OLD | NEW |
1 // Copyright 2013 The Chromium Authors. All rights reserved. | 1 // Copyright 2013 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 // TODO(vtl): I currently potentially overflow in doing index calculations. | 5 // TODO(vtl): I currently potentially overflow in doing index calculations. |
6 // E.g., |start_index_| and |current_num_bytes_| fit into a |uint32_t|, but | 6 // E.g., |start_index_| and |current_num_bytes_| fit into a |uint32_t|, but |
7 // their sum may not. This is bad and poses a security risk. (We're currently | 7 // their sum may not. This is bad and poses a security risk. (We're currently |
8 // saved by the limit on capacity -- the maximum size of the buffer, checked in | 8 // saved by the limit on capacity -- the maximum size of the buffer, checked in |
9 // |DataPipe::ValidateOptions()|, is currently sufficiently small.) | 9 // |DataPipe::ValidateOptions()|, is currently sufficiently small.) |
10 | 10 |
11 #include "mojo/edk/system/local_data_pipe_impl.h" | 11 #include "mojo/edk/system/local_data_pipe_impl.h" |
12 | 12 |
13 #include <string.h> | 13 #include <string.h> |
14 | 14 |
15 #include <algorithm> | 15 #include <algorithm> |
16 | 16 |
17 #include "base/logging.h" | 17 #include "base/logging.h" |
18 #include "mojo/edk/system/configuration.h" | 18 #include "mojo/edk/system/configuration.h" |
| 19 #include "mojo/edk/system/data_pipe.h" |
19 | 20 |
20 namespace mojo { | 21 namespace mojo { |
21 namespace system { | 22 namespace system { |
22 | 23 |
23 LocalDataPipeImpl::LocalDataPipeImpl(const MojoCreateDataPipeOptions& options) | 24 LocalDataPipeImpl::LocalDataPipeImpl() |
24 : DataPipe(true, true, options), start_index_(0), current_num_bytes_(0) { | 25 : start_index_(0), current_num_bytes_(0) { |
25 // Note: |buffer_| is lazily allocated, since a common case will be that one | 26 // Note: |buffer_| is lazily allocated, since a common case will be that one |
26 // of the handles is immediately passed off to another process. | 27 // of the handles is immediately passed off to another process. |
27 } | 28 } |
28 | 29 |
29 LocalDataPipeImpl::~LocalDataPipeImpl() { | 30 LocalDataPipeImpl::~LocalDataPipeImpl() { |
30 } | 31 } |
31 | 32 |
32 void LocalDataPipeImpl::ProducerCloseImplNoLock() { | 33 // static |
| 34 DataPipe* LocalDataPipeImpl::Create( |
| 35 const MojoCreateDataPipeOptions& validated_options) { |
| 36 return new DataPipe(true, true, validated_options, |
| 37 make_scoped_ptr(new LocalDataPipeImpl())); |
| 38 } |
| 39 |
| 40 void LocalDataPipeImpl::ProducerClose() { |
33 // If the consumer is still open and we still have data, we have to keep the | 41 // If the consumer is still open and we still have data, we have to keep the |
34 // buffer around. Currently, we won't free it even if it empties later. (We | 42 // buffer around. Currently, we won't free it even if it empties later. (We |
35 // could do this -- requiring a check on every read -- but that seems to be | 43 // could do this -- requiring a check on every read -- but that seems to be |
36 // optimizing for the uncommon case.) | 44 // optimizing for the uncommon case.) |
37 if (!consumer_open_no_lock() || !current_num_bytes_) { | 45 if (!consumer_open() || !current_num_bytes_) { |
38 // Note: There can only be a two-phase *read* (by the consumer) if we still | 46 // Note: There can only be a two-phase *read* (by the consumer) if we still |
39 // have data. | 47 // have data. |
40 DCHECK(!consumer_in_two_phase_read_no_lock()); | 48 DCHECK(!consumer_in_two_phase_read()); |
41 DestroyBufferNoLock(); | 49 DestroyBuffer(); |
42 } | 50 } |
43 } | 51 } |
44 | 52 |
45 MojoResult LocalDataPipeImpl::ProducerWriteDataImplNoLock( | 53 MojoResult LocalDataPipeImpl::ProducerWriteData( |
46 UserPointer<const void> elements, | 54 UserPointer<const void> elements, |
