OLD | NEW |
1 // Copyright 2014 the V8 project authors. All rights reserved. | 1 // Copyright 2015 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include <functional> | 5 #include <functional> |
6 | 6 |
7 #include "src/codegen.h" | 7 #include "src/codegen.h" |
8 #include "src/compiler/js-operator.h" | 8 #include "src/compiler/js-operator.h" |
9 #include "src/compiler/node-properties.h" | 9 #include "src/compiler/node-properties.h" |
10 #include "src/compiler/typer.h" | |
11 #include "test/cctest/cctest.h" | |
12 #include "test/cctest/compiler/graph-builder-tester.h" | |
13 #include "test/cctest/types-fuzz.h" | 10 #include "test/cctest/types-fuzz.h" |
| 11 #include "test/unittests/compiler/graph-unittest.h" |
14 | 12 |
15 using namespace v8::internal; | 13 using namespace v8::internal; |
16 using namespace v8::internal::compiler; | 14 using namespace v8::internal::compiler; |
17 | 15 |
18 | 16 |
19 // TODO(titzer): generate a large set of deterministic inputs for these tests. | 17 // TODO(titzer): generate a large set of deterministic inputs for these tests. |
20 class TyperTester : public HandleAndZoneScope, public GraphAndBuilders { | 18 class TyperTest : public TypedGraphTest { |
21 public: | 19 public: |
22 TyperTester() | 20 TyperTest() |
23 : GraphAndBuilders(main_zone()), | 21 : TypedGraphTest(3), |
24 types_(main_zone(), isolate()), | 22 types_(zone(), isolate(), random_number_generator()), |
25 typer_(isolate(), graph(), MaybeHandle<Context>()), | 23 javascript_(zone()) { |
26 javascript_(main_zone()) { | |
27 Node* s = graph()->NewNode(common()->Start(3)); | |
28 graph()->SetStart(s); | |
29 context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start()); | 24 context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start()); |
30 rng_ = isolate()->random_number_generator(); | 25 rng_ = random_number_generator(); |
31 | 26 |
32 integers.push_back(0); | 27 integers.push_back(0); |
33 integers.push_back(0); | 28 integers.push_back(0); |
34 integers.push_back(-1); | 29 integers.push_back(-1); |
35 integers.push_back(+1); | 30 integers.push_back(+1); |
36 integers.push_back(-V8_INFINITY); | 31 integers.push_back(-V8_INFINITY); |
37 integers.push_back(+V8_INFINITY); | 32 integers.push_back(+V8_INFINITY); |
38 for (int i = 0; i < 5; ++i) { | 33 for (int i = 0; i < 5; ++i) { |
39 double x = rng_->NextInt(); | 34 double x = rng_->NextInt(); |
40 integers.push_back(x); | 35 integers.push_back(x); |
41 x *= rng_->NextInt(); | 36 x *= rng_->NextInt(); |
42 if (!IsMinusZero(x)) integers.push_back(x); | 37 if (!IsMinusZero(x)) integers.push_back(x); |
43 } | 38 } |
44 | 39 |
45 int32s.push_back(0); | 40 int32s.push_back(0); |
46 int32s.push_back(0); | 41 int32s.push_back(0); |
47 int32s.push_back(-1); | 42 int32s.push_back(-1); |
48 int32s.push_back(+1); | 43 int32s.push_back(+1); |
49 int32s.push_back(kMinInt); | 44 int32s.push_back(kMinInt); |
50 int32s.push_back(kMaxInt); | 45 int32s.push_back(kMaxInt); |
51 for (int i = 0; i < 10; ++i) { | 46 for (int i = 0; i < 10; ++i) { |
52 int32s.push_back(rng_->NextInt()); | 47 int32s.push_back(rng_->NextInt()); |
53 } | 48 } |
54 } | 49 } |
55 | 50 |
