| Index: third_party/sqlite/src/src/where.c | 
| diff --git a/third_party/sqlite/src/src/where.c b/third_party/sqlite/src/src/where.c | 
| index cf30d94d671bb81ef361cb6ac5b7a1aae392f395..bc0110779ea051f46e02c825002686879fffab5d 100644 | 
| --- a/third_party/sqlite/src/src/where.c | 
| +++ b/third_party/sqlite/src/src/where.c | 
| @@ -17,257 +17,128 @@ | 
| ** indices, you might also think of this module as the "query optimizer". | 
| */ | 
| #include "sqliteInt.h" | 
| - | 
| - | 
| -/* | 
| -** Trace output macros | 
| -*/ | 
| -#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) | 
| -int sqlite3WhereTrace = 0; | 
| -#endif | 
| -#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) | 
| -# define WHERETRACE(X)  if(sqlite3WhereTrace) sqlite3DebugPrintf X | 
| -#else | 
| -# define WHERETRACE(X) | 
| -#endif | 
| - | 
| -/* Forward reference | 
| -*/ | 
| -typedef struct WhereClause WhereClause; | 
| -typedef struct WhereMaskSet WhereMaskSet; | 
| -typedef struct WhereOrInfo WhereOrInfo; | 
| -typedef struct WhereAndInfo WhereAndInfo; | 
| -typedef struct WhereCost WhereCost; | 
| - | 
| -/* | 
| -** The query generator uses an array of instances of this structure to | 
| -** help it analyze the subexpressions of the WHERE clause.  Each WHERE | 
| -** clause subexpression is separated from the others by AND operators, | 
| -** usually, or sometimes subexpressions separated by OR. | 
| -** | 
| -** All WhereTerms are collected into a single WhereClause structure. | 
| -** The following identity holds: | 
| -** | 
| -**        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm | 
| -** | 
| -** When a term is of the form: | 
| -** | 
| -**              X <op> <expr> | 
| -** | 
| -** where X is a column name and <op> is one of certain operators, | 
| -** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the | 
| -** cursor number and column number for X.  WhereTerm.eOperator records | 
| -** the <op> using a bitmask encoding defined by WO_xxx below.  The | 
| -** use of a bitmask encoding for the operator allows us to search | 
| -** quickly for terms that match any of several different operators. | 
| -** | 
| -** A WhereTerm might also be two or more subterms connected by OR: | 
| -** | 
| -**         (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR .... | 
| -** | 
| -** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR | 
| -** and the WhereTerm.u.pOrInfo field points to auxiliary information that | 
| -** is collected about the | 
| -** | 
| -** If a term in the WHERE clause does not match either of the two previous | 
| -** categories, then eOperator==0.  The WhereTerm.pExpr field is still set | 
| -** to the original subexpression content and wtFlags is set up appropriately | 
| -** but no other fields in the WhereTerm object are meaningful. | 
| -** | 
| -** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, | 
| -** but they do so indirectly.  A single WhereMaskSet structure translates | 
| -** cursor number into bits and the translated bit is stored in the prereq | 
| -** fields.  The translation is used in order to maximize the number of | 
| -** bits that will fit in a Bitmask.  The VDBE cursor numbers might be | 
| -** spread out over the non-negative integers.  For example, the cursor | 
| -** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The WhereMaskSet | 
| -** translates these sparse cursor numbers into consecutive integers | 
| -** beginning with 0 in order to make the best possible use of the available | 
| -** bits in the Bitmask.  So, in the example above, the cursor numbers | 
| -** would be mapped into integers 0 through 7. | 
| -** | 
| -** The number of terms in a join is limited by the number of bits | 
| -** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite | 
| -** is only able to process joins with 64 or fewer tables. | 
| -*/ | 
| -typedef struct WhereTerm WhereTerm; | 
| -struct WhereTerm { | 
| -  Expr *pExpr;            /* Pointer to the subexpression that is this term */ | 
| -  int iParent;            /* Disable pWC->a[iParent] when this term disabled */ | 
| -  int leftCursor;         /* Cursor number of X in "X <op> <expr>" */ | 
| -  union { | 
| -    int leftColumn;         /* Column number of X in "X <op> <expr>" */ | 
| -    WhereOrInfo *pOrInfo;   /* Extra information if eOperator==WO_OR */ | 
| -    WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */ | 
| -  } u; | 
| -  u16 eOperator;          /* A WO_xx value describing <op> */ | 
| -  u8 wtFlags;             /* TERM_xxx bit flags.  See below */ | 
| -  u8 nChild;              /* Number of children that must disable us */ | 
| -  WhereClause *pWC;       /* The clause this term is part of */ | 
| -  Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */ | 
| -  Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */ | 
| -}; | 
| +#include "whereInt.h" | 
|  | 
| /* | 
| -** Allowed values of WhereTerm.wtFlags | 
| +** Return the estimated number of output rows from a WHERE clause | 
| */ | 
| -#define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */ | 
| -#define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */ | 
| -#define TERM_CODED      0x04   /* This term is already coded */ | 
| -#define TERM_COPIED     0x08   /* Has a child */ | 
| -#define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */ | 
| -#define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */ | 
| -#define TERM_OR_OK      0x40   /* Used during OR-clause processing */ | 
| -#ifdef SQLITE_ENABLE_STAT2 | 
| -#  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */ | 
| -#else | 
| -#  define TERM_VNULL    0x00   /* Disabled if not using stat2 */ | 
| -#endif | 
| +u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ | 
| +  return sqlite3LogEstToInt(pWInfo->nRowOut); | 
| +} | 
|  | 
| /* | 
| -** An instance of the following structure holds all information about a | 
| -** WHERE clause.  Mostly this is a container for one or more WhereTerms. | 
| +** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this | 
| +** WHERE clause returns outputs for DISTINCT processing. | 
| */ | 
| -struct WhereClause { | 
| -  Parse *pParse;           /* The parser context */ | 
| -  WhereMaskSet *pMaskSet;  /* Mapping of table cursor numbers to bitmasks */ | 
| -  Bitmask vmask;           /* Bitmask identifying virtual table cursors */ | 
| -  u8 op;                   /* Split operator.  TK_AND or TK_OR */ | 
| -  int nTerm;               /* Number of terms */ | 
| -  int nSlot;               /* Number of entries in a[] */ | 
| -  WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */ | 
| -#if defined(SQLITE_SMALL_STACK) | 
| -  WhereTerm aStatic[1];    /* Initial static space for a[] */ | 
| -#else | 
| -  WhereTerm aStatic[8];    /* Initial static space for a[] */ | 
| -#endif | 
| -}; | 
| +int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ | 
| +  return pWInfo->eDistinct; | 
| +} | 
|  | 
| /* | 
| -** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to | 
| -** a dynamically allocated instance of the following structure. | 
| +** Return TRUE if the WHERE clause returns rows in ORDER BY order. | 
| +** Return FALSE if the output needs to be sorted. | 
| */ | 
| -struct WhereOrInfo { | 
| -  WhereClause wc;          /* Decomposition into subterms */ | 
| -  Bitmask indexable;       /* Bitmask of all indexable tables in the clause */ | 
| -}; | 
| +int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ | 
| +  return pWInfo->nOBSat; | 
| +} | 
|  | 
| /* | 
| -** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to | 
| -** a dynamically allocated instance of the following structure. | 
| +** Return the VDBE address or label to jump to in order to continue | 
| +** immediately with the next row of a WHERE clause. | 
| */ | 
| -struct WhereAndInfo { | 
| -  WhereClause wc;          /* The subexpression broken out */ | 
| -}; | 
| +int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ | 
| +  assert( pWInfo->iContinue!=0 ); | 
| +  return pWInfo->iContinue; | 
| +} | 
|  | 
| /* | 
| -** An instance of the following structure keeps track of a mapping | 
| -** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. | 
| -** | 
| -** The VDBE cursor numbers are small integers contained in | 
| -** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE | 
| -** clause, the cursor numbers might not begin with 0 and they might | 
| -** contain gaps in the numbering sequence.  But we want to make maximum | 
| -** use of the bits in our bitmasks.  This structure provides a mapping | 
| -** from the sparse cursor numbers into consecutive integers beginning | 
| -** with 0. | 
| -** | 
| -** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask | 
| -** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A. | 
| -** | 
| -** For example, if the WHERE clause expression used these VDBE | 
| -** cursors:  4, 5, 8, 29, 57, 73.  Then the  WhereMaskSet structure | 
| -** would map those cursor numbers into bits 0 through 5. | 
| -** | 
| -** Note that the mapping is not necessarily ordered.  In the example | 
| -** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0, | 
| -** 57->5, 73->4.  Or one of 719 other combinations might be used. It | 
| -** does not really matter.  What is important is that sparse cursor | 
| -** numbers all get mapped into bit numbers that begin with 0 and contain | 
| -** no gaps. | 
| +** Return the VDBE address or label to jump to in order to break | 
| +** out of a WHERE loop. | 
| */ | 
| -struct WhereMaskSet { | 
| -  int n;                        /* Number of assigned cursor values */ | 
| -  int ix[BMS];                  /* Cursor assigned to each bit */ | 
| -}; | 
| +int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ | 
| +  return pWInfo->iBreak; | 
| +} | 
|  | 
| /* | 
| -** A WhereCost object records a lookup strategy and the estimated | 
| -** cost of pursuing that strategy. | 
