| OLD | NEW |
| 1 // Copyright 2014 the V8 project authors. All rights reserved. | 1 // Copyright 2015 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include <functional> | 5 #include <functional> |
| 6 | 6 |
| 7 #include "src/codegen.h" | 7 #include "src/codegen.h" |
| 8 #include "src/compiler/js-operator.h" | 8 #include "src/compiler/js-operator.h" |
| 9 #include "src/compiler/node-properties.h" | 9 #include "src/compiler/node-properties.h" |
| 10 #include "src/compiler/typer.h" | |
| 11 #include "test/cctest/cctest.h" | |
| 12 #include "test/cctest/compiler/graph-builder-tester.h" | |
| 13 #include "test/cctest/types-fuzz.h" | 10 #include "test/cctest/types-fuzz.h" |
| 11 #include "test/unittests/compiler/graph-unittest.h" |
| 14 | 12 |
| 15 using namespace v8::internal; | 13 using namespace v8::internal; |
| 16 using namespace v8::internal::compiler; | 14 using namespace v8::internal::compiler; |
| 17 | 15 |
| 18 | 16 |
| 19 // TODO(titzer): generate a large set of deterministic inputs for these tests. | 17 // TODO(titzer): generate a large set of deterministic inputs for these tests. |
| 20 class TyperTester : public HandleAndZoneScope, public GraphAndBuilders { | 18 class TyperTest : public TypedGraphTest { |
| 21 public: | 19 public: |
| 22 TyperTester() | 20 TyperTest() |
| 23 : GraphAndBuilders(main_zone()), | 21 : TypedGraphTest(3), |
| 24 types_(main_zone(), isolate()), | 22 types_(zone(), isolate(), random_number_generator()), |
| 25 typer_(isolate(), graph(), MaybeHandle<Context>()), | 23 javascript_(zone()) { |
| 26 javascript_(main_zone()) { | |
| 27 Node* s = graph()->NewNode(common()->Start(3)); | |
| 28 graph()->SetStart(s); | |
| 29 context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start()); | 24 context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start()); |
| 30 rng_ = isolate()->random_number_generator(); | 25 rng_ = random_number_generator(); |
| 31 | 26 |
| 32 integers.push_back(0); | 27 integers.push_back(0); |
| 33 integers.push_back(0); | 28 integers.push_back(0); |
| 34 integers.push_back(-1); | 29 integers.push_back(-1); |
| 35 integers.push_back(+1); | 30 integers.push_back(+1); |
| 36 integers.push_back(-V8_INFINITY); | 31 integers.push_back(-V8_INFINITY); |
| 37 integers.push_back(+V8_INFINITY); | 32 integers.push_back(+V8_INFINITY); |
| 38 for (int i = 0; i < 5; ++i) { | 33 for (int i = 0; i < 5; ++i) { |
| 39 double x = rng_->NextInt(); | 34 double x = rng_->NextInt(); |
| 40 integers.push_back(x); | 35 integers.push_back(x); |
| 41 x *= rng_->NextInt(); | 36 x *= rng_->NextInt(); |
| 42 if (!IsMinusZero(x)) integers.push_back(x); | 37 if (!IsMinusZero(x)) integers.push_back(x); |
| 43 } | 38 } |
| 44 | 39 |
| 45 int32s.push_back(0); | 40 int32s.push_back(0); |
| 46 int32s.push_back(0); | 41 int32s.push_back(0); |
| 47 int32s.push_back(-1); | 42 int32s.push_back(-1); |
| 48 int32s.push_back(+1); | 43 int32s.push_back(+1); |
| 49 int32s.push_back(kMinInt); | 44 int32s.push_back(kMinInt); |
| 50 int32s.push_back(kMaxInt); | 45 int32s.push_back(kMaxInt); |
| 51 for (int i = 0; i < 10; ++i) { | 46 for (int i = 0; i < 10; ++i) { |
| 52 int32s.push_back(rng_->NextInt()); | 47 int32s.push_back(rng_->NextInt()); |
| 53 } | 48 } |
| 54 } | 49 } |
| 55 | 50 |