56 Types<Type, Type*, Zone> types_; | 51 Types<Type, Type*, Zone> types_; |
57 Typer typer_; | |
58 JSOperatorBuilder javascript_; | 52 JSOperatorBuilder javascript_; |
59 Node* context_node_; | 53 Node* context_node_; |
60 v8::base::RandomNumberGenerator* rng_; | 54 v8::base::RandomNumberGenerator* rng_; |
61 std::vector<double> integers; | 55 std::vector<double> integers; |
62 std::vector<double> int32s; | 56 std::vector<double> int32s; |
63 | 57 |
64 Isolate* isolate() { return main_isolate(); } | |
65 Graph* graph() { return main_graph_; } | |
66 CommonOperatorBuilder* common() { return &main_common_; } | |
67 | |
68 Node* Parameter(int index = 0) { | |
69 return graph()->NewNode(common()->Parameter(index), graph()->start()); | |
70 } | |
71 | |
72 Type* TypeBinaryOp(const Operator* op, Type* lhs, Type* rhs) { | 58 Type* TypeBinaryOp(const Operator* op, Type* lhs, Type* rhs) { |
73 Node* p0 = Parameter(0); | 59 Node* p0 = Parameter(0); |
74 Node* p1 = Parameter(1); | 60 Node* p1 = Parameter(1); |
75 NodeProperties::SetBounds(p0, Bounds(lhs)); | 61 NodeProperties::SetBounds(p0, Bounds(lhs)); |
76 NodeProperties::SetBounds(p1, Bounds(rhs)); | 62 NodeProperties::SetBounds(p1, Bounds(rhs)); |
77 Node* n = graph()->NewNode( | 63 Node* n = graph()->NewNode(op, p0, p1, context_node_, graph()->start(), |
78 op, p0, p1, context_node_, graph()->start(), graph()->start()); | 64 graph()->start()); |
79 return NodeProperties::GetBounds(n).upper; | 65 return NodeProperties::GetBounds(n).upper; |
80 } | 66 } |
81 | 67 |
82 Type* RandomRange(bool int32 = false) { | 68 Type* RandomRange(bool int32 = false) { |
83 std::vector<double>& numbers = int32 ? int32s : integers; | 69 std::vector<double>& numbers = int32 ? int32s : integers; |
84 double i = numbers[rng_->NextInt(static_cast<int>(numbers.size()))]; | 70 double i = numbers[rng_->NextInt(static_cast<int>(numbers.size()))]; |
85 double j = numbers[rng_->NextInt(static_cast<int>(numbers.size()))]; | 71 double j = numbers[rng_->NextInt(static_cast<int>(numbers.size()))]; |
86 return NewRange(i, j); | 72 return NewRange(i, j); |
87 } | 73 } |
88 | 74 |
89 Type* NewRange(double i, double j) { | 75 Type* NewRange(double i, double j) { |
90 if (i > j) std::swap(i, j); | 76 if (i > j) std::swap(i, j); |
91 return Type::Range(i, j, main_zone()); | 77 return Type::Range(i, j, zone()); |
92 } | 78 } |
93 | 79 |
94 double RandomInt(double min, double max) { | 80 double RandomInt(double min, double max) { |
95 switch (rng_->NextInt(4)) { | 81 switch (rng_->NextInt(4)) { |
96 case 0: return min; | 82 case 0: |
97 case 1: return max; | 83 return min; |
98 default: break; | 84 case 1: |
| 85 return max; |
| 86 default: |
| 87 break; |
99 } | 88 } |
100 if (min == +V8_INFINITY) return +V8_INFINITY; | 89 if (min == +V8_INFINITY) return +V8_INFINITY; |
101 if (max == -V8_INFINITY) return -V8_INFINITY; | 90 if (max == -V8_INFINITY) return -V8_INFINITY; |
102 if (min == -V8_INFINITY && max == +V8_INFINITY) { | 91 if (min == -V8_INFINITY && max == +V8_INFINITY) { |
103 return rng_->NextInt() * static_cast<double>(rng_->NextInt()); | 92 return rng_->NextInt() * static_cast<double>(rng_->NextInt()); |
104 } | 93 } |