| +** Return TRUE if an UPDATE or DELETE statement can operate directly on | 
| +** the rowids returned by a WHERE clause.  Return FALSE if doing an | 
| +** UPDATE or DELETE might change subsequent WHERE clause results. | 
| +** | 
| +** If the ONEPASS optimization is used (if this routine returns true) | 
| +** then also write the indices of open cursors used by ONEPASS | 
| +** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data | 
| +** table and iaCur[1] gets the cursor used by an auxiliary index. | 
| +** Either value may be -1, indicating that cursor is not used. | 
| +** Any cursors returned will have been opened for writing. | 
| +** | 
| +** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is | 
| +** unable to use the ONEPASS optimization. | 
| */ | 
| -struct WhereCost { | 
| -  WherePlan plan;    /* The lookup strategy */ | 
| -  double rCost;      /* Overall cost of pursuing this search strategy */ | 
| -  Bitmask used;      /* Bitmask of cursors used by this plan */ | 
| -}; | 
| +int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ | 
| +  memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); | 
| +  return pWInfo->okOnePass; | 
| +} | 
|  | 
| /* | 
| -** Bitmasks for the operators that indices are able to exploit.  An | 
| -** OR-ed combination of these values can be used when searching for | 
| -** terms in the where clause. | 
| +** Move the content of pSrc into pDest | 
| */ | 
| -#define WO_IN     0x001 | 
| -#define WO_EQ     0x002 | 
| -#define WO_LT     (WO_EQ<<(TK_LT-TK_EQ)) | 
| -#define WO_LE     (WO_EQ<<(TK_LE-TK_EQ)) | 
| -#define WO_GT     (WO_EQ<<(TK_GT-TK_EQ)) | 
| -#define WO_GE     (WO_EQ<<(TK_GE-TK_EQ)) | 
| -#define WO_MATCH  0x040 | 
| -#define WO_ISNULL 0x080 | 
| -#define WO_OR     0x100       /* Two or more OR-connected terms */ | 
| -#define WO_AND    0x200       /* Two or more AND-connected terms */ | 
| -#define WO_NOOP   0x800       /* This term does not restrict search space */ | 
| - | 
| -#define WO_ALL    0xfff       /* Mask of all possible WO_* values */ | 
| -#define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */ | 
| +static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ | 
| +  pDest->n = pSrc->n; | 
| +  memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); | 
| +} | 
|  | 
| /* | 
| -** Value for wsFlags returned by bestIndex() and stored in | 
| -** WhereLevel.wsFlags.  These flags determine which search | 
| -** strategies are appropriate. | 
| -** | 
| -** The least significant 12 bits is reserved as a mask for WO_ values above. | 
| -** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL. | 
| -** But if the table is the right table of a left join, WhereLevel.wsFlags | 
| -** is set to WO_IN|WO_EQ.  The WhereLevel.wsFlags field can then be used as | 
| -** the "op" parameter to findTerm when we are resolving equality constraints. | 
| -** ISNULL constraints will then not be used on the right table of a left | 
| -** join.  Tickets #2177 and #2189. | 
| +** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. | 
| +** | 
| +** The new entry might overwrite an existing entry, or it might be | 
| +** appended, or it might be discarded.  Do whatever is the right thing | 
| +** so that pSet keeps the N_OR_COST best entries seen so far. | 
| */ | 
| -#define WHERE_ROWID_EQ     0x00001000  /* rowid=EXPR or rowid IN (...) */ | 
| -#define WHERE_ROWID_RANGE  0x00002000  /* rowid<EXPR and/or rowid>EXPR */ | 
| -#define WHERE_COLUMN_EQ    0x00010000  /* x=EXPR or x IN (...) or x IS NULL */ | 
| -#define WHERE_COLUMN_RANGE 0x00020000  /* x<EXPR and/or x>EXPR */ | 
| -#define WHERE_COLUMN_IN    0x00040000  /* x IN (...) */ | 
| -#define WHERE_COLUMN_NULL  0x00080000  /* x IS NULL */ | 
| -#define WHERE_INDEXED      0x000f0000  /* Anything that uses an index */ | 
| -#define WHERE_NOT_FULLSCAN 0x100f3000  /* Does not do a full table scan */ | 
| -#define WHERE_IN_ABLE      0x000f1000  /* Able to support an IN operator */ | 
| -#define WHERE_TOP_LIMIT    0x00100000  /* x<EXPR or x<=EXPR constraint */ | 
| -#define WHERE_BTM_LIMIT    0x00200000  /* x>EXPR or x>=EXPR constraint */ | 
| -#define WHERE_BOTH_LIMIT   0x00300000  /* Both x>EXPR and x<EXPR */ | 
| -#define WHERE_IDX_ONLY     0x00800000  /* Use index only - omit table */ | 
| -#define WHERE_ORDERBY      0x01000000  /* Output will appear in correct order */ | 
| -#define WHERE_REVERSE      0x02000000  /* Scan in reverse order */ | 
| -#define WHERE_UNIQUE       0x04000000  /* Selects no more than one row */ | 
| -#define WHERE_VIRTUALTABLE 0x08000000  /* Use virtual-table processing */ | 
| -#define WHERE_MULTI_OR     0x10000000  /* OR using multiple indices */ | 
| -#define WHERE_TEMP_INDEX   0x20000000  /* Uses an ephemeral index */ | 
| +static int whereOrInsert( | 
| +  WhereOrSet *pSet,      /* The WhereOrSet to be updated */ | 
| +  Bitmask prereq,        /* Prerequisites of the new entry */ | 
| +  LogEst rRun,           /* Run-cost of the new entry */ | 
| +  LogEst nOut            /* Number of outputs for the new entry */ | 
| +){ | 
| +  u16 i; | 
| +  WhereOrCost *p; | 
| +  for(i=pSet->n, p=pSet->a; i>0; i--, p++){ | 
| +    if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ | 
| +      goto whereOrInsert_done; | 
| +    } | 
| +    if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ | 
| +      return 0; | 
| +    } | 
| +  } | 
| +  if( pSet->n<N_OR_COST ){ | 
| +    p = &pSet->a[pSet->n++]; | 
| +    p->nOut = nOut; | 
| +  }else{ | 
| +    p = pSet->a; | 
| +    for(i=1; i<pSet->n; i++){ | 
| +      if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; | 
| +    } | 
| +    if( p->rRun<=rRun ) return 0; | 
| +  } | 
| +whereOrInsert_done: | 
| +  p->prereq = prereq; | 
| +  p->rRun = rRun; | 
| +  if( p->nOut>nOut ) p->nOut = nOut; | 
| +  return 1; | 
| +} | 
|  | 
| /* | 
| ** Initialize a preallocated WhereClause structure. | 
| */ | 
| static void whereClauseInit( | 
| WhereClause *pWC,        /* The WhereClause to be initialized */ | 
| -  Parse *pParse,           /* The parsing context */ | 
| -  WhereMaskSet *pMaskSet   /* Mapping from table cursor numbers to bitmasks */ | 
| +  WhereInfo *pWInfo        /* The WHERE processing context */ | 
| ){ | 
| -  pWC->pParse = pParse; | 
| -  pWC->pMaskSet = pMaskSet; | 
| +  pWC->pWInfo = pWInfo; | 
| +  pWC->pOuter = 0; | 
| pWC->nTerm = 0; | 
| pWC->nSlot = ArraySize(pWC->aStatic); | 
| pWC->a = pWC->aStatic; | 
| -  pWC->vmask = 0; | 
| } | 
|  | 
| /* Forward reference */ | 
| @@ -296,7 +167,7 @@ static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ | 
| static void whereClauseClear(WhereClause *pWC){ | 
| int i; | 
| WhereTerm *a; | 
| -  sqlite3 *db = pWC->pParse->db; | 
| +  sqlite3 *db = pWC->pWInfo->pParse->db; | 
| for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ | 
| if( a->wtFlags & TERM_DYNAMIC ){ | 
| sqlite3ExprDelete(db, a->pExpr); | 
| @@ -334,10 +205,10 @@ static void whereClauseClear(WhereClause *pWC){ | 
| static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ | 
| WhereTerm *pTerm; | 
| int idx; | 
| -  testcase( wtFlags & TERM_VIRTUAL );  /* EV: R-00211-15100 */ | 
| +  testcase( wtFlags & TERM_VIRTUAL ); | 
| if( pWC->nTerm>=pWC->nSlot ){ | 
| WhereTerm *pOld = pWC->a; | 
| -    sqlite3 *db = pWC->pParse->db; | 
| +    sqlite3 *db = pWC->pWInfo->pParse->db; | 
| pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); | 
| if( pWC->a==0 ){ | 
| if( wtFlags & TERM_DYNAMIC ){ | 
| @@ -353,7 +224,12 @@ static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ | 
| pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); | 
| } | 
| pTerm = &pWC->a[idx = pWC->nTerm++]; | 
| -  pTerm->pExpr = p; | 
| +  if( p && ExprHasProperty(p, EP_Unlikely) ){ | 
| +    pTerm->truthProb = sqlite3LogEst(p->iTable) - 99; | 
| +  }else{ | 
| +    pTerm->truthProb = 1; | 
| +  } | 
| +  pTerm->pExpr = sqlite3ExprSkipCollate(p); | 
| pTerm->wtFlags = wtFlags; | 
| pTerm->pWC = pWC; | 
| pTerm->iParent = -1; | 
| @@ -377,8 +253,8 @@ static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ | 
| ** the WhereClause.a[] array.  The slot[] array grows as needed to contain | 
| ** all terms of the WHERE clause. | 
| */ | 
| -static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ | 
| -  pWC->op = (u8)op; | 
| +static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ | 
| +  pWC->op = op; | 
| if( pExpr==0 ) return; | 
| if( pExpr->op!=op ){ | 
| whereClauseInsert(pWC, pExpr, 0); | 
| @@ -389,9 +265,9 @@ static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ | 
| } | 
|  | 
| /* | 
| -** Initialize an expression mask set (a WhereMaskSet object) | 
| +** Initialize a WhereMaskSet object | 
| */ | 
| -#define initMaskSet(P)  memset(P, 0, sizeof(*P)) | 
| +#define initMaskSet(P)  (P)->n=0 | 
|  | 
| /* | 
| ** Return the bitmask for the given cursor number.  Return 0 if | 
| @@ -402,7 +278,7 @@ static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ | 
| assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); | 
| for(i=0; i<pMaskSet->n; i++){ | 
| if( pMaskSet->ix[i]==iCursor ){ | 
| -      return ((Bitmask)1)<<i; | 
| +      return MASKBIT(i); | 
| } | 
| } | 
| return 0; | 
| @@ -422,18 +298,9 @@ static void createMask(WhereMaskSet *pMaskSet, int iCursor){ | 
| } | 
|  | 
| /* | 
| -** This routine walks (recursively) an expression tree and generates | 
| +** These routines walk (recursively) an expression tree and generate | 
| ** a bitmask indicating which tables are used in that expression | 
| ** tree. | 
| -** | 
| -** In order for this routine to work, the calling function must have | 
| -** previously invoked sqlite3ResolveExprNames() on the expression.  See | 
| -** the header comment on that routine for additional information. | 
| -** The sqlite3ResolveExprNames() routines looks for column names and | 
| -** sets their opcodes to TK_COLUMN and their Expr.iTable fields to | 
| -** the VDBE cursor number of the table.  This routine just has to | 
