Index: components/history/core/browser/scored_history_match.cc |
diff --git a/components/history/core/browser/scored_history_match.cc b/components/history/core/browser/scored_history_match.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..f9c0396095b6003928464884c710cec3750ab2e0 |
--- /dev/null |
+++ b/components/history/core/browser/scored_history_match.cc |
@@ -0,0 +1,371 @@ |
+// Copyright (c) 2012 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "components/history/core/browser/scored_history_match.h" |
+ |
+#include <algorithm> |
+ |
+#include "base/strings/string_util.h" |
+#include "base/strings/utf_offset_string_conversions.h" |
+#include "components/history/core/browser/scored_history_match_client.h" |
+#include "url/gurl.h" |
+ |
+namespace history { |
+ |
+// static |
+const size_t ScoredHistoryMatch::kMaxVisitsToScore = 10; |
+ |
+ScoredHistoryMatch::ScoredHistoryMatch() : raw_score_(0), can_inline_(false) { |
+} |
+ |
+ScoredHistoryMatch::ScoredHistoryMatch( |
+ const URLRow& row, |
+ const VisitInfoVector& visits, |
+ const std::string& languages, |
+ const base::string16& lower_string, |
+ const String16Vector& terms, |
+ const WordStarts& terms_to_word_starts_offsets, |
+ const RowWordStarts& word_starts, |
+ const base::Time now, |
+ const ScoredHistoryMatchClient* client) |
+ : HistoryMatch(row, 0, false, false), raw_score_(0), can_inline_(false) { |
+ |
+ GURL gurl = row.url(); |
+ if (!gurl.is_valid()) |
+ return; |
+ |
+ // Figure out where each search term appears in the URL and/or page title |
+ // so that we can score as well as provide autocomplete highlighting. |
+ base::OffsetAdjuster::Adjustments adjustments; |
+ base::string16 title = row.title(); |
+ base::string16 url = client->CleanUpUrlAndTitleForMatching( |
+ gurl, languages, &adjustments, &title); |
+ int term_num = 0; |
+ for (const auto& term : terms) { |
+ TermMatches url_term_matches = MatchTermInString(term, url, term_num); |
+ TermMatches title_term_matches = MatchTermInString(term, title, term_num); |
+ if (url_term_matches.empty() && title_term_matches.empty()) |
+ return; // A term was not found in either URL or title - reject. |
+ url_matches_.insert(url_matches_.end(), url_term_matches.begin(), |
+ url_term_matches.end()); |
+ title_matches_.insert(title_matches_.end(), title_term_matches.begin(), |
+ title_term_matches.end()); |
+ ++term_num; |
+ } |
+ |
+ // Sort matches by offset and eliminate any which overlap. |
+ // TODO(mpearson): Investigate whether this has any meaningful |
+ // effect on scoring. (It's necessary at some point: removing |
+ // overlaps and sorting is needed to decide what to highlight in the |
+ // suggestion string. But this sort and de-overlap doesn't have to |
+ // be done before scoring.) |
+ url_matches_ = SortAndDeoverlapMatches(url_matches_); |
+ title_matches_ = SortAndDeoverlapMatches(title_matches_); |
+ |
+ // Only try to inline autocomplete match if we has a single term, some |
+ // url_matches and no space in the request. |
+ if (!url_matches_.empty() && terms.size() == 1 && |
+ !IsWhitespace(*lower_string.rbegin())) { |
+ can_inline_ = |
+ client->CanInlineAutocompleteMatch(gurl, terms[0], &innermost_match); |
+ } |
+ |
+ const float topicality_score = GetTopicalityScore( |
+ terms.size(), url, terms_to_word_starts_offsets, word_starts, client); |
+ const float frequency_score = |
+ GetFrequency(now, client->IsBoomarked(gurl), visits, client); |
+ raw_score_ = GetFinalRelevancyScore(topicality_score, frequency_score); |
+ raw_score_ = |
+ (raw_score_ <= kint32max) ? static_cast<int>(raw_score_) : kint32max; |
+ |
+ // Now that we're done processing this entry, correct the offsets of the |
+ // matches in |url_matches_| so they point to offsets in the original URL |
+ // spec, not the cleaned-up URL string that we used for matching. |
+ std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches_); |
+ base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets); |
+ url_matches_ = ReplaceOffsetsInTermMatches(url_matches_, offsets); |
+} |
+ |
+ScoredHistoryMatch::~ScoredHistoryMatch() {} |
+ |
+// Comparison function for sorting ScoredMatches by their scores with |
+// intelligent tie-breaking. |
+bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1, |
+ const ScoredHistoryMatch& m2) { |
