Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(592)

Side by Side Diff: tools/perf/metrics/gpu_timeline.py

Issue 926833002: [Telemetry] Move gpu_timeline metrics to telemetry.web_perf (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « tools/perf/benchmarks/gpu_times.py ('k') | tools/perf/metrics/gpu_timeline_unittest.py » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 # Copyright 2015 The Chromium Authors. All rights reserved.
2 # Use of this source code is governed by a BSD-style license that can be
3 # found in the LICENSE file.
4 import collections
5 import math
6 import sys
7
8 from telemetry.timeline import model as model_module
9 from telemetry.value import scalar
10 from telemetry.value import list_of_scalar_values
11 from telemetry.web_perf.metrics import timeline_based_metric
12
13 TOPLEVEL_GL_CATEGORY = 'gpu_toplevel'
14 TOPLEVEL_SERVICE_CATEGORY = 'disabled-by-default-gpu.service'
15 TOPLEVEL_DEVICE_CATEGORY = 'disabled-by-default-gpu.device'
16
17 SERVICE_FRAME_END_MARKER = (TOPLEVEL_SERVICE_CATEGORY, 'SwapBuffer')
18 DEVICE_FRAME_END_MARKER = (TOPLEVEL_DEVICE_CATEGORY, 'SwapBuffer')
19
20 TRACKED_GL_CONTEXT_NAME = { 'RenderCompositor': 'render_compositor',
21 'BrowserCompositor': 'browser_compositor',
22 'Compositor': 'browser_compositor' }
23
24
25 def _CalculateFrameTimes(events_per_frame, event_data_func):
26 """Given a list of events per frame and a function to extract event time data,
27 returns a list of frame times."""
28 times_per_frame = []
29 for event_list in events_per_frame:
30 event_times = [event_data_func(event) for event in event_list]
31 times_per_frame.append(sum(event_times))
32 return times_per_frame
33
34
35 def _CPUFrameTimes(events_per_frame):
36 """Given a list of events per frame, returns a list of CPU frame times."""
37 # CPU event frames are calculated using the event thread duration.
38 # Some platforms do not support thread_duration, convert those to 0.
39 return _CalculateFrameTimes(events_per_frame,
40 lambda event : event.thread_duration or 0)
41
42
43 def _GPUFrameTimes(events_per_frame):
44 """Given a list of events per frame, returns a list of GPU frame times."""
45 # GPU event frames are asynchronous slices which use the event duration.
46 return _CalculateFrameTimes(events_per_frame,
47 lambda event : event.duration)
48
49
50 def TimelineName(name, source_type, value_type):
51 """Constructs the standard name given in the timeline.
52
53 Args:
54 name: The name of the timeline, for example "total", or "render_compositor".
55 source_type: One of "cpu", "gpu" or None. None is only used for total times.
56 value_type: the type of value. For example "mean", "stddev"...etc.
57 """
58 if source_type:
59 return '%s_%s_%s_time' % (name, value_type, source_type)
60 else:
61 return '%s_%s_time' % (name, value_type)
62
63
64 class GPUTimelineMetric(timeline_based_metric.TimelineBasedMetric):
65 """Computes GPU based metrics."""
66
67 def __init__(self):
68 super(GPUTimelineMetric, self).__init__()
69
70 def AddResults(self, model, _, interaction_records, results):
71 self.VerifyNonOverlappedRecords(interaction_records)
72 service_times = self._CalculateGPUTimelineData(model)
73 for value_item, durations in service_times.iteritems():
74 count = len(durations)
75 avg = 0.0
76 stddev = 0.0
77 maximum = 0.0
78 if count:
79 avg = sum(durations) / count
80 stddev = math.sqrt(sum((d - avg) ** 2 for d in durations) / count)
81 maximum = max(durations)
82
83 name, src = value_item
84
85 if src:
86 frame_times_name = '%s_%s_frame_times' % (name, src)
87 else:
88 frame_times_name = '%s_frame_times' % (name)
89
90 if durations:
91 results.AddValue(list_of_scalar_values.ListOfScalarValues(
92 results.current_page, frame_times_name, 'ms', durations))
93
94 results.AddValue(scalar.ScalarValue(results.current_page,
95 TimelineName(name, src, 'max'),
96 'ms', maximum))
97 results.AddValue(scalar.ScalarValue(results.current_page,
98 TimelineName(name, src, 'mean'),
99 'ms', avg))
100 results.AddValue(scalar.ScalarValue(results.current_page,
101 TimelineName(name, src, 'stddev'),
102 'ms', stddev))
103
104 def _CalculateGPUTimelineData(self, model):
105 """Uses the model and calculates the times for various values for each
106 frame. The return value will be a dictionary of the following format:
107 {
108 (EVENT_NAME1, SRC1_TYPE): [FRAME0_TIME, FRAME1_TIME...etc.],
109 (EVENT_NAME2, SRC2_TYPE): [FRAME0_TIME, FRAME1_TIME...etc.],
110 }
111
112 Events:
113 swap - The time in milliseconds between each swap marker.
114 total - The amount of time spent in the renderer thread.
115 TRACKED_NAMES: Using the TRACKED_GL_CONTEXT_NAME dict, we
116 include the traces per frame for the
117 tracked name.
