| Index: third_party/sqlite/src/src/vdbeaux.c | 
| diff --git a/third_party/sqlite/src/src/vdbeaux.c b/third_party/sqlite/src/src/vdbeaux.c | 
| index 4d4bb224f93d8ce16b7b653344164df9a026f624..c0018bb71cae5d486e5e94f90963d3ce509dc16e 100644 | 
| --- a/third_party/sqlite/src/src/vdbeaux.c | 
| +++ b/third_party/sqlite/src/src/vdbeaux.c | 
| @@ -10,29 +10,16 @@ | 
| ** | 
| ************************************************************************* | 
| ** This file contains code used for creating, destroying, and populating | 
| -** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior | 
| -** to version 2.8.7, all this code was combined into the vdbe.c source file. | 
| -** But that file was getting too big so this subroutines were split out. | 
| +** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) | 
| */ | 
| #include "sqliteInt.h" | 
| #include "vdbeInt.h" | 
|  | 
| - | 
| - | 
| -/* | 
| -** When debugging the code generator in a symbolic debugger, one can | 
| -** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed | 
| -** as they are added to the instruction stream. | 
| -*/ | 
| -#ifdef SQLITE_DEBUG | 
| -int sqlite3VdbeAddopTrace = 0; | 
| -#endif | 
| - | 
| - | 
| /* | 
| ** Create a new virtual database engine. | 
| */ | 
| -Vdbe *sqlite3VdbeCreate(sqlite3 *db){ | 
| +Vdbe *sqlite3VdbeCreate(Parse *pParse){ | 
| +  sqlite3 *db = pParse->db; | 
| Vdbe *p; | 
| p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); | 
| if( p==0 ) return 0; | 
| @@ -44,6 +31,10 @@ Vdbe *sqlite3VdbeCreate(sqlite3 *db){ | 
| p->pPrev = 0; | 
| db->pVdbe = p; | 
| p->magic = VDBE_MAGIC_INIT; | 
| +  p->pParse = pParse; | 
| +  assert( pParse->aLabel==0 ); | 
| +  assert( pParse->nLabel==0 ); | 
| +  assert( pParse->nOpAlloc==0 ); | 
| return p; | 
| } | 
|  | 
| @@ -53,7 +44,7 @@ Vdbe *sqlite3VdbeCreate(sqlite3 *db){ | 
| void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ | 
| assert( isPrepareV2==1 || isPrepareV2==0 ); | 
| if( p==0 ) return; | 
| -#ifdef SQLITE_OMIT_TRACE | 
| +#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) | 
| if( !isPrepareV2 ) return; | 
| #endif | 
| assert( p->zSql==0 ); | 
| @@ -90,35 +81,55 @@ void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ | 
| pB->isPrepareV2 = pA->isPrepareV2; | 
| } | 
|  | 
| -#ifdef SQLITE_DEBUG | 
| -/* | 
| -** Turn tracing on or off | 
| -*/ | 
| -void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ | 
| -  p->trace = trace; | 
| -} | 
| -#endif | 
| - | 
| /* | 
| -** Resize the Vdbe.aOp array so that it is at least one op larger than | 
| -** it was. | 
| +** Resize the Vdbe.aOp array so that it is at least nOp elements larger | 
| +** than its current size. nOp is guaranteed to be less than or equal | 
| +** to 1024/sizeof(Op). | 
| ** | 
| ** If an out-of-memory error occurs while resizing the array, return | 
| -** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain | 
| +** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain | 
| ** unchanged (this is so that any opcodes already allocated can be | 
| ** correctly deallocated along with the rest of the Vdbe). | 
| */ | 
| -static int growOpArray(Vdbe *p){ | 
| +static int growOpArray(Vdbe *v, int nOp){ | 
| VdbeOp *pNew; | 
| +  Parse *p = v->pParse; | 
| + | 
| +  /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force | 
| +  ** more frequent reallocs and hence provide more opportunities for | 
| +  ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used | 
| +  ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array | 
| +  ** by the minimum* amount required until the size reaches 512.  Normal | 
| +  ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current | 
| +  ** size of the op array or add 1KB of space, whichever is smaller. */ | 
| +#ifdef SQLITE_TEST_REALLOC_STRESS | 
| +  int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); | 
| +#else | 
| int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); | 
| -  pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op)); | 
| +  UNUSED_PARAMETER(nOp); | 
| +#endif | 
| + | 
| +  assert( nOp<=(1024/sizeof(Op)) ); | 
| +  assert( nNew>=(p->nOpAlloc+nOp) ); | 
| +  pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); | 
| if( pNew ){ | 
| p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op); | 
| -    p->aOp = pNew; | 
| +    v->aOp = pNew; | 
| } | 
| return (pNew ? SQLITE_OK : SQLITE_NOMEM); | 
| } | 
|  | 
| +#ifdef SQLITE_DEBUG | 
| +/* This routine is just a convenient place to set a breakpoint that will | 
| +** fire after each opcode is inserted and displayed using | 
| +** "PRAGMA vdbe_addoptrace=on". | 
| +*/ | 
| +static void test_addop_breakpoint(void){ | 
| +  static int n = 0; | 
| +  n++; | 
| +} | 
| +#endif | 
| + | 
| /* | 
| ** Add a new instruction to the list of instructions current in the | 
| ** VDBE.  Return the address of the new instruction. | 
| @@ -142,8 +153,8 @@ int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ | 
| i = p->nOp; | 
| assert( p->magic==VDBE_MAGIC_INIT ); | 
| assert( op>0 && op<0xff ); | 
| -  if( p->nOpAlloc<=i ){ | 
| -    if( growOpArray(p) ){ | 
| +  if( p->pParse->nOpAlloc<=i ){ | 
| +    if( growOpArray(p, 1) ){ | 
| return 1; | 
| } | 
| } | 
| @@ -156,21 +167,31 @@ int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ | 
| pOp->p3 = p3; | 
| pOp->p4.p = 0; | 
| pOp->p4type = P4_NOTUSED; | 
| -  p->expired = 0; | 
| -  if( op==OP_ParseSchema ){ | 
| -    /* Any program that uses the OP_ParseSchema opcode needs to lock | 
| -    ** all btrees. */ | 
| -    int j; | 
| -    for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); | 
| -  } | 
| -#ifdef SQLITE_DEBUG | 
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | 
| pOp->zComment = 0; | 
| -  if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); | 
| +#endif | 
| +#ifdef SQLITE_DEBUG | 
| +  if( p->db->flags & SQLITE_VdbeAddopTrace ){ | 
| +    int jj, kk; | 
| +    Parse *pParse = p->pParse; | 
| +    for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){ | 
| +      struct yColCache *x = pParse->aColCache + jj; | 
| +      if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue; | 
| +      printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); | 
| +      kk++; | 
| +    } | 
| +    if( kk ) printf("\n"); | 
| +    sqlite3VdbePrintOp(0, i, &p->aOp[i]); | 
| +    test_addop_breakpoint(); | 
| +  } | 
| #endif | 
| #ifdef VDBE_PROFILE | 
| pOp->cycles = 0; | 
| pOp->cnt = 0; | 
| #endif | 
| +#ifdef SQLITE_VDBE_COVERAGE | 
| +  pOp->iSrcLine = 0; | 
| +#endif | 
| return i; | 
| } | 
| int sqlite3VdbeAddOp0(Vdbe *p, int op){ | 
| @@ -202,6 +223,21 @@ int sqlite3VdbeAddOp4( | 
| } | 
|  | 
| /* | 
| +** Add an OP_ParseSchema opcode.  This routine is broken out from | 
| +** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees | 
| +** as having been used. | 
| +** | 
| +** The zWhere string must have been obtained from sqlite3_malloc(). | 
| +** This routine will take ownership of the allocated memory. | 
| +*/ | 
| +void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ | 
| +  int j; | 
| +  int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0); | 
| +  sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC); | 
| +  for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); | 
| +} | 
| + | 
| +/* | 
| ** Add an opcode that includes the p4 value as an integer. | 
| */ | 
| int sqlite3VdbeAddOp4Int( | 
| @@ -231,15 +267,13 @@ int sqlite3VdbeAddOp4Int( | 
| ** | 
| ** Zero is returned if a malloc() fails. | 
| */ | 
| -int sqlite3VdbeMakeLabel(Vdbe *p){ | 
| -  int i; | 
| -  i = p->nLabel++; | 
| -  assert( p->magic==VDBE_MAGIC_INIT ); | 
| -  if( i>=p->nLabelAlloc ){ | 
| -    int n = p->nLabelAlloc*2 + 5; | 
| -    p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, | 
| -                                       n*sizeof(p->aLabel[0])); | 
| -    p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]); | 
| +int sqlite3VdbeMakeLabel(Vdbe *v){ | 
| +  Parse *p = v->pParse; | 
| +  int i = p->nLabel++; | 
| +  assert( v->magic==VDBE_MAGIC_INIT ); | 
| +  if( (i & (i-1))==0 ){ | 
| +    p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, | 
| +                                       (i*2+1)*sizeof(p->aLabel[0])); | 
| } | 
| if( p->aLabel ){ | 
| p->aLabel[i] = -1; | 
| @@ -252,13 +286,15 @@ int sqlite3VdbeMakeLabel(Vdbe *p){ | 
| ** be inserted.  The parameter "x" must have been obtained from | 
| ** a prior call to sqlite3VdbeMakeLabel(). | 
| */ | 
| -void sqlite3VdbeResolveLabel(Vdbe *p, int x){ | 
| +void sqlite3VdbeResolveLabel(Vdbe *v, int x){ | 
| +  Parse *p = v->pParse; | 
| int j = -1-x; | 
| -  assert( p->magic==VDBE_MAGIC_INIT ); | 
| -  assert( j>=0 && j<p->nLabel ); | 
| -  if( p->aLabel ){ | 
| -    p->aLabel[j] = p->nOp; | 
| +  assert( v->magic==VDBE_MAGIC_INIT ); | 
| +  assert( j<p->nLabel ); | 
| +  if( ALWAYS(j>=0) && p->aLabel ){ | 
| +    p->aLabel[j] = v->nOp; | 
| } | 
| +  p->iFixedOp = v->nOp - 1; | 
| } | 
|  | 
| /* | 
| @@ -372,7 +408,7 @@ int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ | 
| || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) | 
| #endif | 
| || ((opcode==OP_Halt || opcode==OP_HaltIfNull) | 
| -      && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) | 
| +      && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) | 
| ){ | 
| hasAbort = 1; | 
| break; | 
| @@ -380,7 +416,7 @@ int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ | 
| } | 
| sqlite3DbFree(v->db, sIter.apSub); | 
|  | 
| -  /* Return true if hasAbort==mayAbort. Or if a malloc failure occured. | 
| +  /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. | 
| ** If malloc failed, then the while() loop above may not have iterated | 
| ** through all opcodes and hasAbort may be set incorrectly. Return | 
| ** true for this case to prevent the assert() in the callers frame | 
| @@ -406,37 +442,79 @@ static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ | 
| int i; | 
| int nMaxArgs = *pMaxFuncArgs; | 
| Op *pOp; | 
| -  int *aLabel = p->aLabel; | 
| +  Parse *pParse = p->pParse; | 
| +  int *aLabel = pParse->aLabel; | 
| p->readOnly = 1; | 
| +  p->bIsReader = 0; | 
| for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ | 
| u8 opcode = pOp->opcode; | 
|  | 
| -    pOp->opflags = sqlite3OpcodeProperty[opcode]; | 
| -    if( opcode==OP_Function || opcode==OP_AggStep ){ | 
| -      if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; | 
| -    }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){ | 
| -      p->readOnly = 0; | 
| +    /* NOTE: Be sure to update mkopcodeh.awk when adding or removing | 
| +    ** cases from this switch! */ | 
| +    switch( opcode ){ | 
| +      case OP_Function: | 
| +      case OP_AggStep: { | 
| +        if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; | 
| +        break; | 
| +      } | 
| +      case OP_Transaction: { | 
| +        if( pOp->p2!=0 ) p->readOnly = 0; | 
| +        /* fall thru */ | 
| +      } | 
| +      case OP_AutoCommit: | 
| +      case OP_Savepoint: { | 
| +        p->bIsReader = 1; | 
| +        break; | 
| +      } | 
| +#ifndef SQLITE_OMIT_WAL | 
| +      case OP_Checkpoint: | 
| +#endif | 
| +      case OP_Vacuum: | 
| +      case OP_JournalMode: { | 
| +        p->readOnly = 0; | 
| +        p->bIsReader = 1; | 
| +        break; | 
| +      } | 
| #ifndef SQLITE_OMIT_VIRTUALTABLE | 
| -    }else if( opcode==OP_VUpdate ){ | 
| -      if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; | 
| -    }else if( opcode==OP_VFilter ){ | 
| -      int n; | 
| -      assert( p->nOp - i >= 3 ); | 
| -      assert( pOp[-1].opcode==OP_Integer ); | 
| -      n = pOp[-1].p1; | 
| -      if( n>nMaxArgs ) nMaxArgs = n; | 
| +      case OP_VUpdate: { | 
| +        if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; | 
| +        break; | 
| +      } | 
| +      case OP_VFilter: { | 
| +        int n; | 
| +        assert( p->nOp - i >= 3 ); | 
| +        assert( pOp[-1].opcode==OP_Integer ); | 
| +        n = pOp[-1].p1; | 
| +        if( n>nMaxArgs ) nMaxArgs = n; | 
| +        break; | 
| +      } | 
| #endif | 
| +      case OP_Next: | 
| +      case OP_NextIfOpen: | 
| +      case OP_SorterNext: { | 
| +        pOp->p4.xAdvance = sqlite3BtreeNext; | 
| +        pOp->p4type = P4_ADVANCE; | 
| +        break; | 
| +      } | 
| +      case OP_Prev: | 
| +      case OP_PrevIfOpen: { | 
| +        pOp->p4.xAdvance = sqlite3BtreePrevious; | 
| +        pOp->p4type = P4_ADVANCE; | 
| +        break; | 
| +      } | 
| } | 
|  | 
| +    pOp->opflags = sqlite3OpcodeProperty[opcode]; | 
| if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ | 
| -      assert( -1-pOp->p2<p->nLabel ); | 
| +      assert( -1-pOp->p2<pParse->nLabel ); | 
| pOp->p2 = aLabel[-1-pOp->p2]; | 
| } | 
| } | 
| -  sqlite3DbFree(p->db, p->aLabel); | 
| -  p->aLabel = 0; | 
| - | 
| +  sqlite3DbFree(p->db, pParse->aLabel); | 
| +  pParse->aLabel = 0; | 
| +  pParse->nLabel = 0; | 
| *pMaxFuncArgs = nMaxArgs; | 
| +  assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); | 
| } | 
|  | 
| /* | 
| @@ -463,7 +541,7 @@ VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ | 
| assert( aOp && !p->db->mallocFailed ); | 
|  | 
| /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ | 
| -  assert( p->btreeMask==0 ); | 
| +  assert( DbMaskAllZero(p->btreeMask) ); | 
|  | 
| resolveP2Values(p, pnMaxArg); | 
| *pnOp = p->nOp; | 
| @@ -475,10 +553,10 @@ VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ | 
| ** Add a whole list of operations to the operation stack.  Return the | 
| ** address of the first operation added. | 
| */ | 
| -int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ | 
| +int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){ | 
| int addr; | 
| assert( p->magic==VDBE_MAGIC_INIT ); | 
| -  if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){ | 
| +  if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ | 
| return 0; | 
| } | 
| addr = p->nOp; | 
| @@ -490,7 +568,8 @@ int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ | 
| VdbeOp *pOut = &p->aOp[i+addr]; | 
| pOut->opcode = pIn->opcode; | 
| pOut->p1 = pIn->p1; | 
| -      if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){ | 
| +      if( p2<0 ){ | 
| +        assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP ); | 
| pOut->p2 = addr + ADDR(p2); | 
| }else{ | 
| pOut->p2 = p2; | 
| @@ -499,9 +578,16 @@ int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ | 
| pOut->p4type = P4_NOTUSED; | 
| pOut->p4.p = 0; | 
| pOut->p5 = 0; | 
| -#ifdef SQLITE_DEBUG | 
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | 
| pOut->zComment = 0; | 
| -      if( sqlite3VdbeAddopTrace ){ | 
| +#endif | 
| +#ifdef SQLITE_VDBE_COVERAGE | 
| +      pOut->iSrcLine = iLineno+i; | 
| +#else | 
| +      (void)iLineno; | 
| +#endif | 
| +#ifdef SQLITE_DEBUG | 
| +      if( p->db->flags & SQLITE_VdbeAddopTrace ){ | 
| sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); | 
| } | 
| #endif | 
| @@ -517,10 +603,9 @@ int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ | 
| ** static array using sqlite3VdbeAddOpList but we want to make a | 
| ** few minor changes to the program. | 
| */ | 
| -void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ | 
| +void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ | 
| assert( p!=0 ); | 
| -  assert( addr>=0 ); | 
| -  if( p->nOp>addr ){ | 
| +  if( ((u32)p->nOp)>addr ){ | 
| p->aOp[addr].p1 = val; | 
| } | 
| } | 
| @@ -529,10 +614,9 @@ void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ | 
| ** Change the value of the P2 operand for a specific instruction. | 
| ** This routine is useful for setting a jump destination. | 
| */ | 
| -void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ | 
| +void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ | 
| assert( p!=0 ); | 
| -  assert( addr>=0 ); | 
| -  if( p->nOp>addr ){ | 
| +  if( ((u32)p->nOp)>addr ){ | 
| p->aOp[addr].p2 = val; | 
| } | 
| } | 
| @@ -540,10 +624,9 @@ void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ | 
| /* | 
| ** Change the value of the P3 operand for a specific instruction. | 
| */ | 
| -void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ | 
| +void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ | 
| assert( p!=0 ); | 
| -  assert( addr>=0 ); | 
| -  if( p->nOp>addr ){ | 
| +  if( ((u32)p->nOp)>addr ){ | 
| p->aOp[addr].p3 = val; | 
| } | 
| } | 
| @@ -565,8 +648,8 @@ void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ | 
| ** the address of the next instruction to be coded. | 
| */ | 
| void sqlite3VdbeJumpHere(Vdbe *p, int addr){ | 
| -  assert( addr>=0 ); | 
| sqlite3VdbeChangeP2(p, addr, p->nOp); | 
| +  p->pParse->iFixedOp = p->nOp - 1; | 
| } | 
|  | 
|  | 
| @@ -575,7 +658,7 @@ void sqlite3VdbeJumpHere(Vdbe *p, int addr){ | 
| ** the FuncDef is not ephermal, then do nothing. | 
| */ | 
| static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ | 
