| Index: third_party/sqlite/src/src/test_fuzzer.c | 
| diff --git a/third_party/sqlite/src/src/test_fuzzer.c b/third_party/sqlite/src/src/test_fuzzer.c | 
| deleted file mode 100644 | 
| index cf59257175a32bfaa2b9d69eb859a0824fb6194d..0000000000000000000000000000000000000000 | 
| --- a/third_party/sqlite/src/src/test_fuzzer.c | 
| +++ /dev/null | 
| @@ -1,944 +0,0 @@ | 
| -/* | 
| -** 2011 March 24 | 
| -** | 
| -** The author disclaims copyright to this source code.  In place of | 
| -** a legal notice, here is a blessing: | 
| -** | 
| -**    May you do good and not evil. | 
| -**    May you find forgiveness for yourself and forgive others. | 
| -**    May you share freely, never taking more than you give. | 
| -** | 
| -************************************************************************* | 
| -** | 
| -** Code for demonstartion virtual table that generates variations | 
| -** on an input word at increasing edit distances from the original. | 
| -** | 
| -** A fuzzer virtual table is created like this: | 
| -** | 
| -**     CREATE VIRTUAL TABLE temp.f USING fuzzer; | 
| -** | 
| -** The name of the new virtual table in the example above is "f". | 
| -** Note that all fuzzer virtual tables must be TEMP tables.  The | 
| -** "temp." prefix in front of the table name is required when the | 
| -** table is being created.  The "temp." prefix can be omitted when | 
| -** using the table as long as the name is unambiguous. | 
| -** | 
| -** Before being used, the fuzzer needs to be programmed by giving it | 
| -** character transformations and a cost associated with each transformation. | 
| -** Examples: | 
| -** | 
| -**    INSERT INTO f(cFrom,cTo,Cost) VALUES('','a',100); | 
| -** | 
| -** The above statement says that the cost of inserting a letter 'a' is | 
| -** 100.  (All costs are integers.  We recommend that costs be scaled so | 
| -** that the average cost is around 100.) | 
| -** | 
| -**    INSERT INTO f(cFrom,cTo,Cost) VALUES('b','',87); | 
| -** | 
| -** The above statement says that the cost of deleting a single letter | 
| -** 'b' is 87. | 
| -** | 
| -**    INSERT INTO f(cFrom,cTo,Cost) VALUES('o','oe',38); | 
| -**    INSERT INTO f(cFrom,cTo,Cost) VALUES('oe','o',40); | 
| -** | 
| -** This third example says that the cost of transforming the single | 
| -** letter "o" into the two-letter sequence "oe" is 38 and that the | 
| -** cost of transforming "oe" back into "o" is 40. | 
| -** | 
| -** After all the transformation costs have been set, the fuzzer table | 
| -** can be queried as follows: | 
| -** | 
| -**    SELECT word, distance FROM f | 
| -**     WHERE word MATCH 'abcdefg' | 
| -**       AND distance<200; | 
| -** | 
| -** This first query outputs the string "abcdefg" and all strings that | 
| -** can be derived from that string by appling the specified transformations. | 
| -** The strings are output together with their total transformation cost | 
| -** (called "distance") and appear in order of increasing cost.  No string | 
| -** is output more than once.  If there are multiple ways to transform the | 
| -** target string into the output string then the lowest cost transform is | 
| -** the one that is returned.  In the example, the search is limited to | 
| -** strings with a total distance of less than 200. | 
| -** | 
| -** It is important to put some kind of a limit on the fuzzer output.  This | 
| -** can be either in the form of a LIMIT clause at the end of the query, | 
| -** or better, a "distance<NNN" constraint where NNN is some number.  The | 
| -** running time and memory requirement is exponential in the value of NNN | 
| -** so you want to make sure that NNN is not too big.  A value of NNN that | 
| -** is about twice the average transformation cost seems to give good results. | 
| -** | 
| -** The fuzzer table can be useful for tasks such as spelling correction. | 
| -** Suppose there is a second table vocabulary(w) where the w column contains | 
| -** all correctly spelled words.   Let $word be a word you want to look up. | 
| -** | 
| -**   SELECT vocabulary.w FROM f, vocabulary | 
| -**    WHERE f.word MATCH $word | 
| -**      AND f.distance<=200 | 