+ if (m1.raw_score() != m2.raw_score()) |
+ return m1.raw_score() > m2.raw_score(); |
+ |
+ // This tie-breaking logic is inspired by / largely copied from the |
+ // ordering logic in history_url_provider.cc CompareHistoryMatch(). |
+ |
+ // A URL that has been typed at all is better than one that has never been |
+ // typed. (Note "!"s on each side.) |
+ if (!m1.url_info.typed_count() != !m2.url_info.typed_count()) |
+ return m1.url_info.typed_count() > m2.url_info.typed_count(); |
+ |
+ // Innermost matches (matches after any scheme or "www.") are better than |
+ // non-innermost matches. |
+ if (m1.innermost_match != m2.innermost_match) |
+ return m1.innermost_match; |
+ |
+ // URLs that have been typed more often are better. |
+ if (m1.url_info.typed_count() != m2.url_info.typed_count()) |
+ return m1.url_info.typed_count() > m2.url_info.typed_count(); |
+ |
+ // For URLs that have each been typed once, a host (alone) is better |
+ // than a page inside. |
+ if (m1.url_info.typed_count() == 1) { |
+ if (m1.IsHostOnly() != m2.IsHostOnly()) |
+ return m1.IsHostOnly(); |
+ } |
+ |
+ // URLs that have been visited more often are better. |
+ if (m1.url_info.visit_count() != m2.url_info.visit_count()) |
+ return m1.url_info.visit_count() > m2.url_info.visit_count(); |
+ |
+ // URLs that have been visited more recently are better. |
+ return m1.url_info.last_visit() > m2.url_info.last_visit(); |
+} |
+ |
+// static |
+TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts( |
+ const TermMatches& term_matches, |
+ const WordStarts& terms_to_word_starts_offsets, |
+ const WordStarts& word_starts, |
+ size_t start_pos, |
+ size_t end_pos) { |
+ // Return early if no filtering is needed. |
+ if (start_pos == std::string::npos) |
+ return term_matches; |
+ TermMatches filtered_matches; |
+ WordStarts::const_iterator next_word_starts = word_starts.begin(); |
+ WordStarts::const_iterator end_word_starts = word_starts.end(); |
+ for (const auto& term_match : term_matches) { |
+ const size_t term_offset = |
+ terms_to_word_starts_offsets[term_match.term_num]; |
+ // Advance next_word_starts until it's >= the position of the term we're |
+ // considering (adjusted for where the word begins within the term). |
+ while ((next_word_starts != end_word_starts) && |
+ (*next_word_starts < (term_match.offset + term_offset))) |
+ ++next_word_starts; |
+ // Add the match if it's before the position we start filtering at or |
+ // after the position we stop filtering at (assuming we have a position |
+ // to stop filtering at) or if it's at a word boundary. |
+ if ((term_match.offset < start_pos) || |
+ ((end_pos != std::string::npos) && (term_match.offset >= end_pos)) || |
+ ((next_word_starts != end_word_starts) && |
+ (*next_word_starts == term_match.offset + term_offset))) |
+ filtered_matches.push_back(term_match); |
+ } |
+ return filtered_matches; |
+} |
+ |
+float ScoredHistoryMatch::GetTopicalityScore( |
+ const int num_terms, |
+ const base::string16& url, |
+ const WordStarts& terms_to_word_starts_offsets, |
+ const RowWordStarts& word_starts, |
+ const ScoredHistoryMatchClient* client) { |
+ // DCHECK(raw_term_score_to_topicality_score_); |
+ // A vector that accumulates per-term scores. The strongest match--a |
+ // match in the hostname at a word boundary--is worth 10 points. |
+ // Everything else is less. In general, a match that's not at a word |
+ // boundary is worth about 1/4th or 1/5th of a match at the word boundary |
+ // in the same part of the URL/title. |
+ DCHECK_GT(num_terms, 0); |
+ std::vector<int> term_scores(num_terms, 0); |
+ WordStarts::const_iterator next_word_starts = |
+ word_starts.url_word_starts_.begin(); |
+ WordStarts::const_iterator end_word_starts = |
+ word_starts.url_word_starts_.end(); |
+ const size_t question_mark_pos = url.find('?'); |
+ const size_t colon_pos = url.find(':'); |
+ // The + 3 skips the // that probably appears in the protocol |
+ // after the colon. If the protocol doesn't have two slashes after |
+ // the colon, that's okay--all this ends up doing is starting our |
+ // search for the next / a few characters into the hostname. The |
+ // only times this can cause problems is if we have a protocol without |
+ // a // after the colon and the hostname is only one or two characters. |