| -  if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ | 
| +  if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ | 
| sqlite3DbFree(db, pDef); | 
| } | 
| } | 
| @@ -592,21 +675,16 @@ static void freeP4(sqlite3 *db, int p4type, void *p4){ | 
| case P4_REAL: | 
| case P4_INT64: | 
| case P4_DYNAMIC: | 
| -      case P4_KEYINFO: | 
| -      case P4_INTARRAY: | 
| -      case P4_KEYINFO_HANDOFF: { | 
| +      case P4_INTARRAY: { | 
| sqlite3DbFree(db, p4); | 
| break; | 
| } | 
| -      case P4_MPRINTF: { | 
| -        if( db->pnBytesFreed==0 ) sqlite3_free(p4); | 
| +      case P4_KEYINFO: { | 
| +        if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); | 
| break; | 
| } | 
| -      case P4_VDBEFUNC: { | 
| -        VdbeFunc *pVdbeFunc = (VdbeFunc *)p4; | 
| -        freeEphemeralFunction(db, pVdbeFunc->pFunc); | 
| -        if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); | 
| -        sqlite3DbFree(db, pVdbeFunc); | 
| +      case P4_MPRINTF: { | 
| +        if( db->pnBytesFreed==0 ) sqlite3_free(p4); | 
| break; | 
| } | 
| case P4_FUNCDEF: { | 
| @@ -618,7 +696,7 @@ static void freeP4(sqlite3 *db, int p4type, void *p4){ | 
| sqlite3ValueFree((sqlite3_value*)p4); | 
| }else{ | 
| Mem *p = (Mem*)p4; | 
| -          sqlite3DbFree(db, p->zMalloc); | 
| +          if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); | 
| sqlite3DbFree(db, p); | 
| } | 
| break; | 
| @@ -641,7 +719,7 @@ static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ | 
| Op *pOp; | 
| for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ | 
| freeP4(db, pOp->p4type, pOp->p4.p); | 
| -#ifdef SQLITE_DEBUG | 
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | 
| sqlite3DbFree(db, pOp->zComment); | 
| #endif | 
| } | 
| @@ -660,18 +738,29 @@ void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ | 
| } | 
|  | 
| /* | 
| -** Change N opcodes starting at addr to No-ops. | 
| +** Change the opcode at addr into OP_Noop | 
| */ | 
| -void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ | 
| -  if( p->aOp ){ | 
| +void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ | 
| +  if( addr<p->nOp ){ | 
| VdbeOp *pOp = &p->aOp[addr]; | 
| sqlite3 *db = p->db; | 
| -    while( N-- ){ | 
| -      freeP4(db, pOp->p4type, pOp->p4.p); | 
| -      memset(pOp, 0, sizeof(pOp[0])); | 
| -      pOp->opcode = OP_Noop; | 
| -      pOp++; | 
| -    } | 
| +    freeP4(db, pOp->p4type, pOp->p4.p); | 
| +    memset(pOp, 0, sizeof(pOp[0])); | 
| +    pOp->opcode = OP_Noop; | 
| +    if( addr==p->nOp-1 ) p->nOp--; | 
| +  } | 
| +} | 
| + | 
| +/* | 
| +** If the last opcode is "op" and it is not a jump destination, | 
| +** then remove it.  Return true if and only if an opcode was removed. | 
| +*/ | 
| +int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ | 
| +  if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){ | 
| +    sqlite3VdbeChangeToNoop(p, p->nOp-1); | 
| +    return 1; | 
| +  }else{ | 
| +    return 0; | 
| } | 
| } | 
|  | 
| @@ -685,14 +774,6 @@ void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ | 
| ** the string is made into memory obtained from sqlite3_malloc(). | 
| ** A value of n==0 means copy bytes of zP4 up to and including the | 
| ** first null byte.  If n>0 then copy n+1 bytes of zP4. | 
| -** | 
| -** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure. | 
| -** A copy is made of the KeyInfo structure into memory obtained from | 
| -** sqlite3_malloc, to be freed when the Vdbe is finalized. | 
| -** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure | 
| -** stored in memory that the caller has obtained from sqlite3_malloc. The | 
| -** caller should not free the allocation, it will be freed when the Vdbe is | 
| -** finalized. | 
| ** | 
| ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points | 
| ** to a string or structure that is guaranteed to exist for the lifetime of | 
| @@ -707,7 +788,7 @@ void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ | 
| db = p->db; | 
| assert( p->magic==VDBE_MAGIC_INIT ); | 
| if( p->aOp==0 || db->mallocFailed ){ | 
| -    if ( n!=P4_KEYINFO && n!=P4_VTAB ) { | 
| +    if( n!=P4_VTAB ){ | 
| freeP4(db, n, (void*)*(char**)&zP4); | 
| } | 
| return; | 
| @@ -718,6 +799,9 @@ void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ | 
| addr = p->nOp - 1; | 
| } | 
| pOp = &p->aOp[addr]; | 
| +  assert( pOp->p4type==P4_NOTUSED | 
| +       || pOp->p4type==P4_INT32 | 
| +       || pOp->p4type==P4_KEYINFO ); | 
| freeP4(db, pOp->p4type, pOp->p4.p); | 
| pOp->p4.p = 0; | 
| if( n==P4_INT32 ){ | 
| @@ -729,27 +813,6 @@ void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ | 
| pOp->p4.p = 0; | 
| pOp->p4type = P4_NOTUSED; | 
| }else if( n==P4_KEYINFO ){ | 
| -    KeyInfo *pKeyInfo; | 
| -    int nField, nByte; | 
| - | 
| -    nField = ((KeyInfo*)zP4)->nField; | 
| -    nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; | 
| -    pKeyInfo = sqlite3DbMallocRaw(0, nByte); | 
| -    pOp->p4.pKeyInfo = pKeyInfo; | 
| -    if( pKeyInfo ){ | 
| -      u8 *aSortOrder; | 
| -      memcpy((char*)pKeyInfo, zP4, nByte - nField); | 
| -      aSortOrder = pKeyInfo->aSortOrder; | 
| -      if( aSortOrder ){ | 
| -        pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; | 
| -        memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); | 
| -      } | 
| -      pOp->p4type = P4_KEYINFO; | 
| -    }else{ | 
| -      p->db->mallocFailed = 1; | 
| -      pOp->p4type = P4_NOTUSED; | 
| -    } | 
| -  }else if( n==P4_KEYINFO_HANDOFF ){ | 
| pOp->p4.p = (void*)zP4; | 
| pOp->p4type = P4_KEYINFO; | 
| }else if( n==P4_VTAB ){ | 
| @@ -767,42 +830,62 @@ void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ | 
| } | 
| } | 
|  | 
| -#ifndef NDEBUG | 
| /* | 
| -** Change the comment on the the most recently coded instruction.  Or | 
| +** Set the P4 on the most recently added opcode to the KeyInfo for the | 
| +** index given. | 
| +*/ | 
| +void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ | 
| +  Vdbe *v = pParse->pVdbe; | 
| +  assert( v!=0 ); | 
| +  assert( pIdx!=0 ); | 
| +  sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx), | 
| +                      P4_KEYINFO); | 
| +} | 
| + | 
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | 
| +/* | 
| +** Change the comment on the most recently coded instruction.  Or | 
| ** insert a No-op and add the comment to that new instruction.  This | 
| ** makes the code easier to read during debugging.  None of this happens | 
| ** in a production build. | 
| */ | 
| -void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ | 
| -  va_list ap; | 
| -  if( !p ) return; | 
| +static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ | 
| assert( p->nOp>0 || p->aOp==0 ); | 
| assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); | 
| if( p->nOp ){ | 
| -    char **pz = &p->aOp[p->nOp-1].zComment; | 
| +    assert( p->aOp ); | 
| +    sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); | 
| +    p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); | 
| +  } | 
| +} | 
| +void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ | 
| +  va_list ap; | 
| +  if( p ){ | 
| va_start(ap, zFormat); | 
| -    sqlite3DbFree(p->db, *pz); | 
| -    *pz = sqlite3VMPrintf(p->db, zFormat, ap); | 
| +    vdbeVComment(p, zFormat, ap); | 
| va_end(ap); | 
| } | 
| } | 
| void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ | 
| va_list ap; | 
| -  if( !p ) return; | 
| -  sqlite3VdbeAddOp0(p, OP_Noop); | 
| -  assert( p->nOp>0 || p->aOp==0 ); | 
| -  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); | 
| -  if( p->nOp ){ | 
| -    char **pz = &p->aOp[p->nOp-1].zComment; | 
| +  if( p ){ | 
| +    sqlite3VdbeAddOp0(p, OP_Noop); | 
| va_start(ap, zFormat); | 
| -    sqlite3DbFree(p->db, *pz); | 
| -    *pz = sqlite3VMPrintf(p->db, zFormat, ap); | 
| +    vdbeVComment(p, zFormat, ap); | 
| va_end(ap); | 
| } | 
| } | 
| #endif  /* NDEBUG */ | 
|  | 
| +#ifdef SQLITE_VDBE_COVERAGE | 
| +/* | 
| +** Set the value if the iSrcLine field for the previously coded instruction. | 
| +*/ | 
| +void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ | 
| +  sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; | 
| +} | 
| +#endif /* SQLITE_VDBE_COVERAGE */ | 
| + | 
| /* | 
| ** Return the opcode for a given address.  If the address is -1, then | 
| ** return the most recently inserted opcode. | 
| @@ -811,28 +894,17 @@ void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ | 
| ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode | 
| ** is readable but not writable, though it is cast to a writable value. | 
| ** The return of a dummy opcode allows the call to continue functioning | 
| -** after a OOM fault without having to check to see if the return from | 
| +** after an OOM fault without having to check to see if the return from | 
| ** this routine is a valid pointer.  But because the dummy.opcode is 0, | 
| ** dummy will never be written to.  This is verified by code inspection and | 
| ** by running with Valgrind. | 
| -** | 
| -** About the #ifdef SQLITE_OMIT_TRACE:  Normally, this routine is never called | 
| -** unless p->nOp>0.  This is because in the absense of SQLITE_OMIT_TRACE, | 
| -** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as | 
| -** a new VDBE is created.  So we are free to set addr to p->nOp-1 without | 
| -** having to double-check to make sure that the result is non-negative. But | 
| -** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to | 
| -** check the value of p->nOp-1 before continuing. | 
| */ | 
| VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ | 
| /* C89 specifies that the constant "dummy" will be initialized to all | 
| ** zeros, which is correct.  MSVC generates a warning, nevertheless. */ | 
| -  static const VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */ | 
| +  static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */ | 
| assert( p->magic==VDBE_MAGIC_INIT ); | 
| if( addr<0 ){ | 
| -#ifdef SQLITE_OMIT_TRACE | 
| -    if( p->nOp==0 ) return (VdbeOp*)&dummy; | 
| -#endif | 
| addr = p->nOp - 1; | 
| } | 
| assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); | 
| @@ -843,6 +915,97 @@ VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ | 
| } | 
| } | 
|  | 
| +#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) | 
| +/* | 
| +** Return an integer value for one of the parameters to the opcode pOp | 
| +** determined by character c. | 
| +*/ | 
| +static int translateP(char c, const Op *pOp){ | 
| +  if( c=='1' ) return pOp->p1; | 
| +  if( c=='2' ) return pOp->p2; | 
| +  if( c=='3' ) return pOp->p3; | 
| +  if( c=='4' ) return pOp->p4.i; | 
| +  return pOp->p5; | 
| +} | 
| + | 
| +/* | 
| +** Compute a string for the "comment" field of a VDBE opcode listing. | 
| +** | 
| +** The Synopsis: field in comments in the vdbe.c source file gets converted | 
| +** to an extra string that is appended to the sqlite3OpcodeName().  In the | 
| +** absence of other comments, this synopsis becomes the comment on the opcode. | 
| +** Some translation occurs: | 
| +** | 
| +**       "PX"      ->  "r[X]" | 
| +**       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1 | 
| +**       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0 | 
| +**       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x | 
| +*/ | 
| +static int displayComment( | 
| +  const Op *pOp,     /* The opcode to be commented */ | 
| +  const char *zP4,   /* Previously obtained value for P4 */ | 
| +  char *zTemp,       /* Write result here */ | 
| +  int nTemp          /* Space available in zTemp[] */ | 
| +){ | 
| +  const char *zOpName; | 
| +  const char *zSynopsis; | 
| +  int nOpName; | 
| +  int ii, jj; | 
| +  zOpName = sqlite3OpcodeName(pOp->opcode); | 
| +  nOpName = sqlite3Strlen30(zOpName); | 
| +  if( zOpName[nOpName+1] ){ | 
| +    int seenCom = 0; | 
| +    char c; | 
| +    zSynopsis = zOpName += nOpName + 1; | 
| +    for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ | 
| +      if( c=='P' ){ | 
| +        c = zSynopsis[++ii]; | 
| +        if( c=='4' ){ | 
| +          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); | 
| +        }else if( c=='X' ){ | 
| +          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); | 
| +          seenCom = 1; | 
| +        }else{ | 
| +          int v1 = translateP(c, pOp); | 
| +          int v2; | 
| +          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); | 
| +          if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ | 
| +            ii += 3; | 
| +            jj += sqlite3Strlen30(zTemp+jj); | 
| +            v2 = translateP(zSynopsis[ii], pOp); | 
| +            if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ | 
| +              ii += 2; | 
| +              v2++; | 
| +            } | 
| +            if( v2>1 ){ | 
| +              sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); | 
| +            } | 
| +          }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ | 
| +            ii += 4; | 
| +          } | 
| +        } | 
| +        jj += sqlite3Strlen30(zTemp+jj); | 
| +      }else{ | 
| +        zTemp[jj++] = c; | 
| +      } | 
| +    } | 
| +    if( !seenCom && jj<nTemp-5 && pOp->zComment ){ | 
| +      sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); | 
| +      jj += sqlite3Strlen30(zTemp+jj); | 
| +    } | 
| +    if( jj<nTemp ) zTemp[jj] = 0; | 
| +  }else if( pOp->zComment ){ | 
| +    sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); | 
| +    jj = sqlite3Strlen30(zTemp); | 
| +  }else{ | 
| +    zTemp[0] = 0; | 
| +    jj = 0; | 
| +  } | 
| +  return jj; | 
| +} | 
| +#endif /* SQLITE_DEBUG */ | 
| + | 
| + | 
| #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ | 
| || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) | 
| /* | 
| @@ -853,30 +1016,30 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){ | 
| char *zP4 = zTemp; | 
| assert( nTemp>=20 ); | 
| switch( pOp->p4type ){ | 
| -    case P4_KEYINFO_STATIC: | 
| case P4_KEYINFO: { | 
| int i, j; | 
| KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; | 
| -      sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); | 
| +      assert( pKeyInfo->aSortOrder!=0 ); | 
| +      sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField); | 
| i = sqlite3Strlen30(zTemp); | 
| for(j=0; j<pKeyInfo->nField; j++){ | 
| CollSeq *pColl = pKeyInfo->aColl[j]; | 
| -        if( pColl ){ | 
| -          int n = sqlite3Strlen30(pColl->zName); | 
| -          if( i+n>nTemp-6 ){ | 
| -            memcpy(&zTemp[i],",...",4); | 
| -            break; | 
| -          } | 
| -          zTemp[i++] = ','; | 
| -          if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){ | 
| -            zTemp[i++] = '-'; | 
| -          } | 
| -          memcpy(&zTemp[i], pColl->zName,n+1); | 
| -          i += n; | 
| -        }else if( i+4<nTemp-6 ){ | 
| -          memcpy(&zTemp[i],",nil",4); | 
| -          i += 4; | 
| +        const char *zColl = pColl ? pColl->zName : "nil"; | 
| +        int n = sqlite3Strlen30(zColl); | 
| +        if( n==6 && memcmp(zColl,"BINARY",6)==0 ){ | 
| +          zColl = "B"; | 
| +          n = 1; | 
| } | 
| +        if( i+n>nTemp-6 ){ | 
| +          memcpy(&zTemp[i],",...",4); | 
| +          break; | 
| +        } | 
| +        zTemp[i++] = ','; | 
| +        if( pKeyInfo->aSortOrder[j] ){ | 
| +          zTemp[i++] = '-'; | 
| +        } | 
| +        memcpy(&zTemp[i], zColl, n+1); | 
| +        i += n; | 
| } | 
| zTemp[i++] = ')'; | 
| zTemp[i] = 0; | 
| @@ -885,7 +1048,7 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){ | 
| } | 
| case P4_COLLSEQ: { | 
| CollSeq *pColl = pOp->p4.pColl; | 
| -      sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); | 
| +      sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName); | 
| break; | 
| } | 
| case P4_FUNCDEF: { | 
| @@ -907,13 +1070,14 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){ | 
| } | 
| case P4_MEM: { | 
| Mem *pMem = pOp->p4.pMem; | 
| -      assert( (pMem->flags & MEM_Null)==0 ); | 
| if( pMem->flags & MEM_Str ){ | 
| zP4 = pMem->z; | 
| }else if( pMem->flags & MEM_Int ){ | 
| sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); | 
| }else if( pMem->flags & MEM_Real ){ | 
| -        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); | 
| +        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r); | 
| +      }else if( pMem->flags & MEM_Null ){ | 
| +        sqlite3_snprintf(nTemp, zTemp, "NULL"); | 
| }else{ | 
| assert( pMem->flags & MEM_Blob ); | 
| zP4 = "(blob)"; | 
| @@ -935,6 +1099,10 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){ | 
| sqlite3_snprintf(nTemp, zTemp, "program"); | 
| break; | 
| } | 
| +    case P4_ADVANCE: { | 
| +      zTemp[0] = 0; | 
| +      break; | 
| +    } | 
| default: { | 
| zP4 = pOp->p4.z; | 
| if( zP4==0 ){ | 
| @@ -952,15 +1120,16 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){ | 
| ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. | 