| -**      AND f.word=vocabulary.w | 
| -**    LIMIT 20 | 
| -** | 
| -** The query above gives the 20 closest words to the $word being tested. | 
| -** (Note that for good performance, the vocubulary.w column should be | 
| -** indexed.) | 
| -** | 
| -** A similar query can be used to find all words in the dictionary that | 
| -** begin with some prefix $prefix: | 
| -** | 
| -**   SELECT vocabulary.w FROM f, vocabulary | 
| -**    WHERE f.word MATCH $prefix | 
| -**      AND f.distance<=200 | 
| -**      AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF') | 
| -**    LIMIT 50 | 
| -** | 
| -** This last query will show up to 50 words out of the vocabulary that | 
| -** match or nearly match the $prefix. | 
| -*/ | 
| -#include "sqlite3.h" | 
| -#include <stdlib.h> | 
| -#include <string.h> | 
| -#include <assert.h> | 
| -#include <stdio.h> | 
| - | 
| -#ifndef SQLITE_OMIT_VIRTUALTABLE | 
| - | 
| -/* | 
| -** Forward declaration of objects used by this implementation | 
| -*/ | 
| -typedef struct fuzzer_vtab fuzzer_vtab; | 
| -typedef struct fuzzer_cursor fuzzer_cursor; | 
| -typedef struct fuzzer_rule fuzzer_rule; | 
| -typedef struct fuzzer_seen fuzzer_seen; | 
| -typedef struct fuzzer_stem fuzzer_stem; | 
| - | 
| -/* | 
| -** Type of the "cost" of an edit operation.  Might be changed to | 
| -** "float" or "double" or "sqlite3_int64" in the future. | 
| -*/ | 
| -typedef int fuzzer_cost; | 
| - | 
| - | 
| -/* | 
| -** Each transformation rule is stored as an instance of this object. | 
| -** All rules are kept on a linked list sorted by rCost. | 
| -*/ | 
| -struct fuzzer_rule { | 
| -  fuzzer_rule *pNext;        /* Next rule in order of increasing rCost */ | 
| -  fuzzer_cost rCost;         /* Cost of this transformation */ | 
| -  int nFrom, nTo;            /* Length of the zFrom and zTo strings */ | 
| -  char *zFrom;               /* Transform from */ | 
| -  char zTo[4];               /* Transform to (extra space appended) */ | 
| -}; | 
| - | 
| -/* | 
| -** A stem object is used to generate variants.  It is also used to record | 
| -** previously generated outputs. | 
| -** | 
| -** Every stem is added to a hash table as it is output.  Generation of | 
| -** duplicate stems is suppressed. | 
| -** | 
| -** Active stems (those that might generate new outputs) are kepts on a linked | 
| -** list sorted by increasing cost.  The cost is the sum of rBaseCost and | 
| -** pRule->rCost. | 
| -*/ | 
| -struct fuzzer_stem { | 
| -  char *zBasis;              /* Word being fuzzed */ | 
| -  int nBasis;                /* Length of the zBasis string */ | 
| -  const fuzzer_rule *pRule;  /* Current rule to apply */ | 
| -  int n;                     /* Apply pRule at this character offset */ | 
| -  fuzzer_cost rBaseCost;     /* Base cost of getting to zBasis */ | 
| -  fuzzer_cost rCostX;        /* Precomputed rBaseCost + pRule->rCost */ | 
| -  fuzzer_stem *pNext;        /* Next stem in rCost order */ | 
| -  fuzzer_stem *pHash;        /* Next stem with same hash on zBasis */ | 
| -}; | 
| - | 
| -/* | 
| -** A fuzzer virtual-table object | 
| -*/ | 
| -struct fuzzer_vtab { | 
| -  sqlite3_vtab base;         /* Base class - must be first */ | 
| -  char *zClassName;          /* Name of this class.  Default: "fuzzer" */ | 
| -  fuzzer_rule *pRule;        /* All active rules in this fuzzer */ | 
| -  fuzzer_rule *pNewRule;     /* New rules to add when last cursor expires */ | 
| -  int nCursor;               /* Number of active cursors */ | 
| -}; | 
| - | 
| -#define FUZZER_HASH  4001    /* Hash table size */ | 
| -#define FUZZER_NQUEUE  20    /* Number of slots on the stem queue */ | 
| - | 
| -/* A fuzzer cursor object */ | 
| -struct fuzzer_cursor { | 
| -  sqlite3_vtab_cursor base;  /* Base class - must be first */ | 
| -  sqlite3_int64 iRowid;      /* The rowid of the current word */ | 
| -  fuzzer_vtab *pVtab;        /* The virtual table this cursor belongs to */ | 
| -  fuzzer_cost rLimit;        /* Maximum cost of any term */ | 
| -  fuzzer_stem *pStem;        /* Stem with smallest rCostX */ | 
| -  fuzzer_stem *pDone;        /* Stems already processed to completion */ | 