47 UserPointer<uint32_t> num_bytes, | 55 UserPointer<uint32_t> num_bytes, |
48 uint32_t max_num_bytes_to_write, | 56 uint32_t max_num_bytes_to_write, |
49 uint32_t min_num_bytes_to_write) { | 57 uint32_t min_num_bytes_to_write) { |
50 DCHECK_EQ(max_num_bytes_to_write % element_num_bytes(), 0u); | 58 DCHECK_EQ(max_num_bytes_to_write % element_num_bytes(), 0u); |
51 DCHECK_EQ(min_num_bytes_to_write % element_num_bytes(), 0u); | 59 DCHECK_EQ(min_num_bytes_to_write % element_num_bytes(), 0u); |
52 DCHECK_GT(max_num_bytes_to_write, 0u); | 60 DCHECK_GT(max_num_bytes_to_write, 0u); |
53 DCHECK(consumer_open_no_lock()); | 61 DCHECK(consumer_open()); |
54 | 62 |
55 size_t num_bytes_to_write = 0; | 63 size_t num_bytes_to_write = 0; |
56 if (may_discard()) { | 64 if (may_discard()) { |
57 if (min_num_bytes_to_write > capacity_num_bytes()) | 65 if (min_num_bytes_to_write > capacity_num_bytes()) |
58 return MOJO_RESULT_OUT_OF_RANGE; | 66 return MOJO_RESULT_OUT_OF_RANGE; |
59 | 67 |
60 num_bytes_to_write = std::min(static_cast<size_t>(max_num_bytes_to_write), | 68 num_bytes_to_write = std::min(static_cast<size_t>(max_num_bytes_to_write), |
61 capacity_num_bytes()); | 69 capacity_num_bytes()); |
62 if (num_bytes_to_write > capacity_num_bytes() - current_num_bytes_) { | 70 if (num_bytes_to_write > capacity_num_bytes() - current_num_bytes_) { |
63 // Discard as much as needed (discard oldest first). | 71 // Discard as much as needed (discard oldest first). |
64 MarkDataAsConsumedNoLock(num_bytes_to_write - | 72 MarkDataAsConsumed(num_bytes_to_write - |
65 (capacity_num_bytes() - current_num_bytes_)); | 73 (capacity_num_bytes() - current_num_bytes_)); |
66 // No need to wake up write waiters, since we're definitely going to leave | 74 // No need to wake up write waiters, since we're definitely going to leave |
67 // the buffer full. | 75 // the buffer full. |
68 } | 76 } |
69 } else { | 77 } else { |
70 if (min_num_bytes_to_write > capacity_num_bytes() - current_num_bytes_) { | 78 if (min_num_bytes_to_write > capacity_num_bytes() - current_num_bytes_) { |
71 // Don't return "should wait" since you can't wait for a specified amount | 79 // Don't return "should wait" since you can't wait for a specified amount |
72 // of data. | 80 // of data. |
73 return MOJO_RESULT_OUT_OF_RANGE; | 81 return MOJO_RESULT_OUT_OF_RANGE; |
74 } | 82 } |
75 | 83 |
76 num_bytes_to_write = std::min(static_cast<size_t>(max_num_bytes_to_write), | 84 num_bytes_to_write = std::min(static_cast<size_t>(max_num_bytes_to_write), |
77 capacity_num_bytes() - current_num_bytes_); | 85 capacity_num_bytes() - current_num_bytes_); |
78 } | 86 } |
79 if (num_bytes_to_write == 0) | 87 if (num_bytes_to_write == 0) |
80 return MOJO_RESULT_SHOULD_WAIT; | 88 return MOJO_RESULT_SHOULD_WAIT; |
81 | 89 |
82 // The amount we can write in our first |memcpy()|. | 90 // The amount we can write in our first |memcpy()|. |
83 size_t num_bytes_to_write_first = | 91 size_t num_bytes_to_write_first = |
84 std::min(num_bytes_to_write, GetMaxNumBytesToWriteNoLock()); | 92 std::min(num_bytes_to_write, GetMaxNumBytesToWrite()); |
85 // Do the first (and possibly only) |memcpy()|. | 93 // Do the first (and possibly only) |memcpy()|. |
86 size_t first_write_index = | 94 size_t first_write_index = |
87 (start_index_ + current_num_bytes_) % capacity_num_bytes(); | 95 (start_index_ + current_num_bytes_) % capacity_num_bytes(); |
88 EnsureBufferNoLock(); | 96 EnsureBuffer(); |
89 elements.GetArray(buffer_.get() + first_write_index, | 97 elements.GetArray(buffer_.get() + first_write_index, |
90 num_bytes_to_write_first); | 98 num_bytes_to_write_first); |
91 | 99 |
92 if (num_bytes_to_write_first < num_bytes_to_write) { | 100 if (num_bytes_to_write_first < num_bytes_to_write) { |