| ** | 
| ** The prepared statements need to know in advance the complete set of | 
| -** attached databases that they will be using.  A mask of these databases | 
| -** is maintained in p->btreeMask and is used for locking and other purposes. | 
| +** attached databases that will be use.  A mask of these databases | 
| +** is maintained in p->btreeMask.  The p->lockMask value is the subset of | 
| +** p->btreeMask of databases that will require a lock. | 
| */ | 
| void sqlite3VdbeUsesBtree(Vdbe *p, int i){ | 
| assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); | 
| assert( i<(int)sizeof(p->btreeMask)*8 ); | 
| -  p->btreeMask |= ((yDbMask)1)<<i; | 
| +  DbMaskSet(p->btreeMask, i); | 
| if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ | 
| -    p->lockMask |= ((yDbMask)1)<<i; | 
| +    DbMaskSet(p->lockMask, i); | 
| } | 
| } | 
|  | 
| @@ -988,16 +1157,15 @@ void sqlite3VdbeUsesBtree(Vdbe *p, int i){ | 
| */ | 
| void sqlite3VdbeEnter(Vdbe *p){ | 
| int i; | 
| -  yDbMask mask; | 
| sqlite3 *db; | 
| Db *aDb; | 
| int nDb; | 
| -  if( p->lockMask==0 ) return;  /* The common case */ | 
| +  if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */ | 
| db = p->db; | 
| aDb = db->aDb; | 
| nDb = db->nDb; | 
| -  for(i=0, mask=1; i<nDb; i++, mask += mask){ | 
| -    if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ | 
| +  for(i=0; i<nDb; i++){ | 
| +    if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ | 
| sqlite3BtreeEnter(aDb[i].pBt); | 
| } | 
| } | 
| @@ -1010,16 +1178,15 @@ void sqlite3VdbeEnter(Vdbe *p){ | 
| */ | 
| void sqlite3VdbeLeave(Vdbe *p){ | 
| int i; | 
| -  yDbMask mask; | 
| sqlite3 *db; | 
| Db *aDb; | 
| int nDb; | 
| -  if( p->lockMask==0 ) return;  /* The common case */ | 
| +  if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */ | 
| db = p->db; | 
| aDb = db->aDb; | 
| nDb = db->nDb; | 
| -  for(i=0, mask=1; i<nDb; i++, mask += mask){ | 
| -    if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ | 
| +  for(i=0; i<nDb; i++){ | 
| +    if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ | 
| sqlite3BtreeLeave(aDb[i].pBt); | 
| } | 
| } | 
| @@ -1033,16 +1200,21 @@ void sqlite3VdbeLeave(Vdbe *p){ | 
| void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ | 
| char *zP4; | 
| char zPtr[50]; | 
| -  static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n"; | 
| +  char zCom[100]; | 
| +  static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; | 
| if( pOut==0 ) pOut = stdout; | 
| zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); | 
| -  fprintf(pOut, zFormat1, pc, | 
| -      sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, | 
| -#ifdef SQLITE_DEBUG | 
| -      pOp->zComment ? pOp->zComment : "" | 
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | 
| +  displayComment(pOp, zP4, zCom, sizeof(zCom)); | 
| #else | 
| -      "" | 
| +  zCom[0] = 0; | 
| #endif | 
| +  /* NB:  The sqlite3OpcodeName() function is implemented by code created | 
| +  ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the | 
| +  ** information from the vdbe.c source text */ | 
| +  fprintf(pOut, zFormat1, pc, | 
| +      sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, | 
| +      zCom | 
| ); | 
| fflush(pOut); | 
| } | 
| @@ -1053,17 +1225,18 @@ void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ | 
| */ | 
| static void releaseMemArray(Mem *p, int N){ | 
| if( p && N ){ | 
| -    Mem *pEnd; | 
| +    Mem *pEnd = &p[N]; | 
| sqlite3 *db = p->db; | 
| u8 malloc_failed = db->mallocFailed; | 
| if( db->pnBytesFreed ){ | 
| -      for(pEnd=&p[N]; p<pEnd; p++){ | 
| -        sqlite3DbFree(db, p->zMalloc); | 
| -      } | 
| +      do{ | 
| +        if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); | 
| +      }while( (++p)<pEnd ); | 
| return; | 
| } | 
| -    for(pEnd=&p[N]; p<pEnd; p++){ | 
| +    do{ | 
| assert( (&p[1])==pEnd || p[0].db==p[1].db ); | 
| +      assert( sqlite3VdbeCheckMemInvariants(p) ); | 
|  | 
| /* This block is really an inlined version of sqlite3VdbeMemRelease() | 
| ** that takes advantage of the fact that the memory cell value is | 
| @@ -1077,15 +1250,19 @@ static void releaseMemArray(Mem *p, int N){ | 
| ** with no indexes using a single prepared INSERT statement, bind() | 
| ** and reset(). Inserts are grouped into a transaction. | 
| */ | 
| +      testcase( p->flags & MEM_Agg ); | 
| +      testcase( p->flags & MEM_Dyn ); | 
| +      testcase( p->flags & MEM_Frame ); | 
| +      testcase( p->flags & MEM_RowSet ); | 
| if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ | 
| sqlite3VdbeMemRelease(p); | 
| -      }else if( p->zMalloc ){ | 
| +      }else if( p->szMalloc ){ | 
| sqlite3DbFree(db, p->zMalloc); | 
| -        p->zMalloc = 0; | 
| +        p->szMalloc = 0; | 
| } | 
|  | 
| -      p->flags = MEM_Null; | 
| -    } | 
| +      p->flags = MEM_Undefined; | 
| +    }while( (++p)<pEnd ); | 
| db->mallocFailed = malloc_failed; | 
| } | 
| } | 
| @@ -1131,7 +1308,7 @@ int sqlite3VdbeList( | 
| sqlite3 *db = p->db;                 /* The database connection */ | 
| int i;                               /* Loop counter */ | 
| int rc = SQLITE_OK;                  /* Return code */ | 
| -  Mem *pMem = p->pResultSet = &p->aMem[1];  /* First Mem of result set */ | 
| +  Mem *pMem = &p->aMem[1];             /* First Mem of result set */ | 
|  | 
| assert( p->explain ); | 
| assert( p->magic==VDBE_MAGIC_RUN ); | 
| @@ -1142,6 +1319,7 @@ int sqlite3VdbeList( | 
| ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. | 
| */ | 
| releaseMemArray(pMem, 8); | 
| +  p->pResultSet = 0; | 
|  | 
| if( p->rc==SQLITE_NOMEM ){ | 
| /* This happens if a malloc() inside a call to sqlite3_column_text() or | 
| @@ -1187,7 +1365,7 @@ int sqlite3VdbeList( | 
| rc = SQLITE_ERROR; | 
| sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); | 
| }else{ | 
| -    char *z; | 
| +    char *zP4; | 
| Op *pOp; | 
| if( i<p->nOp ){ | 
| /* The output line number is small enough that we are still in the | 
| @@ -1205,15 +1383,13 @@ int sqlite3VdbeList( | 
| } | 
| if( p->explain==1 ){ | 
| pMem->flags = MEM_Int; | 
| -      pMem->type = SQLITE_INTEGER; | 
| pMem->u.i = i;                                /* Program counter */ | 
| pMem++; | 
|  | 
| pMem->flags = MEM_Static|MEM_Str|MEM_Term; | 
| -      pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */ | 
| +      pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ | 
| assert( pMem->z!=0 ); | 
| pMem->n = sqlite3Strlen30(pMem->z); | 
| -      pMem->type = SQLITE_TEXT; | 
| pMem->enc = SQLITE_UTF8; | 
| pMem++; | 
|  | 
| @@ -1228,7 +1404,7 @@ int sqlite3VdbeList( | 
| for(j=0; j<nSub; j++){ | 
| if( apSub[j]==pOp->p4.pProgram ) break; | 
| } | 
| -        if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){ | 
| +        if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ | 
| apSub = (SubProgram **)pSub->z; | 
| apSub[nSub++] = pOp->p4.pProgram; | 
| pSub->flags |= MEM_Blob; | 
| @@ -1239,63 +1415,57 @@ int sqlite3VdbeList( | 
|  | 
| pMem->flags = MEM_Int; | 
| pMem->u.i = pOp->p1;                          /* P1 */ | 
| -    pMem->type = SQLITE_INTEGER; | 
| pMem++; | 
|  | 
| pMem->flags = MEM_Int; | 
| pMem->u.i = pOp->p2;                          /* P2 */ | 
| -    pMem->type = SQLITE_INTEGER; | 
| pMem++; | 
|  | 
| pMem->flags = MEM_Int; | 
| pMem->u.i = pOp->p3;                          /* P3 */ | 
| -    pMem->type = SQLITE_INTEGER; | 
| pMem++; | 
|  | 
| -    if( sqlite3VdbeMemGrow(pMem, 32, 0) ){            /* P4 */ | 
| +    if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */ | 
| assert( p->db->mallocFailed ); | 
| return SQLITE_ERROR; | 
| } | 
| -    pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; | 
| -    z = displayP4(pOp, pMem->z, 32); | 
| -    if( z!=pMem->z ){ | 
| -      sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0); | 
| +    pMem->flags = MEM_Str|MEM_Term; | 
| +    zP4 = displayP4(pOp, pMem->z, 32); | 
| +    if( zP4!=pMem->z ){ | 
| +      sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); | 
| }else{ | 
| assert( pMem->z!=0 ); | 
| pMem->n = sqlite3Strlen30(pMem->z); | 
| pMem->enc = SQLITE_UTF8; | 
| } | 
| -    pMem->type = SQLITE_TEXT; | 
| pMem++; | 
|  | 
| if( p->explain==1 ){ | 
| -      if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ | 
| +      if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ | 
| assert( p->db->mallocFailed ); | 
| return SQLITE_ERROR; | 
| } | 
| -      pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; | 
| +      pMem->flags = MEM_Str|MEM_Term; | 
| pMem->n = 2; | 
| sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */ | 
| -      pMem->type = SQLITE_TEXT; | 
| pMem->enc = SQLITE_UTF8; | 
| pMem++; | 
|  | 
| -#ifdef SQLITE_DEBUG | 
| -      if( pOp->zComment ){ | 
| -        pMem->flags = MEM_Str|MEM_Term; | 
| -        pMem->z = pOp->zComment; | 
| -        pMem->n = sqlite3Strlen30(pMem->z); | 
| -        pMem->enc = SQLITE_UTF8; | 
| -        pMem->type = SQLITE_TEXT; | 
| -      }else | 
| -#endif | 
| -      { | 
| -        pMem->flags = MEM_Null;                       /* Comment */ | 
| -        pMem->type = SQLITE_NULL; | 
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | 
| +      if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ | 
| +        assert( p->db->mallocFailed ); | 
| +        return SQLITE_ERROR; | 
| } | 
| +      pMem->flags = MEM_Str|MEM_Term; | 
| +      pMem->n = displayComment(pOp, zP4, pMem->z, 500); | 
| +      pMem->enc = SQLITE_UTF8; | 
| +#else | 
| +      pMem->flags = MEM_Null;                       /* Comment */ | 
| +#endif | 
| } | 
|  | 
| p->nResColumn = 8 - 4*(p->explain-1); | 
| +    p->pResultSet = &p->aMem[1]; | 
| p->rc = SQLITE_OK; | 
| rc = SQLITE_ROW; | 
| } | 
| @@ -1308,15 +1478,17 @@ int sqlite3VdbeList( | 
| ** Print the SQL that was used to generate a VDBE program. | 
| */ | 
| void sqlite3VdbePrintSql(Vdbe *p){ | 
| -  int nOp = p->nOp; | 
| -  VdbeOp *pOp; | 
| -  if( nOp<1 ) return; | 
| -  pOp = &p->aOp[0]; | 
| -  if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ | 
| -    const char *z = pOp->p4.z; | 
| -    while( sqlite3Isspace(*z) ) z++; | 
| -    printf("SQL: [%s]\n", z); | 
| +  const char *z = 0; | 
| +  if( p->zSql ){ | 
| +    z = p->zSql; | 
| +  }else if( p->nOp>=1 ){ | 
| +    const VdbeOp *pOp = &p->aOp[0]; | 
| +    if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ | 
| +      z = pOp->p4.z; | 
| +      while( sqlite3Isspace(*z) ) z++; | 
| +    } | 
| } | 
| +  if( z ) printf("SQL: [%s]\n", z); | 
| } | 
| #endif | 
|  | 
| @@ -1330,7 +1502,7 @@ void sqlite3VdbeIOTraceSql(Vdbe *p){ | 
| if( sqlite3IoTrace==0 ) return; | 
| if( nOp<1 ) return; | 
| pOp = &p->aOp[0]; | 
| -  if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ | 
| +  if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ | 
| int i, j; | 
| char z[1000]; | 
| sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); | 
| @@ -1391,34 +1563,13 @@ static void *allocSpace( | 
| } | 
|  | 
| /* | 
| -** Prepare a virtual machine for execution.  This involves things such | 
| -** as allocating stack space and initializing the program counter. | 
| -** After the VDBE has be prepped, it can be executed by one or more | 
| -** calls to sqlite3VdbeExec(). | 
| -** | 
| -** This is the only way to move a VDBE from VDBE_MAGIC_INIT to | 
| -** VDBE_MAGIC_RUN. | 
| -** | 
| -** This function may be called more than once on a single virtual machine. | 
| -** The first call is made while compiling the SQL statement. Subsequent | 
| -** calls are made as part of the process of resetting a statement to be | 
| -** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor | 
| -** and isExplain parameters are only passed correct values the first time | 
| -** the function is called. On subsequent calls, from sqlite3_reset(), nVar | 
| -** is passed -1 and nMem, nCursor and isExplain are all passed zero. | 
| +** Rewind the VDBE back to the beginning in preparation for | 
| +** running it. | 
| */ | 
| -void sqlite3VdbeMakeReady( | 
| -  Vdbe *p,                       /* The VDBE */ | 
| -  int nVar,                      /* Number of '?' see in the SQL statement */ | 
| -  int nMem,                      /* Number of memory cells to allocate */ | 
| -  int nCursor,                   /* Number of cursors to allocate */ | 
| -  int nArg,                      /* Maximum number of args in SubPrograms */ | 
| -  int isExplain,                 /* True if the EXPLAIN keywords is present */ | 
| -  int usesStmtJournal            /* True to set Vdbe.usesStmtJournal */ | 
| -){ | 
| -  int n; | 
| -  sqlite3 *db = p->db; | 
| - | 
| +void sqlite3VdbeRewind(Vdbe *p){ | 
| +#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) | 
| +  int i; | 
| +#endif | 
| assert( p!=0 ); | 
| assert( p->magic==VDBE_MAGIC_INIT ); | 
|  | 
| @@ -1429,6 +1580,75 @@ void sqlite3VdbeMakeReady( | 
| /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ | 
| p->magic = VDBE_MAGIC_RUN; | 
|  | 
| +#ifdef SQLITE_DEBUG | 
| +  for(i=1; i<p->nMem; i++){ | 
| +    assert( p->aMem[i].db==p->db ); | 
| +  } | 
| +#endif | 
| +  p->pc = -1; | 
| +  p->rc = SQLITE_OK; | 
| +  p->errorAction = OE_Abort; | 
| +  p->magic = VDBE_MAGIC_RUN; | 
| +  p->nChange = 0; | 
| +  p->cacheCtr = 1; | 
| +  p->minWriteFileFormat = 255; | 
| +  p->iStatement = 0; | 
| +  p->nFkConstraint = 0; | 
| +#ifdef VDBE_PROFILE | 
| +  for(i=0; i<p->nOp; i++){ | 
| +    p->aOp[i].cnt = 0; | 
| +    p->aOp[i].cycles = 0; | 
| +  } | 
| +#endif | 
| +} | 
| + | 
| +/* | 
| +** Prepare a virtual machine for execution for the first time after | 
| +** creating the virtual machine.  This involves things such | 
| +** as allocating registers and initializing the program counter. | 
| +** After the VDBE has be prepped, it can be executed by one or more | 
| +** calls to sqlite3VdbeExec(). | 
| +** | 
| +** This function may be called exactly once on each virtual machine. | 
| +** After this routine is called the VM has been "packaged" and is ready | 
| +** to run.  After this routine is called, further calls to | 
| +** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects | 
| +** the Vdbe from the Parse object that helped generate it so that the | 
| +** the Vdbe becomes an independent entity and the Parse object can be | 
| +** destroyed. | 
| +** | 
| +** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back | 
| +** to its initial state after it has been run. | 
| +*/ | 
| +void sqlite3VdbeMakeReady( | 
| +  Vdbe *p,                       /* The VDBE */ | 
| +  Parse *pParse                  /* Parsing context */ | 
| +){ | 
| +  sqlite3 *db;                   /* The database connection */ | 
| +  int nVar;                      /* Number of parameters */ | 
| +  int nMem;                      /* Number of VM memory registers */ | 
| +  int nCursor;                   /* Number of cursors required */ | 
| +  int nArg;                      /* Number of arguments in subprograms */ | 
| +  int nOnce;                     /* Number of OP_Once instructions */ | 
| +  int n;                         /* Loop counter */ | 
| +  u8 *zCsr;                      /* Memory available for allocation */ | 
| +  u8 *zEnd;                      /* First byte past allocated memory */ | 
| +  int nByte;                     /* How much extra memory is needed */ | 
| + | 
| +  assert( p!=0 ); | 
| +  assert( p->nOp>0 ); | 
| +  assert( pParse!=0 ); | 
| +  assert( p->magic==VDBE_MAGIC_INIT ); | 
| +  assert( pParse==p->pParse ); | 
| +  db = p->db; | 
| +  assert( db->mallocFailed==0 ); | 
| +  nVar = pParse->nVar; | 
| +  nMem = pParse->nMem; | 
| +  nCursor = pParse->nTab; | 
| +  nArg = pParse->nMaxArg; | 
| +  nOnce = pParse->nOnce; | 
| +  if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */ | 
| + | 
| /* For each cursor required, also allocate a memory cell. Memory | 
| ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by | 
| ** the vdbe program. Instead they are used to allocate space for | 
| @@ -1441,91 +1661,71 @@ void sqlite3VdbeMakeReady( | 
| nMem += nCursor; | 
|  | 
| /* Allocate space for memory registers, SQL variables, VDBE cursors and | 
| -  ** an array to marshal SQL function arguments in. This is only done the | 
| -  ** first time this function is called for a given VDBE, not when it is | 
| -  ** being called from sqlite3_reset() to reset the virtual machine. | 
| +  ** an array to marshal SQL function arguments in. | 
| */ | 
| -  if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){ | 
| -    u8 *zCsr = (u8 *)&p->aOp[p->nOp];       /* Memory avaliable for alloation */ | 
| -    u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc];  /* First byte past available mem */ | 
| -    int nByte;                              /* How much extra memory needed */ | 
| - | 
| -    resolveP2Values(p, &nArg); | 
| -    p->usesStmtJournal = (u8)usesStmtJournal; | 
| -    if( isExplain && nMem<10 ){ | 
| -      nMem = 10; | 