| 56 Types<Type, Type*, Zone> types_; | 51 Types<Type, Type*, Zone> types_; |
| 57 Typer typer_; | |
| 58 JSOperatorBuilder javascript_; | 52 JSOperatorBuilder javascript_; |
| 59 Node* context_node_; | 53 Node* context_node_; |
| 60 v8::base::RandomNumberGenerator* rng_; | 54 v8::base::RandomNumberGenerator* rng_; |
| 61 std::vector<double> integers; | 55 std::vector<double> integers; |
| 62 std::vector<double> int32s; | 56 std::vector<double> int32s; |
| 63 | 57 |
| 64 Isolate* isolate() { return main_isolate(); } | |
| 65 Graph* graph() { return main_graph_; } | |
| 66 CommonOperatorBuilder* common() { return &main_common_; } | |
| 67 | |
| 68 Node* Parameter(int index = 0) { | |
| 69 return graph()->NewNode(common()->Parameter(index), graph()->start()); | |
| 70 } | |
| 71 | |
| 72 Type* TypeBinaryOp(const Operator* op, Type* lhs, Type* rhs) { | 58 Type* TypeBinaryOp(const Operator* op, Type* lhs, Type* rhs) { |
| 73 Node* p0 = Parameter(0); | 59 Node* p0 = Parameter(0); |
| 74 Node* p1 = Parameter(1); | 60 Node* p1 = Parameter(1); |
| 75 NodeProperties::SetBounds(p0, Bounds(lhs)); | 61 NodeProperties::SetBounds(p0, Bounds(lhs)); |
| 76 NodeProperties::SetBounds(p1, Bounds(rhs)); | 62 NodeProperties::SetBounds(p1, Bounds(rhs)); |
| 77 Node* n = graph()->NewNode( | 63 Node* n = graph()->NewNode(op, p0, p1, context_node_, graph()->start(), |
| 78 op, p0, p1, context_node_, graph()->start(), graph()->start()); | 64 graph()->start()); |
| 79 return NodeProperties::GetBounds(n).upper; | 65 return NodeProperties::GetBounds(n).upper; |
| 80 } | 66 } |
| 81 | 67 |
| 82 Type* RandomRange(bool int32 = false) { | 68 Type* RandomRange(bool int32 = false) { |
| 83 std::vector<double>& numbers = int32 ? int32s : integers; | 69 std::vector<double>& numbers = int32 ? int32s : integers; |
| 84 double i = numbers[rng_->NextInt(static_cast<int>(numbers.size()))]; | 70 double i = numbers[rng_->NextInt(static_cast<int>(numbers.size()))]; |
| 85 double j = numbers[rng_->NextInt(static_cast<int>(numbers.size()))]; | 71 double j = numbers[rng_->NextInt(static_cast<int>(numbers.size()))]; |
| 86 return NewRange(i, j); | 72 return NewRange(i, j); |
| 87 } | 73 } |
| 88 | 74 |
| 89 Type* NewRange(double i, double j) { | 75 Type* NewRange(double i, double j) { |
| 90 if (i > j) std::swap(i, j); | 76 if (i > j) std::swap(i, j); |
| 91 return Type::Range(i, j, main_zone()); | 77 return Type::Range(i, j, zone()); |
| 92 } | 78 } |
| 93 | 79 |
| 94 double RandomInt(double min, double max) { | 80 double RandomInt(double min, double max) { |
| 95 switch (rng_->NextInt(4)) { | 81 switch (rng_->NextInt(4)) { |
| 96 case 0: return min; | 82 case 0: |
| 97 case 1: return max; | 83 return min; |
| 98 default: break; | 84 case 1: |
| 85 return max; |
| 86 default: |
| 87 break; |
| 99 } | 88 } |
| 100 if (min == +V8_INFINITY) return +V8_INFINITY; | 89 if (min == +V8_INFINITY) return +V8_INFINITY; |
| 101 if (max == -V8_INFINITY) return -V8_INFINITY; | 90 if (max == -V8_INFINITY) return -V8_INFINITY; |
| 102 if (min == -V8_INFINITY && max == +V8_INFINITY) { | 91 if (min == -V8_INFINITY && max == +V8_INFINITY) { |
| 103 return rng_->NextInt() * static_cast<double>(rng_->NextInt()); | 92 return rng_->NextInt() * static_cast<double>(rng_->NextInt()); |
| 104 } | 93 } |
