OLD | NEW |
| (Empty) |
1 # Copyright 2015 The Chromium Authors. All rights reserved. | |
2 # Use of this source code is governed by a BSD-style license that can be | |
3 # found in the LICENSE file. | |
4 import collections | |
5 import math | |
6 import sys | |
7 | |
8 from telemetry.timeline import model as model_module | |
9 from telemetry.value import scalar | |
10 from telemetry.value import list_of_scalar_values | |
11 from telemetry.web_perf.metrics import timeline_based_metric | |
12 | |
13 TOPLEVEL_GL_CATEGORY = 'gpu_toplevel' | |
14 TOPLEVEL_SERVICE_CATEGORY = 'disabled-by-default-gpu.service' | |
15 TOPLEVEL_DEVICE_CATEGORY = 'disabled-by-default-gpu.device' | |
16 | |
17 SERVICE_FRAME_END_MARKER = (TOPLEVEL_SERVICE_CATEGORY, 'SwapBuffer') | |
18 DEVICE_FRAME_END_MARKER = (TOPLEVEL_DEVICE_CATEGORY, 'SwapBuffer') | |
19 | |
20 TRACKED_GL_CONTEXT_NAME = { 'RenderCompositor': 'render_compositor', | |
21 'BrowserCompositor': 'browser_compositor', | |
22 'Compositor': 'browser_compositor' } | |
23 | |
24 | |
25 def _CalculateFrameTimes(events_per_frame, event_data_func): | |
26 """Given a list of events per frame and a function to extract event time data, | |
27 returns a list of frame times.""" | |
28 times_per_frame = [] | |
29 for event_list in events_per_frame: | |
30 event_times = [event_data_func(event) for event in event_list] | |
31 times_per_frame.append(sum(event_times)) | |
32 return times_per_frame | |
33 | |
34 | |
35 def _CPUFrameTimes(events_per_frame): | |
36 """Given a list of events per frame, returns a list of CPU frame times.""" | |
37 # CPU event frames are calculated using the event thread duration. | |
38 # Some platforms do not support thread_duration, convert those to 0. | |
39 return _CalculateFrameTimes(events_per_frame, | |
40 lambda event : event.thread_duration or 0) | |
41 | |
42 | |
43 def _GPUFrameTimes(events_per_frame): | |
44 """Given a list of events per frame, returns a list of GPU frame times.""" | |
45 # GPU event frames are asynchronous slices which use the event duration. | |
46 return _CalculateFrameTimes(events_per_frame, | |
47 lambda event : event.duration) | |
48 | |
49 | |
50 def TimelineName(name, source_type, value_type): | |
51 """Constructs the standard name given in the timeline. | |
52 | |
53 Args: | |
54 name: The name of the timeline, for example "total", or "render_compositor". | |
55 source_type: One of "cpu", "gpu" or None. None is only used for total times. | |
56 value_type: the type of value. For example "mean", "stddev"...etc. | |
57 """ | |
58 if source_type: | |
59 return '%s_%s_%s_time' % (name, value_type, source_type) | |
60 else: | |
61 return '%s_%s_time' % (name, value_type) | |
62 | |
63 | |
64 class GPUTimelineMetric(timeline_based_metric.TimelineBasedMetric): | |
65 """Computes GPU based metrics.""" | |
66 | |
67 def __init__(self): | |
68 super(GPUTimelineMetric, self).__init__() | |
69 | |
70 def AddResults(self, model, _, interaction_records, results): | |
71 self.VerifyNonOverlappedRecords(interaction_records) | |
72 service_times = self._CalculateGPUTimelineData(model) | |
73 for value_item, durations in service_times.iteritems(): | |
74 count = len(durations) | |
75 avg = 0.0 | |
76 stddev = 0.0 | |
77 maximum = 0.0 | |
78 if count: | |
79 avg = sum(durations) / count | |
80 stddev = math.sqrt(sum((d - avg) ** 2 for d in durations) / count) | |
81 maximum = max(durations) | |
82 | |
83 name, src = value_item | |
84 | |
85 if src: | |
86 frame_times_name = '%s_%s_frame_times' % (name, src) | |
87 else: | |
88 frame_times_name = '%s_frame_times' % (name) | |
89 | |
90 if durations: | |
91 results.AddValue(list_of_scalar_values.ListOfScalarValues( | |
92 results.current_page, frame_times_name, 'ms', durations)) | |
93 | |
94 results.AddValue(scalar.ScalarValue(results.current_page, | |
95 TimelineName(name, src, 'max'), | |
96 'ms', maximum)) | |
97 results.AddValue(scalar.ScalarValue(results.current_page, | |
98 TimelineName(name, src, 'mean'), | |
99 'ms', avg)) | |
100 results.AddValue(scalar.ScalarValue(results.current_page, | |
101 TimelineName(name, src, 'stddev'), | |
102 'ms', stddev)) | |
103 | |
104 def _CalculateGPUTimelineData(self, model): | |
105 """Uses the model and calculates the times for various values for each | |
106 frame. The return value will be a dictionary of the following format: | |
107 { | |
108 (EVENT_NAME1, SRC1_TYPE): [FRAME0_TIME, FRAME1_TIME...etc.], | |
109 (EVENT_NAME2, SRC2_TYPE): [FRAME0_TIME, FRAME1_TIME...etc.], | |
110 } | |
111 | |
112 Events: | |
113 swap - The time in milliseconds between each swap marker. | |
114 total - The amount of time spent in the renderer thread. | |
115 TRACKED_NAMES: Using the TRACKED_GL_CONTEXT_NAME dict, we | |
116 include the traces per frame for the | |
117 tracked name. | |
118 Source Types: | |
119 None - This will only be valid for the "swap" event. | |
120 cpu - For an event, the "cpu" source type signifies time spent on the | |