93 // The "second write index" is zero. | 101 // The "second write index" is zero. |
94 elements.At(num_bytes_to_write_first) | 102 elements.At(num_bytes_to_write_first) |
95 .GetArray(buffer_.get(), num_bytes_to_write - num_bytes_to_write_first); | 103 .GetArray(buffer_.get(), num_bytes_to_write - num_bytes_to_write_first); |
96 } | 104 } |
97 | 105 |
98 current_num_bytes_ += num_bytes_to_write; | 106 current_num_bytes_ += num_bytes_to_write; |
99 DCHECK_LE(current_num_bytes_, capacity_num_bytes()); | 107 DCHECK_LE(current_num_bytes_, capacity_num_bytes()); |
100 num_bytes.Put(static_cast<uint32_t>(num_bytes_to_write)); | 108 num_bytes.Put(static_cast<uint32_t>(num_bytes_to_write)); |
101 return MOJO_RESULT_OK; | 109 return MOJO_RESULT_OK; |
102 } | 110 } |
103 | 111 |
104 MojoResult LocalDataPipeImpl::ProducerBeginWriteDataImplNoLock( | 112 MojoResult LocalDataPipeImpl::ProducerBeginWriteData( |
105 UserPointer<void*> buffer, | 113 UserPointer<void*> buffer, |
106 UserPointer<uint32_t> buffer_num_bytes, | 114 UserPointer<uint32_t> buffer_num_bytes, |
107 uint32_t min_num_bytes_to_write) { | 115 uint32_t min_num_bytes_to_write) { |
108 DCHECK(consumer_open_no_lock()); | 116 DCHECK(consumer_open()); |
109 | 117 |
110 // The index we need to start writing at. | 118 // The index we need to start writing at. |
111 size_t write_index = | 119 size_t write_index = |
112 (start_index_ + current_num_bytes_) % capacity_num_bytes(); | 120 (start_index_ + current_num_bytes_) % capacity_num_bytes(); |
113 | 121 |
114 size_t max_num_bytes_to_write = GetMaxNumBytesToWriteNoLock(); | 122 size_t max_num_bytes_to_write = GetMaxNumBytesToWrite(); |
115 if (min_num_bytes_to_write > max_num_bytes_to_write) { | 123 if (min_num_bytes_to_write > max_num_bytes_to_write) { |
116 // In "may discard" mode, we can always write from the write index to the | 124 // In "may discard" mode, we can always write from the write index to the |
117 // end of the buffer. | 125 // end of the buffer. |
118 if (may_discard() && | 126 if (may_discard() && |
119 min_num_bytes_to_write <= capacity_num_bytes() - write_index) { | 127 min_num_bytes_to_write <= capacity_num_bytes() - write_index) { |
120 // To do so, we need to discard an appropriate amount of data. | 128 // To do so, we need to discard an appropriate amount of data. |
121 // We should only reach here if the start index is after the write index! | 129 // We should only reach here if the start index is after the write index! |
122 DCHECK_GE(start_index_, write_index); | 130 DCHECK_GE(start_index_, write_index); |
123 DCHECK_GT(min_num_bytes_to_write - max_num_bytes_to_write, 0u); | 131 DCHECK_GT(min_num_bytes_to_write - max_num_bytes_to_write, 0u); |
124 MarkDataAsConsumedNoLock(min_num_bytes_to_write - max_num_bytes_to_write); | 132 MarkDataAsConsumed(min_num_bytes_to_write - max_num_bytes_to_write); |
125 max_num_bytes_to_write = min_num_bytes_to_write; | 133 max_num_bytes_to_write = min_num_bytes_to_write; |
126 } else { | 134 } else { |
127 // Don't return "should wait" since you can't wait for a specified amount | 135 // Don't return "should wait" since you can't wait for a specified amount |
128 // of data. | 136 // of data. |
129 return MOJO_RESULT_OUT_OF_RANGE; | 137 return MOJO_RESULT_OUT_OF_RANGE; |
130 } | 138 } |
131 } | 139 } |
132 | 140 |
133 // Don't go into a two-phase write if there's no room. | 141 // Don't go into a two-phase write if there's no room. |
134 if (max_num_bytes_to_write == 0) | 142 if (max_num_bytes_to_write == 0) |
135 return MOJO_RESULT_SHOULD_WAIT; | 143 return MOJO_RESULT_SHOULD_WAIT; |
136 | 144 |
137 EnsureBufferNoLock(); | 145 EnsureBuffer(); |
138 buffer.Put(buffer_.get() + write_index); | 146 buffer.Put(buffer_.get() + write_index); |