| 105 double result = nearbyint(min + (max - min) * rng_->NextDouble()); | 94 double result = nearbyint(min + (max - min) * rng_->NextDouble()); |
| 106 if (IsMinusZero(result)) return 0; | 95 if (IsMinusZero(result)) return 0; |
| 107 if (std::isnan(result)) return rng_->NextInt(2) ? min : max; | 96 if (std::isnan(result)) return rng_->NextInt(2) ? min : max; |
| 108 DCHECK(min <= result && result <= max); | 97 DCHECK(min <= result && result <= max); |
| (...skipping 14 matching lines...) Expand all Loading... |
| 123 for (int lmin = min_min; lmin <= max_min; lmin++) { | 112 for (int lmin = min_min; lmin <= max_min; lmin++) { |
| 124 for (int rmin = min_min; rmin <= max_min; rmin++) { | 113 for (int rmin = min_min; rmin <= max_min; rmin++) { |
| 125 Type* r1 = NewRange(lmin, lmin + width); | 114 Type* r1 = NewRange(lmin, lmin + width); |
| 126 Type* r2 = NewRange(rmin, rmin + width); | 115 Type* r2 = NewRange(rmin, rmin + width); |
| 127 Type* expected_type = TypeBinaryOp(op, r1, r2); | 116 Type* expected_type = TypeBinaryOp(op, r1, r2); |
| 128 | 117 |
| 129 for (int x1 = lmin; x1 < lmin + width; x1++) { | 118 for (int x1 = lmin; x1 < lmin + width; x1++) { |
| 130 for (int x2 = rmin; x2 < rmin + width; x2++) { | 119 for (int x2 = rmin; x2 < rmin + width; x2++) { |
| 131 double result_value = opfun(x1, x2); | 120 double result_value = opfun(x1, x2); |
| 132 Type* result_type = Type::Constant( | 121 Type* result_type = Type::Constant( |
| 133 isolate()->factory()->NewNumber(result_value), main_zone()); | 122 isolate()->factory()->NewNumber(result_value), zone()); |
| 134 CHECK(result_type->Is(expected_type)); | 123 EXPECT_TRUE(result_type->Is(expected_type)); |
| 135 } | 124 } |
| 136 } | 125 } |
| 137 } | 126 } |
| 138 } | 127 } |
| 139 } | 128 } |
| 140 } | 129 } |
| 141 | 130 |
| 142 template <class BinaryFunction> | 131 template <class BinaryFunction> |
| 143 void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) { | 132 void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) { |
| 144 TestBinaryArithOpCloseToZero(op, opfun, 8); | 133 TestBinaryArithOpCloseToZero(op, opfun, 8); |
| 145 for (int i = 0; i < 100; ++i) { | 134 for (int i = 0; i < 100; ++i) { |
| 146 Type::RangeType* r1 = RandomRange()->AsRange(); | 135 Type::RangeType* r1 = RandomRange()->AsRange(); |
| 147 Type::RangeType* r2 = RandomRange()->AsRange(); | 136 Type::RangeType* r2 = RandomRange()->AsRange(); |
| 148 Type* expected_type = TypeBinaryOp(op, r1, r2); | 137 Type* expected_type = TypeBinaryOp(op, r1, r2); |
| 149 for (int i = 0; i < 10; i++) { | 138 for (int i = 0; i < 10; i++) { |
| 150 double x1 = RandomInt(r1); | 139 double x1 = RandomInt(r1); |
| 151 double x2 = RandomInt(r2); | 140 double x2 = RandomInt(r2); |
| 152 double result_value = opfun(x1, x2); | 141 double result_value = opfun(x1, x2); |
| 153 Type* result_type = Type::Constant( | 142 Type* result_type = Type::Constant( |
| 154 isolate()->factory()->NewNumber(result_value), main_zone()); | 143 isolate()->factory()->NewNumber(result_value), zone()); |
| 155 CHECK(result_type->Is(expected_type)); | 144 EXPECT_TRUE(result_type->Is(expected_type)); |
| 156 } | 145 } |
| 157 } | 146 } |
| 158 } | 147 } |
| 159 | 148 |
| 160 template <class BinaryFunction> | 149 template <class BinaryFunction> |