| -  fuzzer_stem *aQueue[FUZZER_NQUEUE];  /* Queue of stems with higher rCostX */ | 
| -  int mxQueue;               /* Largest used index in aQueue[] */ | 
| -  char *zBuf;                /* Temporary use buffer */ | 
| -  int nBuf;                  /* Bytes allocated for zBuf */ | 
| -  int nStem;                 /* Number of stems allocated */ | 
| -  fuzzer_rule nullRule;      /* Null rule used first */ | 
| -  fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */ | 
| -}; | 
| - | 
| -/* Methods for the fuzzer module */ | 
| -static int fuzzerConnect( | 
| -  sqlite3 *db, | 
| -  void *pAux, | 
| -  int argc, const char *const*argv, | 
| -  sqlite3_vtab **ppVtab, | 
| -  char **pzErr | 
| -){ | 
| -  fuzzer_vtab *pNew; | 
| -  int n; | 
| -  if( strcmp(argv[1],"temp")!=0 ){ | 
| -    *pzErr = sqlite3_mprintf("%s virtual tables must be TEMP", argv[0]); | 
| -    return SQLITE_ERROR; | 
| -  } | 
| -  n = strlen(argv[0]) + 1; | 
| -  pNew = sqlite3_malloc( sizeof(*pNew) + n ); | 
| -  if( pNew==0 ) return SQLITE_NOMEM; | 
| -  pNew->zClassName = (char*)&pNew[1]; | 
| -  memcpy(pNew->zClassName, argv[0], n); | 
| -  sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,cFrom,cTo,cost)"); | 
| -  memset(pNew, 0, sizeof(*pNew)); | 
| -  *ppVtab = &pNew->base; | 
| -  return SQLITE_OK; | 
| -} | 
| -/* Note that for this virtual table, the xCreate and xConnect | 
| -** methods are identical. */ | 
| - | 
| -static int fuzzerDisconnect(sqlite3_vtab *pVtab){ | 
| -  fuzzer_vtab *p = (fuzzer_vtab*)pVtab; | 
| -  assert( p->nCursor==0 ); | 
| -  do{ | 
| -    while( p->pRule ){ | 
| -      fuzzer_rule *pRule = p->pRule; | 
| -      p->pRule = pRule->pNext; | 
| -      sqlite3_free(pRule); | 
| -    } | 
| -    p->pRule = p->pNewRule; | 
| -    p->pNewRule = 0; | 
| -  }while( p->pRule ); | 
| -  sqlite3_free(p); | 
| -  return SQLITE_OK; | 
| -} | 
| -/* The xDisconnect and xDestroy methods are also the same */ | 
| - | 
| -/* | 
| -** The two input rule lists are both sorted in order of increasing | 
| -** cost.  Merge them together into a single list, sorted by cost, and | 
| -** return a pointer to the head of that list. | 
| -*/ | 
| -static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){ | 
| -  fuzzer_rule head; | 
| -  fuzzer_rule *pTail; | 
| - | 
| -  pTail =  &head; | 
| -  while( pA && pB ){ | 
| -    if( pA->rCost<=pB->rCost ){ | 
| -      pTail->pNext = pA; | 
| -      pTail = pA; | 
| -      pA = pA->pNext; | 
| -    }else{ | 
| -      pTail->pNext = pB; | 
| -      pTail = pB; | 
| -      pB = pB->pNext; | 
| -    } | 
| -  } | 
| -  if( pA==0 ){ | 
| -    pTail->pNext = pB; | 
| -  }else{ | 
| -    pTail->pNext = pA; | 
| -  } | 
| -  return head.pNext; | 
| -} | 
| - | 
| - | 
| -/* | 
| -** Open a new fuzzer cursor. | 
| -*/ | 
| -static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ | 
| -  fuzzer_vtab *p = (fuzzer_vtab*)pVTab; | 
| -  fuzzer_cursor *pCur; | 
| -  pCur = sqlite3_malloc( sizeof(*pCur) ); | 
| -  if( pCur==0 ) return SQLITE_NOMEM; | 
| -  memset(pCur, 0, sizeof(*pCur)); | 
| -  pCur->pVtab = p; | 
| -  *ppCursor = &pCur->base; | 
| -  if( p->nCursor==0 && p->pNewRule ){ | 
| -    unsigned int i; | 
| -    fuzzer_rule *pX; | 
| -    fuzzer_rule *a[15]; | 
| -    for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0; | 
| -    while( (pX = p->pNewRule)!=0 ){ | 
| -      p->pNewRule = pX->pNext; | 
| -      pX->pNext = 0; | 
| -      for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){ | 
| -        pX = fuzzerMergeRules(a[i], pX); | 
| -        a[i] = 0; | 
| -      } | 
| -      a[i] = fuzzerMergeRules(a[i], pX); | 
| -    } | 
| -    for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){ | 
| -      pX = fuzzerMergeRules(a[i], pX); | 
| -    } | 
| -    p->pRule = fuzzerMergeRules(p->pRule, pX); | 
| -  } | 
| -  p->nCursor++; | 
| -  return SQLITE_OK; | 
| -} | 
| - | 
| -/* | 
| -** Free all stems in a list. | 
| -*/ | 
| -static void fuzzerClearStemList(fuzzer_stem *pStem){ | 
| -  while( pStem ){ | 
| -    fuzzer_stem *pNext = pStem->pNext; | 
| -    sqlite3_free(pStem); | 
| -    pStem = pNext; | 
| -  } | 
| -} | 
| - | 
| -/* | 
| -** Free up all the memory allocated by a cursor.  Set it rLimit to 0 | 