| -** translate the cursor numbers into bitmask values and OR all | 
| -** the bitmasks together. | 
| */ | 
| static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); | 
| static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); | 
| @@ -466,11 +333,19 @@ static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ | 
| static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ | 
| Bitmask mask = 0; | 
| while( pS ){ | 
| +    SrcList *pSrc = pS->pSrc; | 
| mask |= exprListTableUsage(pMaskSet, pS->pEList); | 
| mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); | 
| mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); | 
| mask |= exprTableUsage(pMaskSet, pS->pWhere); | 
| mask |= exprTableUsage(pMaskSet, pS->pHaving); | 
| +    if( ALWAYS(pSrc!=0) ){ | 
| +      int i; | 
| +      for(i=0; i<pSrc->nSrc; i++){ | 
| +        mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect); | 
| +        mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn); | 
| +      } | 
| +    } | 
| pS = pS->pPrior; | 
| } | 
| return mask; | 
| @@ -479,14 +354,7 @@ static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ | 
| /* | 
| ** Return TRUE if the given operator is one of the operators that is | 
| ** allowed for an indexable WHERE clause term.  The allowed operators are | 
| -** "=", "<", ">", "<=", ">=", and "IN". | 
| -** | 
| -** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be | 
| -** of one of the following forms: column = expression column > expression | 
| -** column >= expression column < expression column <= expression | 
| -** expression = column expression > column expression >= column | 
| -** expression < column expression <= column column IN | 
| -** (expression-list) column IN (subquery) column IS NULL | 
| +** "=", "<", ">", "<=", ">=", "IN", and "IS NULL" | 
| */ | 
| static int allowedOp(int op){ | 
| assert( TK_GT>TK_EQ && TK_GT<TK_GE ); | 
| @@ -497,31 +365,34 @@ static int allowedOp(int op){ | 
| } | 
|  | 
| /* | 
| -** Swap two objects of type TYPE. | 
| -*/ | 
| -#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} | 
| - | 
| -/* | 
| ** Commute a comparison operator.  Expressions of the form "X op Y" | 
| ** are converted into "Y op X". | 
| ** | 
| -** If a collation sequence is associated with either the left or right | 
| -** side of the comparison, it remains associated with the same side after | 
| -** the commutation. So "Y collate NOCASE op X" becomes | 
| -** "X collate NOCASE op Y". This is because any collation sequence on | 
| +** If left/right precedence rules come into play when determining the | 
| +** collating sequence, then COLLATE operators are adjusted to ensure | 
| +** that the collating sequence does not change.  For example: | 
| +** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on | 
| ** the left hand side of a comparison overrides any collation sequence | 
| -** attached to the right. For the same reason the EP_ExpCollate flag | 
| +** attached to the right. For the same reason the EP_Collate flag | 
| ** is not commuted. | 
| */ | 
| static void exprCommute(Parse *pParse, Expr *pExpr){ | 
| -  u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); | 
| -  u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); | 
| +  u16 expRight = (pExpr->pRight->flags & EP_Collate); | 
| +  u16 expLeft = (pExpr->pLeft->flags & EP_Collate); | 
| assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); | 
| -  pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); | 
| -  pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); | 
| -  SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); | 
| -  pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; | 
| -  pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; | 
| +  if( expRight==expLeft ){ | 
| +    /* Either X and Y both have COLLATE operator or neither do */ | 
| +    if( expRight ){ | 
| +      /* Both X and Y have COLLATE operators.  Make sure X is always | 
| +      ** used by clearing the EP_Collate flag from Y. */ | 
| +      pExpr->pRight->flags &= ~EP_Collate; | 
| +    }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ | 
| +      /* Neither X nor Y have COLLATE operators, but X has a non-default | 
| +      ** collating sequence.  So add the EP_Collate marker on X to cause | 
| +      ** it to be searched first. */ | 
| +      pExpr->pLeft->flags |= EP_Collate; | 
| +    } | 
| +  } | 
| SWAP(Expr*,pExpr->pRight,pExpr->pLeft); | 
| if( pExpr->op>=TK_GT ){ | 
| assert( TK_LT==TK_GT+2 ); | 
| @@ -558,10 +429,154 @@ static u16 operatorMask(int op){ | 
| } | 
|  | 
| /* | 
| +** Advance to the next WhereTerm that matches according to the criteria | 
| +** established when the pScan object was initialized by whereScanInit(). | 
| +** Return NULL if there are no more matching WhereTerms. | 
| +*/ | 
| +static WhereTerm *whereScanNext(WhereScan *pScan){ | 
| +  int iCur;            /* The cursor on the LHS of the term */ | 
| +  int iColumn;         /* The column on the LHS of the term.  -1 for IPK */ | 
| +  Expr *pX;            /* An expression being tested */ | 
| +  WhereClause *pWC;    /* Shorthand for pScan->pWC */ | 
| +  WhereTerm *pTerm;    /* The term being tested */ | 
| +  int k = pScan->k;    /* Where to start scanning */ | 
| + | 
| +  while( pScan->iEquiv<=pScan->nEquiv ){ | 
| +    iCur = pScan->aEquiv[pScan->iEquiv-2]; | 
| +    iColumn = pScan->aEquiv[pScan->iEquiv-1]; | 
| +    while( (pWC = pScan->pWC)!=0 ){ | 
| +      for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ | 
| +        if( pTerm->leftCursor==iCur | 
| +         && pTerm->u.leftColumn==iColumn | 
| +         && (pScan->iEquiv<=2 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) | 
| +        ){ | 
| +          if( (pTerm->eOperator & WO_EQUIV)!=0 | 
| +           && pScan->nEquiv<ArraySize(pScan->aEquiv) | 
| +          ){ | 
| +            int j; | 
| +            pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight); | 
| +            assert( pX->op==TK_COLUMN ); | 
| +            for(j=0; j<pScan->nEquiv; j+=2){ | 
| +              if( pScan->aEquiv[j]==pX->iTable | 
| +               && pScan->aEquiv[j+1]==pX->iColumn ){ | 
| +                  break; | 
| +              } | 
| +            } | 
| +            if( j==pScan->nEquiv ){ | 
| +              pScan->aEquiv[j] = pX->iTable; | 
| +              pScan->aEquiv[j+1] = pX->iColumn; | 
| +              pScan->nEquiv += 2; | 
| +            } | 
| +          } | 
| +          if( (pTerm->eOperator & pScan->opMask)!=0 ){ | 
| +            /* Verify the affinity and collating sequence match */ | 
| +            if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ | 
| +              CollSeq *pColl; | 
| +              Parse *pParse = pWC->pWInfo->pParse; | 
| +              pX = pTerm->pExpr; | 
| +              if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ | 
| +                continue; | 
| +              } | 
| +              assert(pX->pLeft); | 
| +              pColl = sqlite3BinaryCompareCollSeq(pParse, | 
| +                                                  pX->pLeft, pX->pRight); | 
| +              if( pColl==0 ) pColl = pParse->db->pDfltColl; | 
| +              if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ | 
| +                continue; | 
| +              } | 
| +            } | 
| +            if( (pTerm->eOperator & WO_EQ)!=0 | 
| +             && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN | 
| +             && pX->iTable==pScan->aEquiv[0] | 
| +             && pX->iColumn==pScan->aEquiv[1] | 
| +            ){ | 
| +              continue; | 
| +            } | 
| +            pScan->k = k+1; | 
| +            return pTerm; | 
| +          } | 
| +        } | 
| +      } | 
| +      pScan->pWC = pScan->pWC->pOuter; | 
| +      k = 0; | 
| +    } | 
| +    pScan->pWC = pScan->pOrigWC; | 
| +    k = 0; | 
| +    pScan->iEquiv += 2; | 
| +  } | 
| +  return 0; | 
| +} | 
| + | 
| +/* | 
| +** Initialize a WHERE clause scanner object.  Return a pointer to the | 
| +** first match.  Return NULL if there are no matches. | 
| +** | 
| +** The scanner will be searching the WHERE clause pWC.  It will look | 
| +** for terms of the form "X <op> <expr>" where X is column iColumn of table | 
| +** iCur.  The <op> must be one of the operators described by opMask. | 
| +** | 
| +** If the search is for X and the WHERE clause contains terms of the | 
| +** form X=Y then this routine might also return terms of the form | 
| +** "Y <op> <expr>".  The number of levels of transitivity is limited, | 
| +** but is enough to handle most commonly occurring SQL statements. | 
| +** | 
| +** If X is not the INTEGER PRIMARY KEY then X must be compatible with | 
| +** index pIdx. | 
| +*/ | 
| +static WhereTerm *whereScanInit( | 
| +  WhereScan *pScan,       /* The WhereScan object being initialized */ | 
| +  WhereClause *pWC,       /* The WHERE clause to be scanned */ | 
| +  int iCur,               /* Cursor to scan for */ | 
| +  int iColumn,            /* Column to scan for */ | 
| +  u32 opMask,             /* Operator(s) to scan for */ | 
| +  Index *pIdx             /* Must be compatible with this index */ | 
| +){ | 
| +  int j; | 
| + | 
| +  /* memset(pScan, 0, sizeof(*pScan)); */ | 
| +  pScan->pOrigWC = pWC; | 
| +  pScan->pWC = pWC; | 
| +  if( pIdx && iColumn>=0 ){ | 
| +    pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; | 
| +    for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ | 
| +      if( NEVER(j>pIdx->nColumn) ) return 0; | 
| +    } | 
| +    pScan->zCollName = pIdx->azColl[j]; | 
| +  }else{ | 
| +    pScan->idxaff = 0; | 
| +    pScan->zCollName = 0; | 
| +  } | 
| +  pScan->opMask = opMask; | 
| +  pScan->k = 0; | 
| +  pScan->aEquiv[0] = iCur; | 
| +  pScan->aEquiv[1] = iColumn; | 
| +  pScan->nEquiv = 2; | 
| +  pScan->iEquiv = 2; | 
| +  return whereScanNext(pScan); | 
