| Index: components/history/core/browser/scored_history_match.cc
 | 
| diff --git a/components/history/core/browser/scored_history_match.cc b/components/history/core/browser/scored_history_match.cc
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..f9c0396095b6003928464884c710cec3750ab2e0
 | 
| --- /dev/null
 | 
| +++ b/components/history/core/browser/scored_history_match.cc
 | 
| @@ -0,0 +1,371 @@
 | 
| +// Copyright (c) 2012 The Chromium Authors. All rights reserved.
 | 
| +// Use of this source code is governed by a BSD-style license that can be
 | 
| +// found in the LICENSE file.
 | 
| +
 | 
| +#include "components/history/core/browser/scored_history_match.h"
 | 
| +
 | 
| +#include <algorithm>
 | 
| +
 | 
| +#include "base/strings/string_util.h"
 | 
| +#include "base/strings/utf_offset_string_conversions.h"
 | 
| +#include "components/history/core/browser/scored_history_match_client.h"
 | 
| +#include "url/gurl.h"
 | 
| +
 | 
| +namespace history {
 | 
| +
 | 
| +// static
 | 
| +const size_t ScoredHistoryMatch::kMaxVisitsToScore = 10;
 | 
| +
 | 
| +ScoredHistoryMatch::ScoredHistoryMatch() : raw_score_(0), can_inline_(false) {
 | 
| +}
 | 
| +
 | 
| +ScoredHistoryMatch::ScoredHistoryMatch(
 | 
| +    const URLRow& row,
 | 
| +    const VisitInfoVector& visits,
 | 
| +    const std::string& languages,
 | 
| +    const base::string16& lower_string,
 | 
| +    const String16Vector& terms,
 | 
| +    const WordStarts& terms_to_word_starts_offsets,
 | 
| +    const RowWordStarts& word_starts,
 | 
| +    const base::Time now,
 | 
| +    const ScoredHistoryMatchClient* client)
 | 
| +    : HistoryMatch(row, 0, false, false), raw_score_(0), can_inline_(false) {
 | 
| +
 | 
| +  GURL gurl = row.url();
 | 
| +  if (!gurl.is_valid())
 | 
| +    return;
 | 
| +
 | 
| +  // Figure out where each search term appears in the URL and/or page title
 | 
| +  // so that we can score as well as provide autocomplete highlighting.
 | 
| +  base::OffsetAdjuster::Adjustments adjustments;
 | 
| +  base::string16 title = row.title();
 | 
| +  base::string16 url = client->CleanUpUrlAndTitleForMatching(
 | 
| +      gurl, languages, &adjustments, &title);
 | 
| +  int term_num = 0;
 | 
| +  for (const auto& term : terms) {
 | 
| +    TermMatches url_term_matches = MatchTermInString(term, url, term_num);
 | 
| +    TermMatches title_term_matches = MatchTermInString(term, title, term_num);
 | 
| +    if (url_term_matches.empty() && title_term_matches.empty())
 | 
| +      return;  // A term was not found in either URL or title - reject.
 | 
| +    url_matches_.insert(url_matches_.end(), url_term_matches.begin(),
 | 
| +                        url_term_matches.end());
 | 
| +    title_matches_.insert(title_matches_.end(), title_term_matches.begin(),
 | 
| +                          title_term_matches.end());
 | 
| +    ++term_num;
 | 
| +  }
 | 
| +
 | 
| +  // Sort matches by offset and eliminate any which overlap.
 | 
| +  // TODO(mpearson): Investigate whether this has any meaningful
 | 
| +  // effect on scoring.  (It's necessary at some point: removing
 | 
| +  // overlaps and sorting is needed to decide what to highlight in the
 | 
| +  // suggestion string.  But this sort and de-overlap doesn't have to
 | 
| +  // be done before scoring.)
 | 
| +  url_matches_ = SortAndDeoverlapMatches(url_matches_);
 | 
| +  title_matches_ = SortAndDeoverlapMatches(title_matches_);
 | 
| +
 | 
| +  // Only try to inline autocomplete match if we has a single term, some
 | 
| +  // url_matches and no space in the request.