| -** to indicate that it is at EOF. | 
| -*/ | 
| -static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){ | 
| -  int i; | 
| -  fuzzerClearStemList(pCur->pStem); | 
| -  fuzzerClearStemList(pCur->pDone); | 
| -  for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]); | 
| -  pCur->rLimit = (fuzzer_cost)0; | 
| -  if( clearHash && pCur->nStem ){ | 
| -    pCur->mxQueue = 0; | 
| -    pCur->pStem = 0; | 
| -    pCur->pDone = 0; | 
| -    memset(pCur->aQueue, 0, sizeof(pCur->aQueue)); | 
| -    memset(pCur->apHash, 0, sizeof(pCur->apHash)); | 
| -  } | 
| -  pCur->nStem = 0; | 
| -} | 
| - | 
| -/* | 
| -** Close a fuzzer cursor. | 
| -*/ | 
| -static int fuzzerClose(sqlite3_vtab_cursor *cur){ | 
| -  fuzzer_cursor *pCur = (fuzzer_cursor *)cur; | 
| -  fuzzerClearCursor(pCur, 0); | 
| -  sqlite3_free(pCur->zBuf); | 
| -  pCur->pVtab->nCursor--; | 
| -  sqlite3_free(pCur); | 
| -  return SQLITE_OK; | 
| -} | 
| - | 
| -/* | 
| -** Compute the current output term for a fuzzer_stem. | 
| -*/ | 
| -static int fuzzerRender( | 
| -  fuzzer_stem *pStem,   /* The stem to be rendered */ | 
| -  char **pzBuf,         /* Write results into this buffer.  realloc if needed */ | 
| -  int *pnBuf            /* Size of the buffer */ | 
| -){ | 
| -  const fuzzer_rule *pRule = pStem->pRule; | 
| -  int n; | 
| -  char *z; | 
| - | 
| -  n = pStem->nBasis + pRule->nTo - pRule->nFrom; | 
| -  if( (*pnBuf)<n+1 ){ | 
| -    (*pzBuf) = sqlite3_realloc((*pzBuf), n+100); | 
| -    if( (*pzBuf)==0 ) return SQLITE_NOMEM; | 
| -    (*pnBuf) = n+100; | 
| -  } | 
| -  n = pStem->n; | 
| -  z = *pzBuf; | 
| -  if( n<0 ){ | 
| -    memcpy(z, pStem->zBasis, pStem->nBasis+1); | 
| -  }else{ | 
| -    memcpy(z, pStem->zBasis, n); | 
| -    memcpy(&z[n], pRule->zTo, pRule->nTo); | 
| -    memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], | 
| -           pStem->nBasis-n-pRule->nFrom+1); | 
| -  } | 
| -  return SQLITE_OK; | 
| -} | 
| - | 
| -/* | 
| -** Compute a hash on zBasis. | 
| -*/ | 
| -static unsigned int fuzzerHash(const char *z){ | 
| -  unsigned int h = 0; | 
| -  while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); } | 
| -  return h % FUZZER_HASH; | 
| -} | 
| - | 
| -/* | 
| -** Current cost of a stem | 
| -*/ | 
| -static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){ | 
| -  return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost; | 
| -} | 
| - | 
| -#if 0 | 
| -/* | 
| -** Print a description of a fuzzer_stem on stderr. | 
| -*/ | 
| -static void fuzzerStemPrint( | 
| -  const char *zPrefix, | 
| -  fuzzer_stem *pStem, | 
| -  const char *zSuffix | 
| -){ | 
| -  if( pStem->n<0 ){ | 
| -    fprintf(stderr, "%s[%s](%d)-->self%s", | 
| -       zPrefix, | 
| -       pStem->zBasis, pStem->rBaseCost, | 
| -       zSuffix | 
| -    ); | 
| -  }else{ | 
| -    char *zBuf = 0; | 
| -    int nBuf = 0; | 
| -    if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return; | 
| -    fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s", | 
| -      zPrefix, | 
| -      pStem->zBasis, pStem->rBaseCost, zBuf, pStem->, | 
| -      zSuffix | 
| -    ); | 
| -    sqlite3_free(zBuf); | 
| -  } | 
| -} | 
| -#endif | 
| - | 
| -/* | 
| -** Return 1 if the string to which the cursor is point has already | 
| -** been emitted.  Return 0 if not.  Return -1 on a memory allocation | 
| -** failures. | 
| -*/ | 
| -static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ | 
| -  unsigned int h; | 
| -  fuzzer_stem *pLookup; | 
| - | 
| -  if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ | 
| -    return -1; | 
| -  } | 
| -  h = fuzzerHash(pCur->zBuf); | 
| -  pLookup = pCur->apHash[h]; | 
| -    while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ | 
| -    pLookup = pLookup->pHash; | 
| -  } | 
| -  return pLookup!=0; | 
| -} | 
| - | 
| -/* | 
| -** Advance a fuzzer_stem to its next value.   Return 0 if there are | 
| -** no more values that can be generated by this fuzzer_stem.  Return | 
| -** -1 on a memory allocation failure. | 
| -*/ | 
| -static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ | 
| -  const fuzzer_rule *pRule; | 