| +} | 
| + | 
| +/* | 
| ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" | 
| ** where X is a reference to the iColumn of table iCur and <op> is one of | 
| ** the WO_xx operator codes specified by the op parameter. | 
| ** Return a pointer to the term.  Return 0 if not found. | 
| +** | 
| +** The term returned might by Y=<expr> if there is another constraint in | 
| +** the WHERE clause that specifies that X=Y.  Any such constraints will be | 
| +** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The | 
| +** aEquiv[] array holds X and all its equivalents, with each SQL variable | 
| +** taking up two slots in aEquiv[].  The first slot is for the cursor number | 
| +** and the second is for the column number.  There are 22 slots in aEquiv[] | 
| +** so that means we can look for X plus up to 10 other equivalent values. | 
| +** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3 | 
| +** and ... and A9=A10 and A10=<expr>. | 
| +** | 
| +** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" | 
| +** then try for the one with no dependencies on <expr> - in other words where | 
| +** <expr> is a constant expression of some kind.  Only return entries of | 
| +** the form "X <op> Y" where Y is a column in another table if no terms of | 
| +** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS | 
| +** exist, try to return a term that does not use WO_EQUIV. | 
| */ | 
| static WhereTerm *findTerm( | 
| WhereClause *pWC,     /* The WHERE clause to be searched */ | 
| @@ -571,43 +586,21 @@ static WhereTerm *findTerm( | 
| u32 op,               /* Mask of WO_xx values describing operator */ | 
| Index *pIdx           /* Must be compatible with this index, if not NULL */ | 
| ){ | 
| -  WhereTerm *pTerm; | 
| -  int k; | 
| -  assert( iCur>=0 ); | 
| -  op &= WO_ALL; | 
| -  for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ | 
| -    if( pTerm->leftCursor==iCur | 
| -       && (pTerm->prereqRight & notReady)==0 | 
| -       && pTerm->u.leftColumn==iColumn | 
| -       && (pTerm->eOperator & op)!=0 | 
| -    ){ | 
| -      if( pIdx && pTerm->eOperator!=WO_ISNULL ){ | 
| -        Expr *pX = pTerm->pExpr; | 
| -        CollSeq *pColl; | 
| -        char idxaff; | 
| -        int j; | 
| -        Parse *pParse = pWC->pParse; | 
| - | 
| -        idxaff = pIdx->pTable->aCol[iColumn].affinity; | 
| -        if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; | 
| - | 
| -        /* Figure out the collation sequence required from an index for | 
| -        ** it to be useful for optimising expression pX. Store this | 
| -        ** value in variable pColl. | 
| -        */ | 
| -        assert(pX->pLeft); | 
| -        pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); | 
| -        assert(pColl || pParse->nErr); | 
| - | 
| -        for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ | 
| -          if( NEVER(j>=pIdx->nColumn) ) return 0; | 
| -        } | 
| -        if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; | 
| +  WhereTerm *pResult = 0; | 
| +  WhereTerm *p; | 
| +  WhereScan scan; | 
| + | 
| +  p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); | 
| +  while( p ){ | 
| +    if( (p->prereqRight & notReady)==0 ){ | 
| +      if( p->prereqRight==0 && (p->eOperator&WO_EQ)!=0 ){ | 
| +        return p; | 
| } | 
| -      return pTerm; | 
| +      if( pResult==0 ) pResult = p; | 
| } | 
| +    p = whereScanNext(&scan); | 
| } | 
| -  return 0; | 
| +  return pResult; | 
| } | 
|  | 
| /* Forward reference */ | 
| @@ -615,8 +608,6 @@ static void exprAnalyze(SrcList*, WhereClause*, int); | 
|  | 
| /* | 
| ** Call exprAnalyze on all terms in a WHERE clause. | 
| -** | 
| -** | 
| */ | 
| static void exprAnalyzeAll( | 
| SrcList *pTabList,       /* the FROM clause */ | 
| @@ -662,26 +653,26 @@ static int isLikeOrGlob( | 
| #endif | 
| pList = pExpr->x.pList; | 
| pLeft = pList->a[1].pExpr; | 
| -  if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){ | 
| +  if( pLeft->op!=TK_COLUMN | 
| +   || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT | 
| +   || IsVirtual(pLeft->pTab) | 
| +  ){ | 
| /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must | 
| ** be the name of an indexed column with TEXT affinity. */ | 
| return 0; | 
| } | 
| assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ | 
|  | 
| -  pRight = pList->a[0].pExpr; | 
| +  pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); | 
| op = pRight->op; | 
| -  if( op==TK_REGISTER ){ | 
| -    op = pRight->op2; | 
| -  } | 
| if( op==TK_VARIABLE ){ | 
| Vdbe *pReprepare = pParse->pReprepare; | 
| int iCol = pRight->iColumn; | 
| -    pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE); | 
| +    pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_NONE); | 
| if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ | 
| z = (char *)sqlite3_value_text(pVal); | 
| } | 
| -    sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); /* IMP: R-23257-02778 */ | 
| +    sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); | 
| assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); | 
| }else if( op==TK_STRING ){ | 
| z = pRight->u.zToken; | 
| @@ -699,13 +690,13 @@ static int isLikeOrGlob( | 
| *ppPrefix = pPrefix; | 
| if( op==TK_VARIABLE ){ | 
| Vdbe *v = pParse->pVdbe; | 
| -        sqlite3VdbeSetVarmask(v, pRight->iColumn); /* IMP: R-23257-02778 */ | 
| +        sqlite3VdbeSetVarmask(v, pRight->iColumn); | 
| if( *pisComplete && pRight->u.zToken[1] ){ | 
| /* If the rhs of the LIKE expression is a variable, and the current | 
| ** value of the variable means there is no need to invoke the LIKE | 
| ** function, then no OP_Variable will be added to the program. | 
| ** This causes problems for the sqlite3_bind_parameter_name() | 
| -          ** API. To workaround them, add a dummy OP_Variable here. | 
| +          ** API. To work around them, add a dummy OP_Variable here. | 
| */ | 
| int r1 = sqlite3GetTempReg(pParse); | 
| sqlite3ExprCodeTarget(pParse, pRight, r1); | 
| @@ -759,8 +750,10 @@ static int isMatchOfColumn( | 
| ** a join, then transfer the appropriate markings over to derived. | 
| */ | 
| static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ | 
| -  pDerived->flags |= pBase->flags & EP_FromJoin; | 
| -  pDerived->iRightJoinTable = pBase->iRightJoinTable; | 
| +  if( pDerived ){ | 
| +    pDerived->flags |= pBase->flags & EP_FromJoin; | 
| +    pDerived->iRightJoinTable = pBase->iRightJoinTable; | 
| +  } | 
| } | 
|  | 
| #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) | 
| @@ -790,7 +783,7 @@ static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ | 
| ** | 
| ** CASE 1: | 
| ** | 
| -** If all subterms are of the form T.C=expr for some single column of C | 
| +** If all subterms are of the form T.C=expr for some single column of C and | 
| ** a single table T (as shown in example B above) then create a new virtual | 
| ** term that is an equivalent IN expression.  In other words, if the term | 
| ** being analyzed is: | 
| @@ -819,11 +812,11 @@ static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ | 
| ** From another point of view, "indexable" means that the subterm could | 
| ** potentially be used with an index if an appropriate index exists. | 
| ** This analysis does not consider whether or not the index exists; that | 
| -** is something the bestIndex() routine will determine.  This analysis | 
| -** only looks at whether subterms appropriate for indexing exist. | 
| +** is decided elsewhere.  This analysis only looks at whether subterms | 
| +** appropriate for indexing exist. | 
| ** | 
| -** All examples A through E above all satisfy case 2.  But if a term | 
| -** also statisfies case 1 (such as B) we know that the optimizer will | 
| +** All examples A through E above satisfy case 2.  But if a term | 
| +** also satisfies case 1 (such as B) we know that the optimizer will | 
| ** always prefer case 1, so in that case we pretend that case 2 is not | 
| ** satisfied. | 
| ** | 
| @@ -845,11 +838,11 @@ static void exprAnalyzeOrTerm( | 
| WhereClause *pWC,         /* the complete WHERE clause */ | 
| int idxTerm               /* Index of the OR-term to be analyzed */ | 
| ){ | 
| -  Parse *pParse = pWC->pParse;            /* Parser context */ | 
| +  WhereInfo *pWInfo = pWC->pWInfo;        /* WHERE clause processing context */ | 
| +  Parse *pParse = pWInfo->pParse;         /* Parser context */ | 
| sqlite3 *db = pParse->db;               /* Database connection */ | 
| WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */ | 
| Expr *pExpr = pTerm->pExpr;             /* The expression of the term */ | 
| -  WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */ | 
| int i;                                  /* Loop counters */ | 
| WhereClause *pOrWc;       /* Breakup of pTerm into subterms */ | 
| WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */ | 
| @@ -868,7 +861,7 @@ static void exprAnalyzeOrTerm( | 
| if( pOrInfo==0 ) return; | 
| pTerm->wtFlags |= TERM_ORINFO; | 
| pOrWc = &pOrInfo->wc; | 
| -  whereClauseInit(pOrWc, pWC->pParse, pMaskSet); | 
| +  whereClauseInit(pOrWc, pWInfo); | 
| whereSplit(pOrWc, pExpr, TK_OR); | 
| exprAnalyzeAll(pSrc, pOrWc); | 
| if( db->mallocFailed ) return; | 
| @@ -878,11 +871,10 @@ static void exprAnalyzeOrTerm( | 
| ** Compute the set of tables that might satisfy cases 1 or 2. | 
| */ | 
| indexable = ~(Bitmask)0; | 
| -  chngToIN = ~(pWC->vmask); | 
| +  chngToIN = ~(Bitmask)0; | 
| for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ | 
| if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ | 
| WhereAndInfo *pAndInfo; | 
| -      assert( pOrTerm->eOperator==0 ); | 
| assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); | 
| chngToIN = 0; | 
| pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); | 
| @@ -895,15 +887,16 @@ static void exprAnalyzeOrTerm( | 
| pOrTerm->wtFlags |= TERM_ANDINFO; | 