| -    } | 
| -    memset(zCsr, 0, zEnd-zCsr); | 
| -    zCsr += (zCsr - (u8*)0)&7; | 
| -    assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); | 
| - | 
| -    /* Memory for registers, parameters, cursor, etc, is allocated in two | 
| -    ** passes.  On the first pass, we try to reuse unused space at the | 
| -    ** end of the opcode array.  If we are unable to satisfy all memory | 
| -    ** requirements by reusing the opcode array tail, then the second | 
| -    ** pass will fill in the rest using a fresh allocation. | 
| -    ** | 
| -    ** This two-pass approach that reuses as much memory as possible from | 
| -    ** the leftover space at the end of the opcode array can significantly | 
| -    ** reduce the amount of memory held by a prepared statement. | 
| -    */ | 
| -    do { | 
| -      nByte = 0; | 
| -      p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); | 
| -      p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); | 
| -      p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); | 
| -      p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); | 
| -      p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), | 
| -                            &zCsr, zEnd, &nByte); | 
| -      if( nByte ){ | 
| -        p->pFree = sqlite3DbMallocZero(db, nByte); | 
| -      } | 
| -      zCsr = p->pFree; | 
| -      zEnd = &zCsr[nByte]; | 
| -    }while( nByte && !db->mallocFailed ); | 
| - | 
| -    p->nCursor = (u16)nCursor; | 
| -    if( p->aVar ){ | 
| -      p->nVar = (ynVar)nVar; | 
| -      for(n=0; n<nVar; n++){ | 
| -        p->aVar[n].flags = MEM_Null; | 
| -        p->aVar[n].db = db; | 
| -      } | 
| -    } | 
| -    if( p->aMem ){ | 
| -      p->aMem--;                      /* aMem[] goes from 1..nMem */ | 
| -      p->nMem = nMem;                 /*       not from 0..nMem-1 */ | 
| -      for(n=1; n<=nMem; n++){ | 
| -        p->aMem[n].flags = MEM_Null; | 
| -        p->aMem[n].db = db; | 
| -      } | 
| -    } | 
| -  } | 
| -#ifdef SQLITE_DEBUG | 
| -  for(n=1; n<p->nMem; n++){ | 
| -    assert( p->aMem[n].db==db ); | 
| +  zCsr = (u8*)&p->aOp[p->nOp];            /* Memory avaliable for allocation */ | 
| +  zEnd = (u8*)&p->aOp[pParse->nOpAlloc];  /* First byte past end of zCsr[] */ | 
| + | 
| +  resolveP2Values(p, &nArg); | 
| +  p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); | 
| +  if( pParse->explain && nMem<10 ){ | 
| +    nMem = 10; | 
| } | 
| -#endif | 
| +  memset(zCsr, 0, zEnd-zCsr); | 
| +  zCsr += (zCsr - (u8*)0)&7; | 
| +  assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); | 
| +  p->expired = 0; | 
|  | 
| -  p->pc = -1; | 
| -  p->rc = SQLITE_OK; | 
| -  p->errorAction = OE_Abort; | 
| -  p->explain |= isExplain; | 
| -  p->magic = VDBE_MAGIC_RUN; | 
| -  p->nChange = 0; | 
| -  p->cacheCtr = 1; | 
| -  p->minWriteFileFormat = 255; | 
| -  p->iStatement = 0; | 
| -  p->nFkConstraint = 0; | 
| -#ifdef VDBE_PROFILE | 
| -  { | 
| -    int i; | 
| -    for(i=0; i<p->nOp; i++){ | 
| -      p->aOp[i].cnt = 0; | 
| -      p->aOp[i].cycles = 0; | 
| +  /* Memory for registers, parameters, cursor, etc, is allocated in two | 
| +  ** passes.  On the first pass, we try to reuse unused space at the | 
| +  ** end of the opcode array.  If we are unable to satisfy all memory | 
| +  ** requirements by reusing the opcode array tail, then the second | 
| +  ** pass will fill in the rest using a fresh allocation. | 
| +  ** | 
| +  ** This two-pass approach that reuses as much memory as possible from | 
| +  ** the leftover space at the end of the opcode array can significantly | 
| +  ** reduce the amount of memory held by a prepared statement. | 
| +  */ | 
| +  do { | 
| +    nByte = 0; | 
| +    p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); | 
| +    p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); | 
| +    p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); | 
| +    p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); | 
| +    p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), | 
| +                          &zCsr, zEnd, &nByte); | 
| +    p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte); | 
| +    if( nByte ){ | 
| +      p->pFree = sqlite3DbMallocZero(db, nByte); | 
| +    } | 
| +    zCsr = p->pFree; | 
| +    zEnd = &zCsr[nByte]; | 
| +  }while( nByte && !db->mallocFailed ); | 
| + | 
| +  p->nCursor = nCursor; | 
| +  p->nOnceFlag = nOnce; | 
| +  if( p->aVar ){ | 
| +    p->nVar = (ynVar)nVar; | 
| +    for(n=0; n<nVar; n++){ | 
| +      p->aVar[n].flags = MEM_Null; | 
| +      p->aVar[n].db = db; | 
| +    } | 
| +  } | 
| +  if( p->azVar ){ | 
| +    p->nzVar = pParse->nzVar; | 
| +    memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0])); | 
| +    memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0])); | 
| +  } | 
| +  if( p->aMem ){ | 
| +    p->aMem--;                      /* aMem[] goes from 1..nMem */ | 
| +    p->nMem = nMem;                 /*       not from 0..nMem-1 */ | 
| +    for(n=1; n<=nMem; n++){ | 
| +      p->aMem[n].flags = MEM_Undefined; | 
| +      p->aMem[n].db = db; | 
| } | 
| } | 
| -#endif | 
| +  p->explain = pParse->explain; | 
| +  sqlite3VdbeRewind(p); | 
| } | 
|  | 
| /* | 
| @@ -1536,6 +1736,7 @@ void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ | 
| if( pCx==0 ){ | 
| return; | 
| } | 
| +  sqlite3VdbeSorterClose(p->db, pCx); | 
| if( pCx->pBt ){ | 
| sqlite3BtreeClose(pCx->pBt); | 
| /* The pCx->pCursor will be close automatically, if it exists, by | 
| @@ -1544,9 +1745,9 @@ void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ | 
| sqlite3BtreeCloseCursor(pCx->pCursor); | 
| } | 
| #ifndef SQLITE_OMIT_VIRTUALTABLE | 
| -  if( pCx->pVtabCursor ){ | 
| +  else if( pCx->pVtabCursor ){ | 
| sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; | 
| -    const sqlite3_module *pModule = pCx->pModule; | 
| +    const sqlite3_module *pModule = pVtabCursor->pVtab->pModule; | 
| p->inVtabMethod = 1; | 
| pModule->xClose(pVtabCursor); | 
| p->inVtabMethod = 0; | 
| @@ -1561,6 +1762,8 @@ void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ | 
| */ | 
| int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ | 
| Vdbe *v = pFrame->v; | 
| +  v->aOnceFlag = pFrame->aOnceFlag; | 
| +  v->nOnceFlag = pFrame->nOnceFlag; | 
| v->aOp = pFrame->aOp; | 
| v->nOp = pFrame->nOp; | 
| v->aMem = pFrame->aMem; | 
| @@ -1585,9 +1788,10 @@ static void closeAllCursors(Vdbe *p){ | 
| VdbeFrame *pFrame; | 
| for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); | 
| sqlite3VdbeFrameRestore(pFrame); | 
| +    p->pFrame = 0; | 
| +    p->nFrame = 0; | 
| } | 
| -  p->pFrame = 0; | 
| -  p->nFrame = 0; | 
| +  assert( p->nFrame==0 ); | 
|  | 
| if( p->apCsr ){ | 
| int i; | 
| @@ -1607,14 +1811,14 @@ static void closeAllCursors(Vdbe *p){ | 
| p->pDelFrame = pDel->pParent; | 
| sqlite3VdbeFrameDelete(pDel); | 
| } | 
| + | 
| +  /* Delete any auxdata allocations made by the VM */ | 
| +  if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0); | 
| +  assert( p->pAuxData==0 ); | 
| } | 
|  | 
| /* | 
| -** Clean up the VM after execution. | 
| -** | 
| -** This routine will automatically close any cursors, lists, and/or | 
| -** sorters that were left open.  It also deletes the values of | 
| -** variables in the aVar[] array. | 
| +** Clean up the VM after a single run. | 
| */ | 
| static void Cleanup(Vdbe *p){ | 
| sqlite3 *db = p->db; | 
| @@ -1623,8 +1827,10 @@ static void Cleanup(Vdbe *p){ | 
| /* Execute assert() statements to ensure that the Vdbe.apCsr[] and | 
| ** Vdbe.aMem[] arrays have already been cleaned up.  */ | 
| int i; | 
| -  for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 ); | 
| -  for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null ); | 
| +  if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); | 
| +  if( p->aMem ){ | 
| +    for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); | 
| +  } | 
| #endif | 
|  | 
| sqlite3DbFree(db, p->zErrMsg); | 
| @@ -1713,7 +1919,7 @@ static int vdbeCommit(sqlite3 *db, Vdbe *p){ | 
| ** required, as an xSync() callback may add an attached database | 
| ** to the transaction. | 
| */ | 
| -  rc = sqlite3VtabSync(db, &p->zErrMsg); | 
| +  rc = sqlite3VtabSync(db, p); | 
|  | 
| /* This loop determines (a) if the commit hook should be invoked and | 
| ** (b) how many database files have open write transactions, not | 
| @@ -1726,7 +1932,9 @@ static int vdbeCommit(sqlite3 *db, Vdbe *p){ | 
| if( sqlite3BtreeIsInTrans(pBt) ){ | 
| needXcommit = 1; | 
| if( i!=1 ) nTrans++; | 
| +      sqlite3BtreeEnter(pBt); | 
| rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); | 
| +      sqlite3BtreeLeave(pBt); | 
| } | 
| } | 
| if( rc!=SQLITE_OK ){ | 
| @@ -1737,7 +1945,7 @@ static int vdbeCommit(sqlite3 *db, Vdbe *p){ | 
| if( needXcommit && db->xCommitCallback ){ | 
| rc = db->xCommitCallback(db->pCommitArg); | 
| if( rc ){ | 
| -      return SQLITE_CONSTRAINT; | 
| +      return SQLITE_CONSTRAINT_COMMITHOOK; | 
| } | 
| } | 
|  | 
| @@ -1778,7 +1986,7 @@ static int vdbeCommit(sqlite3 *db, Vdbe *p){ | 
|  | 
| /* The complex case - There is a multi-file write-transaction active. | 
| ** This requires a master journal file to ensure the transaction is | 
| -  ** committed atomicly. | 
| +  ** committed atomically. | 
| */ | 
| #ifndef SQLITE_OMIT_DISKIO | 
| else{ | 
| @@ -1789,16 +1997,32 @@ static int vdbeCommit(sqlite3 *db, Vdbe *p){ | 
| sqlite3_file *pMaster = 0; | 
| i64 offset = 0; | 
| int res; | 
| +    int retryCount = 0; | 
| +    int nMainFile; | 
|  | 
| /* Select a master journal file name */ | 
| +    nMainFile = sqlite3Strlen30(zMainFile); | 
| +    zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); | 
| +    if( zMaster==0 ) return SQLITE_NOMEM; | 
| do { | 
| u32 iRandom; | 
| -      sqlite3DbFree(db, zMaster); | 
| -      sqlite3_randomness(sizeof(iRandom), &iRandom); | 
| -      zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff); | 
| -      if( !zMaster ){ | 
| -        return SQLITE_NOMEM; | 
| +      if( retryCount ){ | 
| +        if( retryCount>100 ){ | 
| +          sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); | 
| +          sqlite3OsDelete(pVfs, zMaster, 0); | 
| +          break; | 
| +        }else if( retryCount==1 ){ | 
| +          sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); | 
| +        } | 
| } | 
| +      retryCount++; | 
| +      sqlite3_randomness(sizeof(iRandom), &iRandom); | 
| +      sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", | 
| +                               (iRandom>>8)&0xffffff, iRandom&0xff); | 
| +      /* The antipenultimate character of the master journal name must | 
| +      ** be "9" to avoid name collisions when using 8+3 filenames. */ | 
| +      assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); | 
| +      sqlite3FileSuffix3(zMainFile, zMaster); | 
| rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); | 
| }while( rc==SQLITE_OK && res ); | 
| if( rc==SQLITE_OK ){ | 
| @@ -1914,7 +2138,7 @@ static int vdbeCommit(sqlite3 *db, Vdbe *p){ | 
| } | 
|  | 
| /* | 
| -** This routine checks that the sqlite3.activeVdbeCnt count variable | 
| +** This routine checks that the sqlite3.nVdbeActive count variable | 
| ** matches the number of vdbe's in the list sqlite3.pVdbe that are | 
| ** currently active. An assertion fails if the two counts do not match. | 
| ** This is an internal self-check only - it is not an essential processing | 
| @@ -1927,53 +2151,30 @@ static void checkActiveVdbeCnt(sqlite3 *db){ | 
| Vdbe *p; | 
| int cnt = 0; | 
| int nWrite = 0; | 
| +  int nRead = 0; | 
| p = db->pVdbe; | 
| while( p ){ | 
| -    if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ | 
| +    if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ | 
| cnt++; | 
| if( p->readOnly==0 ) nWrite++; | 
| +      if( p->bIsReader ) nRead++; | 
| } | 
| p = p->pNext; | 
| } | 
| -  assert( cnt==db->activeVdbeCnt ); | 
| -  assert( nWrite==db->writeVdbeCnt ); | 
| +  assert( cnt==db->nVdbeActive ); | 
| +  assert( nWrite==db->nVdbeWrite ); | 
| +  assert( nRead==db->nVdbeRead ); | 
| } | 
| #else | 
| #define checkActiveVdbeCnt(x) | 
| #endif | 
|  | 
| /* | 
| -** For every Btree that in database connection db which | 
| -** has been modified, "trip" or invalidate each cursor in | 
| -** that Btree might have been modified so that the cursor | 
| -** can never be used again.  This happens when a rollback | 
| -*** occurs.  We have to trip all the other cursors, even | 
| -** cursor from other VMs in different database connections, | 
| -** so that none of them try to use the data at which they | 
| -** were pointing and which now may have been changed due | 
| -** to the rollback. | 
| -** | 
| -** Remember that a rollback can delete tables complete and | 
| -** reorder rootpages.  So it is not sufficient just to save | 
| -** the state of the cursor.  We have to invalidate the cursor | 
| -** so that it is never used again. | 
| -*/ | 
| -static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){ | 
| -  int i; | 
| -  for(i=0; i<db->nDb; i++){ | 
| -    Btree *p = db->aDb[i].pBt; | 
| -    if( p && sqlite3BtreeIsInTrans(p) ){ | 
| -      sqlite3BtreeTripAllCursors(p, SQLITE_ABORT); | 
| -    } | 
| -  } | 
| -} | 
| - | 
| -/* | 
| ** If the Vdbe passed as the first argument opened a statement-transaction, | 
| ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or | 
| ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement | 
| ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the | 
| -** statement transaction is commtted. | 
| +** statement transaction is committed. | 
| ** | 
| ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. | 
| ** Otherwise SQLITE_OK. | 
| @@ -1984,7 +2185,7 @@ int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ | 
|  | 
| /* If p->iStatement is greater than zero, then this Vdbe opened a | 
| ** statement transaction that should be closed here. The only exception | 
| -  ** is that an IO error may have occured, causing an emergency rollback. | 
| +  ** is that an IO error may have occurred, causing an emergency rollback. | 
| ** In this case (db->nStatement==0), and there is nothing to do. | 
| */ | 
| if( db->nStatement && p->iStatement ){ | 
| @@ -2013,11 +2214,21 @@ int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ | 
| db->nStatement--; | 
| p->iStatement = 0; | 
|  | 
| +    if( rc==SQLITE_OK ){ | 
| +      if( eOp==SAVEPOINT_ROLLBACK ){ | 
| +        rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); | 
| +      } | 
| +      if( rc==SQLITE_OK ){ | 
| +        rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); | 
| +      } | 
| +    } | 
| + | 
| /* If the statement transaction is being rolled back, also restore the | 
| ** database handles deferred constraint counter to the value it had when | 
| ** the statement transaction was opened.  */ | 
| if( eOp==SAVEPOINT_ROLLBACK ){ | 
| db->nDeferredCons = p->nStmtDefCons; | 
| +      db->nDeferredImmCons = p->nStmtDefImmCons; | 
| } | 
| } | 
| return rc; | 
| @@ -2030,16 +2241,18 @@ int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ | 
| ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. | 
| ** | 
| ** If there are outstanding FK violations and this function returns | 
| -** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write | 
| -** an error message to it. Then return SQLITE_ERROR. | 
| +** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY | 
| +** and write an error message to it. Then return SQLITE_ERROR. | 
| */ | 
| #ifndef SQLITE_OMIT_FOREIGN_KEY | 
| int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ | 
| sqlite3 *db = p->db; | 
| -  if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){ | 
| -    p->rc = SQLITE_CONSTRAINT; | 
| +  if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) | 
| +   || (!deferred && p->nFkConstraint>0) | 
| +  ){ | 
| +    p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; | 
| p->errorAction = OE_Abort; | 
| -    sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed"); | 
| +    sqlite3SetString(&p->zErrMsg, db, "FOREIGN KEY constraint failed"); | 
| return SQLITE_ERROR; | 
| } | 
| return SQLITE_OK; | 
| @@ -2082,14 +2295,16 @@ int sqlite3VdbeHalt(Vdbe *p){ | 
| if( p->db->mallocFailed ){ | 
| p->rc = SQLITE_NOMEM; | 
| } | 
| +  if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); | 
| closeAllCursors(p); | 
| if( p->magic!=VDBE_MAGIC_RUN ){ | 
| return SQLITE_OK; | 
| } | 
| checkActiveVdbeCnt(db); | 
|  | 
| -  /* No commit or rollback needed if the program never started */ | 
| -  if( p->pc>=0 ){ | 
| +  /* No commit or rollback needed if the program never started or if the | 
| +  ** SQL statement does not read or write a database file.  */ | 
| +  if( p->pc>=0 && p->bIsReader ){ | 
| int mrc;   /* Primary error code from p->rc */ | 
| int eStatementOp = 0; | 
| int isSpecialError;            /* Set to true if a 'special' error */ | 
