OLD | NEW |
(Empty) | |
| 1 #ifndef SkTHash_DEFINED |
| 2 #define SkTHash_DEFINED |
| 3 |
| 4 #include "SkTypes.h" |
| 5 #include "SkTemplates.h" |
| 6 |
| 7 // Before trying to use SkTHashTable, look below to see if SkTHashMap or SkTHash
Set works for you. |
| 8 // They're easier to use, usually perform the same, and have fewer sharp edges. |
| 9 |
| 10 // T and K are treated as ordinary copyable C++ types. |
| 11 // Traits must have: |
| 12 // - static K GetKey(T) |
| 13 // - static uint32_t Hash(K) |
| 14 // If the key is large and stored inside T, you may want to make K a const&. |
| 15 // Similarly, if T is large you might want it to be a pointer. |
| 16 template <typename T, typename K, typename Traits = T> |
| 17 class SkTHashTable : SkNoncopyable { |
| 18 public: |
| 19 SkTHashTable() : fCount(0), fCapacity(0) {} |
| 20 |
| 21 // How many entries are in the table? |
| 22 int count() const { return fCount; } |
| 23 |
| 24 // !!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!
!!!! |
| 25 // set(), find() and foreach() all allow mutable access to table entries. |
| 26 // If you change an entry so that it no longer has the same key, all hell |
| 27 // will break loose. Do not do that! |
| 28 // |
| 29 // Please prefer to use SkTHashMap or SkTHashSet, which do not have this dan
ger. |
| 30 |
| 31 // The pointers returned by set() and find() are valid only until the next c
all to set(). |
| 32 // The pointers you receive in foreach() are only valid for its duration. |
| 33 |
| 34 // Copy val into the hash table, returning a pointer to the copy now in the
table. |
| 35 // If there already is an entry in the table with the same key, we overwrite
it. |
| 36 T* set(T val) { |
| 37 if (4 * fCount >= 3 * fCapacity) { |
| 38 this->resize(fCapacity > 0 ? fCapacity * 2 : 4); |
| 39 } |
| 40 return this->uncheckedSet(val); |
| 41 } |
| 42 |
| 43 // If there is an entry in the table with this key, return a pointer to it.
If not, NULL. |
| 44 T* find(K key) const { |
| 45 uint32_t hash = Hash(key); |
| 46 int index = hash & (fCapacity-1); |
| 47 for (int n = 0; n < fCapacity; n++) { |
| 48 Slot& s = fSlots[index]; |
| 49 if (s.empty()) { |
| 50 return NULL; |
| 51 } |
| 52 if (hash == s.hash && key == Traits::GetKey(s.val)) { |
| 53 return &s.val; |
| 54 } |
| 55 index = this->next(index, n); |
| 56 } |
| 57 SkASSERT(fCapacity == 0); |
| 58 return NULL; |
| 59 } |
| 60 |
| 61 // Call fn on every entry in the table. You may mutate the entries, but be
very careful. |
| 62 template <typename Arg> |
| 63 void foreach(void(*fn)(T*, Arg), Arg arg) { |
| 64 for (int i = 0; i < fCapacity; i++) { |
| 65 Slot& s = fSlots[i]; |
| 66 if (!s.empty()) { |
| 67 fn(&s.val, arg); |
| 68 } |
| 69 } |
| 70 } |
| 71 |
| 72 private: |
| 73 T* uncheckedSet(T val) { |
| 74 K key = Traits::GetKey(val); |
| 75 uint32_t hash = Hash(key); |
| 76 int index = hash & (fCapacity-1); |
| 77 for (int n = 0; n < fCapacity; n++) { |
| 78 Slot& s = fSlots[index]; |
| 79 if (s.empty()) { |
| 80 // New entry. |
| 81 s.val = val; |
| 82 s.hash = hash; |
| 83 fCount++; |
| 84 return &s.val; |
| 85 } |
| 86 if (hash == s.hash && key == Traits::GetKey(s.val)) { |
| 87 // Overwrite previous entry. |
| 88 s.val = val; |
| 89 return &s.val; |
| 90 } |
| 91 index = this->next(index, n); |
| 92 } |
| 93 SkASSERT(false); |
| 94 return NULL; |
| 95 } |
| 96 |
| 97 void resize(int capacity) { |
| 98 int oldCapacity = fCapacity; |
| 99 SkDEBUGCODE(int oldCount = fCount); |
| 100 |
| 101 fCount = 0; |
| 102 fCapacity = capacity; |
| 103 SkAutoTArray<Slot> oldSlots(capacity); |