| pOrTerm->eOperator = WO_AND; | 
| pAndWC = &pAndInfo->wc; | 
| -        whereClauseInit(pAndWC, pWC->pParse, pMaskSet); | 
| +        whereClauseInit(pAndWC, pWC->pWInfo); | 
| whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); | 
| exprAnalyzeAll(pSrc, pAndWC); | 
| +        pAndWC->pOuter = pWC; | 
| testcase( db->mallocFailed ); | 
| if( !db->mallocFailed ){ | 
| for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ | 
| assert( pAndTerm->pExpr ); | 
| if( allowedOp(pAndTerm->pExpr->op) ){ | 
| -              b |= getMask(pMaskSet, pAndTerm->leftCursor); | 
| +              b |= getMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); | 
| } | 
| } | 
| } | 
| @@ -914,13 +907,13 @@ static void exprAnalyzeOrTerm( | 
| ** corresponding TERM_VIRTUAL term */ | 
| }else{ | 
| Bitmask b; | 
| -      b = getMask(pMaskSet, pOrTerm->leftCursor); | 
| +      b = getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); | 
| if( pOrTerm->wtFlags & TERM_VIRTUAL ){ | 
| WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; | 
| -        b |= getMask(pMaskSet, pOther->leftCursor); | 
| +        b |= getMask(&pWInfo->sMaskSet, pOther->leftCursor); | 
| } | 
| indexable &= b; | 
| -      if( pOrTerm->eOperator!=WO_EQ ){ | 
| +      if( (pOrTerm->eOperator & WO_EQ)==0 ){ | 
| chngToIN = 0; | 
| }else{ | 
| chngToIN &= b; | 
| @@ -971,7 +964,7 @@ static void exprAnalyzeOrTerm( | 
| for(j=0; j<2 && !okToChngToIN; j++){ | 
| pOrTerm = pOrWc->a; | 
| for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ | 
| -        assert( pOrTerm->eOperator==WO_EQ ); | 
| +        assert( pOrTerm->eOperator & WO_EQ ); | 
| pOrTerm->wtFlags &= ~TERM_OR_OK; | 
| if( pOrTerm->leftCursor==iCursor ){ | 
| /* This is the 2-bit case and we are on the second iteration and | 
| @@ -979,9 +972,9 @@ static void exprAnalyzeOrTerm( | 
| assert( j==1 ); | 
| continue; | 
| } | 
| -        if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){ | 
| +        if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ | 
| /* This term must be of the form t1.a==t2.b where t2 is in the | 
| -          ** chngToIN set but t1 is not.  This term will be either preceeded | 
| +          ** chngToIN set but t1 is not.  This term will be either preceded | 
| ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term | 
| ** and use its inversion. */ | 
| testcase( pOrTerm->wtFlags & TERM_COPIED ); | 
| @@ -997,8 +990,8 @@ static void exprAnalyzeOrTerm( | 
| /* No candidate table+column was found.  This can only occur | 
| ** on the second iteration */ | 
| assert( j==1 ); | 
| -        assert( (chngToIN&(chngToIN-1))==0 ); | 
| -        assert( chngToIN==getMask(pMaskSet, iCursor) ); | 
| +        assert( IsPowerOfTwo(chngToIN) ); | 
| +        assert( chngToIN==getMask(&pWInfo->sMaskSet, iCursor) ); | 
| break; | 
| } | 
| testcase( j==1 ); | 
| @@ -1007,7 +1000,7 @@ static void exprAnalyzeOrTerm( | 
| ** table and column is common to every term in the OR clause */ | 
| okToChngToIN = 1; | 
| for(; i>=0 && okToChngToIN; i--, pOrTerm++){ | 
| -        assert( pOrTerm->eOperator==WO_EQ ); | 
| +        assert( pOrTerm->eOperator & WO_EQ ); | 
| if( pOrTerm->leftCursor!=iCursor ){ | 
| pOrTerm->wtFlags &= ~TERM_OR_OK; | 
| }else if( pOrTerm->u.leftColumn!=iColumn ){ | 
| @@ -1032,8 +1025,6 @@ static void exprAnalyzeOrTerm( | 
| /* At this point, okToChngToIN is true if original pTerm satisfies | 
| ** case 1.  In that case, construct a new virtual term that is | 
| ** pTerm converted into an IN operator. | 
| -    ** | 
| -    ** EV: R-00211-15100 | 
| */ | 
| if( okToChngToIN ){ | 
| Expr *pDup;            /* A transient duplicate expression */ | 
| @@ -1043,11 +1034,11 @@ static void exprAnalyzeOrTerm( | 
|  | 
| for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ | 
| if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; | 
| -        assert( pOrTerm->eOperator==WO_EQ ); | 
| +        assert( pOrTerm->eOperator & WO_EQ ); | 
| assert( pOrTerm->leftCursor==iCursor ); | 
| assert( pOrTerm->u.leftColumn==iColumn ); | 
| pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); | 
| -        pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup); | 
| +        pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); | 
| pLeft = pOrTerm->pExpr->pLeft; | 
| } | 
| assert( pLeft!=0 ); | 
| @@ -1073,7 +1064,6 @@ static void exprAnalyzeOrTerm( | 
| } | 
| #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ | 
|  | 
| - | 
| /* | 
| ** The input to this routine is an WhereTerm structure with only the | 
| ** "pExpr" field filled in.  The job of this routine is to analyze the | 
| @@ -1097,6 +1087,7 @@ static void exprAnalyze( | 
| WhereClause *pWC,         /* the WHERE clause */ | 
| int idxTerm               /* Index of the term to be analyzed */ | 
| ){ | 
| +  WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ | 
| WhereTerm *pTerm;                /* The term to be analyzed */ | 
| WhereMaskSet *pMaskSet;          /* Set of table index masks */ | 
| Expr *pExpr;                     /* The expression to be analyzed */ | 
| @@ -1107,15 +1098,16 @@ static void exprAnalyze( | 
| int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */ | 
| int noCase = 0;                  /* LIKE/GLOB distinguishes case */ | 
| int op;                          /* Top-level operator.  pExpr->op */ | 
| -  Parse *pParse = pWC->pParse;     /* Parsing context */ | 
| +  Parse *pParse = pWInfo->pParse;  /* Parsing context */ | 
| sqlite3 *db = pParse->db;        /* Database connection */ | 
|  | 
| if( db->mallocFailed ){ | 
| return; | 
| } | 
| pTerm = &pWC->a[idxTerm]; | 
| -  pMaskSet = pWC->pMaskSet; | 
| +  pMaskSet = &pWInfo->sMaskSet; | 
| pExpr = pTerm->pExpr; | 
| +  assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); | 
| prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); | 
| op = pExpr->op; | 
| if( op==TK_IN ){ | 
| @@ -1141,17 +1133,19 @@ static void exprAnalyze( | 
| pTerm->leftCursor = -1; | 
| pTerm->iParent = -1; | 
| pTerm->eOperator = 0; | 
| -  if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ | 
| -    Expr *pLeft = pExpr->pLeft; | 
| -    Expr *pRight = pExpr->pRight; | 
| +  if( allowedOp(op) ){ | 
| +    Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); | 
| +    Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); | 
| +    u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; | 
| if( pLeft->op==TK_COLUMN ){ | 
| pTerm->leftCursor = pLeft->iTable; | 
| pTerm->u.leftColumn = pLeft->iColumn; | 
| -      pTerm->eOperator = operatorMask(op); | 
| +      pTerm->eOperator = operatorMask(op) & opMask; | 
| } | 
| if( pRight && pRight->op==TK_COLUMN ){ | 
| WhereTerm *pNew; | 
| Expr *pDup; | 
| +      u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */ | 
| if( pTerm->leftCursor>=0 ){ | 
| int idxNew; | 
| pDup = sqlite3ExprDup(db, pExpr, 0); | 
| @@ -1166,18 +1160,25 @@ static void exprAnalyze( | 
| pTerm = &pWC->a[idxTerm]; | 
| pTerm->nChild = 1; | 
| pTerm->wtFlags |= TERM_COPIED; | 
| +        if( pExpr->op==TK_EQ | 
| +         && !ExprHasProperty(pExpr, EP_FromJoin) | 
| +         && OptimizationEnabled(db, SQLITE_Transitive) | 
| +        ){ | 
| +          pTerm->eOperator |= WO_EQUIV; | 
| +          eExtraOp = WO_EQUIV; | 
| +        } | 
| }else{ | 
| pDup = pExpr; | 
| pNew = pTerm; | 
| } | 
| exprCommute(pParse, pDup); | 
| -      pLeft = pDup->pLeft; | 
| +      pLeft = sqlite3ExprSkipCollate(pDup->pLeft); | 
| pNew->leftCursor = pLeft->iTable; | 
| pNew->u.leftColumn = pLeft->iColumn; | 
| testcase( (prereqLeft | extraRight) != prereqLeft ); | 
| pNew->prereqRight = prereqLeft | extraRight; | 
| pNew->prereqAll = prereqAll; | 
| -      pNew->eOperator = operatorMask(pDup->op); | 
| +      pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; | 
| } | 
| } | 
|  | 
| @@ -1209,6 +1210,7 @@ static void exprAnalyze( | 
| pNewExpr = sqlite3PExpr(pParse, ops[i], | 
| sqlite3ExprDup(db, pExpr->pLeft, 0), | 
| sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); | 
| +      transferJoinMarkings(pNewExpr, pExpr); | 
| idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); | 
| testcase( idxNew==0 ); | 
| exprAnalyze(pSrc, pWC, idxNew); | 
| @@ -1250,7 +1252,7 @@ static void exprAnalyze( | 
| Expr *pNewExpr2; | 
| int idxNew1; | 
| int idxNew2; | 
| -    CollSeq *pColl;    /* Collating sequence to use */ | 
| +    Token sCollSeqName;  /* Name of collating sequence */ | 
|  | 
| pLeft = pExpr->x.pList->a[1].pExpr; | 
| pStr2 = sqlite3ExprDup(db, pStr1, 0); | 
| @@ -1265,23 +1267,26 @@ static void exprAnalyze( | 
| ** inequality.  To avoid this, make sure to also run the full | 
| ** LIKE on all candidate expressions by clearing the isComplete flag | 
| */ | 
| -        if( c=='A'-1 ) isComplete = 0;   /* EV: R-64339-08207 */ | 
| - | 
| - | 
| +        if( c=='A'-1 ) isComplete = 0; | 
| c = sqlite3UpperToLower[c]; | 
| } | 
| *pC = c + 1; | 
| } | 
| -    pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0); | 
| +    sCollSeqName.z = noCase ? "NOCASE" : "BINARY"; | 
| +    sCollSeqName.n = 6; | 
| +    pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); | 
| pNewExpr1 = sqlite3PExpr(pParse, TK_GE, | 
| -                     sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl), | 
| -                     pStr1, 0); | 
| +           sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName), | 
| +           pStr1, 0); | 
| +    transferJoinMarkings(pNewExpr1, pExpr); | 
| idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); | 
| testcase( idxNew1==0 ); | 
| exprAnalyze(pSrc, pWC, idxNew1); | 
| +    pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); | 
| pNewExpr2 = sqlite3PExpr(pParse, TK_LT, | 
| -                     sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl), | 
| -                     pStr2, 0); | 
| +           sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName), | 
| +           pStr2, 0); | 
