, ptrace(PTRACE_GETEVENTMSG, pid, NULL, &data)); | |
| 2129 BPF_ASSERT_EQ(kTraceData, data); | |
| 2130 | |
| 2131 regs_struct regs; | |
| 2132 BPF_ASSERT_NE(-1, ptrace(PTRACE_GETREGS, pid, NULL, ®s)); | |
| 2133 switch (SECCOMP_PT_SYSCALL(regs)) { | |
| 2134 case __NR_write: | |
| 2135 // Skip writes to stdout, make it return kExpectedReturnValue. Allow | |
| 2136 // writes to stderr so that BPF_ASSERT messages show up. | |
| 2137 if (SECCOMP_PT_PARM1(regs) == STDOUT_FILENO) { | |
| 2138 BPF_ASSERT_NE(-1, SetSyscall(pid, ®s, -1)); | |
| 2139 SECCOMP_PT_RESULT(regs) = kExpectedReturnValue; | |
| 2140 BPF_ASSERT_NE(-1, ptrace(PTRACE_SETREGS, pid, NULL, ®s)); | |
| 2141 } | |
| 2142 break; | |
| 2143 | |
| 2144 case __NR_kill: | |
| 2145 // Rewrite to exit(kExpectedReturnValue). | |
| 2146 BPF_ASSERT_NE(-1, SetSyscall(pid, ®s, __NR_exit)); | |
| 2147 SECCOMP_PT_PARM1(regs) = kExpectedReturnValue; | |
| 2148 BPF_ASSERT_NE(-1, ptrace(PTRACE_SETREGS, pid, NULL, ®s)); | |
| 2149 break; | |
| 2150 | |
| 2151 default: | |
| 2152 // Allow all other syscalls. | |
| 2153 break; | |
| 2154 } | |
| 2155 | |
| 2156 BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT, pid, NULL, NULL)); | |
| 2157 } | |
| 2158 } | |
| 2159 | |
| 2160 // Android does not expose pread64 nor pwrite64. | |
| 2161 #if !defined(OS_ANDROID) | |
| 2162 | |
| 2163 bool FullPwrite64(int fd, const char* buffer, size_t count, off64_t offset) { | |
| 2164 while (count > 0) { | |
| 2165 const ssize_t transfered = | |
| 2166 HANDLE_EINTR(pwrite64(fd, buffer, count, offset)); | |
| 2167 if (transfered <= 0 || static_cast<size_t>(transfered) > count) { | |
| 2168 return false; | |
| 2169 } | |
| 2170 count -= transfered; | |
| 2171 buffer += transfered; | |
| 2172 offset += transfered; | |
| 2173 } | |
| 2174 return true; | |
| 2175 } | |
| 2176 | |
| 2177 bool FullPread64(int fd, char* buffer, size_t count, off64_t offset) { | |
| 2178 while (count > 0) { | |
| 2179 const ssize_t transfered = HANDLE_EINTR(pread64(fd, buffer, count, offset)); | |
| 2180 if (transfered <= 0 || static_cast<size_t>(transfered) > count) { | |
| 2181 return false; | |
| 2182 } | |
| 2183 count -= transfered; | |
| 2184 buffer += transfered; | |
| 2185 offset += transfered; | |
| 2186 } | |
| 2187 return true; | |
| 2188 } | |
| 2189 | |
| 2190 bool pread_64_was_forwarded = false; | |
| 2191 | |
| 2192 class TrapPread64Policy : public Policy { | |
| 2193 public: | |
| 2194 TrapPread64Policy() {} | |
| 2195 ~TrapPread64Policy() override {} | |
| 2196 | |
| 2197 ResultExpr EvaluateSyscall(int system_call_number) const override { | |
| 2198 // Set the global environment for unsafe traps once. | |
| 2199 if (system_call_number == MIN_SYSCALL) { | |
| 2200 EnableUnsafeTraps(); | |
| 2201 } | |
| 2202 | |
| 2203 if (system_call_number == __NR_pread64) { | |
| 2204 return UnsafeTrap(ForwardPreadHandler, NULL); | |
| 2205 } | |
| 2206 return Allow(); | |
| 2207 } | |
| 2208 | |
| 2209 private: | |
| 2210 static intptr_t ForwardPreadHandler(const struct arch_seccomp_data& args, | |
| 2211 void* aux) { | |
| 2212 BPF_ASSERT(args.nr == __NR_pread64); | |
| 2213 pread_64_was_forwarded = true; | |
| 2214 | |
| 2215 return SandboxBPF::ForwardSyscall(args); | |
| 2216 } | |
| 2217 | |
| 2218 DISALLOW_COPY_AND_ASSIGN(TrapPread64Policy); | |
| 2219 }; | |
| 2220 | |