| 104 oldSlots.swap(fSlots); |
| 105 |
| 106 for (int i = 0; i < oldCapacity; i++) { |
| 107 const Slot& s = oldSlots[i]; |
| 108 if (!s.empty()) { |
| 109 this->uncheckedSet(s.val); |
| 110 } |
| 111 } |
| 112 SkASSERT(fCount == oldCount); |
| 113 } |
| 114 |
| 115 int next(int index, int n) const { |
| 116 // A valid strategy explores all slots in [0, fCapacity) as n walks from
0 to fCapacity-1. |
| 117 // Both of these strategies are valid: |
| 118 //return (index + 0 + 1) & (fCapacity-1); // Linear probing. |
| 119 return (index + n + 1) & (fCapacity-1); // Quadratic probing. |
| 120 } |
| 121 |
| 122 static uint32_t Hash(K key) { |
| 123 uint32_t hash = Traits::Hash(key); |
| 124 return hash == 0 ? 1 : hash; // We reserve hash == 0 to mark empty slot
s. |
| 125 } |
| 126 |
| 127 struct Slot { |
| 128 Slot() : hash(0) {} |
| 129 bool empty() const { return hash == 0; } |
| 130 |
| 131 T val; |
| 132 uint32_t hash; |
| 133 }; |
| 134 |
| 135 int fCount, fCapacity; |
| 136 SkAutoTArray<Slot> fSlots; |
| 137 }; |
| 138 |
| 139 // Maps K->V. A more user-friendly wrapper around SkTHashTable, suitable for mo
st use cases. |
| 140 // K and V are treated as ordinary copyable C++ types, with no assumed relations
hip between the two. |
| 141 template <typename K, typename V, uint32_t(*HashK)(K)> |
| 142 class SkTHashMap : SkNoncopyable { |
| 143 public: |
| 144 SkTHashMap() {} |
| 145 |
| 146 // How many key/value pairs are in the table? |
| 147 int count() const { return fTable.count(); } |
| 148 |
| 149 // N.B. The pointers returned by set() and find() are valid only until the n
ext call to set(). |
| 150 |
| 151 // Set key to val in the table, replacing any previous value with the same k
ey. |
| 152 // We copy both key and val, and return a pointer to the value copy now in t
he table. |
| 153 V* set(K key, V val) { |
| 154 Pair in = { key, val }; |
| 155 Pair* out = fTable.set(in); |
| 156 return &out->val; |
| 157 } |
| 158 |
| 159 // If there is key/value entry in the table with this key, return a pointer
to the value. |
| 160 // If not, return NULL. |
| 161 V* find(K key) const { |
| 162 if (Pair* p = fTable.find(key)) { |
| 163 return &p->val; |
| 164 } |
| 165 return NULL; |
| 166 } |
| 167 |
| 168 // Call fn on every key/value pair in the table. You may mutate the value b
ut not the key. |
| 169 void foreach(void(*fn)(K, V*)) { fTable.foreach(ForEach, fn); } |
| 170 |
| 171 private: |
| 172 struct Pair { |
| 173 K key; |
| 174 V val; |
| 175 static K GetKey(Pair p) { return p.key; } |
| 176 static uint32_t Hash(K key) { return HashK(key); } |
| 177 }; |
| 178 static void ForEach(Pair* p, void (*fn)(K, V*)) { fn(p->key, &p->val); } |
| 179 |
| 180 SkTHashTable<Pair, K> fTable; |
| 181 }; |
| 182 |
| 183 // A set of T. T is treated as an ordiary copyable C++ type. |
| 184 template <typename T, uint32_t(*HashT)(T)> |
| 185 class SkTHashSet : SkNoncopyable { |
| 186 public: |
| 187 SkTHashSet() {} |
| 188 |
| 189 // How many items are in the set? |
| 190 int count() const { return fTable.count(); } |
| 191 |
| 192 // Copy an item into the set. |
| 193 void add(T item) { fTable.set(item); } |
| 194 |
| 195 // Is this item in the set? |
| 196 bool contains(T item) const { return SkToBool(fTable.find(item)); } |
| 197 |
| 198 private: |
| 199 struct Traits { |
| 200 static T GetKey(T item) { return item; } |
| 201 static uint32_t Hash(T item) { return HashT(item); } |
| 202 }; |
| 203 SkTHashTable<T, T, Traits> fTable; |
| 204 }; |
| 205 |
| 206 #endif//SkTHash_DEFINED |
OLD | NEW |