105 double result = nearbyint(min + (max - min) * rng_->NextDouble()); | 94 double result = nearbyint(min + (max - min) * rng_->NextDouble()); |
106 if (IsMinusZero(result)) return 0; | 95 if (IsMinusZero(result)) return 0; |
107 if (std::isnan(result)) return rng_->NextInt(2) ? min : max; | 96 if (std::isnan(result)) return rng_->NextInt(2) ? min : max; |
108 DCHECK(min <= result && result <= max); | 97 DCHECK(min <= result && result <= max); |
(...skipping 14 matching lines...) Expand all Loading... |
123 for (int lmin = min_min; lmin <= max_min; lmin++) { | 112 for (int lmin = min_min; lmin <= max_min; lmin++) { |
124 for (int rmin = min_min; rmin <= max_min; rmin++) { | 113 for (int rmin = min_min; rmin <= max_min; rmin++) { |
125 Type* r1 = NewRange(lmin, lmin + width); | 114 Type* r1 = NewRange(lmin, lmin + width); |
126 Type* r2 = NewRange(rmin, rmin + width); | 115 Type* r2 = NewRange(rmin, rmin + width); |
127 Type* expected_type = TypeBinaryOp(op, r1, r2); | 116 Type* expected_type = TypeBinaryOp(op, r1, r2); |
128 | 117 |
129 for (int x1 = lmin; x1 < lmin + width; x1++) { | 118 for (int x1 = lmin; x1 < lmin + width; x1++) { |
130 for (int x2 = rmin; x2 < rmin + width; x2++) { | 119 for (int x2 = rmin; x2 < rmin + width; x2++) { |
131 double result_value = opfun(x1, x2); | 120 double result_value = opfun(x1, x2); |
132 Type* result_type = Type::Constant( | 121 Type* result_type = Type::Constant( |
133 isolate()->factory()->NewNumber(result_value), main_zone()); | 122 isolate()->factory()->NewNumber(result_value), zone()); |
134 CHECK(result_type->Is(expected_type)); | 123 EXPECT_TRUE(result_type->Is(expected_type)); |
135 } | 124 } |
136 } | 125 } |
137 } | 126 } |
138 } | 127 } |
139 } | 128 } |
140 } | 129 } |
141 | 130 |
142 template <class BinaryFunction> | 131 template <class BinaryFunction> |
143 void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) { | 132 void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) { |
144 TestBinaryArithOpCloseToZero(op, opfun, 8); | 133 TestBinaryArithOpCloseToZero(op, opfun, 8); |
145 for (int i = 0; i < 100; ++i) { | 134 for (int i = 0; i < 100; ++i) { |
146 Type::RangeType* r1 = RandomRange()->AsRange(); | 135 Type::RangeType* r1 = RandomRange()->AsRange(); |
147 Type::RangeType* r2 = RandomRange()->AsRange(); | 136 Type::RangeType* r2 = RandomRange()->AsRange(); |
148 Type* expected_type = TypeBinaryOp(op, r1, r2); | 137 Type* expected_type = TypeBinaryOp(op, r1, r2); |
149 for (int i = 0; i < 10; i++) { | 138 for (int i = 0; i < 10; i++) { |
150 double x1 = RandomInt(r1); | 139 double x1 = RandomInt(r1); |
151 double x2 = RandomInt(r2); | 140 double x2 = RandomInt(r2); |
152 double result_value = opfun(x1, x2); | 141 double result_value = opfun(x1, x2); |
153 Type* result_type = Type::Constant( | 142 Type* result_type = Type::Constant( |
154 isolate()->factory()->NewNumber(result_value), main_zone()); | 143 isolate()->factory()->NewNumber(result_value), zone()); |
155 CHECK(result_type->Is(expected_type)); | 144 EXPECT_TRUE(result_type->Is(expected_type)); |
156 } | 145 } |
157 } | 146 } |
158 } | 147 } |
159 | 148 |
160 template <class BinaryFunction> | 149 template <class BinaryFunction> |