| -  while( (pRule = pStem->pRule)!=0 ){ | 
| -    while( pStem->n < pStem->nBasis - pRule->nFrom ){ | 
| -      pStem->n++; | 
| -      if( pRule->nFrom==0 | 
| -       || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0 | 
| -      ){ | 
| -        /* Found a rewrite case.  Make sure it is not a duplicate */ | 
| -        int rc = fuzzerSeen(pCur, pStem); | 
| -        if( rc<0 ) return -1; | 
| -        if( rc==0 ){ | 
| -          fuzzerCost(pStem); | 
| -          return 1; | 
| -        } | 
| -      } | 
| -    } | 
| -    pStem->n = -1; | 
| -    pStem->pRule = pRule->pNext; | 
| -    if( pStem->pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; | 
| -  } | 
| -  return 0; | 
| -} | 
| - | 
| -/* | 
| -** The two input stem lists are both sorted in order of increasing | 
| -** rCostX.  Merge them together into a single list, sorted by rCostX, and | 
| -** return a pointer to the head of that new list. | 
| -*/ | 
| -static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){ | 
| -  fuzzer_stem head; | 
| -  fuzzer_stem *pTail; | 
| - | 
| -  pTail =  &head; | 
| -  while( pA && pB ){ | 
| -    if( pA->rCostX<=pB->rCostX ){ | 
| -      pTail->pNext = pA; | 
| -      pTail = pA; | 
| -      pA = pA->pNext; | 
| -    }else{ | 
| -      pTail->pNext = pB; | 
| -      pTail = pB; | 
| -      pB = pB->pNext; | 
| -    } | 
| -  } | 
| -  if( pA==0 ){ | 
| -    pTail->pNext = pB; | 
| -  }else{ | 
| -    pTail->pNext = pA; | 
| -  } | 
| -  return head.pNext; | 
| -} | 
| - | 
| -/* | 
| -** Load pCur->pStem with the lowest-cost stem.  Return a pointer | 
| -** to the lowest-cost stem. | 
| -*/ | 
| -static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){ | 
| -  fuzzer_stem *pBest, *pX; | 
| -  int iBest; | 
| -  int i; | 
| - | 
| -  if( pCur->pStem==0 ){ | 
| -    iBest = -1; | 
| -    pBest = 0; | 
| -    for(i=0; i<=pCur->mxQueue; i++){ | 
| -      pX = pCur->aQueue[i]; | 
| -      if( pX==0 ) continue; | 
| -      if( pBest==0 || pBest->rCostX>pX->rCostX ){ | 
| -        pBest = pX; | 
| -        iBest = i; | 
| -      } | 
| -    } | 
| -    if( pBest ){ | 
| -      pCur->aQueue[iBest] = pBest->pNext; | 
| -      pBest->pNext = 0; | 
| -      pCur->pStem = pBest; | 
| -    } | 
| -  } | 
| -  return pCur->pStem; | 
| -} | 
| - | 
| -/* | 
| -** Insert pNew into queue of pending stems.  Then find the stem | 
| -** with the lowest rCostX and move it into pCur->pStem. | 
| -** list.  The insert is done such the pNew is in the correct order | 
| -** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost. | 
| -*/ | 
| -static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){ | 
| -  fuzzer_stem *pX; | 
| -  int i; | 
| - | 
| -  /* If pCur->pStem exists and is greater than pNew, then make pNew | 
| -  ** the new pCur->pStem and insert the old pCur->pStem instead. | 
| -  */ | 
| -  if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){ | 
| -    pNew->pNext = 0; | 
| -    pCur->pStem = pNew; | 
| -    pNew = pX; | 
| -  } | 
| - | 
| -  /* Insert the new value */ | 
| -  pNew->pNext = 0; | 
| -  pX = pNew; | 
| -  for(i=0; i<=pCur->mxQueue; i++){ | 
| -    if( pCur->aQueue[i] ){ | 
| -      pX = fuzzerMergeStems(pX, pCur->aQueue[i]); | 
| -      pCur->aQueue[i] = 0; | 
| -    }else{ | 
| -      pCur->aQueue[i] = pX; | 
| -      break; | 
| -    } | 
| -  } | 
| -  if( i>pCur->mxQueue ){ | 
| -    if( i<FUZZER_NQUEUE ){ | 
| -      pCur->mxQueue = i; | 
| -      pCur->aQueue[i] = pX; | 
| -    }else{ | 
| -      assert( pCur->mxQueue==FUZZER_NQUEUE-1 ); | 
| -      pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]); | 
| -      pCur->aQueue[FUZZER_NQUEUE-1] = pX; | 
| -    } | 
| -  } | 
| - | 
| -  return fuzzerLowestCostStem(pCur); | 
| -} | 
| - | 
| -/* | 
| -** Allocate a new fuzzer_stem.  Add it to the hash table but do not | 
| -** link it into either the pCur->pStem or pCur->pDone lists. | 
| -*/ | 
| -static fuzzer_stem *fuzzerNewStem( | 
| -  fuzzer_cursor *pCur, | 
| -  const char *zWord, | 
| -  fuzzer_cost rBaseCost | 
| -){ | 
| -  fuzzer_stem *pNew; | 
| -  unsigned int h; | 
| - | 
| -  pNew = sqlite3_malloc( sizeof(*pNew) + strlen(zWord) + 1 ); | 
| -  if( pNew==0 ) return 0; | 