139 buffer_num_bytes.Put(static_cast<uint32_t>(max_num_bytes_to_write)); | 147 buffer_num_bytes.Put(static_cast<uint32_t>(max_num_bytes_to_write)); |
140 set_producer_two_phase_max_num_bytes_written_no_lock( | 148 set_producer_two_phase_max_num_bytes_written( |
141 static_cast<uint32_t>(max_num_bytes_to_write)); | 149 static_cast<uint32_t>(max_num_bytes_to_write)); |
142 return MOJO_RESULT_OK; | 150 return MOJO_RESULT_OK; |
143 } | 151 } |
144 | 152 |
145 MojoResult LocalDataPipeImpl::ProducerEndWriteDataImplNoLock( | 153 MojoResult LocalDataPipeImpl::ProducerEndWriteData(uint32_t num_bytes_written) { |
146 uint32_t num_bytes_written) { | 154 DCHECK_LE(num_bytes_written, producer_two_phase_max_num_bytes_written()); |
147 DCHECK_LE(num_bytes_written, | |
148 producer_two_phase_max_num_bytes_written_no_lock()); | |
149 current_num_bytes_ += num_bytes_written; | 155 current_num_bytes_ += num_bytes_written; |
150 DCHECK_LE(current_num_bytes_, capacity_num_bytes()); | 156 DCHECK_LE(current_num_bytes_, capacity_num_bytes()); |
151 set_producer_two_phase_max_num_bytes_written_no_lock(0); | 157 set_producer_two_phase_max_num_bytes_written(0); |
152 return MOJO_RESULT_OK; | 158 return MOJO_RESULT_OK; |
153 } | 159 } |
154 | 160 |
155 HandleSignalsState LocalDataPipeImpl::ProducerGetHandleSignalsStateImplNoLock() | 161 HandleSignalsState LocalDataPipeImpl::ProducerGetHandleSignalsState() const { |
156 const { | |
157 HandleSignalsState rv; | 162 HandleSignalsState rv; |
158 if (consumer_open_no_lock()) { | 163 if (consumer_open()) { |
159 if ((may_discard() || current_num_bytes_ < capacity_num_bytes()) && | 164 if ((may_discard() || current_num_bytes_ < capacity_num_bytes()) && |
160 !producer_in_two_phase_write_no_lock()) | 165 !producer_in_two_phase_write()) |
161 rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_WRITABLE; | 166 rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_WRITABLE; |
162 rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_WRITABLE; | 167 rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_WRITABLE; |
163 } else { | 168 } else { |
164 rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED; | 169 rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED; |
165 } | 170 } |
166 rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED; | 171 rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED; |
167 return rv; | 172 return rv; |
168 } | 173 } |
169 | 174 |
170 void LocalDataPipeImpl::ProducerStartSerializeImplNoLock( | 175 void LocalDataPipeImpl::ProducerStartSerialize(Channel* channel, |
171 Channel* channel, | 176 size_t* max_size, |
172 size_t* max_size, | 177 size_t* max_platform_handles) { |
173 size_t* max_platform_handles) { | |
174 // TODO(vtl): Support serializing producer data pipe handles. | 178 // TODO(vtl): Support serializing producer data pipe handles. |
175 *max_size = 0; | 179 *max_size = 0; |
176 *max_platform_handles = 0; | 180 *max_platform_handles = 0; |
177 } | 181 } |
178 | 182 |
179 bool LocalDataPipeImpl::ProducerEndSerializeImplNoLock( | 183 bool LocalDataPipeImpl::ProducerEndSerialize( |
180 Channel* channel, | 184 Channel* channel, |
181 void* destination, | 185 void* destination, |
182 size_t* actual_size, | 186 size_t* actual_size, |
183 embedder::PlatformHandleVector* platform_handles) { | 187 embedder::PlatformHandleVector* platform_handles) { |
184 // TODO(vtl): Support serializing producer data pipe handles. | 188 // TODO(vtl): Support serializing producer data pipe handles. |
185 ProducerCloseNoLock(); | 189 owner()->ProducerCloseNoLock(); |
186 return false; | 190 return false; |
187 } | 191 } |
188 | 192 |
189 void LocalDataPipeImpl::ConsumerCloseImplNoLock() { | 193 void LocalDataPipeImpl::ConsumerClose() { |
190 // If the producer is around and in a two-phase write, we have to keep the | 194 // If the producer is around and in a two-phase write, we have to keep the |