 | 
| +  if (!url_matches_.empty() && terms.size() == 1 &&
 | 
| +      !IsWhitespace(*lower_string.rbegin())) {
 | 
| +    can_inline_ =
 | 
| +        client->CanInlineAutocompleteMatch(gurl, terms[0], &innermost_match);
 | 
| +  }
 | 
| +
 | 
| +  const float topicality_score = GetTopicalityScore(
 | 
| +      terms.size(), url, terms_to_word_starts_offsets, word_starts, client);
 | 
| +  const float frequency_score =
 | 
| +      GetFrequency(now, client->IsBoomarked(gurl), visits, client);
 | 
| +  raw_score_ = GetFinalRelevancyScore(topicality_score, frequency_score);
 | 
| +  raw_score_ =
 | 
| +      (raw_score_ <= kint32max) ? static_cast<int>(raw_score_) : kint32max;
 | 
| +
 | 
| +  // Now that we're done processing this entry, correct the offsets of the
 | 
| +  // matches in |url_matches_| so they point to offsets in the original URL
 | 
| +  // spec, not the cleaned-up URL string that we used for matching.
 | 
| +  std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches_);
 | 
| +  base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets);
 | 
| +  url_matches_ = ReplaceOffsetsInTermMatches(url_matches_, offsets);
 | 
| +}
 | 
| +
 | 
| +ScoredHistoryMatch::~ScoredHistoryMatch() {}
 | 
| +
 | 
| +// Comparison function for sorting ScoredMatches by their scores with
 | 
| +// intelligent tie-breaking.
 | 
| +bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1,
 | 
| +                                           const ScoredHistoryMatch& m2) {
 | 
| +  if (m1.raw_score() != m2.raw_score())
 | 
| +    return m1.raw_score() > m2.raw_score();
 | 
| +
 | 
| +  // This tie-breaking logic is inspired by / largely copied from the
 | 
| +  // ordering logic in history_url_provider.cc CompareHistoryMatch().
 | 
| +
 | 
| +  // A URL that has been typed at all is better than one that has never been
 | 
| +  // typed.  (Note "!"s on each side.)
 | 
| +  if (!m1.url_info.typed_count() != !m2.url_info.typed_count())
 | 
| +    return m1.url_info.typed_count() > m2.url_info.typed_count();
 | 
| +
 | 
| +  // Innermost matches (matches after any scheme or "www.") are better than
 | 
| +  // non-innermost matches.
 | 
| +  if (m1.innermost_match != m2.innermost_match)
 | 
| +    return m1.innermost_match;
 | 
| +
 | 
| +  // URLs that have been typed more often are better.
 | 
| +  if (m1.url_info.typed_count() != m2.url_info.typed_count())
 | 
| +    return m1.url_info.typed_count() > m2.url_info.typed_count();
 | 
| +
 | 
| +  // For URLs that have each been typed once, a host (alone) is better
 | 
| +  // than a page inside.
 | 
| +  if (m1.url_info.typed_count() == 1) {
 | 
| +    if (m1.IsHostOnly() != m2.IsHostOnly())
 | 
| +      return m1.IsHostOnly();
 | 
| +  }
 | 
| +
 | 
| +  // URLs that have been visited more often are better.
 | 
| +  if (m1.url_info.visit_count() != m2.url_info.visit_count())
 | 
| +    return m1.url_info.visit_count() > m2.url_info.visit_count();
 | 
| +
 | 
| +  // URLs that have been visited more recently are better.
 | 
| +  return m1.url_info.last_visit() > m2.url_info.last_visit();
 | 
| +}
 | 
| +
 | 
| +// static
 | 
| +TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts(
 | 
| +    const TermMatches& term_matches,
 | 
| +    const WordStarts& terms_to_word_starts_offsets,
 | 
| +    const WordStarts& word_starts,
 | 
| +    size_t start_pos,
 | 
| +    size_t end_pos) {
 | 
| +  // Return early if no filtering is needed.
 | 
| +  if (start_pos == std::string::npos)
 | 
| +    return term_matches;
 | 
| +  TermMatches filtered_matches;
 | 
| +  WordStarts::const_iterator next_word_starts = word_starts.begin();
 | 
| +  WordStarts::const_iterator end_word_starts = word_starts.end();
 | 
| +  for (const auto& term_match : term_matches) {
 | 
| +    const size_t term_offset =
 | 
| +        terms_to_word_starts_offsets[term_match.term_num];
 | 
| +    // Advance next_word_starts until it's >= the position of the term we're
 | 
| +    // considering (adjusted for where the word begins within the term).
 | 
| +    while ((next_word_starts != end_word_starts) &&
 | 
| +           (*next_word_starts < (term_match.offset + term_offset)))
 | 
| +      ++next_word_starts;
 | 
| +    // Add the match if it's before the position we start filtering at or
 | 
| +    // after the position we stop filtering at (assuming we have a position
 | 
| +    // to stop filtering at) or if it's at a word boundary.