| 2221 // pread(2) takes a 64 bits offset. On 32 bits systems, it will be split | |
| 2222 // between two arguments. In this test, we make sure that ForwardSyscall() can | |
| 2223 // forward it properly. | |
| 2224 BPF_TEST_C(SandboxBPF, Pread64, TrapPread64Policy) { | |
| 2225 ScopedTemporaryFile temp_file; | |
| 2226 const uint64_t kLargeOffset = (static_cast<uint64_t>(1) << 32) | 0xBEEF; | |
| 2227 const char kTestString[] = "This is a test!"; | |
| 2228 BPF_ASSERT(FullPwrite64( | |
| 2229 temp_file.fd(), kTestString, sizeof(kTestString), kLargeOffset)); | |
| 2230 | |
| 2231 char read_test_string[sizeof(kTestString)] = {0}; | |
| 2232 BPF_ASSERT(FullPread64(temp_file.fd(), | |
| 2233 read_test_string, | |
| 2234 sizeof(read_test_string), | |
| 2235 kLargeOffset)); | |
| 2236 BPF_ASSERT_EQ(0, memcmp(kTestString, read_test_string, sizeof(kTestString))); | |
| 2237 BPF_ASSERT(pread_64_was_forwarded); | |
| 2238 } | |
| 2239 | |
| 2240 #endif // !defined(OS_ANDROID) | |
| 2241 | |
| 2242 void* TsyncApplyToTwoThreadsFunc(void* cond_ptr) { | |
| 2243 base::WaitableEvent* event = static_cast<base::WaitableEvent*>(cond_ptr); | |
| 2244 | |
| 2245 // Wait for the main thread to signal that the filter has been applied. | |
| 2246 if (!event->IsSignaled()) { | |
| 2247 event->Wait(); | |
| 2248 } | |
| 2249 | |
| 2250 BPF_ASSERT(event->IsSignaled()); | |
| 2251 | |
| 2252 BlacklistNanosleepPolicy::AssertNanosleepFails(); | |
| 2253 | |
| 2254 return NULL; | |
| 2255 } | |
| 2256 | |
| 2257 SANDBOX_TEST(SandboxBPF, Tsync) { | |
| 2258 const bool supports_multi_threaded = SandboxBPF::SupportsSeccompSandbox( | |
| 2259 SandboxBPF::SeccompLevel::MULTI_THREADED); | |
| 2260 // On Chrome OS tsync is mandatory. | |
| 2261 #if defined(OS_CHROMEOS) | |
| 2262 if (base::SysInfo::IsRunningOnChromeOS()) { | |
| 2263 BPF_ASSERT_EQ(true, supports_multi_threaded); | |
| 2264 } | |
| 2265 // else a Chrome OS build not running on a Chrome OS device e.g. Chrome bots. | |
| 2266 // In this case fall through. | |
| 2267 #endif | |
| 2268 if (!supports_multi_threaded) { | |
| 2269 return; | |
| 2270 } | |
| 2271 | |
| 2272 base::WaitableEvent event(true, false); | |
| 2273 | |
| 2274 // Create a thread on which to invoke the blocked syscall. | |
| 2275 pthread_t thread; | |
| 2276 BPF_ASSERT_EQ( | |
| 2277 0, pthread_create(&thread, NULL, &TsyncApplyToTwoThreadsFunc, &event)); | |
| 2278 | |
| 2279 // Test that nanoseelp success. | |
| 2280 const struct timespec ts = {0, 0}; | |
| 2281 BPF_ASSERT_EQ(0, HANDLE_EINTR(syscall(__NR_nanosleep, &ts, NULL))); | |
| 2282 | |
| 2283 // Engage the sandbox. | |
| 2284 SandboxBPF sandbox(new BlacklistNanosleepPolicy()); | |
| 2285 BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::SeccompLevel::MULTI_THREADED)); | |
| 2286 | |
| 2287 // This thread should have the filter applied as well. | |
| 2288 BlacklistNanosleepPolicy::AssertNanosleepFails(); | |
| 2289 | |
| 2290 // Signal the condition to invoke the system call. | |
| 2291 event.Signal(); | |
| 2292 | |
| 2293 // Wait for the thread to finish. | |
| 2294 BPF_ASSERT_EQ(0, pthread_join(thread, NULL)); | |
| 2295 } | |
| 2296 | |
| 2297 class AllowAllPolicy : public Policy { | |
| 2298 public: | |
| 2299 AllowAllPolicy() {} | |
| 2300 ~AllowAllPolicy() override {} | |
| 2301 | |
| 2302 ResultExpr EvaluateSyscall(int sysno) const override { return Allow(); } | |