191 // buffer around. (We then don't free it until the producer is closed. This | 195 // buffer around. (We then don't free it until the producer is closed. This |
192 // could be rectified, but again seems like optimizing for the uncommon case.) | 196 // could be rectified, but again seems like optimizing for the uncommon case.) |
193 if (!producer_open_no_lock() || !producer_in_two_phase_write_no_lock()) | 197 if (!producer_open() || !producer_in_two_phase_write()) |
194 DestroyBufferNoLock(); | 198 DestroyBuffer(); |
195 current_num_bytes_ = 0; | 199 current_num_bytes_ = 0; |
196 } | 200 } |
197 | 201 |
198 MojoResult LocalDataPipeImpl::ConsumerReadDataImplNoLock( | 202 MojoResult LocalDataPipeImpl::ConsumerReadData(UserPointer<void> elements, |
199 UserPointer<void> elements, | 203 UserPointer<uint32_t> num_bytes, |
200 UserPointer<uint32_t> num_bytes, | 204 uint32_t max_num_bytes_to_read, |
201 uint32_t max_num_bytes_to_read, | 205 uint32_t min_num_bytes_to_read, |
202 uint32_t min_num_bytes_to_read, | 206 bool peek) { |
203 bool peek) { | |
204 DCHECK_EQ(max_num_bytes_to_read % element_num_bytes(), 0u); | 207 DCHECK_EQ(max_num_bytes_to_read % element_num_bytes(), 0u); |
205 DCHECK_EQ(min_num_bytes_to_read % element_num_bytes(), 0u); | 208 DCHECK_EQ(min_num_bytes_to_read % element_num_bytes(), 0u); |
206 DCHECK_GT(max_num_bytes_to_read, 0u); | 209 DCHECK_GT(max_num_bytes_to_read, 0u); |
207 | 210 |
208 if (min_num_bytes_to_read > current_num_bytes_) { | 211 if (min_num_bytes_to_read > current_num_bytes_) { |
209 // Don't return "should wait" since you can't wait for a specified amount of | 212 // Don't return "should wait" since you can't wait for a specified amount of |
210 // data. | 213 // data. |
211 return producer_open_no_lock() ? MOJO_RESULT_OUT_OF_RANGE | 214 return producer_open() ? MOJO_RESULT_OUT_OF_RANGE |
212 : MOJO_RESULT_FAILED_PRECONDITION; | 215 : MOJO_RESULT_FAILED_PRECONDITION; |
213 } | 216 } |
214 | 217 |
215 size_t num_bytes_to_read = | 218 size_t num_bytes_to_read = |
216 std::min(static_cast<size_t>(max_num_bytes_to_read), current_num_bytes_); | 219 std::min(static_cast<size_t>(max_num_bytes_to_read), current_num_bytes_); |
217 if (num_bytes_to_read == 0) { | 220 if (num_bytes_to_read == 0) { |
218 return producer_open_no_lock() ? MOJO_RESULT_SHOULD_WAIT | 221 return producer_open() ? MOJO_RESULT_SHOULD_WAIT |
219 : MOJO_RESULT_FAILED_PRECONDITION; | 222 : MOJO_RESULT_FAILED_PRECONDITION; |
220 } | 223 } |
221 | 224 |
222 // The amount we can read in our first |memcpy()|. | 225 // The amount we can read in our first |memcpy()|. |
223 size_t num_bytes_to_read_first = | 226 size_t num_bytes_to_read_first = |
224 std::min(num_bytes_to_read, GetMaxNumBytesToReadNoLock()); | 227 std::min(num_bytes_to_read, GetMaxNumBytesToRead()); |
225 elements.PutArray(buffer_.get() + start_index_, num_bytes_to_read_first); | 228 elements.PutArray(buffer_.get() + start_index_, num_bytes_to_read_first); |
226 | 229 |
227 if (num_bytes_to_read_first < num_bytes_to_read) { | 230 if (num_bytes_to_read_first < num_bytes_to_read) { |
228 // The "second read index" is zero. | 231 // The "second read index" is zero. |
229 elements.At(num_bytes_to_read_first) | 232 elements.At(num_bytes_to_read_first) |
230 .PutArray(buffer_.get(), num_bytes_to_read - num_bytes_to_read_first); | 233 .PutArray(buffer_.get(), num_bytes_to_read - num_bytes_to_read_first); |
231 } | 234 } |
232 | 235 |
233 if (!peek) | 236 if (!peek) |
234 MarkDataAsConsumedNoLock(num_bytes_to_read); | 237 MarkDataAsConsumed(num_bytes_to_read); |
235 num_bytes.Put(static_cast<uint32_t>(num_bytes_to_read)); | 238 num_bytes.Put(static_cast<uint32_t>(num_bytes_to_read)); |
236 return MOJO_RESULT_OK; | 239 return MOJO_RESULT_OK; |
237 } | 240 } |