 | 
| +    if ((term_match.offset < start_pos) ||
 | 
| +        ((end_pos != std::string::npos) && (term_match.offset >= end_pos)) ||
 | 
| +        ((next_word_starts != end_word_starts) &&
 | 
| +         (*next_word_starts == term_match.offset + term_offset)))
 | 
| +      filtered_matches.push_back(term_match);
 | 
| +  }
 | 
| +  return filtered_matches;
 | 
| +}
 | 
| +
 | 
| +float ScoredHistoryMatch::GetTopicalityScore(
 | 
| +    const int num_terms,
 | 
| +    const base::string16& url,
 | 
| +    const WordStarts& terms_to_word_starts_offsets,
 | 
| +    const RowWordStarts& word_starts,
 | 
| +    const ScoredHistoryMatchClient* client) {
 | 
| +  // DCHECK(raw_term_score_to_topicality_score_);
 | 
| +  // A vector that accumulates per-term scores.  The strongest match--a
 | 
| +  // match in the hostname at a word boundary--is worth 10 points.
 | 
| +  // Everything else is less.  In general, a match that's not at a word
 | 
| +  // boundary is worth about 1/4th or 1/5th of a match at the word boundary
 | 
| +  // in the same part of the URL/title.
 | 
| +  DCHECK_GT(num_terms, 0);
 | 
| +  std::vector<int> term_scores(num_terms, 0);
 | 
| +  WordStarts::const_iterator next_word_starts =
 | 
| +      word_starts.url_word_starts_.begin();
 | 
| +  WordStarts::const_iterator end_word_starts =
 | 
| +      word_starts.url_word_starts_.end();
 | 
| +  const size_t question_mark_pos = url.find('?');
 | 
| +  const size_t colon_pos = url.find(':');
 | 
| +  // The + 3 skips the // that probably appears in the protocol
 | 
| +  // after the colon.  If the protocol doesn't have two slashes after
 | 
| +  // the colon, that's okay--all this ends up doing is starting our
 | 
| +  // search for the next / a few characters into the hostname.  The
 | 
| +  // only times this can cause problems is if we have a protocol without
 | 
| +  // a // after the colon and the hostname is only one or two characters.
 | 
| +  // This isn't worth worrying about.
 | 
| +  const size_t end_of_hostname_pos = (colon_pos != std::string::npos) ?
 | 
| +      url.find('/', colon_pos + 3) : url.find('/');
 | 
| +  size_t last_part_of_hostname_pos =
 | 
| +      (end_of_hostname_pos != std::string::npos) ?
 | 
| +      url.rfind('.', end_of_hostname_pos) : url.rfind('.');
 | 
| +  // Loop through all URL matches and score them appropriately.
 | 
| +  // First, filter all matches not at a word boundary and in the path (or
 | 
| +  // later).
 | 
| +  url_matches_ = FilterTermMatchesByWordStarts(
 | 
| +      url_matches_, terms_to_word_starts_offsets, word_starts.url_word_starts_,
 | 
| +      end_of_hostname_pos,
 | 
| +      std::string::npos);
 | 
| +  if (colon_pos != std::string::npos) {
 | 
| +    // Also filter matches not at a word boundary and in the scheme.
 | 
| +    url_matches_ = FilterTermMatchesByWordStarts(
 | 
| +        url_matches_, terms_to_word_starts_offsets,
 | 
| +        word_starts.url_word_starts_, 0, colon_pos);
 | 
| +  }
 | 
| +  const bool allow_tld_matches = client->AllowTldMatches();
 | 
| +  const bool allow_scheme_matches = client->AllowSchemeMatches();
 | 
| +  for (const auto& url_match : url_matches_) {
 | 
| +    const size_t term_offset = terms_to_word_starts_offsets[url_match.term_num];
 | 
| +    // Advance next_word_starts until it's >= the position of the term we're
 | 
| +    // considering (adjusted for where the word begins within the term).
 | 
| +    while ((next_word_starts != end_word_starts) &&
 | 
| +           (*next_word_starts < (url_match.offset + term_offset))) {
 | 
| +      ++next_word_starts;
 | 
| +    }
 | 
| +    const bool at_word_boundary =
 | 
| +        (next_word_starts != end_word_starts) &&
 | 
| +        (*next_word_starts == url_match.offset + term_offset);
 | 
| +    if ((question_mark_pos != std::string::npos) &&
 | 
| +        (url_match.offset > question_mark_pos)) {
 | 
| +      // The match is in a CGI ?... fragment.