| +    transferJoinMarkings(pNewExpr2, pExpr); | 
| idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); | 
| testcase( idxNew2==0 ); | 
| exprAnalyze(pSrc, pWC, idxNew2); | 
| @@ -1331,8 +1336,8 @@ static void exprAnalyze( | 
| } | 
| #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 
|  | 
| -#ifdef SQLITE_ENABLE_STAT2 | 
| -  /* When sqlite_stat2 histogram data is available an operator of the | 
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | 
| +  /* When sqlite_stat3 histogram data is available an operator of the | 
| ** form "x IS NOT NULL" can sometimes be evaluated more efficiently | 
| ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a | 
| ** virtual term of that form. | 
| @@ -1345,6 +1350,7 @@ static void exprAnalyze( | 
| if( pExpr->op==TK_NOTNULL | 
| && pExpr->pLeft->op==TK_COLUMN | 
| && pExpr->pLeft->iColumn>=0 | 
| +   && OptimizationEnabled(db, SQLITE_Stat3) | 
| ){ | 
| Expr *pNewExpr; | 
| Expr *pLeft = pExpr->pLeft; | 
| @@ -1370,7 +1376,7 @@ static void exprAnalyze( | 
| pNewTerm->prereqAll = pTerm->prereqAll; | 
| } | 
| } | 
| -#endif /* SQLITE_ENABLE_STAT2 */ | 
| +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | 
|  | 
| /* Prevent ON clause terms of a LEFT JOIN from being used to drive | 
| ** an index for tables to the left of the join. | 
| @@ -1379,185 +1385,111 @@ static void exprAnalyze( | 
| } | 
|  | 
| /* | 
| -** Return TRUE if any of the expressions in pList->a[iFirst...] contain | 
| -** a reference to any table other than the iBase table. | 
| +** This function searches pList for an entry that matches the iCol-th column | 
| +** of index pIdx. | 
| +** | 
| +** If such an expression is found, its index in pList->a[] is returned. If | 
| +** no expression is found, -1 is returned. | 
| */ | 
| -static int referencesOtherTables( | 
| -  ExprList *pList,          /* Search expressions in ths list */ | 
| -  WhereMaskSet *pMaskSet,   /* Mapping from tables to bitmaps */ | 
| -  int iFirst,               /* Be searching with the iFirst-th expression */ | 
| -  int iBase                 /* Ignore references to this table */ | 
| +static int findIndexCol( | 
| +  Parse *pParse,                  /* Parse context */ | 
| +  ExprList *pList,                /* Expression list to search */ | 
| +  int iBase,                      /* Cursor for table associated with pIdx */ | 
| +  Index *pIdx,                    /* Index to match column of */ | 
| +  int iCol                        /* Column of index to match */ | 
| ){ | 
| -  Bitmask allowed = ~getMask(pMaskSet, iBase); | 
| -  while( iFirst<pList->nExpr ){ | 
| -    if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ | 
| -      return 1; | 
| +  int i; | 
| +  const char *zColl = pIdx->azColl[iCol]; | 
| + | 
| +  for(i=0; i<pList->nExpr; i++){ | 
| +    Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); | 
| +    if( p->op==TK_COLUMN | 
| +     && p->iColumn==pIdx->aiColumn[iCol] | 
| +     && p->iTable==iBase | 
| +    ){ | 
| +      CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); | 
| +      if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){ | 
| +        return i; | 
| +      } | 
| } | 
| } | 
| -  return 0; | 
| -} | 
|  | 
| +  return -1; | 
| +} | 
|  | 
| /* | 
| -** This routine decides if pIdx can be used to satisfy the ORDER BY | 
| -** clause.  If it can, it returns 1.  If pIdx cannot satisfy the | 
| -** ORDER BY clause, this routine returns 0. | 
| -** | 
| -** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the | 
| -** left-most table in the FROM clause of that same SELECT statement and | 
| -** the table has a cursor number of "base".  pIdx is an index on pTab. | 
| -** | 
| -** nEqCol is the number of columns of pIdx that are used as equality | 
| -** constraints.  Any of these columns may be missing from the ORDER BY | 
| -** clause and the match can still be a success. | 
| -** | 
| -** All terms of the ORDER BY that match against the index must be either | 
| -** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE | 
| -** index do not need to satisfy this constraint.)  The *pbRev value is | 
| -** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if | 
| -** the ORDER BY clause is all ASC. | 
| +** Return true if the DISTINCT expression-list passed as the third argument | 
| +** is redundant. | 
| +** | 
| +** A DISTINCT list is redundant if the database contains some subset of | 
| +** columns that are unique and non-null. | 
| */ | 
| -static int isSortingIndex( | 
| -  Parse *pParse,          /* Parsing context */ | 
| -  WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */ | 
| -  Index *pIdx,            /* The index we are testing */ | 
| -  int base,               /* Cursor number for the table to be sorted */ | 
| -  ExprList *pOrderBy,     /* The ORDER BY clause */ | 
| -  int nEqCol,             /* Number of index columns with == constraints */ | 
| -  int wsFlags,            /* Index usages flags */ | 
| -  int *pbRev              /* Set to 1 if ORDER BY is DESC */ | 
| +static int isDistinctRedundant( | 
| +  Parse *pParse,            /* Parsing context */ | 
| +  SrcList *pTabList,        /* The FROM clause */ | 
| +  WhereClause *pWC,         /* The WHERE clause */ | 
| +  ExprList *pDistinct       /* The result set that needs to be DISTINCT */ | 
| ){ | 
| -  int i, j;                       /* Loop counters */ | 
| -  int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */ | 
| -  int nTerm;                      /* Number of ORDER BY terms */ | 
| -  struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */ | 
| -  sqlite3 *db = pParse->db; | 
| - | 
| -  assert( pOrderBy!=0 ); | 
| -  nTerm = pOrderBy->nExpr; | 
| -  assert( nTerm>0 ); | 
| - | 
| -  /* Argument pIdx must either point to a 'real' named index structure, | 
| -  ** or an index structure allocated on the stack by bestBtreeIndex() to | 
| -  ** represent the rowid index that is part of every table.  */ | 
| -  assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) ); | 
| +  Table *pTab; | 
| +  Index *pIdx; | 
| +  int i; | 
| +  int iBase; | 
| + | 
| +  /* If there is more than one table or sub-select in the FROM clause of | 
| +  ** this query, then it will not be possible to show that the DISTINCT | 
| +  ** clause is redundant. */ | 
| +  if( pTabList->nSrc!=1 ) return 0; | 
| +  iBase = pTabList->a[0].iCursor; | 
| +  pTab = pTabList->a[0].pTab; | 
| + | 
| +  /* If any of the expressions is an IPK column on table iBase, then return | 
| +  ** true. Note: The (p->iTable==iBase) part of this test may be false if the | 
| +  ** current SELECT is a correlated sub-query. | 
| +  */ | 
| +  for(i=0; i<pDistinct->nExpr; i++){ | 
| +    Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); | 
| +    if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; | 
| +  } | 
|  | 
| -  /* Match terms of the ORDER BY clause against columns of | 
| -  ** the index. | 
| +  /* Loop through all indices on the table, checking each to see if it makes | 
| +  ** the DISTINCT qualifier redundant. It does so if: | 
| ** | 
| -  ** Note that indices have pIdx->nColumn regular columns plus | 
| -  ** one additional column containing the rowid.  The rowid column | 
| -  ** of the index is also allowed to match against the ORDER BY | 
| -  ** clause. | 
| +  **   1. The index is itself UNIQUE, and | 
| +  ** | 
| +  **   2. All of the columns in the index are either part of the pDistinct | 
| +  **      list, or else the WHERE clause contains a term of the form "col=X", | 
| +  **      where X is a constant value. The collation sequences of the | 
| +  **      comparison and select-list expressions must match those of the index. | 
| +  ** | 
| +  **   3. All of those index columns for which the WHERE clause does not | 
| +  **      contain a "col=X" term are subject to a NOT NULL constraint. | 
| */ | 
| -  for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ | 
| -    Expr *pExpr;       /* The expression of the ORDER BY pTerm */ | 
| -    CollSeq *pColl;    /* The collating sequence of pExpr */ | 
| -    int termSortOrder; /* Sort order for this term */ | 
| -    int iColumn;       /* The i-th column of the index.  -1 for rowid */ | 
| -    int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */ | 
| -    const char *zColl; /* Name of the collating sequence for i-th index term */ | 
| - | 
| -    pExpr = pTerm->pExpr; | 
| -    if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ | 
| -      /* Can not use an index sort on anything that is not a column in the | 
| -      ** left-most table of the FROM clause */ | 
| -      break; | 
| -    } | 
| -    pColl = sqlite3ExprCollSeq(pParse, pExpr); | 
| -    if( !pColl ){ | 
| -      pColl = db->pDfltColl; | 
| -    } | 
| -    if( pIdx->zName && i<pIdx->nColumn ){ | 
| -      iColumn = pIdx->aiColumn[i]; | 
| -      if( iColumn==pIdx->pTable->iPKey ){ | 
| -        iColumn = -1; | 
| -      } | 
| -      iSortOrder = pIdx->aSortOrder[i]; | 
| -      zColl = pIdx->azColl[i]; | 
| -    }else{ | 
| -      iColumn = -1; | 
| -      iSortOrder = 0; | 
| -      zColl = pColl->zName; | 
| -    } | 
| -    if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ | 
| -      /* Term j of the ORDER BY clause does not match column i of the index */ | 
| -      if( i<nEqCol ){ | 
| -        /* If an index column that is constrained by == fails to match an | 
| -        ** ORDER BY term, that is OK.  Just ignore that column of the index | 
| -        */ | 
| -        continue; | 
| -      }else if( i==pIdx->nColumn ){ | 
| -        /* Index column i is the rowid.  All other terms match. */ | 
| -        break; | 
| -      }else{ | 
| -        /* If an index column fails to match and is not constrained by == | 
| -        ** then the index cannot satisfy the ORDER BY constraint. | 
| -        */ | 
| -        return 0; | 
| -      } | 
| -    } | 
| -    assert( pIdx->aSortOrder!=0 || iColumn==-1 ); | 