238 | 241 |
239 MojoResult LocalDataPipeImpl::ConsumerDiscardDataImplNoLock( | 242 MojoResult LocalDataPipeImpl::ConsumerDiscardData( |
240 UserPointer<uint32_t> num_bytes, | 243 UserPointer<uint32_t> num_bytes, |
241 uint32_t max_num_bytes_to_discard, | 244 uint32_t max_num_bytes_to_discard, |
242 uint32_t min_num_bytes_to_discard) { | 245 uint32_t min_num_bytes_to_discard) { |
243 DCHECK_EQ(max_num_bytes_to_discard % element_num_bytes(), 0u); | 246 DCHECK_EQ(max_num_bytes_to_discard % element_num_bytes(), 0u); |
244 DCHECK_EQ(min_num_bytes_to_discard % element_num_bytes(), 0u); | 247 DCHECK_EQ(min_num_bytes_to_discard % element_num_bytes(), 0u); |
245 DCHECK_GT(max_num_bytes_to_discard, 0u); | 248 DCHECK_GT(max_num_bytes_to_discard, 0u); |
246 | 249 |
247 if (min_num_bytes_to_discard > current_num_bytes_) { | 250 if (min_num_bytes_to_discard > current_num_bytes_) { |
248 // Don't return "should wait" since you can't wait for a specified amount of | 251 // Don't return "should wait" since you can't wait for a specified amount of |
249 // data. | 252 // data. |
250 return producer_open_no_lock() ? MOJO_RESULT_OUT_OF_RANGE | 253 return producer_open() ? MOJO_RESULT_OUT_OF_RANGE |
251 : MOJO_RESULT_FAILED_PRECONDITION; | 254 : MOJO_RESULT_FAILED_PRECONDITION; |
252 } | 255 } |
253 | 256 |
254 // Be consistent with other operations; error if no data available. | 257 // Be consistent with other operations; error if no data available. |
255 if (current_num_bytes_ == 0) { | 258 if (current_num_bytes_ == 0) { |
256 return producer_open_no_lock() ? MOJO_RESULT_SHOULD_WAIT | 259 return producer_open() ? MOJO_RESULT_SHOULD_WAIT |
257 : MOJO_RESULT_FAILED_PRECONDITION; | 260 : MOJO_RESULT_FAILED_PRECONDITION; |
258 } | 261 } |
259 | 262 |
260 size_t num_bytes_to_discard = std::min( | 263 size_t num_bytes_to_discard = std::min( |
261 static_cast<size_t>(max_num_bytes_to_discard), current_num_bytes_); | 264 static_cast<size_t>(max_num_bytes_to_discard), current_num_bytes_); |
262 MarkDataAsConsumedNoLock(num_bytes_to_discard); | 265 MarkDataAsConsumed(num_bytes_to_discard); |
263 num_bytes.Put(static_cast<uint32_t>(num_bytes_to_discard)); | 266 num_bytes.Put(static_cast<uint32_t>(num_bytes_to_discard)); |
264 return MOJO_RESULT_OK; | 267 return MOJO_RESULT_OK; |
265 } | 268 } |
266 | 269 |
267 MojoResult LocalDataPipeImpl::ConsumerQueryDataImplNoLock( | 270 MojoResult LocalDataPipeImpl::ConsumerQueryData( |
268 UserPointer<uint32_t> num_bytes) { | 271 UserPointer<uint32_t> num_bytes) { |
269 // Note: This cast is safe, since the capacity fits into a |uint32_t|. | 272 // Note: This cast is safe, since the capacity fits into a |uint32_t|. |
270 num_bytes.Put(static_cast<uint32_t>(current_num_bytes_)); | 273 num_bytes.Put(static_cast<uint32_t>(current_num_bytes_)); |
271 return MOJO_RESULT_OK; | 274 return MOJO_RESULT_OK; |
272 } | 275 } |
273 | 276 |
274 MojoResult LocalDataPipeImpl::ConsumerBeginReadDataImplNoLock( | 277 MojoResult LocalDataPipeImpl::ConsumerBeginReadData( |
275 UserPointer<const void*> buffer, | 278 UserPointer<const void*> buffer, |
276 UserPointer<uint32_t> buffer_num_bytes, | 279 UserPointer<uint32_t> buffer_num_bytes, |
277 uint32_t min_num_bytes_to_read) { | 280 uint32_t min_num_bytes_to_read) { |
278 size_t max_num_bytes_to_read = GetMaxNumBytesToReadNoLock(); | 281 size_t max_num_bytes_to_read = GetMaxNumBytesToRead(); |
279 if (min_num_bytes_to_read > max_num_bytes_to_read) { | 282 if (min_num_bytes_to_read > max_num_bytes_to_read) { |
280 // Don't return "should wait" since you can't wait for a specified amount of | 283 // Don't return "should wait" since you can't wait for a specified amount of |
281 // data. | 284 // data. |
282 return producer_open_no_lock() ? MOJO_RESULT_OUT_OF_RANGE | 285 return producer_open() ? MOJO_RESULT_OUT_OF_RANGE |