| @@ -2099,7 +2314,6 @@ int sqlite3VdbeHalt(Vdbe *p){ | 
|  | 
| /* Check for one of the special errors */ | 
| mrc = p->rc & 0xff; | 
| -    assert( p->rc!=SQLITE_IOERR_BLOCKED );  /* This error no longer exists */ | 
| isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR | 
| || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; | 
| if( isSpecialError ){ | 
| @@ -2110,7 +2324,7 @@ int sqlite3VdbeHalt(Vdbe *p){ | 
| ** | 
| ** Even if the statement is read-only, it is important to perform | 
| ** a statement or transaction rollback operation. If the error | 
| -      ** occured while writing to the journal, sub-journal or database | 
| +      ** occurred while writing to the journal, sub-journal or database | 
| ** file as part of an effort to free up cache space (see function | 
| ** pagerStress() in pager.c), the rollback is required to restore | 
| ** the pager to a consistent state. | 
| @@ -2122,8 +2336,7 @@ int sqlite3VdbeHalt(Vdbe *p){ | 
| /* We are forced to roll back the active transaction. Before doing | 
| ** so, abort any other statements this handle currently has active. | 
| */ | 
| -          invalidateCursorsOnModifiedBtrees(db); | 
| -          sqlite3RollbackAll(db); | 
| +          sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); | 
| sqlite3CloseSavepoints(db); | 
| db->autoCommit = 1; | 
| } | 
| @@ -2143,7 +2356,7 @@ int sqlite3VdbeHalt(Vdbe *p){ | 
| */ | 
| if( !sqlite3VtabInSync(db) | 
| && db->autoCommit | 
| -     && db->writeVdbeCnt==(p->readOnly==0) | 
| +     && db->nVdbeWrite==(p->readOnly==0) | 
| ){ | 
| if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ | 
| rc = sqlite3VdbeCheckFk(p, 1); | 
| @@ -2152,7 +2365,7 @@ int sqlite3VdbeHalt(Vdbe *p){ | 
| sqlite3VdbeLeave(p); | 
| return SQLITE_ERROR; | 
| } | 
| -          rc = SQLITE_CONSTRAINT; | 
| +          rc = SQLITE_CONSTRAINT_FOREIGNKEY; | 
| }else{ | 
| /* The auto-commit flag is true, the vdbe program was successful | 
| ** or hit an 'OR FAIL' constraint and there are no deferred foreign | 
| @@ -2165,13 +2378,15 @@ int sqlite3VdbeHalt(Vdbe *p){ | 
| return SQLITE_BUSY; | 
| }else if( rc!=SQLITE_OK ){ | 
| p->rc = rc; | 
| -          sqlite3RollbackAll(db); | 
| +          sqlite3RollbackAll(db, SQLITE_OK); | 
| }else{ | 
| db->nDeferredCons = 0; | 
| +          db->nDeferredImmCons = 0; | 
| +          db->flags &= ~SQLITE_DeferFKs; | 
| sqlite3CommitInternalChanges(db); | 
| } | 
| }else{ | 
| -        sqlite3RollbackAll(db); | 
| +        sqlite3RollbackAll(db, SQLITE_OK); | 
| } | 
| db->nStatement = 0; | 
| }else if( eStatementOp==0 ){ | 
| @@ -2180,8 +2395,7 @@ int sqlite3VdbeHalt(Vdbe *p){ | 
| }else if( p->errorAction==OE_Abort ){ | 
| eStatementOp = SAVEPOINT_ROLLBACK; | 
| }else{ | 
| -        invalidateCursorsOnModifiedBtrees(db); | 
| -        sqlite3RollbackAll(db); | 
| +        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); | 
| sqlite3CloseSavepoints(db); | 
| db->autoCommit = 1; | 
| } | 
| @@ -2192,23 +2406,16 @@ int sqlite3VdbeHalt(Vdbe *p){ | 
| ** do so. If this operation returns an error, and the current statement | 
| ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the | 
| ** current statement error code. | 
| -    ** | 
| -    ** Note that sqlite3VdbeCloseStatement() can only fail if eStatementOp | 
| -    ** is SAVEPOINT_ROLLBACK.  But if p->rc==SQLITE_OK then eStatementOp | 
| -    ** must be SAVEPOINT_RELEASE.  Hence the NEVER(p->rc==SQLITE_OK) in | 
| -    ** the following code. | 
| */ | 
| if( eStatementOp ){ | 
| rc = sqlite3VdbeCloseStatement(p, eStatementOp); | 
| if( rc ){ | 
| -        assert( eStatementOp==SAVEPOINT_ROLLBACK ); | 
| -        if( NEVER(p->rc==SQLITE_OK) || p->rc==SQLITE_CONSTRAINT ){ | 
| +        if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ | 
| p->rc = rc; | 
| sqlite3DbFree(db, p->zErrMsg); | 
| p->zErrMsg = 0; | 
| } | 
| -        invalidateCursorsOnModifiedBtrees(db); | 
| -        sqlite3RollbackAll(db); | 
| +        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); | 
| sqlite3CloseSavepoints(db); | 
| db->autoCommit = 1; | 
| } | 
| @@ -2225,12 +2432,6 @@ int sqlite3VdbeHalt(Vdbe *p){ | 
| } | 
| p->nChange = 0; | 
| } | 
| - | 
| -    /* Rollback or commit any schema changes that occurred. */ | 
| -    if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){ | 
| -      sqlite3ResetInternalSchema(db, -1); | 
| -      db->flags = (db->flags | SQLITE_InternChanges); | 
| -    } | 
|  | 
| /* Release the locks */ | 
| sqlite3VdbeLeave(p); | 
| @@ -2238,11 +2439,12 @@ int sqlite3VdbeHalt(Vdbe *p){ | 
|  | 
| /* We have successfully halted and closed the VM.  Record this fact. */ | 
| if( p->pc>=0 ){ | 
| -    db->activeVdbeCnt--; | 
| -    if( !p->readOnly ){ | 
| -      db->writeVdbeCnt--; | 
| -    } | 
| -    assert( db->activeVdbeCnt>=db->writeVdbeCnt ); | 
| +    db->nVdbeActive--; | 
| +    if( !p->readOnly ) db->nVdbeWrite--; | 
| +    if( p->bIsReader ) db->nVdbeRead--; | 
| +    assert( db->nVdbeActive>=db->nVdbeRead ); | 
| +    assert( db->nVdbeRead>=db->nVdbeWrite ); | 
| +    assert( db->nVdbeWrite>=0 ); | 
| } | 
| p->magic = VDBE_MAGIC_HALT; | 
| checkActiveVdbeCnt(db); | 
| @@ -2258,7 +2460,7 @@ int sqlite3VdbeHalt(Vdbe *p){ | 
| sqlite3ConnectionUnlocked(db); | 
| } | 
|  | 
| -  assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 ); | 
| +  assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); | 
| return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); | 
| } | 
|  | 
| @@ -2272,11 +2474,57 @@ void sqlite3VdbeResetStepResult(Vdbe *p){ | 
| } | 
|  | 
| /* | 
| -** Clean up a VDBE after execution but do not delete the VDBE just yet. | 
| -** Write any error messages into *pzErrMsg.  Return the result code. | 
| -** | 
| -** After this routine is run, the VDBE should be ready to be executed | 
| -** again. | 
| +** Copy the error code and error message belonging to the VDBE passed | 
| +** as the first argument to its database handle (so that they will be | 
| +** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). | 
| +** | 
| +** This function does not clear the VDBE error code or message, just | 
| +** copies them to the database handle. | 
| +*/ | 
| +int sqlite3VdbeTransferError(Vdbe *p){ | 
| +  sqlite3 *db = p->db; | 
| +  int rc = p->rc; | 
| +  if( p->zErrMsg ){ | 
| +    u8 mallocFailed = db->mallocFailed; | 
| +    sqlite3BeginBenignMalloc(); | 
| +    if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); | 
| +    sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); | 
| +    sqlite3EndBenignMalloc(); | 
| +    db->mallocFailed = mallocFailed; | 
| +    db->errCode = rc; | 
| +  }else{ | 
| +    sqlite3Error(db, rc); | 
| +  } | 
| +  return rc; | 
| +} | 
| + | 
| +#ifdef SQLITE_ENABLE_SQLLOG | 
| +/* | 
| +** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, | 
| +** invoke it. | 
| +*/ | 
| +static void vdbeInvokeSqllog(Vdbe *v){ | 
| +  if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ | 
| +    char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); | 
| +    assert( v->db->init.busy==0 ); | 
| +    if( zExpanded ){ | 
| +      sqlite3GlobalConfig.xSqllog( | 
| +          sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 | 
| +      ); | 
| +      sqlite3DbFree(v->db, zExpanded); | 
| +    } | 
| +  } | 
| +} | 
| +#else | 
| +# define vdbeInvokeSqllog(x) | 
| +#endif | 
| + | 
| +/* | 
| +** Clean up a VDBE after execution but do not delete the VDBE just yet. | 
| +** Write any error messages into *pzErrMsg.  Return the result code. | 
| +** | 
| +** After this routine is run, the VDBE should be ready to be executed | 
| +** again. | 
| ** | 
| ** To look at it another way, this routine resets the state of the | 
| ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to | 
| @@ -2298,26 +2546,17 @@ int sqlite3VdbeReset(Vdbe *p){ | 
| ** instructions yet, leave the main database error information unchanged. | 
| */ | 
| if( p->pc>=0 ){ | 
| -    if( p->zErrMsg ){ | 
| -      sqlite3BeginBenignMalloc(); | 
| -      sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT); | 
| -      sqlite3EndBenignMalloc(); | 
| -      db->errCode = p->rc; | 
| -      sqlite3DbFree(db, p->zErrMsg); | 
| -      p->zErrMsg = 0; | 
| -    }else if( p->rc ){ | 
| -      sqlite3Error(db, p->rc, 0); | 
| -    }else{ | 
| -      sqlite3Error(db, SQLITE_OK, 0); | 
| -    } | 
| +    vdbeInvokeSqllog(p); | 
| +    sqlite3VdbeTransferError(p); | 
| +    sqlite3DbFree(db, p->zErrMsg); | 
| +    p->zErrMsg = 0; | 
| if( p->runOnlyOnce ) p->expired = 1; | 
| }else if( p->rc && p->expired ){ | 
| /* The expired flag was set on the VDBE before the first call | 
| ** to sqlite3_step(). For consistency (since sqlite3_step() was | 
| ** called), set the database error in this case as well. | 
| */ | 
| -    sqlite3Error(db, p->rc, 0); | 
| -    sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); | 
| +    sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); | 
| sqlite3DbFree(db, p->zErrMsg); | 
| p->zErrMsg = 0; | 
| } | 
| @@ -2338,18 +2577,31 @@ int sqlite3VdbeReset(Vdbe *p){ | 
| fprintf(out, "%02x", p->aOp[i].opcode); | 
| } | 
| fprintf(out, "\n"); | 
| +      if( p->zSql ){ | 
| +        char c, pc = 0; | 
| +        fprintf(out, "-- "); | 
| +        for(i=0; (c = p->zSql[i])!=0; i++){ | 
| +          if( pc=='\n' ) fprintf(out, "-- "); | 
| +          putc(c, out); | 
| +          pc = c; | 
| +        } | 
| +        if( pc!='\n' ) fprintf(out, "\n"); | 
| +      } | 
| for(i=0; i<p->nOp; i++){ | 
| -        fprintf(out, "%6d %10lld %8lld ", | 
| +        char zHdr[100]; | 
| +        sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", | 
| p->aOp[i].cnt, | 
| p->aOp[i].cycles, | 
| p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 | 
| ); | 
| +        fprintf(out, "%s", zHdr); | 
| sqlite3VdbePrintOp(out, i, &p->aOp[i]); | 
| } | 
| fclose(out); | 
| } | 
| } | 
| #endif | 
| +  p->iCurrentTime = 0; | 
| p->magic = VDBE_MAGIC_INIT; | 
| return p->rc & db->errMask; | 
| } | 
| @@ -2369,32 +2621,51 @@ int sqlite3VdbeFinalize(Vdbe *p){ | 
| } | 
|  | 
| /* | 
| -** Call the destructor for each auxdata entry in pVdbeFunc for which | 
| -** the corresponding bit in mask is clear.  Auxdata entries beyond 31 | 
| -** are always destroyed.  To destroy all auxdata entries, call this | 
| -** routine with mask==0. | 
| +** If parameter iOp is less than zero, then invoke the destructor for | 
| +** all auxiliary data pointers currently cached by the VM passed as | 
| +** the first argument. | 
| +** | 
| +** Or, if iOp is greater than or equal to zero, then the destructor is | 
| +** only invoked for those auxiliary data pointers created by the user | 
| +** function invoked by the OP_Function opcode at instruction iOp of | 
| +** VM pVdbe, and only then if: | 
| +** | 
| +**    * the associated function parameter is the 32nd or later (counting | 
| +**      from left to right), or | 
| +** | 
| +**    * the corresponding bit in argument mask is clear (where the first | 
| +**      function parameter corresponds to bit 0 etc.). | 
| */ | 
| -void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ | 
| -  int i; | 
| -  for(i=0; i<pVdbeFunc->nAux; i++){ | 
| -    struct AuxData *pAux = &pVdbeFunc->apAux[i]; | 
| -    if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){ | 
| +void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){ | 
| +  AuxData **pp = &pVdbe->pAuxData; | 
| +  while( *pp ){ | 
| +    AuxData *pAux = *pp; | 
| +    if( (iOp<0) | 
| +     || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) | 
| +    ){ | 
| +      testcase( pAux->iArg==31 ); | 
| if( pAux->xDelete ){ | 
| pAux->xDelete(pAux->pAux); | 
| } | 
| -      pAux->pAux = 0; | 
| +      *pp = pAux->pNext; | 
| +      sqlite3DbFree(pVdbe->db, pAux); | 
| +    }else{ | 
| +      pp= &pAux->pNext; | 
| } | 
| } | 
| } | 
|  | 
| /* | 
| -** Free all memory associated with the Vdbe passed as the second argument. | 
| +** Free all memory associated with the Vdbe passed as the second argument, | 
| +** except for object itself, which is preserved. | 
| +** | 
| ** The difference between this function and sqlite3VdbeDelete() is that | 
| ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with | 
| -** the database connection. | 
| +** the database connection and frees the object itself. | 
| */ | 
| -void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){ | 
| +void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ | 
| SubProgram *pSub, *pNext; | 
| +  int i; | 
| assert( p->db==0 || p->db==db ); | 
| releaseMemArray(p->aVar, p->nVar); | 
| releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); | 
| @@ -2403,12 +2674,11 @@ void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){ | 
| vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); | 
| sqlite3DbFree(db, pSub); | 
| } | 
| +  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); | 
| vdbeFreeOpArray(db, p->aOp, p->nOp); | 
| -  sqlite3DbFree(db, p->aLabel); | 
| sqlite3DbFree(db, p->aColName); | 
| sqlite3DbFree(db, p->zSql); | 
| sqlite3DbFree(db, p->pFree); | 
| -  sqlite3DbFree(db, p); | 
| } | 
|  | 
| /* | 
| @@ -2419,6 +2689,8 @@ void sqlite3VdbeDelete(Vdbe *p){ | 
|  | 
| if( NEVER(p==0) ) return; | 
| db = p->db; | 
| +  assert( sqlite3_mutex_held(db->mutex) ); | 
| +  sqlite3VdbeClearObject(db, p); | 
| if( p->pPrev ){ | 
| p->pPrev->pNext = p->pNext; | 
| }else{ | 
| @@ -2430,7 +2702,58 @@ void sqlite3VdbeDelete(Vdbe *p){ | 
| } | 
| p->magic = VDBE_MAGIC_DEAD; | 
| p->db = 0; | 
| -  sqlite3VdbeDeleteObject(db, p); | 
| +  sqlite3DbFree(db, p); | 
| +} | 
| + | 
| +/* | 
| +** The cursor "p" has a pending seek operation that has not yet been | 
| +** carried out.  Seek the cursor now.  If an error occurs, return | 
| +** the appropriate error code. | 
| +*/ | 
| +static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ | 
| +  int res, rc; | 
| +#ifdef SQLITE_TEST | 
| +  extern int sqlite3_search_count; | 
| +#endif | 
| +  assert( p->deferredMoveto ); | 
| +  assert( p->isTable ); | 
| +  rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); | 
| +  if( rc ) return rc; | 
| +  if( res!=0 ) return SQLITE_CORRUPT_BKPT; | 
| +#ifdef SQLITE_TEST | 
| +  sqlite3_search_count++; | 
| +#endif | 
| +  p->deferredMoveto = 0; | 
| +  p->cacheStatus = CACHE_STALE; | 
| +  return SQLITE_OK; | 
| +} | 
| + | 
| +/* | 
| +** Something has moved cursor "p" out of place.  Maybe the row it was | 
| +** pointed to was deleted out from under it.  Or maybe the btree was | 
| +** rebalanced.  Whatever the cause, try to restore "p" to the place it | 
| +** is supposed to be pointing.  If the row was deleted out from under the | 
| +** cursor, set the cursor to point to a NULL row. | 
| +*/ | 
| +static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ | 
| +  int isDifferentRow, rc; | 
| +  assert( p->pCursor!=0 ); | 
| +  assert( sqlite3BtreeCursorHasMoved(p->pCursor) ); | 
| +  rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow); | 
| +  p->cacheStatus = CACHE_STALE; | 
| +  if( isDifferentRow ) p->nullRow = 1; | 
| +  return rc; | 
| +} | 
| + | 
| +/* | 
| +** Check to ensure that the cursor is valid.  Restore the cursor | 
| +** if need be.  Return any I/O error from the restore operation. | 
| +*/ | 
| +int sqlite3VdbeCursorRestore(VdbeCursor *p){ | 
| +  if( sqlite3BtreeCursorHasMoved(p->pCursor) ){ | 
| +    return handleMovedCursor(p); | 
| +  } | 
| +  return SQLITE_OK; | 
| } | 
|  | 
| /* | 
| @@ -2448,29 +2771,10 @@ void sqlite3VdbeDelete(Vdbe *p){ | 
| */ | 
| int sqlite3VdbeCursorMoveto(VdbeCursor *p){ | 
| if( p->deferredMoveto ){ | 
| -    int res, rc; | 
| -#ifdef SQLITE_TEST | 
| -    extern int sqlite3_search_count; | 
| -#endif | 
| -    assert( p->isTable ); | 
| -    rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); | 
| -    if( rc ) return rc; | 
| -    p->lastRowid = p->movetoTarget; | 
| -    if( res!=0 ) return SQLITE_CORRUPT_BKPT; | 
| -    p->rowidIsValid = 1; | 
| -#ifdef SQLITE_TEST | 
| -    sqlite3_search_count++; | 
| -#endif | 
| -    p->deferredMoveto = 0; | 
| -    p->cacheStatus = CACHE_STALE; | 
| -  }else if( ALWAYS(p->pCursor) ){ | 
| -    int hasMoved; | 
| -    int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved); | 
| -    if( rc ) return rc; | 
| -    if( hasMoved ){ | 
| -      p->cacheStatus = CACHE_STALE; | 
| -      p->nullRow = 1; | 
| -    } | 
| +    return handleDeferredMoveto(p); | 
| +  } | 
| +  if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){ | 
| +    return handleMovedCursor(p); | 
| } | 
| return SQLITE_OK; | 
| } | 
| @@ -2493,7 +2797,7 @@ int sqlite3VdbeCursorMoveto(VdbeCursor *p){ | 
| ** the blob of data that it corresponds to. In a table record, all serial | 
| ** types are stored at the start of the record, and the blobs of data at | 
| ** the end. Hence these functions allow the caller to handle the | 
| -** serial-type and data blob seperately. | 