 | 
| +      DCHECK(at_word_boundary);
 | 
| +      term_scores[url_match.term_num] += 5;
 | 
| +    } else if ((end_of_hostname_pos != std::string::npos) &&
 | 
| +               (url_match.offset > end_of_hostname_pos)) {
 | 
| +      // The match is in the path.
 | 
| +      DCHECK(at_word_boundary);
 | 
| +      term_scores[url_match.term_num] += 8;
 | 
| +    } else if ((colon_pos == std::string::npos) ||
 | 
| +               (url_match.offset > colon_pos)) {
 | 
| +      // The match is in the hostname.
 | 
| +      if ((last_part_of_hostname_pos == std::string::npos) ||
 | 
| +          (url_match.offset < last_part_of_hostname_pos)) {
 | 
| +        // Either there are no dots in the hostname or this match isn't
 | 
| +        // the last dotted component.
 | 
| +        term_scores[url_match.term_num] += at_word_boundary ? 10 : 2;
 | 
| +      } else {
 | 
| +        // The match is in the last part of a dotted hostname (usually this
 | 
| +        // is the top-level domain .com, .net, etc.).
 | 
| +        if (allow_tld_matches)
 | 
| +          term_scores[url_match.term_num] += at_word_boundary ? 10 : 0;
 | 
| +      }
 | 
| +    } else {
 | 
| +      // The match is in the protocol (a.k.a. scheme).
 | 
| +      // Matches not at a word boundary should have been filtered already.
 | 
| +      DCHECK(at_word_boundary);
 | 
| +      match_in_scheme = true;
 | 
| +      if (allow_scheme_matches)
 | 
| +        term_scores[url_match.term_num] += 10;
 | 
| +    }
 | 
| +  }
 | 
| +  // Now do the analogous loop over all matches in the title.
 | 
| +  next_word_starts = word_starts.title_word_starts_.begin();
 | 
| +  end_word_starts = word_starts.title_word_starts_.end();
 | 
| +  int word_num = 0;
 | 
| +  title_matches_ = FilterTermMatchesByWordStarts(
 | 
| +      title_matches_, terms_to_word_starts_offsets,
 | 
| +      word_starts.title_word_starts_, 0, std::string::npos);
 | 
| +  for (const auto& title_match : title_matches_) {
 | 
| +    const size_t term_offset =
 | 
| +        terms_to_word_starts_offsets[title_match.term_num];
 | 
| +    // Advance next_word_starts until it's >= the position of the term we're
 | 
| +    // considering (adjusted for where the word begins within the term).
 | 
| +    while ((next_word_starts != end_word_starts) &&
 | 
| +           (*next_word_starts < (title_match.offset + term_offset))) {
 | 
| +      ++next_word_starts;
 | 
| +      ++word_num;
 | 
| +    }
 | 
| +    if (word_num >= 10) break;  // only count the first ten words
 | 
| +    DCHECK(next_word_starts != end_word_starts);
 | 
| +    DCHECK_EQ(*next_word_starts, title_match.offset + term_offset)
 | 
| +        << "not at word boundary";
 | 
| +    term_scores[title_match.term_num] += 8;
 | 
| +  }
 | 
| +  // TODO(mpearson): Restore logic for penalizing out-of-order matches.
 | 
| +  // (Perhaps discount them by 0.8?)
 | 
| +  // TODO(mpearson): Consider: if the earliest match occurs late in the string,
 | 
| +  // should we discount it?
 | 
| +  // TODO(mpearson): Consider: do we want to score based on how much of the
 | 
| +  // input string the input covers?  (I'm leaning toward no.)
 | 
| +
 | 
| +  // Compute the topicality_score as the sum of transformed term_scores.
 | 
| +  float topicality_score = 0;
 | 
| +  for (int term_score : term_scores) {
 | 
| +    // Drop this URL if it seems like a term didn't appear or, more precisely,
 | 
| +    // didn't appear in a part of the URL or title that we trust enough
 | 
| +    // to give it credit for.  For instance, terms that appear in the middle
 | 
| +    // of a CGI parameter get no credit.  Almost all the matches dropped
 | 
| +    // due to this test would look stupid if shown to the user.
 | 
| +    if (term_score == 0)
 | 
| +      return 0;
 | 
| +    topicality_score +=
 | 
| +        client->GetTopicalityScoreFromRawScore(term_score);
 | 
| +  }
 | 
| +  // TODO(mpearson): If there are multiple terms, consider taking the
 | 
| +  // geometric mean of per-term scores rather than the arithmetic mean.