| 161 void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) { | 150 void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) { |
| 162 for (int i = 0; i < 100; ++i) { | 151 for (int i = 0; i < 100; ++i) { |
| 163 Type::RangeType* r1 = RandomRange()->AsRange(); | 152 Type::RangeType* r1 = RandomRange()->AsRange(); |
| 164 Type::RangeType* r2 = RandomRange()->AsRange(); | 153 Type::RangeType* r2 = RandomRange()->AsRange(); |
| 165 Type* expected_type = TypeBinaryOp(op, r1, r2); | 154 Type* expected_type = TypeBinaryOp(op, r1, r2); |
| 166 for (int i = 0; i < 10; i++) { | 155 for (int i = 0; i < 10; i++) { |
| 167 double x1 = RandomInt(r1); | 156 double x1 = RandomInt(r1); |
| 168 double x2 = RandomInt(r2); | 157 double x2 = RandomInt(r2); |
| 169 bool result_value = opfun(x1, x2); | 158 bool result_value = opfun(x1, x2); |
| 170 Type* result_type = | 159 Type* result_type = |
| 171 Type::Constant(result_value ? isolate()->factory()->true_value() | 160 Type::Constant(result_value ? isolate()->factory()->true_value() |
| 172 : isolate()->factory()->false_value(), | 161 : isolate()->factory()->false_value(), |
| 173 main_zone()); | 162 zone()); |
| 174 CHECK(result_type->Is(expected_type)); | 163 EXPECT_TRUE(result_type->Is(expected_type)); |
| 175 } | 164 } |
| 176 } | 165 } |
| 177 } | 166 } |
| 178 | 167 |
| 179 template <class BinaryFunction> | 168 template <class BinaryFunction> |
| 180 void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) { | 169 void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) { |
| 181 for (int i = 0; i < 100; ++i) { | 170 for (int i = 0; i < 100; ++i) { |
| 182 Type::RangeType* r1 = RandomRange(true)->AsRange(); | 171 Type::RangeType* r1 = RandomRange(true)->AsRange(); |
| 183 Type::RangeType* r2 = RandomRange(true)->AsRange(); | 172 Type::RangeType* r2 = RandomRange(true)->AsRange(); |
| 184 Type* expected_type = TypeBinaryOp(op, r1, r2); | 173 Type* expected_type = TypeBinaryOp(op, r1, r2); |
| 185 for (int i = 0; i < 10; i++) { | 174 for (int i = 0; i < 10; i++) { |
| 186 int32_t x1 = static_cast<int32_t>(RandomInt(r1)); | 175 int32_t x1 = static_cast<int32_t>(RandomInt(r1)); |
| 187 int32_t x2 = static_cast<int32_t>(RandomInt(r2)); | 176 int32_t x2 = static_cast<int32_t>(RandomInt(r2)); |
| 188 double result_value = opfun(x1, x2); | 177 double result_value = opfun(x1, x2); |
| 189 Type* result_type = Type::Constant( | 178 Type* result_type = Type::Constant( |
| 190 isolate()->factory()->NewNumber(result_value), main_zone()); | 179 isolate()->factory()->NewNumber(result_value), zone()); |
| 191 CHECK(result_type->Is(expected_type)); | 180 EXPECT_TRUE(result_type->Is(expected_type)); |
| 192 } | 181 } |
| 193 } | 182 } |
| 194 } | 183 } |
| 195 | 184 |
| 196 Type* RandomSubtype(Type* type) { | 185 Type* RandomSubtype(Type* type) { |
| 197 Type* subtype; | 186 Type* subtype; |
| 198 do { | 187 do { |
| 199 subtype = types_.Fuzz(); | 188 subtype = types_.Fuzz(); |
| 200 } while (!subtype->Is(type)); | 189 } while (!subtype->Is(type)); |
| 201 return subtype; | 190 return subtype; |
| 202 } | 191 } |
| 203 | 192 |
| 204 void TestBinaryMonotonicity(const Operator* op) { | 193 void TestBinaryMonotonicity(const Operator* op) { |
| 205 for (int i = 0; i < 50; ++i) { | 194 for (int i = 0; i < 50; ++i) { |