| -    assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); | 
| -    assert( iSortOrder==0 || iSortOrder==1 ); | 
| -    termSortOrder = iSortOrder ^ pTerm->sortOrder; | 
| -    if( i>nEqCol ){ | 
| -      if( termSortOrder!=sortOrder ){ | 
| -        /* Indices can only be used if all ORDER BY terms past the | 
| -        ** equality constraints are all either DESC or ASC. */ | 
| -        return 0; | 
| +  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | 
| +    if( !IsUniqueIndex(pIdx) ) continue; | 
| +    for(i=0; i<pIdx->nKeyCol; i++){ | 
| +      i16 iCol = pIdx->aiColumn[i]; | 
| +      if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){ | 
| +        int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i); | 
| +        if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){ | 
| +          break; | 
| +        } | 
| } | 
| -    }else{ | 
| -      sortOrder = termSortOrder; | 
| } | 
| -    j++; | 
| -    pTerm++; | 
| -    if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ | 
| -      /* If the indexed column is the primary key and everything matches | 
| -      ** so far and none of the ORDER BY terms to the right reference other | 
| -      ** tables in the join, then we are assured that the index can be used | 
| -      ** to sort because the primary key is unique and so none of the other | 
| -      ** columns will make any difference | 
| -      */ | 
| -      j = nTerm; | 
| +    if( i==pIdx->nKeyCol ){ | 
| +      /* This index implies that the DISTINCT qualifier is redundant. */ | 
| +      return 1; | 
| } | 
| } | 
|  | 
| -  *pbRev = sortOrder!=0; | 
| -  if( j>=nTerm ){ | 
| -    /* All terms of the ORDER BY clause are covered by this index so | 
| -    ** this index can be used for sorting. */ | 
| -    return 1; | 
| -  } | 
| -  if( pIdx->onError!=OE_None && i==pIdx->nColumn | 
| -      && (wsFlags & WHERE_COLUMN_NULL)==0 | 
| -      && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ | 
| -    /* All terms of this index match some prefix of the ORDER BY clause | 
| -    ** and the index is UNIQUE and no terms on the tail of the ORDER BY | 
| -    ** clause reference other tables in a join.  If this is all true then | 
| -    ** the order by clause is superfluous.  Not that if the matching | 
| -    ** condition is IS NULL then the result is not necessarily unique | 
| -    ** even on a UNIQUE index, so disallow those cases. */ | 
| -    return 1; | 
| -  } | 
| return 0; | 
| } | 
|  | 
| + | 
| /* | 
| -** Prepare a crude estimate of the logarithm of the input value. | 
| -** The results need not be exact.  This is only used for estimating | 
| -** the total cost of performing operations with O(logN) or O(NlogN) | 
| -** complexity.  Because N is just a guess, it is no great tragedy if | 
| -** logN is a little off. | 
| +** Estimate the logarithm of the input value to base 2. | 
| */ | 
| -static double estLog(double N){ | 
| -  double logN = 1; | 
| -  double x = 10; | 
| -  while( N>x ){ | 
| -    logN += 1; | 
| -    x *= 10; | 
| -  } | 
| -  return logN; | 
| +static LogEst estLog(LogEst N){ | 
| +  return N<=10 ? 0 : sqlite3LogEst(N) - 33; | 
| } | 
|  | 
| /* | 
| @@ -1566,7 +1498,7 @@ static double estLog(double N){ | 
| ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines | 
| ** are no-ops. | 
| */ | 
| -#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) | 
| +#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) | 
| static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ | 
| int i; | 
| if( !sqlite3WhereTrace ) return; | 
| @@ -1598,110 +1530,13 @@ static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ | 
| sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr); | 
| sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed); | 
| sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost); | 
| +  sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows); | 
| } | 
| #else | 
| #define TRACE_IDX_INPUTS(A) | 
| #define TRACE_IDX_OUTPUTS(A) | 
| #endif | 
|  | 
| -/* | 
| -** Required because bestIndex() is called by bestOrClauseIndex() | 
| -*/ | 
| -static void bestIndex( | 
| -    Parse*, WhereClause*, struct SrcList_item*, | 
| -    Bitmask, Bitmask, ExprList*, WhereCost*); | 
| - | 
| -/* | 
| -** This routine attempts to find an scanning strategy that can be used | 
| -** to optimize an 'OR' expression that is part of a WHERE clause. | 
| -** | 
| -** The table associated with FROM clause term pSrc may be either a | 
| -** regular B-Tree table or a virtual table. | 
| -*/ | 
| -static void bestOrClauseIndex( | 
| -  Parse *pParse,              /* The parsing context */ | 
| -  WhereClause *pWC,           /* The WHERE clause */ | 
| -  struct SrcList_item *pSrc,  /* The FROM clause term to search */ | 
| -  Bitmask notReady,           /* Mask of cursors not available for indexing */ | 
| -  Bitmask notValid,           /* Cursors not available for any purpose */ | 
| -  ExprList *pOrderBy,         /* The ORDER BY clause */ | 
| -  WhereCost *pCost            /* Lowest cost query plan */ | 
| -){ | 
| -#ifndef SQLITE_OMIT_OR_OPTIMIZATION | 
| -  const int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */ | 
| -  const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur);  /* Bitmask for pSrc */ | 
| -  WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm];        /* End of pWC->a[] */ | 
| -  WhereTerm *pTerm;                 /* A single term of the WHERE clause */ | 
| - | 
| -  /* No OR-clause optimization allowed if the INDEXED BY or NOT INDEXED clauses | 
| -  ** are used */ | 
| -  if( pSrc->notIndexed || pSrc->pIndex!=0 ){ | 
| -    return; | 
| -  } | 
| - | 
| -  /* Search the WHERE clause terms for a usable WO_OR term. */ | 
| -  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ | 
| -    if( pTerm->eOperator==WO_OR | 
| -     && ((pTerm->prereqAll & ~maskSrc) & notReady)==0 | 
| -     && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 | 
| -    ){ | 
| -      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; | 
| -      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; | 
| -      WhereTerm *pOrTerm; | 
| -      int flags = WHERE_MULTI_OR; | 
| -      double rTotal = 0; | 
| -      double nRow = 0; | 
| -      Bitmask used = 0; | 
| - | 
| -      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ | 
| -        WhereCost sTermCost; | 
| -        WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", | 
| -          (pOrTerm - pOrWC->a), (pTerm - pWC->a) | 
| -        )); | 
| -        if( pOrTerm->eOperator==WO_AND ){ | 
| -          WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc; | 
| -          bestIndex(pParse, pAndWC, pSrc, notReady, notValid, 0, &sTermCost); | 
| -        }else if( pOrTerm->leftCursor==iCur ){ | 
| -          WhereClause tempWC; | 
| -          tempWC.pParse = pWC->pParse; | 
| -          tempWC.pMaskSet = pWC->pMaskSet; | 
| -          tempWC.op = TK_AND; | 
| -          tempWC.a = pOrTerm; | 
| -          tempWC.nTerm = 1; | 
| -          bestIndex(pParse, &tempWC, pSrc, notReady, notValid, 0, &sTermCost); | 
| -        }else{ | 
| -          continue; | 
| -        } | 
| -        rTotal += sTermCost.rCost; | 
| -        nRow += sTermCost.plan.nRow; | 
| -        used |= sTermCost.used; | 
| -        if( rTotal>=pCost->rCost ) break; | 
| -      } | 
| - | 
| -      /* If there is an ORDER BY clause, increase the scan cost to account | 
| -      ** for the cost of the sort. */ | 
| -      if( pOrderBy!=0 ){ | 
| -        WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n", | 
| -                    rTotal, rTotal+nRow*estLog(nRow))); | 
| -        rTotal += nRow*estLog(nRow); | 
| -      } | 
| - | 
| -      /* If the cost of scanning using this OR term for optimization is | 
| -      ** less than the current cost stored in pCost, replace the contents | 
| -      ** of pCost. */ | 
| -      WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow)); | 
| -      if( rTotal<pCost->rCost ){ | 
| -        pCost->rCost = rTotal; | 
| -        pCost->used = used; | 
| -        pCost->plan.nRow = nRow; | 
| -        pCost->plan.wsFlags = flags; | 
| -        pCost->plan.u.pTerm = pTerm; | 
| -      } | 
| -    } | 
| -  } | 
| -#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ | 
| -} | 
| - | 
| #ifndef SQLITE_OMIT_AUTOMATIC_INDEX | 
| /* | 
| ** Return TRUE if the WHERE clause term pTerm is of a form where it | 
| @@ -1715,79 +1550,15 @@ static int termCanDriveIndex( | 
| ){ | 
| char aff; | 
| if( pTerm->leftCursor!=pSrc->iCursor ) return 0; | 
| -  if( pTerm->eOperator!=WO_EQ ) return 0; | 
| +  if( (pTerm->eOperator & WO_EQ)==0 ) return 0; | 
| if( (pTerm->prereqRight & notReady)!=0 ) return 0; | 
| +  if( pTerm->u.leftColumn<0 ) return 0; | 
| aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; | 
| if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; | 
| return 1; | 
| } | 
| #endif | 
|  | 
| -#ifndef SQLITE_OMIT_AUTOMATIC_INDEX | 
| -/* | 
| -** If the query plan for pSrc specified in pCost is a full table scan | 
| -** and indexing is allows (if there is no NOT INDEXED clause) and it | 
| -** possible to construct a transient index that would perform better | 
| -** than a full table scan even when the cost of constructing the index | 
| -** is taken into account, then alter the query plan to use the | 
| -** transient index. | 
| -*/ | 
| -static void bestAutomaticIndex( | 
| -  Parse *pParse,              /* The parsing context */ | 
| -  WhereClause *pWC,           /* The WHERE clause */ | 
| -  struct SrcList_item *pSrc,  /* The FROM clause term to search */ | 
| -  Bitmask notReady,           /* Mask of cursors that are not available */ | 
| -  WhereCost *pCost            /* Lowest cost query plan */ | 
| -){ | 
| -  double nTableRow;           /* Rows in the input table */ | 
| -  double logN;                /* log(nTableRow) */ | 