283 : MOJO_RESULT_FAILED_PRECONDITION; | 286 : MOJO_RESULT_FAILED_PRECONDITION; |
284 } | 287 } |
285 | 288 |
286 // Don't go into a two-phase read if there's no data. | 289 // Don't go into a two-phase read if there's no data. |
287 if (max_num_bytes_to_read == 0) { | 290 if (max_num_bytes_to_read == 0) { |
288 return producer_open_no_lock() ? MOJO_RESULT_SHOULD_WAIT | 291 return producer_open() ? MOJO_RESULT_SHOULD_WAIT |
289 : MOJO_RESULT_FAILED_PRECONDITION; | 292 : MOJO_RESULT_FAILED_PRECONDITION; |
290 } | 293 } |
291 | 294 |
292 buffer.Put(buffer_.get() + start_index_); | 295 buffer.Put(buffer_.get() + start_index_); |
293 buffer_num_bytes.Put(static_cast<uint32_t>(max_num_bytes_to_read)); | 296 buffer_num_bytes.Put(static_cast<uint32_t>(max_num_bytes_to_read)); |
294 set_consumer_two_phase_max_num_bytes_read_no_lock( | 297 set_consumer_two_phase_max_num_bytes_read( |
295 static_cast<uint32_t>(max_num_bytes_to_read)); | 298 static_cast<uint32_t>(max_num_bytes_to_read)); |
296 return MOJO_RESULT_OK; | 299 return MOJO_RESULT_OK; |
297 } | 300 } |
298 | 301 |
299 MojoResult LocalDataPipeImpl::ConsumerEndReadDataImplNoLock( | 302 MojoResult LocalDataPipeImpl::ConsumerEndReadData(uint32_t num_bytes_read) { |
300 uint32_t num_bytes_read) { | 303 DCHECK_LE(num_bytes_read, consumer_two_phase_max_num_bytes_read()); |
301 DCHECK_LE(num_bytes_read, consumer_two_phase_max_num_bytes_read_no_lock()); | |
302 DCHECK_LE(start_index_ + num_bytes_read, capacity_num_bytes()); | 304 DCHECK_LE(start_index_ + num_bytes_read, capacity_num_bytes()); |
303 MarkDataAsConsumedNoLock(num_bytes_read); | 305 MarkDataAsConsumed(num_bytes_read); |
304 set_consumer_two_phase_max_num_bytes_read_no_lock(0); | 306 set_consumer_two_phase_max_num_bytes_read(0); |
305 return MOJO_RESULT_OK; | 307 return MOJO_RESULT_OK; |
306 } | 308 } |
307 | 309 |
308 HandleSignalsState LocalDataPipeImpl::ConsumerGetHandleSignalsStateImplNoLock() | 310 HandleSignalsState LocalDataPipeImpl::ConsumerGetHandleSignalsState() const { |
309 const { | |
310 HandleSignalsState rv; | 311 HandleSignalsState rv; |
311 if (current_num_bytes_ > 0) { | 312 if (current_num_bytes_ > 0) { |
312 if (!consumer_in_two_phase_read_no_lock()) | 313 if (!consumer_in_two_phase_read()) |
313 rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_READABLE; | 314 rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_READABLE; |
314 rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE; | 315 rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE; |
315 } else if (producer_open_no_lock()) { | 316 } else if (producer_open()) { |
316 rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE; | 317 rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE; |
317 } | 318 } |
318 if (!producer_open_no_lock()) | 319 if (!producer_open()) |
319 rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED; | 320 rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED; |
320 rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED; | 321 rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED; |
321 return rv; | 322 return rv; |
322 } | 323 } |
323 | 324 |
324 void LocalDataPipeImpl::ConsumerStartSerializeImplNoLock( | 325 void LocalDataPipeImpl::ConsumerStartSerialize(Channel* channel, |
325 Channel* channel, | 326 size_t* max_size, |
326 size_t* max_size, | 327 size_t* max_platform_handles) { |
327 size_t* max_platform_handles) { | |
328 // TODO(vtl): Support serializing consumer data pipe handles. | 328 // TODO(vtl): Support serializing consumer data pipe handles. |
329 *max_size = 0; | 329 *max_size = 0; |
330 *max_platform_handles = 0; | 330 *max_platform_handles = 0; |
331 } | 331 } |
332 | 332 |
333 bool LocalDataPipeImpl::ConsumerEndSerializeImplNoLock( | 333 bool LocalDataPipeImpl::ConsumerEndSerialize( |