161 void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) { | 150 void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) { |
162 for (int i = 0; i < 100; ++i) { | 151 for (int i = 0; i < 100; ++i) { |
163 Type::RangeType* r1 = RandomRange()->AsRange(); | 152 Type::RangeType* r1 = RandomRange()->AsRange(); |
164 Type::RangeType* r2 = RandomRange()->AsRange(); | 153 Type::RangeType* r2 = RandomRange()->AsRange(); |
165 Type* expected_type = TypeBinaryOp(op, r1, r2); | 154 Type* expected_type = TypeBinaryOp(op, r1, r2); |
166 for (int i = 0; i < 10; i++) { | 155 for (int i = 0; i < 10; i++) { |
167 double x1 = RandomInt(r1); | 156 double x1 = RandomInt(r1); |
168 double x2 = RandomInt(r2); | 157 double x2 = RandomInt(r2); |
169 bool result_value = opfun(x1, x2); | 158 bool result_value = opfun(x1, x2); |
170 Type* result_type = | 159 Type* result_type = |
171 Type::Constant(result_value ? isolate()->factory()->true_value() | 160 Type::Constant(result_value ? isolate()->factory()->true_value() |
172 : isolate()->factory()->false_value(), | 161 : isolate()->factory()->false_value(), |
173 main_zone()); | 162 zone()); |
174 CHECK(result_type->Is(expected_type)); | 163 EXPECT_TRUE(result_type->Is(expected_type)); |
175 } | 164 } |
176 } | 165 } |
177 } | 166 } |
178 | 167 |
179 template <class BinaryFunction> | 168 template <class BinaryFunction> |
180 void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) { | 169 void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) { |
181 for (int i = 0; i < 100; ++i) { | 170 for (int i = 0; i < 100; ++i) { |
182 Type::RangeType* r1 = RandomRange(true)->AsRange(); | 171 Type::RangeType* r1 = RandomRange(true)->AsRange(); |
183 Type::RangeType* r2 = RandomRange(true)->AsRange(); | 172 Type::RangeType* r2 = RandomRange(true)->AsRange(); |
184 Type* expected_type = TypeBinaryOp(op, r1, r2); | 173 Type* expected_type = TypeBinaryOp(op, r1, r2); |
185 for (int i = 0; i < 10; i++) { | 174 for (int i = 0; i < 10; i++) { |
186 int32_t x1 = static_cast<int32_t>(RandomInt(r1)); | 175 int32_t x1 = static_cast<int32_t>(RandomInt(r1)); |
187 int32_t x2 = static_cast<int32_t>(RandomInt(r2)); | 176 int32_t x2 = static_cast<int32_t>(RandomInt(r2)); |
188 double result_value = opfun(x1, x2); | 177 double result_value = opfun(x1, x2); |
189 Type* result_type = Type::Constant( | 178 Type* result_type = Type::Constant( |
190 isolate()->factory()->NewNumber(result_value), main_zone()); | 179 isolate()->factory()->NewNumber(result_value), zone()); |
191 CHECK(result_type->Is(expected_type)); | 180 EXPECT_TRUE(result_type->Is(expected_type)); |
192 } | 181 } |
193 } | 182 } |
194 } | 183 } |
195 | 184 |
196 Type* RandomSubtype(Type* type) { | 185 Type* RandomSubtype(Type* type) { |
197 Type* subtype; | 186 Type* subtype; |
198 do { | 187 do { |
199 subtype = types_.Fuzz(); | 188 subtype = types_.Fuzz(); |
200 } while (!subtype->Is(type)); | 189 } while (!subtype->Is(type)); |
201 return subtype; | 190 return subtype; |
202 } | 191 } |
203 | 192 |
204 void TestBinaryMonotonicity(const Operator* op) { | 193 void TestBinaryMonotonicity(const Operator* op) { |
205 for (int i = 0; i < 50; ++i) { | 194 for (int i = 0; i < 50; ++i) { |