| -  memset(pNew, 0, sizeof(*pNew)); | 
| -  pNew->zBasis = (char*)&pNew[1]; | 
| -  pNew->nBasis = strlen(zWord); | 
| -  memcpy(pNew->zBasis, zWord, pNew->nBasis+1); | 
| -  pNew->pRule = pCur->pVtab->pRule; | 
| -  pNew->n = -1; | 
| -  pNew->rBaseCost = pNew->rCostX = rBaseCost; | 
| -  h = fuzzerHash(pNew->zBasis); | 
| -  pNew->pHash = pCur->apHash[h]; | 
| -  pCur->apHash[h] = pNew; | 
| -  pCur->nStem++; | 
| -  return pNew; | 
| -} | 
| - | 
| - | 
| -/* | 
| -** Advance a cursor to its next row of output | 
| -*/ | 
| -static int fuzzerNext(sqlite3_vtab_cursor *cur){ | 
| -  fuzzer_cursor *pCur = (fuzzer_cursor*)cur; | 
| -  int rc; | 
| -  fuzzer_stem *pStem, *pNew; | 
| - | 
| -  pCur->iRowid++; | 
| - | 
| -  /* Use the element the cursor is currently point to to create | 
| -  ** a new stem and insert the new stem into the priority queue. | 
| -  */ | 
| -  pStem = pCur->pStem; | 
| -  if( pStem->rCostX>0 ){ | 
| -    rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf); | 
| -    if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; | 
| -    pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX); | 
| -    if( pNew ){ | 
| -      if( fuzzerAdvance(pCur, pNew)==0 ){ | 
| -        pNew->pNext = pCur->pDone; | 
| -        pCur->pDone = pNew; | 
| -      }else{ | 
| -        if( fuzzerInsert(pCur, pNew)==pNew ){ | 
| -          return SQLITE_OK; | 
| -        } | 
| -      } | 
| -    }else{ | 
| -      return SQLITE_NOMEM; | 
| -    } | 
| -  } | 
| - | 
| -  /* Adjust the priority queue so that the first element of the | 
| -  ** stem list is the next lowest cost word. | 
| -  */ | 
| -  while( (pStem = pCur->pStem)!=0 ){ | 
| -    if( fuzzerAdvance(pCur, pStem) ){ | 
| -      pCur->pStem = 0; | 
| -      pStem = fuzzerInsert(pCur, pStem); | 
| -      if( (rc = fuzzerSeen(pCur, pStem))!=0 ){ | 
| -        if( rc<0 ) return SQLITE_NOMEM; | 
| -        continue; | 
| -      } | 
| -      return SQLITE_OK;  /* New word found */ | 
| -    } | 
| -    pCur->pStem = 0; | 
| -    pStem->pNext = pCur->pDone; | 
| -    pCur->pDone = pStem; | 
| -    if( fuzzerLowestCostStem(pCur) ){ | 
| -      rc = fuzzerSeen(pCur, pCur->pStem); | 
| -      if( rc<0 ) return SQLITE_NOMEM; | 
| -      if( rc==0 ){ | 
| -        return SQLITE_OK; | 
| -      } | 
| -    } | 
| -  } | 
| - | 
| -  /* Reach this point only if queue has been exhausted and there is | 
| -  ** nothing left to be output. */ | 
| -  pCur->rLimit = (fuzzer_cost)0; | 
| -  return SQLITE_OK; | 
| -} | 
| - | 
| -/* | 
| -** Called to "rewind" a cursor back to the beginning so that | 
| -** it starts its output over again.  Always called at least once | 
| -** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call. | 
| -*/ | 
| -static int fuzzerFilter( | 
| -  sqlite3_vtab_cursor *pVtabCursor, | 
| -  int idxNum, const char *idxStr, | 
| -  int argc, sqlite3_value **argv | 
| -){ | 
| -  fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor; | 
| -  const char *zWord = 0; | 
| -  fuzzer_stem *pStem; | 
| - | 
| -  fuzzerClearCursor(pCur, 1); | 
| -  pCur->rLimit = 2147483647; | 
| -  if( idxNum==1 ){ | 
| -    zWord = (const char*)sqlite3_value_text(argv[0]); | 
| -  }else if( idxNum==2 ){ | 
| -    pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[0]); | 
| -  }else if( idxNum==3 ){ | 
| -    zWord = (const char*)sqlite3_value_text(argv[0]); | 
| -    pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[1]); | 
| -  } | 
| -  if( zWord==0 ) zWord = ""; | 
| -  pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); | 
| -  if( pStem==0 ) return SQLITE_NOMEM; | 
| -  pCur->nullRule.pNext = pCur->pVtab->pRule; | 
| -  pCur->nullRule.rCost = 0; | 
| -  pCur->nullRule.nFrom = 0; | 
| -  pCur->nullRule.nTo = 0; | 
| -  pCur->nullRule.zFrom = ""; | 
| -  pStem->pRule = &pCur->nullRule; | 
| -  pStem->n = pStem->nBasis; | 
| -  pCur->iRowid = 1; | 
| -  return SQLITE_OK; | 
| -} | 
| - | 
| -/* | 
| -** Only the word and distance columns have values.  All other columns | 
| -** return NULL | 
| -*/ | 
| -static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ | 
| -  fuzzer_cursor *pCur = (fuzzer_cursor*)cur; | 