+ // This isn't worth worrying about. |
+ const size_t end_of_hostname_pos = (colon_pos != std::string::npos) ? |
+ url.find('/', colon_pos + 3) : url.find('/'); |
+ size_t last_part_of_hostname_pos = |
+ (end_of_hostname_pos != std::string::npos) ? |
+ url.rfind('.', end_of_hostname_pos) : url.rfind('.'); |
+ // Loop through all URL matches and score them appropriately. |
+ // First, filter all matches not at a word boundary and in the path (or |
+ // later). |
+ url_matches_ = FilterTermMatchesByWordStarts( |
+ url_matches_, terms_to_word_starts_offsets, word_starts.url_word_starts_, |
+ end_of_hostname_pos, |
+ std::string::npos); |
+ if (colon_pos != std::string::npos) { |
+ // Also filter matches not at a word boundary and in the scheme. |
+ url_matches_ = FilterTermMatchesByWordStarts( |
+ url_matches_, terms_to_word_starts_offsets, |
+ word_starts.url_word_starts_, 0, colon_pos); |
+ } |
+ const bool allow_tld_matches = client->AllowTldMatches(); |
+ const bool allow_scheme_matches = client->AllowSchemeMatches(); |
+ for (const auto& url_match : url_matches_) { |
+ const size_t term_offset = terms_to_word_starts_offsets[url_match.term_num]; |
+ // Advance next_word_starts until it's >= the position of the term we're |
+ // considering (adjusted for where the word begins within the term). |
+ while ((next_word_starts != end_word_starts) && |
+ (*next_word_starts < (url_match.offset + term_offset))) { |
+ ++next_word_starts; |
+ } |
+ const bool at_word_boundary = |
+ (next_word_starts != end_word_starts) && |
+ (*next_word_starts == url_match.offset + term_offset); |
+ if ((question_mark_pos != std::string::npos) && |
+ (url_match.offset > question_mark_pos)) { |
+ // The match is in a CGI ?... fragment. |
+ DCHECK(at_word_boundary); |
+ term_scores[url_match.term_num] += 5; |
+ } else if ((end_of_hostname_pos != std::string::npos) && |
+ (url_match.offset > end_of_hostname_pos)) { |
+ // The match is in the path. |
+ DCHECK(at_word_boundary); |
+ term_scores[url_match.term_num] += 8; |
+ } else if ((colon_pos == std::string::npos) || |
+ (url_match.offset > colon_pos)) { |
+ // The match is in the hostname. |
+ if ((last_part_of_hostname_pos == std::string::npos) || |
+ (url_match.offset < last_part_of_hostname_pos)) { |
+ // Either there are no dots in the hostname or this match isn't |
+ // the last dotted component. |
+ term_scores[url_match.term_num] += at_word_boundary ? 10 : 2; |
+ } else { |
+ // The match is in the last part of a dotted hostname (usually this |
+ // is the top-level domain .com, .net, etc.). |
+ if (allow_tld_matches) |
+ term_scores[url_match.term_num] += at_word_boundary ? 10 : 0; |
+ } |
+ } else { |
+ // The match is in the protocol (a.k.a. scheme). |
+ // Matches not at a word boundary should have been filtered already. |
+ DCHECK(at_word_boundary); |
+ match_in_scheme = true; |
+ if (allow_scheme_matches) |
+ term_scores[url_match.term_num] += 10; |
+ } |
+ } |
+ // Now do the analogous loop over all matches in the title. |
+ next_word_starts = word_starts.title_word_starts_.begin(); |
+ end_word_starts = word_starts.title_word_starts_.end(); |
+ int word_num = 0; |
+ title_matches_ = FilterTermMatchesByWordStarts( |
+ title_matches_, terms_to_word_starts_offsets, |
+ word_starts.title_word_starts_, 0, std::string::npos); |
+ for (const auto& title_match : title_matches_) { |
+ const size_t term_offset = |
+ terms_to_word_starts_offsets[title_match.term_num]; |
+ // Advance next_word_starts until it's >= the position of the term we're |
+ // considering (adjusted for where the word begins within the term). |
+ while ((next_word_starts != end_word_starts) && |
+ (*next_word_starts < (title_match.offset + term_offset))) { |
+ ++next_word_starts; |
+ ++word_num; |
+ } |
+ if (word_num >= 10) break; // only count the first ten words |
+ DCHECK(next_word_starts != end_word_starts); |
+ DCHECK_EQ(*next_word_starts, title_match.offset + term_offset) |
+ << "not at word boundary"; |
+ term_scores[title_match.term_num] += 8; |
+ } |
+ // TODO(mpearson): Restore logic for penalizing out-of-order matches. |
+ // (Perhaps discount them by 0.8?) |
+ // TODO(mpearson): Consider: if the earliest match occurs late in the string, |
+ // should we discount it? |
+ // TODO(mpearson): Consider: do we want to score based on how much of the |