| +** serial-type and data blob separately. | 
| ** | 
| ** The following table describes the various storage classes for data: | 
| ** | 
| @@ -2522,7 +2826,7 @@ int sqlite3VdbeCursorMoveto(VdbeCursor *p){ | 
| */ | 
| u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ | 
| int flags = pMem->flags; | 
| -  int n; | 
| +  u32 n; | 
|  | 
| if( flags&MEM_Null ){ | 
| return 0; | 
| @@ -2532,9 +2836,6 @@ u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ | 
| #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1) | 
| i64 i = pMem->u.i; | 
| u64 u; | 
| -    if( file_format>=4 && (i&1)==i ){ | 
| -      return 8+(u32)i; | 
| -    } | 
| if( i<0 ){ | 
| if( i<(-MAX_6BYTE) ) return 6; | 
| /* Previous test prevents:  u = -(-9223372036854775808) */ | 
| @@ -2542,7 +2843,9 @@ u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ | 
| }else{ | 
| u = i; | 
| } | 
| -    if( u<=127 ) return 1; | 
| +    if( u<=127 ){ | 
| +      return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1; | 
| +    } | 
| if( u<=32767 ) return 2; | 
| if( u<=8388607 ) return 3; | 
| if( u<=2147483647 ) return 4; | 
| @@ -2553,11 +2856,11 @@ u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ | 
| return 7; | 
| } | 
| assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); | 
| -  n = pMem->n; | 
| +  assert( pMem->n>=0 ); | 
| +  n = (u32)pMem->n; | 
| if( flags & MEM_Zero ){ | 
| n += pMem->u.nZero; | 
| } | 
| -  assert( n>=0 ); | 
| return ((n*2) + 12 + ((flags&MEM_Str)!=0)); | 
| } | 
|  | 
| @@ -2631,21 +2934,15 @@ static u64 floatSwap(u64 in){ | 
| ** buf. It is assumed that the caller has allocated sufficient space. | 
| ** Return the number of bytes written. | 
| ** | 
| -** nBuf is the amount of space left in buf[].  nBuf must always be | 
| -** large enough to hold the entire field.  Except, if the field is | 
| -** a blob with a zero-filled tail, then buf[] might be just the right | 
| -** size to hold everything except for the zero-filled tail.  If buf[] | 
| -** is only big enough to hold the non-zero prefix, then only write that | 
| -** prefix into buf[].  But if buf[] is large enough to hold both the | 
| -** prefix and the tail then write the prefix and set the tail to all | 
| -** zeros. | 
| +** nBuf is the amount of space left in buf[].  The caller is responsible | 
| +** for allocating enough space to buf[] to hold the entire field, exclusive | 
| +** of the pMem->u.nZero bytes for a MEM_Zero value. | 
| ** | 
| ** Return the number of bytes actually written into buf[].  The number | 
| ** of bytes in the zero-filled tail is included in the return value only | 
| ** if those bytes were zeroed in buf[]. | 
| */ | 
| -u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ | 
| -  u32 serial_type = sqlite3VdbeSerialType(pMem, file_format); | 
| +u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ | 
| u32 len; | 
|  | 
| /* Integer and Real */ | 
| @@ -2653,18 +2950,18 @@ u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ | 
| u64 v; | 
| u32 i; | 
| if( serial_type==7 ){ | 
| -      assert( sizeof(v)==sizeof(pMem->r) ); | 
| -      memcpy(&v, &pMem->r, sizeof(v)); | 
| +      assert( sizeof(v)==sizeof(pMem->u.r) ); | 
| +      memcpy(&v, &pMem->u.r, sizeof(v)); | 
| swapMixedEndianFloat(v); | 
| }else{ | 
| v = pMem->u.i; | 
| } | 
| len = i = sqlite3VdbeSerialTypeLen(serial_type); | 
| -    assert( len<=(u32)nBuf ); | 
| -    while( i-- ){ | 
| -      buf[i] = (u8)(v&0xFF); | 
| +    assert( i>0 ); | 
| +    do{ | 
| +      buf[--i] = (u8)(v&0xFF); | 
| v >>= 8; | 
| -    } | 
| +    }while( i ); | 
| return len; | 
| } | 
|  | 
| @@ -2672,17 +2969,8 @@ u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ | 
| if( serial_type>=12 ){ | 
| assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) | 
| == (int)sqlite3VdbeSerialTypeLen(serial_type) ); | 
| -    assert( pMem->n<=nBuf ); | 
| len = pMem->n; | 
| memcpy(buf, pMem->z, len); | 
| -    if( pMem->flags & MEM_Zero ){ | 
| -      len += pMem->u.nZero; | 
| -      assert( nBuf>=0 ); | 
| -      if( len > (u32)nBuf ){ | 
| -        len = (u32)nBuf; | 
| -      } | 
| -      memset(&buf[pMem->n], 0, len-pMem->n); | 
| -    } | 
| return len; | 
| } | 
|  | 
| @@ -2690,10 +2978,56 @@ u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ | 
| return 0; | 
| } | 
|  | 
| +/* Input "x" is a sequence of unsigned characters that represent a | 
| +** big-endian integer.  Return the equivalent native integer | 
| +*/ | 
| +#define ONE_BYTE_INT(x)    ((i8)(x)[0]) | 
| +#define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1]) | 
| +#define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) | 
| +#define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) | 
| +#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) | 
| + | 
| /* | 
| ** Deserialize the data blob pointed to by buf as serial type serial_type | 
| ** and store the result in pMem.  Return the number of bytes read. | 
| +** | 
| +** This function is implemented as two separate routines for performance. | 
| +** The few cases that require local variables are broken out into a separate | 
| +** routine so that in most cases the overhead of moving the stack pointer | 
| +** is avoided. | 
| */ | 
| +static u32 SQLITE_NOINLINE serialGet( | 
| +  const unsigned char *buf,     /* Buffer to deserialize from */ | 
| +  u32 serial_type,              /* Serial type to deserialize */ | 
| +  Mem *pMem                     /* Memory cell to write value into */ | 
| +){ | 
| +  u64 x = FOUR_BYTE_UINT(buf); | 
| +  u32 y = FOUR_BYTE_UINT(buf+4); | 
| +  x = (x<<32) + y; | 
| +  if( serial_type==6 ){ | 
| +    pMem->u.i = *(i64*)&x; | 
| +    pMem->flags = MEM_Int; | 
| +    testcase( pMem->u.i<0 ); | 
| +  }else{ | 
| +#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) | 
| +    /* Verify that integers and floating point values use the same | 
| +    ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is | 
| +    ** defined that 64-bit floating point values really are mixed | 
| +    ** endian. | 
| +    */ | 
| +    static const u64 t1 = ((u64)0x3ff00000)<<32; | 
| +    static const double r1 = 1.0; | 
| +    u64 t2 = t1; | 
| +    swapMixedEndianFloat(t2); | 
| +    assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); | 
| +#endif | 
| +    assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); | 
| +    swapMixedEndianFloat(x); | 
| +    memcpy(&pMem->u.r, &x, sizeof(x)); | 
| +    pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; | 
| +  } | 
| +  return 8; | 
| +} | 
| u32 sqlite3VdbeSerialGet( | 
| const unsigned char *buf,     /* Buffer to deserialize from */ | 
| u32 serial_type,              /* Serial type to deserialize */ | 
| @@ -2707,63 +3041,40 @@ u32 sqlite3VdbeSerialGet( | 
| break; | 
| } | 
| case 1: { /* 1-byte signed integer */ | 
| -      pMem->u.i = (signed char)buf[0]; | 
| +      pMem->u.i = ONE_BYTE_INT(buf); | 
| pMem->flags = MEM_Int; | 
| +      testcase( pMem->u.i<0 ); | 
| return 1; | 
| } | 
| case 2: { /* 2-byte signed integer */ | 
| -      pMem->u.i = (((signed char)buf[0])<<8) | buf[1]; | 
| +      pMem->u.i = TWO_BYTE_INT(buf); | 
| pMem->flags = MEM_Int; | 
| +      testcase( pMem->u.i<0 ); | 
| return 2; | 
| } | 
| case 3: { /* 3-byte signed integer */ | 
| -      pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2]; | 
| +      pMem->u.i = THREE_BYTE_INT(buf); | 
| pMem->flags = MEM_Int; | 
| +      testcase( pMem->u.i<0 ); | 
| return 3; | 
| } | 
| case 4: { /* 4-byte signed integer */ | 
| -      pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; | 
| +      pMem->u.i = FOUR_BYTE_INT(buf); | 
| pMem->flags = MEM_Int; | 
| +      testcase( pMem->u.i<0 ); | 
| return 4; | 
| } | 
| case 5: { /* 6-byte signed integer */ | 
| -      u64 x = (((signed char)buf[0])<<8) | buf[1]; | 
| -      u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; | 
| -      x = (x<<32) | y; | 
| -      pMem->u.i = *(i64*)&x; | 
| +      pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); | 
| pMem->flags = MEM_Int; | 
| +      testcase( pMem->u.i<0 ); | 
| return 6; | 
| } | 
| case 6:   /* 8-byte signed integer */ | 
| case 7: { /* IEEE floating point */ | 
| -      u64 x; | 
| -      u32 y; | 
| -#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) | 
| -      /* Verify that integers and floating point values use the same | 
| -      ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is | 
| -      ** defined that 64-bit floating point values really are mixed | 
| -      ** endian. | 
| -      */ | 
| -      static const u64 t1 = ((u64)0x3ff00000)<<32; | 
| -      static const double r1 = 1.0; | 
| -      u64 t2 = t1; | 
| -      swapMixedEndianFloat(t2); | 
| -      assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); | 
| -#endif | 
| - | 
| -      x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; | 
| -      y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; | 
| -      x = (x<<32) | y; | 
| -      if( serial_type==6 ){ | 
| -        pMem->u.i = *(i64*)&x; | 
| -        pMem->flags = MEM_Int; | 
| -      }else{ | 
| -        assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); | 
| -        swapMixedEndianFloat(x); | 
| -        memcpy(&pMem->r, &x, sizeof(x)); | 
| -        pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; | 
| -      } | 
| -      return 8; | 
| +      /* These use local variables, so do them in a separate routine | 
| +      ** to avoid having to move the frame pointer in the common case */ | 
| +      return serialGet(buf,serial_type,pMem); | 
| } | 
| case 8:    /* Integer 0 */ | 
| case 9: {  /* Integer 1 */ | 
| @@ -2772,164 +3083,136 @@ u32 sqlite3VdbeSerialGet( | 
| return 0; | 
| } | 
| default: { | 
| -      u32 len = (serial_type-12)/2; | 
| +      static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; | 
| pMem->z = (char *)buf; | 
| -      pMem->n = len; | 
| -      pMem->xDel = 0; | 
| -      if( serial_type&0x01 ){ | 
| -        pMem->flags = MEM_Str | MEM_Ephem; | 
| -      }else{ | 
| -        pMem->flags = MEM_Blob | MEM_Ephem; | 
| -      } | 
| -      return len; | 
| +      pMem->n = (serial_type-12)/2; | 
| +      pMem->flags = aFlag[serial_type&1]; | 
| +      return pMem->n; | 
| } | 
| } | 
| return 0; | 
| } | 
| - | 
| - | 
| /* | 
| -** Given the nKey-byte encoding of a record in pKey[], parse the | 
| -** record into a UnpackedRecord structure.  Return a pointer to | 
| -** that structure. | 
| +** This routine is used to allocate sufficient space for an UnpackedRecord | 
| +** structure large enough to be used with sqlite3VdbeRecordUnpack() if | 
| +** the first argument is a pointer to KeyInfo structure pKeyInfo. | 
| ** | 
| -** The calling function might provide szSpace bytes of memory | 
| -** space at pSpace.  This space can be used to hold the returned | 
| -** VDbeParsedRecord structure if it is large enough.  If it is | 
| -** not big enough, space is obtained from sqlite3_malloc(). | 
| +** The space is either allocated using sqlite3DbMallocRaw() or from within | 
| +** the unaligned buffer passed via the second and third arguments (presumably | 
| +** stack space). If the former, then *ppFree is set to a pointer that should | 
| +** be eventually freed by the caller using sqlite3DbFree(). Or, if the | 
| +** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL | 
| +** before returning. | 
| ** | 
| -** The returned structure should be closed by a call to | 
| -** sqlite3VdbeDeleteUnpackedRecord(). | 
| -*/ | 
| -UnpackedRecord *sqlite3VdbeRecordUnpack( | 
| -  KeyInfo *pKeyInfo,     /* Information about the record format */ | 
| -  int nKey,              /* Size of the binary record */ | 
| -  const void *pKey,      /* The binary record */ | 
| -  char *pSpace,          /* Unaligned space available to hold the object */ | 
| -  int szSpace            /* Size of pSpace[] in bytes */ | 
| +** If an OOM error occurs, NULL is returned. | 
| +*/ | 
| +UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( | 
| +  KeyInfo *pKeyInfo,              /* Description of the record */ | 
| +  char *pSpace,                   /* Unaligned space available */ | 
| +  int szSpace,                    /* Size of pSpace[] in bytes */ | 
| +  char **ppFree                   /* OUT: Caller should free this pointer */ | 
| ){ | 
| -  const unsigned char *aKey = (const unsigned char *)pKey; | 
| -  UnpackedRecord *p;  /* The unpacked record that we will return */ | 
| -  int nByte;          /* Memory space needed to hold p, in bytes */ | 
| -  int d; | 
| -  u32 idx; | 
| -  u16 u;              /* Unsigned loop counter */ | 
| -  u32 szHdr; | 
| -  Mem *pMem; | 
| -  int nOff;           /* Increase pSpace by this much to 8-byte align it */ | 
| - | 
| -  /* | 
| -  ** We want to shift the pointer pSpace up such that it is 8-byte aligned. | 
| +  UnpackedRecord *p;              /* Unpacked record to return */ | 
| +  int nOff;                       /* Increment pSpace by nOff to align it */ | 
| +  int nByte;                      /* Number of bytes required for *p */ | 
| + | 
| +  /* We want to shift the pointer pSpace up such that it is 8-byte aligned. | 
| ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift | 
| ** it by.  If pSpace is already 8-byte aligned, nOff should be zero. | 
| */ | 
| nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; | 
| -  pSpace += nOff; | 
| -  szSpace -= nOff; | 
| nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); | 
| -  if( nByte>szSpace ){ | 
| -    p = sqlite3DbMallocRaw(pKeyInfo->db, nByte); | 
| -    if( p==0 ) return 0; | 
| -    p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY; | 
| +  if( nByte>szSpace+nOff ){ | 
| +    p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); | 
| +    *ppFree = (char *)p; | 
| +    if( !p ) return 0; | 
| }else{ | 
| -    p = (UnpackedRecord*)pSpace; | 
| -    p->flags = UNPACKED_NEED_DESTROY; | 
| +    p = (UnpackedRecord*)&pSpace[nOff]; | 
| +    *ppFree = 0; | 
| } | 
| + | 
| +  p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; | 
| +  assert( pKeyInfo->aSortOrder!=0 ); | 
| p->pKeyInfo = pKeyInfo; | 
| p->nField = pKeyInfo->nField + 1; | 
| -  p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; | 
| +  return p; | 
| +} | 
| + | 
| +/* | 
| +** Given the nKey-byte encoding of a record in pKey[], populate the | 
| +** UnpackedRecord structure indicated by the fourth argument with the | 
| +** contents of the decoded record. | 
| +*/ | 
| +void sqlite3VdbeRecordUnpack( | 
| +  KeyInfo *pKeyInfo,     /* Information about the record format */ | 
| +  int nKey,              /* Size of the binary record */ | 
| +  const void *pKey,      /* The binary record */ | 
| +  UnpackedRecord *p      /* Populate this structure before returning. */ | 
| +){ | 
| +  const unsigned char *aKey = (const unsigned char *)pKey; | 
| +  int d; | 
| +  u32 idx;                        /* Offset in aKey[] to read from */ | 
| +  u16 u;                          /* Unsigned loop counter */ | 
| +  u32 szHdr; | 
| +  Mem *pMem = p->aMem; | 
| + | 
| +  p->default_rc = 0; | 
| assert( EIGHT_BYTE_ALIGNMENT(pMem) ); | 
| idx = getVarint32(aKey, szHdr); | 
| d = szHdr; | 
| u = 0; | 
| -  while( idx<szHdr && u<p->nField && d<=nKey ){ | 
| +  while( idx<szHdr && d<=nKey ){ | 
| u32 serial_type; | 
|  | 
| idx += getVarint32(&aKey[idx], serial_type); | 
| pMem->enc = pKeyInfo->enc; | 
| pMem->db = pKeyInfo->db; | 
| -    pMem->flags = 0; | 
| -    pMem->zMalloc = 0; | 
| +    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ | 
| +    pMem->szMalloc = 0; | 
| d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); | 
| pMem++; | 
| -    u++; | 
| +    if( (++u)>=p->nField ) break; | 
| } | 
| assert( u<=pKeyInfo->nField + 1 ); | 
| p->nField = u; | 
| -  return (void*)p; | 
| -} | 
| - | 
| -/* | 
| -** This routine destroys a UnpackedRecord object. | 
| -*/ | 
| -void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){ | 
| -  int i; | 
| -  Mem *pMem; | 
| - | 
| -  assert( p!=0 ); | 
| -  assert( p->flags & UNPACKED_NEED_DESTROY ); | 
| -  for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){ | 
| -    /* The unpacked record is always constructed by the | 
| -    ** sqlite3VdbeUnpackRecord() function above, which makes all | 
| -    ** strings and blobs static.  And none of the elements are | 
| -    ** ever transformed, so there is never anything to delete. | 
| -    */ | 
| -    if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem); | 
| -  } | 
| -  if( p->flags & UNPACKED_NEED_FREE ){ | 
| -    sqlite3DbFree(p->pKeyInfo->db, p); | 
| -  } | 
| } | 
|  | 
| +#if SQLITE_DEBUG | 
| /* | 
| -** This function compares the two table rows or index records | 
| -** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero | 
| -** or positive integer if key1 is less than, equal to or | 
| -** greater than key2.  The {nKey1, pKey1} key must be a blob | 
| -** created by th OP_MakeRecord opcode of the VDBE.  The pPKey2 | 