| -  if( i==0 ){ | 
| -    /* the "word" column */ | 
| -    if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ | 
| -      return SQLITE_NOMEM; | 
| -    } | 
| -    sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT); | 
| -  }else if( i==1 ){ | 
| -    /* the "distance" column */ | 
| -    sqlite3_result_int(ctx, pCur->pStem->rCostX); | 
| -  }else{ | 
| -    /* All other columns are NULL */ | 
| -    sqlite3_result_null(ctx); | 
| -  } | 
| -  return SQLITE_OK; | 
| -} | 
| - | 
| -/* | 
| -** The rowid. | 
| -*/ | 
| -static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ | 
| -  fuzzer_cursor *pCur = (fuzzer_cursor*)cur; | 
| -  *pRowid = pCur->iRowid; | 
| -  return SQLITE_OK; | 
| -} | 
| - | 
| -/* | 
| -** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal | 
| -** that the cursor has nothing more to output. | 
| -*/ | 
| -static int fuzzerEof(sqlite3_vtab_cursor *cur){ | 
| -  fuzzer_cursor *pCur = (fuzzer_cursor*)cur; | 
| -  return pCur->rLimit<=(fuzzer_cost)0; | 
| -} | 
| - | 
| -/* | 
| -** Search for terms of these forms: | 
| -** | 
| -**       word MATCH $str | 
| -**       distance < $value | 
| -**       distance <= $value | 
| -** | 
| -** The distance< and distance<= are both treated as distance<=. | 
| -** The query plan number is as follows: | 
| -** | 
| -**   0:    None of the terms above are found | 
| -**   1:    There is a "word MATCH" term with $str in filter.argv[0]. | 
| -**   2:    There is a "distance<" term with $value in filter.argv[0]. | 
| -**   3:    Both "word MATCH" and "distance<" with $str in argv[0] and | 
| -**         $value in argv[1]. | 
| -*/ | 
| -static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ | 
| -  int iPlan = 0; | 
| -  int iDistTerm = -1; | 
| -  int i; | 
| -  const struct sqlite3_index_constraint *pConstraint; | 
| -  pConstraint = pIdxInfo->aConstraint; | 
| -  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ | 
| -    if( pConstraint->usable==0 ) continue; | 
| -    if( (iPlan & 1)==0 | 
| -     && pConstraint->iColumn==0 | 
| -     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH | 
| -    ){ | 
| -      iPlan |= 1; | 
| -      pIdxInfo->aConstraintUsage[i].argvIndex = 1; | 
| -      pIdxInfo->aConstraintUsage[i].omit = 1; | 
| -    } | 
| -    if( (iPlan & 2)==0 | 
| -     && pConstraint->iColumn==1 | 
| -     && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT | 
| -           || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE) | 
| -    ){ | 
| -      iPlan |= 2; | 
| -      iDistTerm = i; | 
| -    } | 
| -  } | 
| -  if( iPlan==2 ){ | 
| -    pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1; | 
| -  }else if( iPlan==3 ){ | 
| -    pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 2; | 
| -  } | 
| -  pIdxInfo->idxNum = iPlan; | 
| -  if( pIdxInfo->nOrderBy==1 | 
| -   && pIdxInfo->aOrderBy[0].iColumn==1 | 
| -   && pIdxInfo->aOrderBy[0].desc==0 | 
| -  ){ | 
| -    pIdxInfo->orderByConsumed = 1; | 
| -  } | 
| -  pIdxInfo->estimatedCost = (double)10000; | 
| - | 
| -  return SQLITE_OK; | 
| -} | 
| - | 
| -/* | 
| -** Disallow all attempts to DELETE or UPDATE.  Only INSERTs are allowed. | 
| -** | 
| -** On an insert, the cFrom, cTo, and cost columns are used to construct | 
| -** a new rule.   All other columns are ignored.  The rule is ignored | 
| -** if cFrom and cTo are identical.  A NULL value for cFrom or cTo is | 
| -** interpreted as an empty string.  The cost must be positive. | 
| -*/ | 
| -static int fuzzerUpdate( | 
| -  sqlite3_vtab *pVTab, | 
| -  int argc, | 
| -  sqlite3_value **argv, | 
| -  sqlite_int64 *pRowid | 
| -){ | 
| -  fuzzer_vtab *p = (fuzzer_vtab*)pVTab; | 
| -  fuzzer_rule *pRule; | 
| -  const char *zFrom; | 
| -  int nFrom; | 
| -  const char *zTo; | 
| -  int nTo; | 
| -  fuzzer_cost rCost; | 
| -  if( argc!=7 ){ | 
| -    sqlite3_free(pVTab->zErrMsg); | 
| -    pVTab->zErrMsg = sqlite3_mprintf("cannot delete from a %s virtual table", | 
| -                                     p->zClassName); | 
| -    return SQLITE_CONSTRAINT; | 
| -  } | 
| -  if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){ | 
| -    sqlite3_free(pVTab->zErrMsg); | 