 | 
| +
 | 
| +  return topicality_score / num_terms;
 | 
| +}
 | 
| +
 | 
| +// static
 | 
| +float ScoredHistoryMatch::GetFrequency(const base::Time& now,
 | 
| +                                       const bool bookmarked,
 | 
| +                                       const VisitInfoVector& visits,
 | 
| +                                       const ScoredHistoryMatchClient* client) {
 | 
| +  // Compute the weighted average |value_of_transition| over the last at
 | 
| +  // most kMaxVisitsToScore visits, where each visit is weighted using
 | 
| +  // GetRecencyScore() based on how many days ago it happened.  Use
 | 
| +  // kMaxVisitsToScore as the denominator for the average regardless of
 | 
| +  // how many visits there were in order to penalize a match that has
 | 
| +  // fewer visits than kMaxVisitsToScore.
 | 
| +  float summed_visit_points = 0;
 | 
| +  const int bookmark_value = client->BookmarkValue();
 | 
| +  size_t visits_to_score = std::min(visits.size(), kMaxVisitsToScore);
 | 
| +  for (size_t i = 0; i < visits_to_score; ++i) {
 | 
| +    int value_of_transition =
 | 
| +        (visits[i].second == ui::PAGE_TRANSITION_TYPED) ? 20 : 1;
 | 
| +    if (bookmarked)
 | 
| +      value_of_transition = std::max(value_of_transition, bookmark_value);
 | 
| +    const float bucket_weight =
 | 
| +        client->GetRecencyScore((now - visits[i].first).InDays());
 | 
| +    summed_visit_points += (value_of_transition * bucket_weight);
 | 
| +  }
 | 
| +  return visits.size() * summed_visit_points / kMaxVisitsToScore;
 | 
| +}
 | 
| +
 | 
| +// static
 | 
| +float ScoredHistoryMatch::GetFinalRelevancyScore(float topicality_score,
 | 
| +                                                 float frequency_score) {
 | 
| +  if (topicality_score == 0)
 | 
| +    return 0;
 | 
| +  // Here's how to interpret intermediate_score: Suppose the omnibox
 | 
| +  // has one input term.  Suppose we have a URL for which the omnibox
 | 
| +  // input term has a single URL hostname hit at a word boundary.  (This
 | 
| +  // implies topicality_score = 1.0.).  Then the intermediate_score for
 | 
| +  // this URL will depend entirely on the frequency_score with
 | 
| +  // this interpretation:
 | 
| +  // - a single typed visit more than three months ago, no other visits -> 0.2
 | 
| +  // - a visit every three days, no typed visits -> 0.706
 | 
| +  // - a visit every day, no typed visits -> 0.916
 | 
| +  // - a single typed visit yesterday, no other visits -> 2.0
 | 
| +  // - a typed visit once a week -> 11.77
 | 
| +  // - a typed visit every three days -> 14.12
 | 
| +  // - at least ten typed visits today -> 20.0 (maximum score)
 | 
| +  const float intermediate_score = topicality_score * frequency_score;
 | 
| +  // The below code maps intermediate_score to the range [0, 1399].
 | 
| +  // The score maxes out at 1400 (i.e., cannot beat a good inline result).
 | 
| +  if (intermediate_score <= 1) {
 | 
| +    // Linearly extrapolate between 0 and 1.5 so 0 has a score of 400
 | 
| +    // and 1.5 has a score of 600.
 | 
| +    const float slope = (600 - 400) / (1.5f - 0.0f);
 | 
| +    return 400 + slope * intermediate_score;
 | 
| +  }
 | 
| +  if (intermediate_score <= 12.0) {
 | 
| +    // Linearly extrapolate up to 12 so 12 has a score of 1300.
 | 
| +    const float slope = (1300 - 600) / (12.0f - 1.5f);
 | 
| +    return 600 + slope * (intermediate_score - 1.5);
 | 
| +  }
 | 
| +  // Linearly extrapolate so a score of 20 (or more) has a score of 1399.
 | 
| +  // (Scores above 20 are possible for URLs that have multiple term hits
 | 
| +  // in the URL and/or title and that are visited practically all
 | 
| +  // the time using typed visits.  We don't attempt to distinguish
 | 
| +  // between these very good results.)
 | 
| +  const float slope = (1399 - 1300) / (20.0f - 12.0f);
 | 
| +  return std::min(1399.0, 1300 + slope * (intermediate_score - 12.0));
 | 
| +}
 | 
| +
 | 
| +}  // namespace history
 | 
| 
 |