| 206 Type* type1 = types_.Fuzz(); | 195 Type* type1 = types_.Fuzz(); |
| 207 Type* type2 = types_.Fuzz(); | 196 Type* type2 = types_.Fuzz(); |
| 208 Type* type = TypeBinaryOp(op, type1, type2); | 197 Type* type = TypeBinaryOp(op, type1, type2); |
| 209 Type* subtype1 = RandomSubtype(type1);; | 198 Type* subtype1 = RandomSubtype(type1); |
| 210 Type* subtype2 = RandomSubtype(type2);; | 199 ; |
| 200 Type* subtype2 = RandomSubtype(type2); |
| 201 ; |
| 211 Type* subtype = TypeBinaryOp(op, subtype1, subtype2); | 202 Type* subtype = TypeBinaryOp(op, subtype1, subtype2); |
| 212 CHECK(subtype->Is(type)); | 203 EXPECT_TRUE(subtype->Is(type)); |
| 213 } | 204 } |
| 214 } | 205 } |
| 215 }; | 206 }; |
| 216 | 207 |
| 217 | 208 |
| 218 static int32_t shift_left(int32_t x, int32_t y) { return x << y; } | 209 namespace { |
| 219 static int32_t shift_right(int32_t x, int32_t y) { return x >> y; } | 210 |
| 220 static int32_t bit_or(int32_t x, int32_t y) { return x | y; } | 211 int32_t shift_left(int32_t x, int32_t y) { return x << y; } |
| 221 static int32_t bit_and(int32_t x, int32_t y) { return x & y; } | 212 int32_t shift_right(int32_t x, int32_t y) { return x >> y; } |
| 222 static int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; } | 213 int32_t bit_or(int32_t x, int32_t y) { return x | y; } |
| 214 int32_t bit_and(int32_t x, int32_t y) { return x & y; } |
| 215 int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; } |
| 216 |
| 217 } // namespace |
| 223 | 218 |
| 224 | 219 |
| 225 //------------------------------------------------------------------------------ | 220 //------------------------------------------------------------------------------ |
| 226 // Soundness | 221 // Soundness |
| 227 // For simplicity, we currently only test soundness on expression operators | 222 // For simplicity, we currently only test soundness on expression operators |
| 228 // that have a direct equivalent in C++. Also, testing is currently limited | 223 // that have a direct equivalent in C++. Also, testing is currently limited |
| 229 // to ranges as input types. | 224 // to ranges as input types. |
| 230 | 225 |
| 231 | 226 |
| 232 TEST(TypeJSAdd) { | 227 TEST_F(TyperTest, TypeJSAdd) { |
| 233 TyperTester t; | 228 TestBinaryArithOp(javascript_.Add(), std::plus<double>()); |
| 234 t.TestBinaryArithOp(t.javascript_.Add(), std::plus<double>()); | |
| 235 } | 229 } |
| 236 | 230 |
| 237 | 231 |
| 238 TEST(TypeJSSubtract) { | 232 TEST_F(TyperTest, TypeJSSubtract) { |
| 239 TyperTester t; | 233 TestBinaryArithOp(javascript_.Subtract(), std::minus<double>()); |
| 240 t.TestBinaryArithOp(t.javascript_.Subtract(), std::minus<double>()); | |
| 241 } | 234 } |
| 242 | 235 |
| 243 | 236 |
| 244 TEST(TypeJSMultiply) { | 237 TEST_F(TyperTest, TypeJSMultiply) { |
| 245 TyperTester t; | 238 TestBinaryArithOp(javascript_.Multiply(), std::multiplies<double>()); |
| 246 t.TestBinaryArithOp(t.javascript_.Multiply(), std::multiplies<double>()); | |
| 247 } | 239 } |
| 248 | 240 |
| 249 | 241 |
| 250 TEST(TypeJSDivide) { | 242 TEST_F(TyperTest, TypeJSDivide) { |
| 251 TyperTester t; | 243 TestBinaryArithOp(javascript_.Divide(), std::divides<double>()); |
| 252 t.TestBinaryArithOp(t.javascript_.Divide(), std::divides<double>()); | |
| 253 } | 244 } |
| 254 | 245 |
| 255 | 246 |