334 Channel* channel, | 334 Channel* channel, |
335 void* destination, | 335 void* destination, |
336 size_t* actual_size, | 336 size_t* actual_size, |
337 embedder::PlatformHandleVector* platform_handles) { | 337 embedder::PlatformHandleVector* platform_handles) { |
338 // TODO(vtl): Support serializing consumer data pipe handles. | 338 // TODO(vtl): Support serializing consumer data pipe handles. |
339 ConsumerCloseNoLock(); | 339 owner()->ConsumerCloseNoLock(); |
340 return false; | 340 return false; |
341 } | 341 } |
342 | 342 |
343 void LocalDataPipeImpl::EnsureBufferNoLock() { | 343 void LocalDataPipeImpl::EnsureBuffer() { |
344 DCHECK(producer_open_no_lock()); | 344 DCHECK(producer_open()); |
345 if (buffer_) | 345 if (buffer_) |
346 return; | 346 return; |
347 buffer_.reset(static_cast<char*>( | 347 buffer_.reset(static_cast<char*>( |
348 base::AlignedAlloc(capacity_num_bytes(), | 348 base::AlignedAlloc(capacity_num_bytes(), |
349 GetConfiguration().data_pipe_buffer_alignment_bytes))); | 349 GetConfiguration().data_pipe_buffer_alignment_bytes))); |
350 } | 350 } |
351 | 351 |
352 void LocalDataPipeImpl::DestroyBufferNoLock() { | 352 void LocalDataPipeImpl::DestroyBuffer() { |
353 #ifndef NDEBUG | 353 #ifndef NDEBUG |
354 // Scribble on the buffer to help detect use-after-frees. (This also helps the | 354 // Scribble on the buffer to help detect use-after-frees. (This also helps the |
355 // unit test detect certain bugs without needing ASAN or similar.) | 355 // unit test detect certain bugs without needing ASAN or similar.) |
356 if (buffer_) | 356 if (buffer_) |
357 memset(buffer_.get(), 0xcd, capacity_num_bytes()); | 357 memset(buffer_.get(), 0xcd, capacity_num_bytes()); |
358 #endif | 358 #endif |
359 buffer_.reset(); | 359 buffer_.reset(); |
360 } | 360 } |
361 | 361 |
362 size_t LocalDataPipeImpl::GetMaxNumBytesToWriteNoLock() { | 362 size_t LocalDataPipeImpl::GetMaxNumBytesToWrite() { |
363 size_t next_index = start_index_ + current_num_bytes_; | 363 size_t next_index = start_index_ + current_num_bytes_; |
364 if (next_index >= capacity_num_bytes()) { | 364 if (next_index >= capacity_num_bytes()) { |
365 next_index %= capacity_num_bytes(); | 365 next_index %= capacity_num_bytes(); |
366 DCHECK_GE(start_index_, next_index); | 366 DCHECK_GE(start_index_, next_index); |
367 DCHECK_EQ(start_index_ - next_index, | 367 DCHECK_EQ(start_index_ - next_index, |
368 capacity_num_bytes() - current_num_bytes_); | 368 capacity_num_bytes() - current_num_bytes_); |
369 return start_index_ - next_index; | 369 return start_index_ - next_index; |
370 } | 370 } |
371 return capacity_num_bytes() - next_index; | 371 return capacity_num_bytes() - next_index; |
372 } | 372 } |
373 | 373 |
374 size_t LocalDataPipeImpl::GetMaxNumBytesToReadNoLock() { | 374 size_t LocalDataPipeImpl::GetMaxNumBytesToRead() { |
375 if (start_index_ + current_num_bytes_ > capacity_num_bytes()) | 375 if (start_index_ + current_num_bytes_ > capacity_num_bytes()) |
376 return capacity_num_bytes() - start_index_; | 376 return capacity_num_bytes() - start_index_; |
377 return current_num_bytes_; | 377 return current_num_bytes_; |
378 } | 378 } |
379 | 379 |
380 void LocalDataPipeImpl::MarkDataAsConsumedNoLock(size_t num_bytes) { | 380 void LocalDataPipeImpl::MarkDataAsConsumed(size_t num_bytes) { |
381 DCHECK_LE(num_bytes, current_num_bytes_); | 381 DCHECK_LE(num_bytes, current_num_bytes_); |
382 start_index_ += num_bytes; | 382 start_index_ += num_bytes; |
383 start_index_ %= capacity_num_bytes(); | 383 start_index_ %= capacity_num_bytes(); |
384 current_num_bytes_ -= num_bytes; | 384 current_num_bytes_ -= num_bytes; |
385 } | 385 } |
386 | 386 |
387 } // namespace system | 387 } // namespace system |
388 } // namespace mojo | 388 } // namespace mojo |
OLD | NEW |