| -** key must be a parsed key such as obtained from | 
| -** sqlite3VdbeParseRecord. | 
| +** This function compares two index or table record keys in the same way | 
| +** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), | 
| +** this function deserializes and compares values using the | 
| +** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used | 
| +** in assert() statements to ensure that the optimized code in | 
| +** sqlite3VdbeRecordCompare() returns results with these two primitives. | 
| ** | 
| -** Key1 and Key2 do not have to contain the same number of fields. | 
| -** The key with fewer fields is usually compares less than the | 
| -** longer key.  However if the UNPACKED_INCRKEY flags in pPKey2 is set | 
| -** and the common prefixes are equal, then key1 is less than key2. | 
| -** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are | 
| -** equal, then the keys are considered to be equal and | 
| -** the parts beyond the common prefix are ignored. | 
| -** | 
| -** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of | 
| -** the header of pKey1 is ignored.  It is assumed that pKey1 is | 
| -** an index key, and thus ends with a rowid value.  The last byte | 
| -** of the header will therefore be the serial type of the rowid: | 
| -** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types. | 
| -** The serial type of the final rowid will always be a single byte. | 
| -** By ignoring this last byte of the header, we force the comparison | 
| -** to ignore the rowid at the end of key1. | 
| +** Return true if the result of comparison is equivalent to desiredResult. | 
| +** Return false if there is a disagreement. | 
| */ | 
| -int sqlite3VdbeRecordCompare( | 
| +static int vdbeRecordCompareDebug( | 
| int nKey1, const void *pKey1, /* Left key */ | 
| -  UnpackedRecord *pPKey2        /* Right key */ | 
| +  const UnpackedRecord *pPKey2, /* Right key */ | 
| +  int desiredResult             /* Correct answer */ | 
| ){ | 
| -  int d1;            /* Offset into aKey[] of next data element */ | 
| +  u32 d1;            /* Offset into aKey[] of next data element */ | 
| u32 idx1;          /* Offset into aKey[] of next header element */ | 
| u32 szHdr1;        /* Number of bytes in header */ | 
| int i = 0; | 
| -  int nField; | 
| int rc = 0; | 
| const unsigned char *aKey1 = (const unsigned char *)pKey1; | 
| KeyInfo *pKeyInfo; | 
| Mem mem1; | 
|  | 
| pKeyInfo = pPKey2->pKeyInfo; | 
| +  if( pKeyInfo->db==0 ) return 1; | 
| mem1.enc = pKeyInfo->enc; | 
| mem1.db = pKeyInfo->db; | 
| /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */ | 
| -  VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */ | 
| +  VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ | 
|  | 
| /* Compilers may complain that mem1.u.i is potentially uninitialized. | 
| ** We could initialize it, as shown here, to silence those complaints. | 
| -  ** But in fact, mem1.u.i will never actually be used initialized, and doing | 
| +  ** But in fact, mem1.u.i will never actually be used uninitialized, and doing | 
| ** the unnecessary initialization has a measurable negative performance | 
| ** impact, since this routine is a very high runner.  And so, we choose | 
| ** to ignore the compiler warnings and leave this variable uninitialized. | 
| @@ -2938,16 +3221,27 @@ int sqlite3VdbeRecordCompare( | 
|  | 
| idx1 = getVarint32(aKey1, szHdr1); | 
| d1 = szHdr1; | 
| -  if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){ | 
| -    szHdr1--; | 
| -  } | 
| -  nField = pKeyInfo->nField; | 
| -  while( idx1<szHdr1 && i<pPKey2->nField ){ | 
| +  assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); | 
| +  assert( pKeyInfo->aSortOrder!=0 ); | 
| +  assert( pKeyInfo->nField>0 ); | 
| +  assert( idx1<=szHdr1 || CORRUPT_DB ); | 
| +  do{ | 
| u32 serial_type1; | 
|  | 
| /* Read the serial types for the next element in each key. */ | 
| idx1 += getVarint32( aKey1+idx1, serial_type1 ); | 
| -    if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; | 
| + | 
| +    /* Verify that there is enough key space remaining to avoid | 
| +    ** a buffer overread.  The "d1+serial_type1+2" subexpression will | 
| +    ** always be greater than or equal to the amount of required key space. | 
| +    ** Use that approximation to avoid the more expensive call to | 
| +    ** sqlite3VdbeSerialTypeLen() in the common case. | 
| +    */ | 
| +    if( d1+serial_type1+2>(u32)nKey1 | 
| +     && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 | 
| +    ){ | 
| +      break; | 
| +    } | 
|  | 
| /* Extract the values to be compared. | 
| */ | 
| @@ -2955,58 +3249,623 @@ int sqlite3VdbeRecordCompare( | 
|  | 
| /* Do the comparison | 
| */ | 
| -    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], | 
| -                           i<nField ? pKeyInfo->aColl[i] : 0); | 
| +    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); | 
| if( rc!=0 ){ | 
| -      assert( mem1.zMalloc==0 );  /* See comment below */ | 
| - | 
| -      /* Invert the result if we are using DESC sort order. */ | 
| -      if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){ | 
| -        rc = -rc; | 
| +      assert( mem1.szMalloc==0 );  /* See comment below */ | 
| +      if( pKeyInfo->aSortOrder[i] ){ | 
| +        rc = -rc;  /* Invert the result for DESC sort order. */ | 
| } | 
| - | 
| -      /* If the PREFIX_SEARCH flag is set and all fields except the final | 
| -      ** rowid field were equal, then clear the PREFIX_SEARCH flag and set | 
| -      ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1). | 
| -      ** This is used by the OP_IsUnique opcode. | 
| -      */ | 
| -      if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){ | 
| -        assert( idx1==szHdr1 && rc ); | 
| -        assert( mem1.flags & MEM_Int ); | 
| -        pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH; | 
| -        pPKey2->rowid = mem1.u.i; | 
| -      } | 
| - | 
| -      return rc; | 
| +      goto debugCompareEnd; | 
| } | 
| i++; | 
| -  } | 
| +  }while( idx1<szHdr1 && i<pPKey2->nField ); | 
|  | 
| /* No memory allocation is ever used on mem1.  Prove this using | 
| ** the following assert().  If the assert() fails, it indicates a | 
| ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). | 
| */ | 
| -  assert( mem1.zMalloc==0 ); | 
| +  assert( mem1.szMalloc==0 ); | 
|  | 
| /* rc==0 here means that one of the keys ran out of fields and | 
| -  ** all the fields up to that point were equal. If the UNPACKED_INCRKEY | 
| -  ** flag is set, then break the tie by treating key2 as larger. | 
| -  ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes | 
| -  ** are considered to be equal.  Otherwise, the longer key is the | 
| -  ** larger.  As it happens, the pPKey2 will always be the longer | 
| -  ** if there is a difference. | 
| -  */ | 
| -  assert( rc==0 ); | 
| -  if( pPKey2->flags & UNPACKED_INCRKEY ){ | 
| -    rc = -1; | 
| -  }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){ | 
| -    /* Leave rc==0 */ | 
| -  }else if( idx1<szHdr1 ){ | 
| -    rc = 1; | 
| +  ** all the fields up to that point were equal. Return the default_rc | 
| +  ** value.  */ | 
| +  rc = pPKey2->default_rc; | 
| + | 
| +debugCompareEnd: | 
| +  if( desiredResult==0 && rc==0 ) return 1; | 
| +  if( desiredResult<0 && rc<0 ) return 1; | 
| +  if( desiredResult>0 && rc>0 ) return 1; | 
| +  if( CORRUPT_DB ) return 1; | 
| +  if( pKeyInfo->db->mallocFailed ) return 1; | 
| +  return 0; | 
| +} | 
| +#endif | 
| + | 
| +/* | 
| +** Both *pMem1 and *pMem2 contain string values. Compare the two values | 
| +** using the collation sequence pColl. As usual, return a negative , zero | 
| +** or positive value if *pMem1 is less than, equal to or greater than | 
| +** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". | 
| +*/ | 
| +static int vdbeCompareMemString( | 
| +  const Mem *pMem1, | 
| +  const Mem *pMem2, | 
| +  const CollSeq *pColl, | 
| +  u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */ | 
| +){ | 
| +  if( pMem1->enc==pColl->enc ){ | 
| +    /* The strings are already in the correct encoding.  Call the | 
| +     ** comparison function directly */ | 
| +    return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); | 
| +  }else{ | 
| +    int rc; | 
| +    const void *v1, *v2; | 
| +    int n1, n2; | 
| +    Mem c1; | 
| +    Mem c2; | 
| +    sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); | 
| +    sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); | 
| +    sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); | 
| +    sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); | 
| +    v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); | 
| +    n1 = v1==0 ? 0 : c1.n; | 
| +    v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); | 
| +    n2 = v2==0 ? 0 : c2.n; | 
| +    rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); | 
| +    sqlite3VdbeMemRelease(&c1); | 
| +    sqlite3VdbeMemRelease(&c2); | 
| +    if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM; | 
| +    return rc; | 
| } | 
| -  return rc; | 
| } | 
| + | 
| +/* | 
| +** Compare two blobs.  Return negative, zero, or positive if the first | 
| +** is less than, equal to, or greater than the second, respectively. | 
| +** If one blob is a prefix of the other, then the shorter is the lessor. | 
| +*/ | 
| +static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ | 
| +  int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n); | 
| +  if( c ) return c; | 
| +  return pB1->n - pB2->n; | 
| +} | 
| + | 
| + | 
| +/* | 
| +** Compare the values contained by the two memory cells, returning | 
| +** negative, zero or positive if pMem1 is less than, equal to, or greater | 
| +** than pMem2. Sorting order is NULL's first, followed by numbers (integers | 
| +** and reals) sorted numerically, followed by text ordered by the collating | 
| +** sequence pColl and finally blob's ordered by memcmp(). | 
| +** | 
| +** Two NULL values are considered equal by this function. | 
| +*/ | 
| +int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ | 
| +  int f1, f2; | 
| +  int combined_flags; | 
| + | 
| +  f1 = pMem1->flags; | 
| +  f2 = pMem2->flags; | 
| +  combined_flags = f1|f2; | 
| +  assert( (combined_flags & MEM_RowSet)==0 ); | 
|  | 
| +  /* If one value is NULL, it is less than the other. If both values | 
| +  ** are NULL, return 0. | 
| +  */ | 
| +  if( combined_flags&MEM_Null ){ | 
| +    return (f2&MEM_Null) - (f1&MEM_Null); | 
| +  } | 
| + | 
| +  /* If one value is a number and the other is not, the number is less. | 
| +  ** If both are numbers, compare as reals if one is a real, or as integers | 
| +  ** if both values are integers. | 
| +  */ | 
| +  if( combined_flags&(MEM_Int|MEM_Real) ){ | 
| +    double r1, r2; | 
| +    if( (f1 & f2 & MEM_Int)!=0 ){ | 
| +      if( pMem1->u.i < pMem2->u.i ) return -1; | 
| +      if( pMem1->u.i > pMem2->u.i ) return 1; | 
| +      return 0; | 
| +    } | 
| +    if( (f1&MEM_Real)!=0 ){ | 
| +      r1 = pMem1->u.r; | 
| +    }else if( (f1&MEM_Int)!=0 ){ | 
| +      r1 = (double)pMem1->u.i; | 
| +    }else{ | 
| +      return 1; | 
| +    } | 
| +    if( (f2&MEM_Real)!=0 ){ | 
| +      r2 = pMem2->u.r; | 
| +    }else if( (f2&MEM_Int)!=0 ){ | 
| +      r2 = (double)pMem2->u.i; | 
| +    }else{ | 
| +      return -1; | 
| +    } | 
| +    if( r1<r2 ) return -1; | 
| +    if( r1>r2 ) return 1; | 
| +    return 0; | 
| +  } | 
| + | 
| +  /* If one value is a string and the other is a blob, the string is less. | 
| +  ** If both are strings, compare using the collating functions. | 
| +  */ | 
| +  if( combined_flags&MEM_Str ){ | 
| +    if( (f1 & MEM_Str)==0 ){ | 
| +      return 1; | 
| +    } | 
| +    if( (f2 & MEM_Str)==0 ){ | 
| +      return -1; | 
| +    } | 
| + | 
| +    assert( pMem1->enc==pMem2->enc ); | 
| +    assert( pMem1->enc==SQLITE_UTF8 || | 
| +            pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); | 
| + | 
| +    /* The collation sequence must be defined at this point, even if | 
| +    ** the user deletes the collation sequence after the vdbe program is | 
| +    ** compiled (this was not always the case). | 
| +    */ | 
| +    assert( !pColl || pColl->xCmp ); | 
| + | 
| +    if( pColl ){ | 
| +      return vdbeCompareMemString(pMem1, pMem2, pColl, 0); | 
| +    } | 
| +    /* If a NULL pointer was passed as the collate function, fall through | 
| +    ** to the blob case and use memcmp().  */ | 
| +  } | 
| + | 
| +  /* Both values must be blobs.  Compare using memcmp().  */ | 
| +  return sqlite3BlobCompare(pMem1, pMem2); | 
| +} | 
| + | 
| + | 
| +/* | 
| +** The first argument passed to this function is a serial-type that | 
| +** corresponds to an integer - all values between 1 and 9 inclusive | 
| +** except 7. The second points to a buffer containing an integer value | 
| +** serialized according to serial_type. This function deserializes | 
| +** and returns the value. | 
| +*/ | 
| +static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ | 
| +  u32 y; | 
| +  assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); | 
| +  switch( serial_type ){ | 
| +    case 0: | 
| +    case 1: | 
| +      testcase( aKey[0]&0x80 ); | 
| +      return ONE_BYTE_INT(aKey); | 
| +    case 2: | 
| +      testcase( aKey[0]&0x80 ); | 
| +      return TWO_BYTE_INT(aKey); | 
| +    case 3: | 
| +      testcase( aKey[0]&0x80 ); | 
| +      return THREE_BYTE_INT(aKey); | 
| +    case 4: { | 
| +      testcase( aKey[0]&0x80 ); | 
| +      y = FOUR_BYTE_UINT(aKey); | 
| +      return (i64)*(int*)&y; | 
| +    } | 
| +    case 5: { | 
| +      testcase( aKey[0]&0x80 ); | 
| +      return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); | 
| +    } | 
| +    case 6: { | 
| +      u64 x = FOUR_BYTE_UINT(aKey); | 
| +      testcase( aKey[0]&0x80 ); | 
| +      x = (x<<32) | FOUR_BYTE_UINT(aKey+4); | 
| +      return (i64)*(i64*)&x; | 
| +    } | 
| +  } | 
| + | 
| +  return (serial_type - 8); | 
| +} | 
| + | 
| +/* | 
| +** This function compares the two table rows or index records | 
| +** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero | 
| +** or positive integer if key1 is less than, equal to or | 
| +** greater than key2.  The {nKey1, pKey1} key must be a blob | 
| +** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2 | 
| +** key must be a parsed key such as obtained from | 
| +** sqlite3VdbeParseRecord. | 
| +** | 
| +** If argument bSkip is non-zero, it is assumed that the caller has already | 
| +** determined that the first fields of the keys are equal. | 
| +** | 
| +** Key1 and Key2 do not have to contain the same number of fields. If all | 
| +** fields that appear in both keys are equal, then pPKey2->default_rc is | 
| +** returned. | 
| +** | 
| +** If database corruption is discovered, set pPKey2->errCode to | 
| +** SQLITE_CORRUPT and return 0. If an OOM error is encountered, | 
| +** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the | 
| +** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). | 
| +*/ | 
| +static int vdbeRecordCompareWithSkip( | 
| +  int nKey1, const void *pKey1,   /* Left key */ | 
| +  UnpackedRecord *pPKey2,         /* Right key */ | 
| +  int bSkip                       /* If true, skip the first field */ | 
| +){ | 
| +  u32 d1;                         /* Offset into aKey[] of next data element */ | 
| +  int i;                          /* Index of next field to compare */ | 
| +  u32 szHdr1;                     /* Size of record header in bytes */ | 
| +  u32 idx1;                       /* Offset of first type in header */ | 
| +  int rc = 0;                     /* Return value */ | 
| +  Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */ | 
| +  KeyInfo *pKeyInfo = pPKey2->pKeyInfo; | 
| +  const unsigned char *aKey1 = (const unsigned char *)pKey1; | 
| +  Mem mem1; | 
| + | 
| +  /* If bSkip is true, then the caller has already determined that the first | 
| +  ** two elements in the keys are equal. Fix the various stack variables so | 
| +  ** that this routine begins comparing at the second field. */ | 
| +  if( bSkip ){ | 
| +    u32 s1; | 
| +    idx1 = 1 + getVarint32(&aKey1[1], s1); | 
| +    szHdr1 = aKey1[0]; | 
| +    d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); | 
| +    i = 1; | 
| +    pRhs++; | 
| +  }else{ | 
| +    idx1 = getVarint32(aKey1, szHdr1); | 
| +    d1 = szHdr1; | 
| +    if( d1>(unsigned)nKey1 ){ | 
| +      pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; | 
| +      return 0;  /* Corruption */ | 
| +    } | 
| +    i = 0; | 
| +  } | 
| + | 
| +  VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ | 
| +  assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField | 
| +       || CORRUPT_DB ); | 
| +  assert( pPKey2->pKeyInfo->aSortOrder!=0 ); | 
| +  assert( pPKey2->pKeyInfo->nField>0 ); | 
| +  assert( idx1<=szHdr1 || CORRUPT_DB ); | 
| +  do{ | 
| +    u32 serial_type; | 
| + | 
| +    /* RHS is an integer */ | 