| 2303 | |
| 2304 private: | |
| 2305 DISALLOW_COPY_AND_ASSIGN(AllowAllPolicy); | |
| 2306 }; | |
| 2307 | |
| 2308 SANDBOX_DEATH_TEST( | |
| 2309 SandboxBPF, | |
| 2310 StartMultiThreadedAsSingleThreaded, | |
| 2311 DEATH_MESSAGE("Cannot start sandbox; process is already multi-threaded")) { | |
| 2312 base::Thread thread("sandbox.linux.StartMultiThreadedAsSingleThreaded"); | |
| 2313 BPF_ASSERT(thread.Start()); | |
| 2314 | |
| 2315 SandboxBPF sandbox(new AllowAllPolicy()); | |
| 2316 BPF_ASSERT(!sandbox.StartSandbox(SandboxBPF::SeccompLevel::SINGLE_THREADED)); | |
| 2317 } | |
| 2318 | |
| 2319 // http://crbug.com/407357 | |
| 2320 #if !defined(THREAD_SANITIZER) | |
| 2321 SANDBOX_DEATH_TEST( | |
| 2322 SandboxBPF, | |
| 2323 StartSingleThreadedAsMultiThreaded, | |
| 2324 DEATH_MESSAGE( | |
| 2325 "Cannot start sandbox; process may be single-threaded when " | |
| 2326 "reported as not")) { | |
| 2327 SandboxBPF sandbox(new AllowAllPolicy()); | |
| 2328 BPF_ASSERT(!sandbox.StartSandbox(SandboxBPF::SeccompLevel::MULTI_THREADED)); | |
| 2329 } | |
| 2330 #endif // !defined(THREAD_SANITIZER) | |
| 2331 | |
| 2332 // A stub handler for the UnsafeTrap. Never called. | |
| 2333 intptr_t NoOpHandler(const struct arch_seccomp_data& args, void*) { | |
| 2334 return -1; | |
| 2335 } | |
| 2336 | |
| 2337 class UnsafeTrapWithCondPolicy : public Policy { | |
| 2338 public: | |
| 2339 UnsafeTrapWithCondPolicy() {} | |
| 2340 ~UnsafeTrapWithCondPolicy() override {} | |
| 2341 | |
| 2342 ResultExpr EvaluateSyscall(int sysno) const override { | |
| 2343 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | |
| 2344 setenv(kSandboxDebuggingEnv, "t", 0); | |
| 2345 Die::SuppressInfoMessages(true); | |
| 2346 | |
| 2347 if (SandboxBPF::IsRequiredForUnsafeTrap(sysno)) | |
| 2348 return Allow(); | |
| 2349 | |
| 2350 switch (sysno) { | |
| 2351 case __NR_uname: { | |
| 2352 const Arg<uint32_t> arg(0); | |
| 2353 return If(arg == 0, Allow()).Else(Error(EPERM)); | |
| 2354 } | |
| 2355 case __NR_setgid: { | |
| 2356 const Arg<uint32_t> arg(0); | |
| 2357 return Switch(arg) | |
| 2358 .Case(100, Error(ENOMEM)) | |
| 2359 .Case(200, Error(ENOSYS)) | |
| 2360 .Default(Error(EPERM)); | |
| 2361 } | |
| 2362 case __NR_close: | |
| 2363 case __NR_exit_group: | |
| 2364 case __NR_write: | |
| 2365 return Allow(); | |
| 2366 case __NR_getppid: | |
| 2367 return UnsafeTrap(NoOpHandler, NULL); | |
| 2368 default: | |
| 2369 return Error(EPERM); | |
| 2370 } | |
| 2371 } | |
| 2372 | |
| 2373 private: | |
| 2374 DISALLOW_COPY_AND_ASSIGN(UnsafeTrapWithCondPolicy); | |
| 2375 }; | |
| 2376 | |
| 2377 BPF_TEST_C(SandboxBPF, UnsafeTrapWithCond, UnsafeTrapWithCondPolicy) { | |
| 2378 BPF_ASSERT_EQ(-1, syscall(__NR_uname, 0)); | |
| 2379 BPF_ASSERT_EQ(EFAULT, errno); | |
| 2380 | |
| 2381 BPF_ASSERT_EQ(-1, syscall(__NR_uname, 1)); | |
| 2382 BPF_ASSERT_EQ(EPERM, errno); | |
| 2383 | |
| 2384 BPF_ASSERT_EQ(-1, syscall(__NR_setgid, 100)); | |
| 2385 BPF_ASSERT_EQ(ENOMEM, errno); | |
| 2386 | |
| 2387 BPF_ASSERT_EQ(-1, syscall(__NR_setgid, 200)); | |
| 2388 BPF_ASSERT_EQ(ENOSYS, errno); | |
| 2389 | |
| 2390 BPF_ASSERT_EQ(-1, syscall(__NR_setgid, 300)); | |
| 2391 BPF_ASSERT_EQ(EPERM, errno); | |
| 2392 } | |
| 2393 | |
| 2394 } // namespace | |
| 2395 | |
| 2396 } // namespace bpf_dsl | |
| 2397 } // namespace sandbox | |
| OLD | NEW |