+ // input string the input covers? (I'm leaning toward no.) |
+ |
+ // Compute the topicality_score as the sum of transformed term_scores. |
+ float topicality_score = 0; |
+ for (int term_score : term_scores) { |
+ // Drop this URL if it seems like a term didn't appear or, more precisely, |
+ // didn't appear in a part of the URL or title that we trust enough |
+ // to give it credit for. For instance, terms that appear in the middle |
+ // of a CGI parameter get no credit. Almost all the matches dropped |
+ // due to this test would look stupid if shown to the user. |
+ if (term_score == 0) |
+ return 0; |
+ topicality_score += |
+ client->GetTopicalityScoreFromRawScore(term_score); |
+ } |
+ // TODO(mpearson): If there are multiple terms, consider taking the |
+ // geometric mean of per-term scores rather than the arithmetic mean. |
+ |
+ return topicality_score / num_terms; |
+} |
+ |
+// static |
+float ScoredHistoryMatch::GetFrequency(const base::Time& now, |
+ const bool bookmarked, |
+ const VisitInfoVector& visits, |
+ const ScoredHistoryMatchClient* client) { |
+ // Compute the weighted average |value_of_transition| over the last at |
+ // most kMaxVisitsToScore visits, where each visit is weighted using |
+ // GetRecencyScore() based on how many days ago it happened. Use |
+ // kMaxVisitsToScore as the denominator for the average regardless of |
+ // how many visits there were in order to penalize a match that has |
+ // fewer visits than kMaxVisitsToScore. |
+ float summed_visit_points = 0; |
+ const int bookmark_value = client->BookmarkValue(); |
+ size_t visits_to_score = std::min(visits.size(), kMaxVisitsToScore); |
+ for (size_t i = 0; i < visits_to_score; ++i) { |
+ int value_of_transition = |
+ (visits[i].second == ui::PAGE_TRANSITION_TYPED) ? 20 : 1; |
+ if (bookmarked) |
+ value_of_transition = std::max(value_of_transition, bookmark_value); |
+ const float bucket_weight = |
+ client->GetRecencyScore((now - visits[i].first).InDays()); |
+ summed_visit_points += (value_of_transition * bucket_weight); |
+ } |
+ return visits.size() * summed_visit_points / kMaxVisitsToScore; |
+} |
+ |
+// static |
+float ScoredHistoryMatch::GetFinalRelevancyScore(float topicality_score, |
+ float frequency_score) { |
+ if (topicality_score == 0) |
+ return 0; |
+ // Here's how to interpret intermediate_score: Suppose the omnibox |
+ // has one input term. Suppose we have a URL for which the omnibox |
+ // input term has a single URL hostname hit at a word boundary. (This |
+ // implies topicality_score = 1.0.). Then the intermediate_score for |
+ // this URL will depend entirely on the frequency_score with |
+ // this interpretation: |
+ // - a single typed visit more than three months ago, no other visits -> 0.2 |
+ // - a visit every three days, no typed visits -> 0.706 |
+ // - a visit every day, no typed visits -> 0.916 |
+ // - a single typed visit yesterday, no other visits -> 2.0 |
+ // - a typed visit once a week -> 11.77 |
+ // - a typed visit every three days -> 14.12 |
+ // - at least ten typed visits today -> 20.0 (maximum score) |
+ const float intermediate_score = topicality_score * frequency_score; |
+ // The below code maps intermediate_score to the range [0, 1399]. |
+ // The score maxes out at 1400 (i.e., cannot beat a good inline result). |
+ if (intermediate_score <= 1) { |
+ // Linearly extrapolate between 0 and 1.5 so 0 has a score of 400 |
+ // and 1.5 has a score of 600. |
+ const float slope = (600 - 400) / (1.5f - 0.0f); |
+ return 400 + slope * intermediate_score; |
+ } |
+ if (intermediate_score <= 12.0) { |
+ // Linearly extrapolate up to 12 so 12 has a score of 1300. |
+ const float slope = (1300 - 600) / (12.0f - 1.5f); |
+ return 600 + slope * (intermediate_score - 1.5); |
+ } |
+ // Linearly extrapolate so a score of 20 (or more) has a score of 1399. |
+ // (Scores above 20 are possible for URLs that have multiple term hits |
+ // in the URL and/or title and that are visited practically all |
+ // the time using typed visits. We don't attempt to distinguish |
+ // between these very good results.) |
+ const float slope = (1399 - 1300) / (20.0f - 12.0f); |
+ return std::min(1399.0, 1300 + slope * (intermediate_score - 12.0)); |
+} |
+ |
+} // namespace history |