| +    if( pRhs->flags & MEM_Int ){ | 
| +      serial_type = aKey1[idx1]; | 
| +      testcase( serial_type==12 ); | 
| +      if( serial_type>=12 ){ | 
| +        rc = +1; | 
| +      }else if( serial_type==0 ){ | 
| +        rc = -1; | 
| +      }else if( serial_type==7 ){ | 
| +        double rhs = (double)pRhs->u.i; | 
| +        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); | 
| +        if( mem1.u.r<rhs ){ | 
| +          rc = -1; | 
| +        }else if( mem1.u.r>rhs ){ | 
| +          rc = +1; | 
| +        } | 
| +      }else{ | 
| +        i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); | 
| +        i64 rhs = pRhs->u.i; | 
| +        if( lhs<rhs ){ | 
| +          rc = -1; | 
| +        }else if( lhs>rhs ){ | 
| +          rc = +1; | 
| +        } | 
| +      } | 
| +    } | 
| + | 
| +    /* RHS is real */ | 
| +    else if( pRhs->flags & MEM_Real ){ | 
| +      serial_type = aKey1[idx1]; | 
| +      if( serial_type>=12 ){ | 
| +        rc = +1; | 
| +      }else if( serial_type==0 ){ | 
| +        rc = -1; | 
| +      }else{ | 
| +        double rhs = pRhs->u.r; | 
| +        double lhs; | 
| +        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); | 
| +        if( serial_type==7 ){ | 
| +          lhs = mem1.u.r; | 
| +        }else{ | 
| +          lhs = (double)mem1.u.i; | 
| +        } | 
| +        if( lhs<rhs ){ | 
| +          rc = -1; | 
| +        }else if( lhs>rhs ){ | 
| +          rc = +1; | 
| +        } | 
| +      } | 
| +    } | 
| + | 
| +    /* RHS is a string */ | 
| +    else if( pRhs->flags & MEM_Str ){ | 
| +      getVarint32(&aKey1[idx1], serial_type); | 
| +      testcase( serial_type==12 ); | 
| +      if( serial_type<12 ){ | 
| +        rc = -1; | 
| +      }else if( !(serial_type & 0x01) ){ | 
| +        rc = +1; | 
| +      }else{ | 
| +        mem1.n = (serial_type - 12) / 2; | 
| +        testcase( (d1+mem1.n)==(unsigned)nKey1 ); | 
| +        testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); | 
| +        if( (d1+mem1.n) > (unsigned)nKey1 ){ | 
| +          pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; | 
| +          return 0;                /* Corruption */ | 
| +        }else if( pKeyInfo->aColl[i] ){ | 
| +          mem1.enc = pKeyInfo->enc; | 
| +          mem1.db = pKeyInfo->db; | 
| +          mem1.flags = MEM_Str; | 
| +          mem1.z = (char*)&aKey1[d1]; | 
| +          rc = vdbeCompareMemString( | 
| +              &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode | 
| +          ); | 
| +        }else{ | 
| +          int nCmp = MIN(mem1.n, pRhs->n); | 
| +          rc = memcmp(&aKey1[d1], pRhs->z, nCmp); | 
| +          if( rc==0 ) rc = mem1.n - pRhs->n; | 
| +        } | 
| +      } | 
| +    } | 
| + | 
| +    /* RHS is a blob */ | 
| +    else if( pRhs->flags & MEM_Blob ){ | 
| +      getVarint32(&aKey1[idx1], serial_type); | 
| +      testcase( serial_type==12 ); | 
| +      if( serial_type<12 || (serial_type & 0x01) ){ | 
| +        rc = -1; | 
| +      }else{ | 
| +        int nStr = (serial_type - 12) / 2; | 
| +        testcase( (d1+nStr)==(unsigned)nKey1 ); | 
| +        testcase( (d1+nStr+1)==(unsigned)nKey1 ); | 
| +        if( (d1+nStr) > (unsigned)nKey1 ){ | 
| +          pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; | 
| +          return 0;                /* Corruption */ | 
| +        }else{ | 
| +          int nCmp = MIN(nStr, pRhs->n); | 
| +          rc = memcmp(&aKey1[d1], pRhs->z, nCmp); | 
| +          if( rc==0 ) rc = nStr - pRhs->n; | 
| +        } | 
| +      } | 
| +    } | 
| + | 
| +    /* RHS is null */ | 
| +    else{ | 
| +      serial_type = aKey1[idx1]; | 
| +      rc = (serial_type!=0); | 
| +    } | 
| + | 
| +    if( rc!=0 ){ | 
| +      if( pKeyInfo->aSortOrder[i] ){ | 
| +        rc = -rc; | 
| +      } | 
| +      assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); | 
| +      assert( mem1.szMalloc==0 );  /* See comment below */ | 
| +      return rc; | 
| +    } | 
| + | 
| +    i++; | 
| +    pRhs++; | 
| +    d1 += sqlite3VdbeSerialTypeLen(serial_type); | 
| +    idx1 += sqlite3VarintLen(serial_type); | 
| +  }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); | 
| + | 
| +  /* No memory allocation is ever used on mem1.  Prove this using | 
| +  ** the following assert().  If the assert() fails, it indicates a | 
| +  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */ | 
| +  assert( mem1.szMalloc==0 ); | 
| + | 
| +  /* rc==0 here means that one or both of the keys ran out of fields and | 
| +  ** all the fields up to that point were equal. Return the default_rc | 
| +  ** value.  */ | 
| +  assert( CORRUPT_DB | 
| +       || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) | 
| +       || pKeyInfo->db->mallocFailed | 
| +  ); | 
| +  return pPKey2->default_rc; | 
| +} | 
| +int sqlite3VdbeRecordCompare( | 
| +  int nKey1, const void *pKey1,   /* Left key */ | 
| +  UnpackedRecord *pPKey2          /* Right key */ | 
| +){ | 
| +  return vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); | 
| +} | 
| + | 
| + | 
| +/* | 
| +** This function is an optimized version of sqlite3VdbeRecordCompare() | 
| +** that (a) the first field of pPKey2 is an integer, and (b) the | 
| +** size-of-header varint at the start of (pKey1/nKey1) fits in a single | 
| +** byte (i.e. is less than 128). | 
| +** | 
| +** To avoid concerns about buffer overreads, this routine is only used | 
| +** on schemas where the maximum valid header size is 63 bytes or less. | 
| +*/ | 
| +static int vdbeRecordCompareInt( | 
| +  int nKey1, const void *pKey1, /* Left key */ | 
| +  UnpackedRecord *pPKey2        /* Right key */ | 
| +){ | 
| +  const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; | 
| +  int serial_type = ((const u8*)pKey1)[1]; | 
| +  int res; | 
| +  u32 y; | 
| +  u64 x; | 
| +  i64 v = pPKey2->aMem[0].u.i; | 
| +  i64 lhs; | 
| + | 
| +  assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); | 
| +  switch( serial_type ){ | 
| +    case 1: { /* 1-byte signed integer */ | 
| +      lhs = ONE_BYTE_INT(aKey); | 
| +      testcase( lhs<0 ); | 
| +      break; | 
| +    } | 
| +    case 2: { /* 2-byte signed integer */ | 
| +      lhs = TWO_BYTE_INT(aKey); | 
| +      testcase( lhs<0 ); | 
| +      break; | 
| +    } | 
| +    case 3: { /* 3-byte signed integer */ | 
| +      lhs = THREE_BYTE_INT(aKey); | 
| +      testcase( lhs<0 ); | 
| +      break; | 
| +    } | 
| +    case 4: { /* 4-byte signed integer */ | 
| +      y = FOUR_BYTE_UINT(aKey); | 
| +      lhs = (i64)*(int*)&y; | 
| +      testcase( lhs<0 ); | 
| +      break; | 
| +    } | 
| +    case 5: { /* 6-byte signed integer */ | 
| +      lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); | 
| +      testcase( lhs<0 ); | 
| +      break; | 
| +    } | 
| +    case 6: { /* 8-byte signed integer */ | 
| +      x = FOUR_BYTE_UINT(aKey); | 
| +      x = (x<<32) | FOUR_BYTE_UINT(aKey+4); | 
| +      lhs = *(i64*)&x; | 
| +      testcase( lhs<0 ); | 
| +      break; | 
| +    } | 
| +    case 8: | 
| +      lhs = 0; | 
| +      break; | 
| +    case 9: | 
| +      lhs = 1; | 
| +      break; | 
| + | 
| +    /* This case could be removed without changing the results of running | 
| +    ** this code. Including it causes gcc to generate a faster switch | 
| +    ** statement (since the range of switch targets now starts at zero and | 
| +    ** is contiguous) but does not cause any duplicate code to be generated | 
| +    ** (as gcc is clever enough to combine the two like cases). Other | 
| +    ** compilers might be similar.  */ | 
| +    case 0: case 7: | 
| +      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); | 
| + | 
| +    default: | 
| +      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); | 
| +  } | 
| + | 
| +  if( v>lhs ){ | 
| +    res = pPKey2->r1; | 
| +  }else if( v<lhs ){ | 
| +    res = pPKey2->r2; | 
| +  }else if( pPKey2->nField>1 ){ | 
| +    /* The first fields of the two keys are equal. Compare the trailing | 
| +    ** fields.  */ | 
| +    res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); | 
| +  }else{ | 
| +    /* The first fields of the two keys are equal and there are no trailing | 
| +    ** fields. Return pPKey2->default_rc in this case. */ | 
| +    res = pPKey2->default_rc; | 
| +  } | 
| + | 
| +  assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); | 
| +  return res; | 
| +} | 
| + | 
| +/* | 
| +** This function is an optimized version of sqlite3VdbeRecordCompare() | 
| +** that (a) the first field of pPKey2 is a string, that (b) the first field | 
| +** uses the collation sequence BINARY and (c) that the size-of-header varint | 
| +** at the start of (pKey1/nKey1) fits in a single byte. | 
| +*/ | 
| +static int vdbeRecordCompareString( | 
| +  int nKey1, const void *pKey1, /* Left key */ | 
| +  UnpackedRecord *pPKey2        /* Right key */ | 
| +){ | 
| +  const u8 *aKey1 = (const u8*)pKey1; | 
| +  int serial_type; | 
| +  int res; | 
| + | 
| +  getVarint32(&aKey1[1], serial_type); | 
| +  if( serial_type<12 ){ | 
| +    res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */ | 
| +  }else if( !(serial_type & 0x01) ){ | 
| +    res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */ | 
| +  }else{ | 
| +    int nCmp; | 
| +    int nStr; | 
| +    int szHdr = aKey1[0]; | 
| + | 
| +    nStr = (serial_type-12) / 2; | 
| +    if( (szHdr + nStr) > nKey1 ){ | 
| +      pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; | 
| +      return 0;    /* Corruption */ | 
| +    } | 
| +    nCmp = MIN( pPKey2->aMem[0].n, nStr ); | 
| +    res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); | 
| + | 
| +    if( res==0 ){ | 
| +      res = nStr - pPKey2->aMem[0].n; | 
| +      if( res==0 ){ | 
| +        if( pPKey2->nField>1 ){ | 
| +          res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); | 
| +        }else{ | 
| +          res = pPKey2->default_rc; | 
| +        } | 
| +      }else if( res>0 ){ | 
| +        res = pPKey2->r2; | 
| +      }else{ | 
| +        res = pPKey2->r1; | 
| +      } | 
| +    }else if( res>0 ){ | 
| +      res = pPKey2->r2; | 
| +    }else{ | 
| +      res = pPKey2->r1; | 
| +    } | 
| +  } | 
| + | 
| +  assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) | 
| +       || CORRUPT_DB | 
| +       || pPKey2->pKeyInfo->db->mallocFailed | 
| +  ); | 
| +  return res; | 
| +} | 
| + | 
| +/* | 
| +** Return a pointer to an sqlite3VdbeRecordCompare() compatible function | 
| +** suitable for comparing serialized records to the unpacked record passed | 
| +** as the only argument. | 
| +*/ | 
| +RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ | 
| +  /* varintRecordCompareInt() and varintRecordCompareString() both assume | 
| +  ** that the size-of-header varint that occurs at the start of each record | 
| +  ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() | 
| +  ** also assumes that it is safe to overread a buffer by at least the | 
| +  ** maximum possible legal header size plus 8 bytes. Because there is | 
| +  ** guaranteed to be at least 74 (but not 136) bytes of padding following each | 
| +  ** buffer passed to varintRecordCompareInt() this makes it convenient to | 
| +  ** limit the size of the header to 64 bytes in cases where the first field | 
| +  ** is an integer. | 
| +  ** | 
| +  ** The easiest way to enforce this limit is to consider only records with | 
| +  ** 13 fields or less. If the first field is an integer, the maximum legal | 
| +  ** header size is (12*5 + 1 + 1) bytes.  */ | 
| +  if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ | 
| +    int flags = p->aMem[0].flags; | 
| +    if( p->pKeyInfo->aSortOrder[0] ){ | 
| +      p->r1 = 1; | 
| +      p->r2 = -1; | 
| +    }else{ | 
| +      p->r1 = -1; | 
| +      p->r2 = 1; | 
| +    } | 
| +    if( (flags & MEM_Int) ){ | 
| +      return vdbeRecordCompareInt; | 
| +    } | 
| +    testcase( flags & MEM_Real ); | 
| +    testcase( flags & MEM_Null ); | 
| +    testcase( flags & MEM_Blob ); | 
| +    if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ | 
| +      assert( flags & MEM_Str ); | 
| +      return vdbeRecordCompareString; | 
| +    } | 
| +  } | 
| + | 
| +  return sqlite3VdbeRecordCompare; | 
| +} | 
|  | 
| /* | 
| ** pCur points at an index entry created using the OP_MakeRecord opcode. | 
| @@ -3024,21 +3883,19 @@ int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ | 
| u32 lenRowid;     /* Size of the rowid */ | 
| Mem m, v; | 
|  | 
| -  UNUSED_PARAMETER(db); | 
| - | 
| /* Get the size of the index entry.  Only indices entries of less | 
| ** than 2GiB are support - anything large must be database corruption. | 
| ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so | 
| ** this code can safely assume that nCellKey is 32-bits | 
| */ | 
| assert( sqlite3BtreeCursorIsValid(pCur) ); | 
| -  rc = sqlite3BtreeKeySize(pCur, &nCellKey); | 
| +  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); | 
| assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */ | 
| assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); | 
|  | 
| /* Read in the complete content of the index entry */ | 
| -  memset(&m, 0, sizeof(m)); | 
| -  rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m); | 
| +  sqlite3VdbeMemInit(&m, db, 0); | 
| +  rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); | 
| if( rc ){ | 
| return rc; | 
| } | 
| @@ -3080,7 +3937,7 @@ int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ | 
| /* Jump here if database corruption is detected after m has been | 
| ** allocated.  Free the m object and return SQLITE_CORRUPT. */ | 
| idx_rowid_corruption: | 
| -  testcase( m.zMalloc!=0 ); | 
| +  testcase( m.szMalloc!=0 ); | 
| sqlite3VdbeMemRelease(&m); | 
| return SQLITE_CORRUPT_BKPT; | 
| } | 
| @@ -3097,9 +3954,10 @@ idx_rowid_corruption: | 
| ** of the keys prior to the final rowid, not the entire key. | 
| */ | 
| int sqlite3VdbeIdxKeyCompare( | 
| -  VdbeCursor *pC,             /* The cursor to compare against */ | 
| -  UnpackedRecord *pUnpacked,  /* Unpacked version of key to compare against */ | 
| -  int *res                    /* Write the comparison result here */ | 
| +  sqlite3 *db,                     /* Database connection */ | 
| +  VdbeCursor *pC,                  /* The cursor to compare against */ | 
| +  UnpackedRecord *pUnpacked,       /* Unpacked version of key */ | 
| +  int *res                         /* Write the comparison result here */ | 
| ){ | 
| i64 nCellKey = 0; | 
| int rc; | 
| @@ -3107,20 +3965,19 @@ int sqlite3VdbeIdxKeyCompare( | 
| Mem m; | 
|  | 
| assert( sqlite3BtreeCursorIsValid(pCur) ); | 
| -  rc = sqlite3BtreeKeySize(pCur, &nCellKey); | 
| +  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); | 
| assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */ | 
| -  /* nCellKey will always be between 0 and 0xffffffff because of the say | 
| +  /* nCellKey will always be between 0 and 0xffffffff because of the way | 
| ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ | 
| if( nCellKey<=0 || nCellKey>0x7fffffff ){ | 
| *res = 0; | 
| return SQLITE_CORRUPT_BKPT; | 
| } | 
| -  memset(&m, 0, sizeof(m)); | 
| -  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m); | 
| +  sqlite3VdbeMemInit(&m, db, 0); | 
| +  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m); | 
| if( rc ){ | 
| return rc; | 
| } | 
| -  assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID ); | 
| *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); | 
| sqlite3VdbeMemRelease(&m); | 
| return SQLITE_OK; | 
| @@ -3176,7 +4033,7 @@ sqlite3 *sqlite3VdbeDb(Vdbe *v){ | 
| ** | 
| ** The returned value must be freed by the caller using sqlite3ValueFree(). | 
| */ | 
| -sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){ | 
| +sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ | 
| assert( iVar>0 ); | 
| if( v ){ | 
| Mem *pMem = &v->aVar[iVar-1]; | 
| @@ -3185,7 +4042,6 @@ sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){ | 
| if( pRet ){ | 
| sqlite3VdbeMemCopy((Mem *)pRet, pMem); | 
| sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); | 
| -        sqlite3VdbeMemStoreType((Mem *)pRet); | 
| } | 
| return pRet; | 
| } | 
| @@ -3206,3 +4062,18 @@ void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ | 
| v->expmask |= ((u32)1 << (iVar-1)); | 
| } | 
| } | 
| + | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE | 
| +/* | 
| +** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored | 
| +** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored | 
| +** in memory obtained from sqlite3DbMalloc). | 
| +*/ | 
| +void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ | 
| +  sqlite3 *db = p->db; | 
| +  sqlite3DbFree(db, p->zErrMsg); | 
| +  p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); | 
| +  sqlite3_free(pVtab->zErrMsg); | 
| +  pVtab->zErrMsg = 0; | 
| +} | 
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */ | 
|  |