118 Source Types:
119 None - This will only be valid for the "swap" event.
120 cpu - For an event, the "cpu" source type signifies time spent on the
121 gpu thread using the CPU. This uses the "gpu.service" markers.
122 gpu - For an event, the "gpu" source type signifies time spent on the
123 gpu thread using the GPU. This uses the "gpu.device" markers.
124 """
125 all_service_events = []
126 current_service_frame_end = sys.maxint
127 current_service_events = []
128
129 all_device_events = []
130 current_device_frame_end = sys.maxint
131 current_device_events = []
132
133 tracked_events = {}
134 tracked_events.update(
135 dict([((value, 'cpu'), [])
136 for value in TRACKED_GL_CONTEXT_NAME.itervalues()]))
137 tracked_events.update(
138 dict([((value, 'gpu'), [])
139 for value in TRACKED_GL_CONTEXT_NAME.itervalues()]))
140
141 # These will track traces within the current frame.
142 current_tracked_service_events = collections.defaultdict(list)
143 current_tracked_device_events = collections.defaultdict(list)
144
145 event_iter = model.IterAllEvents(
146 event_type_predicate=model_module.IsSliceOrAsyncSlice)
147 for event in event_iter:
148 # Look for frame end markers
149 if (event.category, event.name) == SERVICE_FRAME_END_MARKER:
150 current_service_frame_end = event.end
151 elif (event.category, event.name) == DEVICE_FRAME_END_MARKER:
152 current_device_frame_end = event.end
153
154 # Track all other toplevel gl category markers
155 elif event.args.get('gl_category', None) == TOPLEVEL_GL_CATEGORY:
156 base_name = event.name
157 dash_index = base_name.rfind('-')
158 if dash_index != -1:
159 base_name = base_name[:dash_index]
160 tracked_name = TRACKED_GL_CONTEXT_NAME.get(base_name, None)
161
162 if event.category == TOPLEVEL_SERVICE_CATEGORY:
163 # Check if frame has ended.
164 if event.start >= current_service_frame_end:
165 if current_service_events:
166 all_service_events.append(current_service_events)
167 for value in TRACKED_GL_CONTEXT_NAME.itervalues():
168 tracked_events[(value, 'cpu')].append(
169 current_tracked_service_events[value])
170 current_service_events = []
171 current_service_frame_end = sys.maxint
172 current_tracked_service_events.clear()
173
174 current_service_events.append(event)
175 if tracked_name:
176 current_tracked_service_events[tracked_name].append(event)
177
178 elif event.category == TOPLEVEL_DEVICE_CATEGORY:
179 # Check if frame has ended.
180 if event.start >= current_device_frame_end:
181 if current_device_events:
182 all_device_events.append(current_device_events)
183 for value in TRACKED_GL_CONTEXT_NAME.itervalues():
184 tracked_events[(value, 'gpu')].append(
185 current_tracked_device_events[value])
186 current_device_events = []
187 current_device_frame_end = sys.maxint
188 current_tracked_device_events.clear()
189
190 current_device_events.append(event)
191 if tracked_name:
192 current_tracked_device_events[tracked_name].append(event)
193
194 # Append Data for Last Frame.
195 if current_service_events:
196 all_service_events.append(current_service_events)
197 for value in TRACKED_GL_CONTEXT_NAME.itervalues():
198 tracked_events[(value, 'cpu')].append(
199 current_tracked_service_events[value])
200 if current_device_events:
201 all_device_events.append(current_device_events)
202 for value in TRACKED_GL_CONTEXT_NAME.itervalues():
203 tracked_events[(value, 'gpu')].append(
204 current_tracked_device_events[value])
205
206 # Calculate Mean Frame Time for the CPU side.
207 frame_times = []
208 if all_service_events:
209 prev_frame_end = all_service_events[0][0].start
210 for event_list in all_service_events:
211 last_service_event_in_frame = event_list[-1]
212 frame_times.append(last_service_event_in_frame.end - prev_frame_end)
213 prev_frame_end = last_service_event_in_frame.end
214
215 # Create the timeline data dictionary for service side traces.
216 total_frame_value = ('swap', None)
217 cpu_frame_value = ('total', 'cpu')
218 gpu_frame_value = ('total', 'gpu')
219 timeline_data = {}
220 timeline_data[total_frame_value] = frame_times
221 timeline_data[cpu_frame_value] = _CPUFrameTimes(all_service_events)
222 for value in TRACKED_GL_CONTEXT_NAME.itervalues():
223 cpu_value = (value, 'cpu')
224 timeline_data[cpu_value] = _CPUFrameTimes(tracked_events[cpu_value])
225
226 # Add in GPU side traces if it was supported (IE. device traces exist).
227 if all_device_events:
228 timeline_data[gpu_frame_value] = _GPUFrameTimes(all_device_events)
229 for value in TRACKED_GL_CONTEXT_NAME.itervalues():
230 gpu_value = (value, 'gpu')
231 tracked_gpu_event = tracked_events[gpu_value]
232 timeline_data[gpu_value] = _GPUFrameTimes(tracked_gpu_event)
233
234 return timeline_data
OLDNEW
« no previous file with comments | « tools/perf/benchmarks/gpu_times.py ('k') | tools/perf/metrics/gpu_timeline_unittest.py » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698