206 Type* type1 = types_.Fuzz(); | 195 Type* type1 = types_.Fuzz(); |
207 Type* type2 = types_.Fuzz(); | 196 Type* type2 = types_.Fuzz(); |
208 Type* type = TypeBinaryOp(op, type1, type2); | 197 Type* type = TypeBinaryOp(op, type1, type2); |
209 Type* subtype1 = RandomSubtype(type1);; | 198 Type* subtype1 = RandomSubtype(type1); |
210 Type* subtype2 = RandomSubtype(type2);; | 199 ; |
| 200 Type* subtype2 = RandomSubtype(type2); |
| 201 ; |
211 Type* subtype = TypeBinaryOp(op, subtype1, subtype2); | 202 Type* subtype = TypeBinaryOp(op, subtype1, subtype2); |
212 CHECK(subtype->Is(type)); | 203 EXPECT_TRUE(subtype->Is(type)); |
213 } | 204 } |
214 } | 205 } |
215 }; | 206 }; |
216 | 207 |
217 | 208 |
218 static int32_t shift_left(int32_t x, int32_t y) { return x << y; } | 209 namespace { |
219 static int32_t shift_right(int32_t x, int32_t y) { return x >> y; } | 210 |
220 static int32_t bit_or(int32_t x, int32_t y) { return x | y; } | 211 int32_t shift_left(int32_t x, int32_t y) { return x << y; } |
221 static int32_t bit_and(int32_t x, int32_t y) { return x & y; } | 212 int32_t shift_right(int32_t x, int32_t y) { return x >> y; } |
222 static int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; } | 213 int32_t bit_or(int32_t x, int32_t y) { return x | y; } |
| 214 int32_t bit_and(int32_t x, int32_t y) { return x & y; } |
| 215 int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; } |
| 216 |
| 217 } // namespace |
223 | 218 |
224 | 219 |
225 //------------------------------------------------------------------------------ | 220 //------------------------------------------------------------------------------ |
226 // Soundness | 221 // Soundness |
227 // For simplicity, we currently only test soundness on expression operators | 222 // For simplicity, we currently only test soundness on expression operators |
228 // that have a direct equivalent in C++. Also, testing is currently limited | 223 // that have a direct equivalent in C++. Also, testing is currently limited |
229 // to ranges as input types. | 224 // to ranges as input types. |
230 | 225 |
231 | 226 |
232 TEST(TypeJSAdd) { | 227 TEST_F(TyperTest, TypeJSAdd) { |
233 TyperTester t; | 228 TestBinaryArithOp(javascript_.Add(), std::plus<double>()); |
234 t.TestBinaryArithOp(t.javascript_.Add(), std::plus<double>()); | |
235 } | 229 } |
236 | 230 |
237 | 231 |
238 TEST(TypeJSSubtract) { | 232 TEST_F(TyperTest, TypeJSSubtract) { |
239 TyperTester t; | 233 TestBinaryArithOp(javascript_.Subtract(), std::minus<double>()); |
240 t.TestBinaryArithOp(t.javascript_.Subtract(), std::minus<double>()); | |
241 } | 234 } |
242 | 235 |
243 | 236 |
244 TEST(TypeJSMultiply) { | 237 TEST_F(TyperTest, TypeJSMultiply) { |
245 TyperTester t; | 238 TestBinaryArithOp(javascript_.Multiply(), std::multiplies<double>()); |
246 t.TestBinaryArithOp(t.javascript_.Multiply(), std::multiplies<double>()); | |
247 } | 239 } |
248 | 240 |
249 | 241 |
250 TEST(TypeJSDivide) { | 242 TEST_F(TyperTest, TypeJSDivide) { |
251 TyperTester t; | 243 TestBinaryArithOp(javascript_.Divide(), std::divides<double>()); |
252 t.TestBinaryArithOp(t.javascript_.Divide(), std::divides<double>()); | |