121 gpu thread using the CPU. This uses the "gpu.service" markers. | |
122 gpu - For an event, the "gpu" source type signifies time spent on the | |
123 gpu thread using the GPU. This uses the "gpu.device" markers. | |
124 """ | |
125 all_service_events = [] | |
126 current_service_frame_end = sys.maxint | |
127 current_service_events = [] | |
128 | |
129 all_device_events = [] | |
130 current_device_frame_end = sys.maxint | |
131 current_device_events = [] | |
132 | |
133 tracked_events = {} | |
134 tracked_events.update( | |
135 dict([((value, 'cpu'), []) | |
136 for value in TRACKED_GL_CONTEXT_NAME.itervalues()])) | |
137 tracked_events.update( | |
138 dict([((value, 'gpu'), []) | |
139 for value in TRACKED_GL_CONTEXT_NAME.itervalues()])) | |
140 | |
141 # These will track traces within the current frame. | |
142 current_tracked_service_events = collections.defaultdict(list) | |
143 current_tracked_device_events = collections.defaultdict(list) | |
144 | |
145 event_iter = model.IterAllEvents( | |
146 event_type_predicate=model_module.IsSliceOrAsyncSlice) | |
147 for event in event_iter: | |
148 # Look for frame end markers | |
149 if (event.category, event.name) == SERVICE_FRAME_END_MARKER: | |
150 current_service_frame_end = event.end | |
151 elif (event.category, event.name) == DEVICE_FRAME_END_MARKER: | |
152 current_device_frame_end = event.end | |
153 | |
154 # Track all other toplevel gl category markers | |
155 elif event.args.get('gl_category', None) == TOPLEVEL_GL_CATEGORY: | |
156 base_name = event.name | |
157 dash_index = base_name.rfind('-') | |
158 if dash_index != -1: | |
159 base_name = base_name[:dash_index] | |
160 tracked_name = TRACKED_GL_CONTEXT_NAME.get(base_name, None) | |
161 | |
162 if event.category == TOPLEVEL_SERVICE_CATEGORY: | |
163 # Check if frame has ended. | |
164 if event.start >= current_service_frame_end: | |
165 if current_service_events: | |
166 all_service_events.append(current_service_events) | |
167 for value in TRACKED_GL_CONTEXT_NAME.itervalues(): | |
168 tracked_events[(value, 'cpu')].append( | |
169 current_tracked_service_events[value]) | |
170 current_service_events = [] | |
171 current_service_frame_end = sys.maxint | |
172 current_tracked_service_events.clear() | |
173 | |
174 current_service_events.append(event) | |
175 if tracked_name: | |
176 current_tracked_service_events[tracked_name].append(event) | |
177 | |
178 elif event.category == TOPLEVEL_DEVICE_CATEGORY: | |
179 # Check if frame has ended. | |
180 if event.start >= current_device_frame_end: | |
181 if current_device_events: | |
182 all_device_events.append(current_device_events) | |
183 for value in TRACKED_GL_CONTEXT_NAME.itervalues(): | |
184 tracked_events[(value, 'gpu')].append( | |
185 current_tracked_device_events[value]) | |
186 current_device_events = [] | |
187 current_device_frame_end = sys.maxint | |
188 current_tracked_device_events.clear() | |
189 | |
190 current_device_events.append(event) | |
191 if tracked_name: | |
192 current_tracked_device_events[tracked_name].append(event) | |
193 | |
194 # Append Data for Last Frame. | |
195 if current_service_events: | |
196 all_service_events.append(current_service_events) | |
197 for value in TRACKED_GL_CONTEXT_NAME.itervalues(): | |
198 tracked_events[(value, 'cpu')].append( | |
199 current_tracked_service_events[value]) | |
200 if current_device_events: | |
201 all_device_events.append(current_device_events) | |
202 for value in TRACKED_GL_CONTEXT_NAME.itervalues(): | |
203 tracked_events[(value, 'gpu')].append( | |
204 current_tracked_device_events[value]) | |
205 | |
206 # Calculate Mean Frame Time for the CPU side. | |
207 frame_times = [] | |
208 if all_service_events: | |
209 prev_frame_end = all_service_events[0][0].start | |
210 for event_list in all_service_events: | |
211 last_service_event_in_frame = event_list[-1] | |
212 frame_times.append(last_service_event_in_frame.end - prev_frame_end) | |
213 prev_frame_end = last_service_event_in_frame.end | |
214 | |
215 # Create the timeline data dictionary for service side traces. | |
216 total_frame_value = ('swap', None) | |
217 cpu_frame_value = ('total', 'cpu') | |
218 gpu_frame_value = ('total', 'gpu') | |
219 timeline_data = {} | |
220 timeline_data[total_frame_value] = frame_times | |
221 timeline_data[cpu_frame_value] = _CPUFrameTimes(all_service_events) | |
222 for value in TRACKED_GL_CONTEXT_NAME.itervalues(): | |
223 cpu_value = (value, 'cpu') | |
224 timeline_data[cpu_value] = _CPUFrameTimes(tracked_events[cpu_value]) | |
225 | |
226 # Add in GPU side traces if it was supported (IE. device traces exist). | |
227 if all_device_events: | |
228 timeline_data[gpu_frame_value] = _GPUFrameTimes(all_device_events) | |
229 for value in TRACKED_GL_CONTEXT_NAME.itervalues(): | |
230 gpu_value = (value, 'gpu') | |
231 tracked_gpu_event = tracked_events[gpu_value] | |
232 timeline_data[gpu_value] = _GPUFrameTimes(tracked_gpu_event) | |
233 | |
234 return timeline_data | |
OLD | NEW |