| 256 TEST(TypeJSModulus) { | 247 TEST_F(TyperTest, TypeJSModulus) { |
| 257 TyperTester t; | 248 TestBinaryArithOp(javascript_.Modulus(), modulo); |
| 258 t.TestBinaryArithOp(t.javascript_.Modulus(), modulo); | |
| 259 } | 249 } |
| 260 | 250 |
| 261 | 251 |
| 262 TEST(TypeJSBitwiseOr) { | 252 TEST_F(TyperTest, TypeJSBitwiseOr) { |
| 263 TyperTester t; | 253 TestBinaryBitOp(javascript_.BitwiseOr(), bit_or); |
| 264 t.TestBinaryBitOp(t.javascript_.BitwiseOr(), bit_or); | |
| 265 } | 254 } |
| 266 | 255 |
| 267 | 256 |
| 268 TEST(TypeJSBitwiseAnd) { | 257 TEST_F(TyperTest, TypeJSBitwiseAnd) { |
| 269 TyperTester t; | 258 TestBinaryBitOp(javascript_.BitwiseAnd(), bit_and); |
| 270 t.TestBinaryBitOp(t.javascript_.BitwiseAnd(), bit_and); | |
| 271 } | 259 } |
| 272 | 260 |
| 273 | 261 |
| 274 TEST(TypeJSBitwiseXor) { | 262 TEST_F(TyperTest, TypeJSBitwiseXor) { |
| 275 TyperTester t; | 263 TestBinaryBitOp(javascript_.BitwiseXor(), bit_xor); |
| 276 t.TestBinaryBitOp(t.javascript_.BitwiseXor(), bit_xor); | |
| 277 } | 264 } |
| 278 | 265 |
| 279 | 266 |
| 280 TEST(TypeJSShiftLeft) { | 267 TEST_F(TyperTest, TypeJSShiftLeft) { |
| 281 TyperTester t; | 268 TestBinaryBitOp(javascript_.ShiftLeft(), shift_left); |
| 282 t.TestBinaryBitOp(t.javascript_.ShiftLeft(), shift_left); | |
| 283 } | 269 } |
| 284 | 270 |
| 285 | 271 |
| 286 TEST(TypeJSShiftRight) { | 272 TEST_F(TyperTest, TypeJSShiftRight) { |
| 287 TyperTester t; | 273 TestBinaryBitOp(javascript_.ShiftRight(), shift_right); |
| 288 t.TestBinaryBitOp(t.javascript_.ShiftRight(), shift_right); | |
| 289 } | 274 } |
| 290 | 275 |
| 291 | 276 |
| 292 TEST(TypeJSLessThan) { | 277 TEST_F(TyperTest, TypeJSLessThan) { |
| 293 TyperTester t; | 278 TestBinaryCompareOp(javascript_.LessThan(), std::less<double>()); |
| 294 t.TestBinaryCompareOp(t.javascript_.LessThan(), std::less<double>()); | |
| 295 } | 279 } |
| 296 | 280 |
| 297 | 281 |
| 298 TEST(TypeJSLessThanOrEqual) { | 282 TEST_F(TyperTest, TypeJSLessThanOrEqual) { |
| 299 TyperTester t; | 283 TestBinaryCompareOp(javascript_.LessThanOrEqual(), std::less_equal<double>()); |
| 300 t.TestBinaryCompareOp( | |
| 301 t.javascript_.LessThanOrEqual(), std::less_equal<double>()); | |
| 302 } | 284 } |
| 303 | 285 |
| 304 | 286 |
| 305 TEST(TypeJSGreaterThan) { | 287 TEST_F(TyperTest, TypeJSGreaterThan) { |
| 306 TyperTester t; | 288 TestBinaryCompareOp(javascript_.GreaterThan(), std::greater<double>()); |
| 307 t.TestBinaryCompareOp(t.javascript_.GreaterThan(), std::greater<double>()); | |
| 308 } | 289 } |
| 309 | 290 |
| 310 | 291 |
| 311 TEST(TypeJSGreaterThanOrEqual) { | 292 TEST_F(TyperTest, TypeJSGreaterThanOrEqual) { |
| 312 TyperTester t; | 293 TestBinaryCompareOp(javascript_.GreaterThanOrEqual(), |
| 313 t.TestBinaryCompareOp( | 294 std::greater_equal<double>()); |
| 314 t.javascript_.GreaterThanOrEqual(), std::greater_equal<double>()); | |
| 315 } | 295 } |
| 316 | 296 |
| 317 | 297 |
| 318 TEST(TypeJSEqual) { | 298 TEST_F(TyperTest, TypeJSEqual) { |
| 319 TyperTester t; | 299 TestBinaryCompareOp(javascript_.Equal(), std::equal_to<double>()); |
| 320 t.TestBinaryCompareOp(t.javascript_.Equal(), std::equal_to<double>()); | |
| 321 } | 300 } |
| 322 | 301 |
| 323 | 302 |
| 324 TEST(TypeJSNotEqual) { | 303 TEST_F(TyperTest, TypeJSNotEqual) { |