253 } | 244 } |
254 | 245 |
255 | 246 |
256 TEST(TypeJSModulus) { | 247 TEST_F(TyperTest, TypeJSModulus) { |
257 TyperTester t; | 248 TestBinaryArithOp(javascript_.Modulus(), modulo); |
258 t.TestBinaryArithOp(t.javascript_.Modulus(), modulo); | |
259 } | 249 } |
260 | 250 |
261 | 251 |
262 TEST(TypeJSBitwiseOr) { | 252 TEST_F(TyperTest, TypeJSBitwiseOr) { |
263 TyperTester t; | 253 TestBinaryBitOp(javascript_.BitwiseOr(), bit_or); |
264 t.TestBinaryBitOp(t.javascript_.BitwiseOr(), bit_or); | |
265 } | 254 } |
266 | 255 |
267 | 256 |
268 TEST(TypeJSBitwiseAnd) { | 257 TEST_F(TyperTest, TypeJSBitwiseAnd) { |
269 TyperTester t; | 258 TestBinaryBitOp(javascript_.BitwiseAnd(), bit_and); |
270 t.TestBinaryBitOp(t.javascript_.BitwiseAnd(), bit_and); | |
271 } | 259 } |
272 | 260 |
273 | 261 |
274 TEST(TypeJSBitwiseXor) { | 262 TEST_F(TyperTest, TypeJSBitwiseXor) { |
275 TyperTester t; | 263 TestBinaryBitOp(javascript_.BitwiseXor(), bit_xor); |
276 t.TestBinaryBitOp(t.javascript_.BitwiseXor(), bit_xor); | |
277 } | 264 } |
278 | 265 |
279 | 266 |
280 TEST(TypeJSShiftLeft) { | 267 TEST_F(TyperTest, TypeJSShiftLeft) { |
281 TyperTester t; | 268 TestBinaryBitOp(javascript_.ShiftLeft(), shift_left); |
282 t.TestBinaryBitOp(t.javascript_.ShiftLeft(), shift_left); | |
283 } | 269 } |
284 | 270 |
285 | 271 |
286 TEST(TypeJSShiftRight) { | 272 TEST_F(TyperTest, TypeJSShiftRight) { |
287 TyperTester t; | 273 TestBinaryBitOp(javascript_.ShiftRight(), shift_right); |
288 t.TestBinaryBitOp(t.javascript_.ShiftRight(), shift_right); | |
289 } | 274 } |
290 | 275 |
291 | 276 |
292 TEST(TypeJSLessThan) { | 277 TEST_F(TyperTest, TypeJSLessThan) { |
293 TyperTester t; | 278 TestBinaryCompareOp(javascript_.LessThan(), std::less<double>()); |
294 t.TestBinaryCompareOp(t.javascript_.LessThan(), std::less<double>()); | |
295 } | 279 } |
296 | 280 |
297 | 281 |
298 TEST(TypeJSLessThanOrEqual) { | 282 TEST_F(TyperTest, TypeJSLessThanOrEqual) { |
299 TyperTester t; | 283 TestBinaryCompareOp(javascript_.LessThanOrEqual(), std::less_equal<double>()); |
300 t.TestBinaryCompareOp( | |
301 t.javascript_.LessThanOrEqual(), std::less_equal<double>()); | |
302 } | 284 } |
303 | 285 |
304 | 286 |
305 TEST(TypeJSGreaterThan) { | 287 TEST_F(TyperTest, TypeJSGreaterThan) { |
306 TyperTester t; | 288 TestBinaryCompareOp(javascript_.GreaterThan(), std::greater<double>()); |
307 t.TestBinaryCompareOp(t.javascript_.GreaterThan(), std::greater<double>()); | |
308 } | 289 } |
309 | 290 |
310 | 291 |
311 TEST(TypeJSGreaterThanOrEqual) { | 292 TEST_F(TyperTest, TypeJSGreaterThanOrEqual) { |
312 TyperTester t; | 293 TestBinaryCompareOp(javascript_.GreaterThanOrEqual(), |
313 t.TestBinaryCompareOp( | 294 std::greater_equal<double>()); |
314 t.javascript_.GreaterThanOrEqual(), std::greater_equal<double>()); | |
315 } | 295 } |
316 | 296 |
317 | 297 |
318 TEST(TypeJSEqual) { | 298 TEST_F(TyperTest, TypeJSEqual) { |
319 TyperTester t; | 299 TestBinaryCompareOp(javascript_.Equal(), std::equal_to<double>()); |
320 t.TestBinaryCompareOp(t.javascript_.Equal(), std::equal_to<double>()); | |
321 } | 300 } |
322 | 301 |
323 | 302 |
324 TEST(TypeJSNotEqual) { | 303 TEST_F(TyperTest, TypeJSNotEqual) { |