| -    pVTab->zErrMsg = sqlite3_mprintf("cannot update a %s virtual table", | 
| -                                     p->zClassName); | 
| -    return SQLITE_CONSTRAINT; | 
| -  } | 
| -  zFrom = (char*)sqlite3_value_text(argv[4]); | 
| -  if( zFrom==0 ) zFrom = ""; | 
| -  zTo = (char*)sqlite3_value_text(argv[5]); | 
| -  if( zTo==0 ) zTo = ""; | 
| -  if( strcmp(zFrom,zTo)==0 ){ | 
| -    /* Silently ignore null transformations */ | 
| -    return SQLITE_OK; | 
| -  } | 
| -  rCost = sqlite3_value_int(argv[6]); | 
| -  if( rCost<=0 ){ | 
| -    sqlite3_free(pVTab->zErrMsg); | 
| -    pVTab->zErrMsg = sqlite3_mprintf("cost must be positive"); | 
| -    return SQLITE_CONSTRAINT; | 
| -  } | 
| -  nFrom = strlen(zFrom); | 
| -  nTo = strlen(zTo); | 
| -  pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo ); | 
| -  if( pRule==0 ){ | 
| -    return SQLITE_NOMEM; | 
| -  } | 
| -  pRule->zFrom = &pRule->zTo[nTo+1]; | 
| -  pRule->nFrom = nFrom; | 
| -  memcpy(pRule->zFrom, zFrom, nFrom+1); | 
| -  memcpy(pRule->zTo, zTo, nTo+1); | 
| -  pRule->nTo = nTo; | 
| -  pRule->rCost = rCost; | 
| -  pRule->pNext = p->pNewRule; | 
| -  p->pNewRule = pRule; | 
| -  return SQLITE_OK; | 
| -} | 
| - | 
| -/* | 
| -** A virtual table module that provides read-only access to a | 
| -** Tcl global variable namespace. | 
| -*/ | 
| -static sqlite3_module fuzzerModule = { | 
| -  0,                           /* iVersion */ | 
| -  fuzzerConnect, | 
| -  fuzzerConnect, | 
| -  fuzzerBestIndex, | 
| -  fuzzerDisconnect, | 
| -  fuzzerDisconnect, | 
| -  fuzzerOpen,                  /* xOpen - open a cursor */ | 
| -  fuzzerClose,                 /* xClose - close a cursor */ | 
| -  fuzzerFilter,                /* xFilter - configure scan constraints */ | 
| -  fuzzerNext,                  /* xNext - advance a cursor */ | 
| -  fuzzerEof,                   /* xEof - check for end of scan */ | 
| -  fuzzerColumn,                /* xColumn - read data */ | 
| -  fuzzerRowid,                 /* xRowid - read data */ | 
| -  fuzzerUpdate,                /* xUpdate - INSERT */ | 
| -  0,                           /* xBegin */ | 
| -  0,                           /* xSync */ | 
| -  0,                           /* xCommit */ | 
| -  0,                           /* xRollback */ | 
| -  0,                           /* xFindMethod */ | 
| -  0,                           /* xRename */ | 
| -}; | 
| - | 
| -#endif /* SQLITE_OMIT_VIRTUALTABLE */ | 
| - | 
| - | 
| -/* | 
| -** Register the fuzzer virtual table | 
| -*/ | 
| -int fuzzer_register(sqlite3 *db){ | 
| -  int rc = SQLITE_OK; | 
| -#ifndef SQLITE_OMIT_VIRTUALTABLE | 
| -  rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0); | 
| -#endif | 
| -  return rc; | 
| -} | 
| - | 
| -#ifdef SQLITE_TEST | 
| -#include <tcl.h> | 
| -/* | 
| -** Decode a pointer to an sqlite3 object. | 
| -*/ | 
| -extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); | 
| - | 
| -/* | 
| -** Register the echo virtual table module. | 
| -*/ | 
| -static int register_fuzzer_module( | 
| -  ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ | 
| -  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */ | 
| -  int objc,              /* Number of arguments */ | 
| -  Tcl_Obj *CONST objv[]  /* Command arguments */ | 
| -){ | 
| -  sqlite3 *db; | 
| -  if( objc!=2 ){ | 
| -    Tcl_WrongNumArgs(interp, 1, objv, "DB"); | 
| -    return TCL_ERROR; | 
| -  } | 
| -  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; | 
| -  fuzzer_register(db); | 
| -  return TCL_OK; | 
| -} | 
| - | 
| - | 
| -/* | 
| -** Register commands with the TCL interpreter. | 
| -*/ | 
| -int Sqlitetestfuzzer_Init(Tcl_Interp *interp){ | 
| -  static struct { | 
| -     char *zName; | 
| -     Tcl_ObjCmdProc *xProc; | 
| -     void *clientData; | 
| -  } aObjCmd[] = { | 
| -     { "register_fuzzer_module",   register_fuzzer_module, 0 }, | 
| -  }; | 
| -  int i; | 
| -  for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ | 
| -    Tcl_CreateObjCommand(interp, aObjCmd[i].zName, | 
| -        aObjCmd[i].xProc, aObjCmd[i].clientData, 0); | 
| -  } | 
| -  return TCL_OK; | 
| -} | 
| - | 
| -#endif /* SQLITE_TEST */ | 
|  |