| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2006 The Android Open Source Project | 2 * Copyright 2006 The Android Open Source Project |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #include "SkGeometry.h" | 8 #include "SkGeometry.h" |
| 9 #include "SkMatrix.h" | 9 #include "SkMatrix.h" |
| 10 | 10 |
| (...skipping 1594 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1605 | 1605 |
| 1606 int conicCount = quadrant; | 1606 int conicCount = quadrant; |
| 1607 for (int i = 0; i < conicCount; ++i) { | 1607 for (int i = 0; i < conicCount; ++i) { |
| 1608 dst[i].set(&quadrantPts[i * 2], quadrantWeight); | 1608 dst[i].set(&quadrantPts[i * 2], quadrantWeight); |
| 1609 } | 1609 } |
| 1610 | 1610 |
| 1611 // Now compute any remaing (sub-90-degree) arc for the last conic | 1611 // Now compute any remaing (sub-90-degree) arc for the last conic |
| 1612 const SkPoint finalP = { x, y }; | 1612 const SkPoint finalP = { x, y }; |
| 1613 const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit
-vector | 1613 const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit
-vector |
| 1614 const SkScalar dot = SkVector::DotProduct(lastQ, finalP); | 1614 const SkScalar dot = SkVector::DotProduct(lastQ, finalP); |
| 1615 SkASSERT(0 <= dot && dot <= SK_Scalar1); | 1615 SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero); |
| 1616 | 1616 |
| 1617 if (dot < 1 - SK_ScalarNearlyZero) { | 1617 if (dot < 1 - SK_ScalarNearlyZero) { |
| 1618 SkVector offCurve = { lastQ.x() + x, lastQ.y() + y }; | 1618 SkVector offCurve = { lastQ.x() + x, lastQ.y() + y }; |
| 1619 // compute the bisector vector, and then rescale to be the off-curve poi
nt. | 1619 // compute the bisector vector, and then rescale to be the off-curve poi
nt. |
| 1620 // we compute its length from cos(theta/2) = length / 1, using half-angl
e identity we get | 1620 // we compute its length from cos(theta/2) = length / 1, using half-angl
e identity we get |
| 1621 // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to com
puted the dot. | 1621 // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to com
puted the dot. |
| 1622 // This is nice, since our computed weight is cos(theta/2) as well! | 1622 // This is nice, since our computed weight is cos(theta/2) as well! |
| 1623 // | 1623 // |
| 1624 const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2); | 1624 const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2); |
| 1625 offCurve.setLength(SkScalarInvert(cosThetaOver2)); | 1625 offCurve.setLength(SkScalarInvert(cosThetaOver2)); |
| 1626 dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2); | 1626 dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2); |
| 1627 conicCount += 1; | 1627 conicCount += 1; |
| 1628 } | 1628 } |
| 1629 | 1629 |
| 1630 // now handle counter-clockwise and the initial unitStart rotation | 1630 // now handle counter-clockwise and the initial unitStart rotation |
| 1631 SkMatrix matrix; | 1631 SkMatrix matrix; |
| 1632 matrix.setSinCos(uStart.fY, uStart.fX); | 1632 matrix.setSinCos(uStart.fY, uStart.fX); |
| 1633 if (dir == kCCW_SkRotationDirection) { | 1633 if (dir == kCCW_SkRotationDirection) { |
| 1634 matrix.preScale(SK_Scalar1, -SK_Scalar1); | 1634 matrix.preScale(SK_Scalar1, -SK_Scalar1); |
| 1635 } | 1635 } |
| 1636 if (userMatrix) { | 1636 if (userMatrix) { |
| 1637 matrix.postConcat(*userMatrix); | 1637 matrix.postConcat(*userMatrix); |
| 1638 } | 1638 } |
| 1639 for (int i = 0; i < conicCount; ++i) { | 1639 for (int i = 0; i < conicCount; ++i) { |
| 1640 matrix.mapPoints(dst[i].fPts, 3); | 1640 matrix.mapPoints(dst[i].fPts, 3); |
| 1641 } | 1641 } |
| 1642 return conicCount; | 1642 return conicCount; |
| 1643 } | 1643 } |
| OLD | NEW |