325 TyperTester t; | 304 TestBinaryCompareOp(javascript_.NotEqual(), std::not_equal_to<double>()); |
326 t.TestBinaryCompareOp(t.javascript_.NotEqual(), std::not_equal_to<double>()); | |
327 } | 305 } |
328 | 306 |
329 | 307 |
330 // For numbers there's no difference between strict and non-strict equality. | 308 // For numbers there's no difference between strict and non-strict equality. |
331 TEST(TypeJSStrictEqual) { | 309 TEST_F(TyperTest, TypeJSStrictEqual) { |
332 TyperTester t; | 310 TestBinaryCompareOp(javascript_.StrictEqual(), std::equal_to<double>()); |
333 t.TestBinaryCompareOp(t.javascript_.StrictEqual(), std::equal_to<double>()); | |
334 } | 311 } |
335 | 312 |
336 | 313 |
337 TEST(TypeJSStrictNotEqual) { | 314 TEST_F(TyperTest, TypeJSStrictNotEqual) { |
338 TyperTester t; | 315 TestBinaryCompareOp(javascript_.StrictNotEqual(), |
339 t.TestBinaryCompareOp( | 316 std::not_equal_to<double>()); |
340 t.javascript_.StrictNotEqual(), std::not_equal_to<double>()); | |
341 } | 317 } |
342 | 318 |
343 | 319 |
344 //------------------------------------------------------------------------------ | 320 //------------------------------------------------------------------------------ |
345 // Monotonicity | 321 // Monotonicity |
346 | 322 |
347 | 323 |
348 // List should be in sync with JS_SIMPLE_BINOP_LIST. | 324 // List should be in sync with JS_SIMPLE_BINOP_LIST. |
349 #define JSBINOP_LIST(V) \ | 325 #define JSBINOP_LIST(V) \ |
350 V(Equal) \ | 326 V(Equal) \ |
351 V(NotEqual) \ | 327 V(NotEqual) \ |
352 V(StrictEqual) \ | 328 V(StrictEqual) \ |
353 V(StrictNotEqual) \ | 329 V(StrictNotEqual) \ |
354 V(LessThan) \ | 330 V(LessThan) \ |
355 V(GreaterThan) \ | 331 V(GreaterThan) \ |
356 V(LessThanOrEqual) \ | 332 V(LessThanOrEqual) \ |
357 V(GreaterThanOrEqual) \ | 333 V(GreaterThanOrEqual) \ |
358 V(BitwiseOr) \ | 334 V(BitwiseOr) \ |
359 V(BitwiseXor) \ | 335 V(BitwiseXor) \ |
360 V(BitwiseAnd) \ | 336 V(BitwiseAnd) \ |
361 V(ShiftLeft) \ | 337 V(ShiftLeft) \ |
362 V(ShiftRight) \ | 338 V(ShiftRight) \ |
363 V(ShiftRightLogical) \ | 339 V(ShiftRightLogical) \ |
364 V(Add) \ | 340 V(Add) \ |
365 V(Subtract) \ | 341 V(Subtract) \ |
366 V(Multiply) \ | 342 V(Multiply) \ |
367 V(Divide) \ | 343 V(Divide) \ |
368 V(Modulus) | 344 V(Modulus) |
369 | 345 |
370 | 346 |
371 #define TEST_FUNC(name) \ | 347 #define TEST_FUNC(name) \ |
372 TEST(Monotonicity_##name) { \ | 348 TEST_F(TyperTest, Monotonicity_##name) { \ |
373 TyperTester t; \ | 349 TestBinaryMonotonicity(javascript_.name()); \ |
374 t.TestBinaryMonotonicity(t.javascript_.name()); \ | |
375 } | 350 } |
376 JSBINOP_LIST(TEST_FUNC) | 351 JSBINOP_LIST(TEST_FUNC) |
377 #undef TEST_FUNC | 352 #undef TEST_FUNC |
| 353 |
| 354 |
| 355 //------------------------------------------------------------------------------ |
| 356 // Regression tests |
| 357 |
| 358 |
| 359 TEST_F(TyperTest, TypeRegressInt32Constant) { |
| 360 int values[] = {-5, 10}; |
| 361 for (auto i : values) { |
| 362 Node* c = graph()->NewNode(common()->Int32Constant(i)); |
| 363 Type* type = NodeProperties::GetBounds(c).upper; |
| 364 EXPECT_TRUE(type->Is(NewRange(i, i))); |
| 365 } |
| 366 } |
OLD | NEW |