| 325 TyperTester t; | 304 TestBinaryCompareOp(javascript_.NotEqual(), std::not_equal_to<double>()); |
| 326 t.TestBinaryCompareOp(t.javascript_.NotEqual(), std::not_equal_to<double>()); | |
| 327 } | 305 } |
| 328 | 306 |
| 329 | 307 |
| 330 // For numbers there's no difference between strict and non-strict equality. | 308 // For numbers there's no difference between strict and non-strict equality. |
| 331 TEST(TypeJSStrictEqual) { | 309 TEST_F(TyperTest, TypeJSStrictEqual) { |
| 332 TyperTester t; | 310 TestBinaryCompareOp(javascript_.StrictEqual(), std::equal_to<double>()); |
| 333 t.TestBinaryCompareOp(t.javascript_.StrictEqual(), std::equal_to<double>()); | |
| 334 } | 311 } |
| 335 | 312 |
| 336 | 313 |
| 337 TEST(TypeJSStrictNotEqual) { | 314 TEST_F(TyperTest, TypeJSStrictNotEqual) { |
| 338 TyperTester t; | 315 TestBinaryCompareOp(javascript_.StrictNotEqual(), |
| 339 t.TestBinaryCompareOp( | 316 std::not_equal_to<double>()); |
| 340 t.javascript_.StrictNotEqual(), std::not_equal_to<double>()); | |
| 341 } | 317 } |
| 342 | 318 |
| 343 | 319 |
| 344 //------------------------------------------------------------------------------ | 320 //------------------------------------------------------------------------------ |
| 345 // Monotonicity | 321 // Monotonicity |
| 346 | 322 |
| 347 | 323 |
| 348 // List should be in sync with JS_SIMPLE_BINOP_LIST. | 324 // List should be in sync with JS_SIMPLE_BINOP_LIST. |
| 349 #define JSBINOP_LIST(V) \ | 325 #define JSBINOP_LIST(V) \ |
| 350 V(Equal) \ | 326 V(Equal) \ |
| 351 V(NotEqual) \ | 327 V(NotEqual) \ |
| 352 V(StrictEqual) \ | 328 V(StrictEqual) \ |
| 353 V(StrictNotEqual) \ | 329 V(StrictNotEqual) \ |
| 354 V(LessThan) \ | 330 V(LessThan) \ |
| 355 V(GreaterThan) \ | 331 V(GreaterThan) \ |
| 356 V(LessThanOrEqual) \ | 332 V(LessThanOrEqual) \ |
| 357 V(GreaterThanOrEqual) \ | 333 V(GreaterThanOrEqual) \ |
| 358 V(BitwiseOr) \ | 334 V(BitwiseOr) \ |
| 359 V(BitwiseXor) \ | 335 V(BitwiseXor) \ |
| 360 V(BitwiseAnd) \ | 336 V(BitwiseAnd) \ |
| 361 V(ShiftLeft) \ | 337 V(ShiftLeft) \ |
| 362 V(ShiftRight) \ | 338 V(ShiftRight) \ |
| 363 V(ShiftRightLogical) \ | 339 V(ShiftRightLogical) \ |
| 364 V(Add) \ | 340 V(Add) \ |
| 365 V(Subtract) \ | 341 V(Subtract) \ |
| 366 V(Multiply) \ | 342 V(Multiply) \ |
| 367 V(Divide) \ | 343 V(Divide) \ |
| 368 V(Modulus) | 344 V(Modulus) |
| 369 | 345 |
| 370 | 346 |
| 371 #define TEST_FUNC(name) \ | 347 #define TEST_FUNC(name) \ |
| 372 TEST(Monotonicity_##name) { \ | 348 TEST_F(TyperTest, Monotonicity_##name) { \ |
| 373 TyperTester t; \ | 349 TestBinaryMonotonicity(javascript_.name()); \ |
| 374 t.TestBinaryMonotonicity(t.javascript_.name()); \ | |
| 375 } | 350 } |
| 376 JSBINOP_LIST(TEST_FUNC) | 351 JSBINOP_LIST(TEST_FUNC) |
| 377 #undef TEST_FUNC | 352 #undef TEST_FUNC |
| 353 |
| 354 |
| 355 //------------------------------------------------------------------------------ |
| 356 // Regression tests |
| 357 |
| 358 |
| 359 TEST_F(TyperTest, TypeRegressInt32Constant) { |
| 360 int values[] = {-5, 10}; |
| 361 for (auto i : values) { |
| 362 Node* c = graph()->NewNode(common()->Int32Constant(i)); |
| 363 Type* type = NodeProperties::GetBounds(c).upper; |
| 364 EXPECT_TRUE(type->Is(NewRange(i, i))); |
| 365 } |
| 366 } |
| OLD | NEW |