| -  double costTempIdx;         /* per-query cost of the transient index */ | 
| -  WhereTerm *pTerm;           /* A single term of the WHERE clause */ | 
| -  WhereTerm *pWCEnd;          /* End of pWC->a[] */ | 
| -  Table *pTable;              /* Table tht might be indexed */ | 
| - | 
| -  if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){ | 
| -    /* Automatic indices are disabled at run-time */ | 
| -    return; | 
| -  } | 
| -  if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){ | 
| -    /* We already have some kind of index in use for this query. */ | 
| -    return; | 
| -  } | 
| -  if( pSrc->notIndexed ){ | 
| -    /* The NOT INDEXED clause appears in the SQL. */ | 
| -    return; | 
| -  } | 
| - | 
| -  assert( pParse->nQueryLoop >= (double)1 ); | 
| -  pTable = pSrc->pTab; | 
| -  nTableRow = pTable->nRowEst; | 
| -  logN = estLog(nTableRow); | 
| -  costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1); | 
| -  if( costTempIdx>=pCost->rCost ){ | 
| -    /* The cost of creating the transient table would be greater than | 
| -    ** doing the full table scan */ | 
| -    return; | 
| -  } | 
| - | 
| -  /* Search for any equality comparison term */ | 
| -  pWCEnd = &pWC->a[pWC->nTerm]; | 
| -  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ | 
| -    if( termCanDriveIndex(pTerm, pSrc, notReady) ){ | 
| -      WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n", | 
| -                    pCost->rCost, costTempIdx)); | 
| -      pCost->rCost = costTempIdx; | 
| -      pCost->plan.nRow = logN + 1; | 
| -      pCost->plan.wsFlags = WHERE_TEMP_INDEX; | 
| -      pCost->used = pTerm->prereqRight; | 
| -      break; | 
| -    } | 
| -  } | 
| -} | 
| -#else | 
| -# define bestAutomaticIndex(A,B,C,D,E)  /* no-op */ | 
| -#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ | 
| - | 
|  | 
| #ifndef SQLITE_OMIT_AUTOMATIC_INDEX | 
| /* | 
| @@ -1802,53 +1573,61 @@ static void constructAutomaticIndex( | 
| Bitmask notReady,           /* Mask of cursors that are not available */ | 
| WhereLevel *pLevel          /* Write new index here */ | 
| ){ | 
| -  int nColumn;                /* Number of columns in the constructed index */ | 
| +  int nKeyCol;                /* Number of columns in the constructed index */ | 
| WhereTerm *pTerm;           /* A single term of the WHERE clause */ | 
| WhereTerm *pWCEnd;          /* End of pWC->a[] */ | 
| -  int nByte;                  /* Byte of memory needed for pIdx */ | 
| Index *pIdx;                /* Object describing the transient index */ | 
| Vdbe *v;                    /* Prepared statement under construction */ | 
| -  int regIsInit;              /* Register set by initialization */ | 
| int addrInit;               /* Address of the initialization bypass jump */ | 
| Table *pTable;              /* The table being indexed */ | 
| -  KeyInfo *pKeyinfo;          /* Key information for the index */ | 
| int addrTop;                /* Top of the index fill loop */ | 
| int regRecord;              /* Register holding an index record */ | 
| int n;                      /* Column counter */ | 
| int i;                      /* Loop counter */ | 
| int mxBitCol;               /* Maximum column in pSrc->colUsed */ | 
| CollSeq *pColl;             /* Collating sequence to on a column */ | 
| +  WhereLoop *pLoop;           /* The Loop object */ | 
| +  char *zNotUsed;             /* Extra space on the end of pIdx */ | 
| Bitmask idxCols;            /* Bitmap of columns used for indexing */ | 
| Bitmask extraCols;          /* Bitmap of additional columns */ | 
| +  u8 sentWarning = 0;         /* True if a warnning has been issued */ | 
|  | 
| /* Generate code to skip over the creation and initialization of the | 
| ** transient index on 2nd and subsequent iterations of the loop. */ | 
| v = pParse->pVdbe; | 
| assert( v!=0 ); | 
| -  regIsInit = ++pParse->nMem; | 
| -  addrInit = sqlite3VdbeAddOp1(v, OP_If, regIsInit); | 
| -  sqlite3VdbeAddOp2(v, OP_Integer, 1, regIsInit); | 
| +  addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); | 
|  | 
| /* Count the number of columns that will be added to the index | 
| ** and used to match WHERE clause constraints */ | 
| -  nColumn = 0; | 
| +  nKeyCol = 0; | 
| pTable = pSrc->pTab; | 
| pWCEnd = &pWC->a[pWC->nTerm]; | 
| +  pLoop = pLevel->pWLoop; | 
| idxCols = 0; | 
| for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ | 
| if( termCanDriveIndex(pTerm, pSrc, notReady) ){ | 
| int iCol = pTerm->u.leftColumn; | 
| -      Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; | 
| +      Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); | 
| testcase( iCol==BMS ); | 
| testcase( iCol==BMS-1 ); | 
| +      if( !sentWarning ){ | 
| +        sqlite3_log(SQLITE_WARNING_AUTOINDEX, | 
| +            "automatic index on %s(%s)", pTable->zName, | 
| +            pTable->aCol[iCol].zName); | 
| +        sentWarning = 1; | 
| +      } | 
| if( (idxCols & cMask)==0 ){ | 
| -        nColumn++; | 
| +        if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ) return; | 
| +        pLoop->aLTerm[nKeyCol++] = pTerm; | 
| idxCols |= cMask; | 
| } | 
| } | 
| } | 
| -  assert( nColumn>0 ); | 
| -  pLevel->plan.nEq = nColumn; | 
| +  assert( nKeyCol>0 ); | 
| +  pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; | 
| +  pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED | 
| +                     | WHERE_AUTO_INDEX; | 
|  | 
| /* Count the number of additional columns needed to create a | 
| ** covering index.  A "covering index" is an index that contains all | 
| @@ -1858,38 +1637,32 @@ static void constructAutomaticIndex( | 
| ** original table changes and the index and table cannot both be used | 
| ** if they go out of sync. | 
| */ | 
| -  extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1))); | 
| +  extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); | 
| mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol; | 
| testcase( pTable->nCol==BMS-1 ); | 
| testcase( pTable->nCol==BMS-2 ); | 
| for(i=0; i<mxBitCol; i++){ | 
| -    if( extraCols & (((Bitmask)1)<<i) ) nColumn++; | 
| +    if( extraCols & MASKBIT(i) ) nKeyCol++; | 
| } | 
| -  if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ | 
| -    nColumn += pTable->nCol - BMS + 1; | 
| +  if( pSrc->colUsed & MASKBIT(BMS-1) ){ | 
| +    nKeyCol += pTable->nCol - BMS + 1; | 
| } | 
| -  pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ; | 
| +  pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY; | 
|  | 
| /* Construct the Index object to describe this index */ | 
| -  nByte = sizeof(Index); | 
| -  nByte += nColumn*sizeof(int);     /* Index.aiColumn */ | 
| -  nByte += nColumn*sizeof(char*);   /* Index.azColl */ | 
| -  nByte += nColumn;                 /* Index.aSortOrder */ | 
| -  pIdx = sqlite3DbMallocZero(pParse->db, nByte); | 
| +  pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); | 
| if( pIdx==0 ) return; | 
| -  pLevel->plan.u.pIdx = pIdx; | 
| -  pIdx->azColl = (char**)&pIdx[1]; | 
| -  pIdx->aiColumn = (int*)&pIdx->azColl[nColumn]; | 
| -  pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn]; | 
| +  pLoop->u.btree.pIndex = pIdx; | 
| pIdx->zName = "auto-index"; | 
| -  pIdx->nColumn = nColumn; | 
| pIdx->pTable = pTable; | 
| n = 0; | 
| idxCols = 0; | 
| for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ | 
| if( termCanDriveIndex(pTerm, pSrc, notReady) ){ | 
| int iCol = pTerm->u.leftColumn; | 
| -      Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; | 
| +      Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); | 
| +      testcase( iCol==BMS-1 ); | 
| +      testcase( iCol==BMS ); | 
| if( (idxCols & cMask)==0 ){ | 
| Expr *pX = pTerm->pExpr; | 
| idxCols |= cMask; | 
| @@ -1900,40 +1673,42 @@ static void constructAutomaticIndex( | 
| } | 
| } | 
| } | 
| -  assert( (u32)n==pLevel->plan.nEq ); | 
| +  assert( (u32)n==pLoop->u.btree.nEq ); | 
|  | 
| /* Add additional columns needed to make the automatic index into | 
| ** a covering index */ | 
| for(i=0; i<mxBitCol; i++){ | 
| -    if( extraCols & (((Bitmask)1)<<i) ){ | 
| +    if( extraCols & MASKBIT(i) ){ | 
| pIdx->aiColumn[n] = i; | 
| pIdx->azColl[n] = "BINARY"; | 
| n++; | 
| } | 
| } | 
| -  if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ | 
| +  if( pSrc->colUsed & MASKBIT(BMS-1) ){ | 
| for(i=BMS-1; i<pTable->nCol; i++){ | 
| pIdx->aiColumn[n] = i; | 
| pIdx->azColl[n] = "BINARY"; | 
| n++; | 
| } | 
| } | 
| -  assert( n==nColumn ); | 
| +  assert( n==nKeyCol ); | 
| +  pIdx->aiColumn[n] = -1; | 
| +  pIdx->azColl[n] = "BINARY"; | 
|  | 
| /* Create the automatic index */ | 
| -  pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx); | 
| assert( pLevel->iIdxCur>=0 ); | 
| -  sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0, | 
| -                    (char*)pKeyinfo, P4_KEYINFO_HANDOFF); | 
| +  pLevel->iIdxCur = pParse->nTab++; | 
| +  sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); | 
| +  sqlite3VdbeSetP4KeyInfo(pParse, pIdx); | 
| VdbeComment((v, "for %s", pTable->zName)); | 
|  | 
| /* Fill the automatic index with content */ | 
| -  addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); | 
| +  addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); | 
| regRecord = sqlite3GetTempReg(pParse); | 
| -  sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1); | 
| +  sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0); | 
| sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); | 
| sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); | 
| -  sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); | 
| +  sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); | 
| sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); | 
| sqlite3VdbeJumpHere(v, addrTop); | 
| sqlite3ReleaseTempReg(pParse, regRecord); | 
| @@ -1950,7 +1725,7 @@ static void constructAutomaticIndex( | 
| ** by passing the pointer returned by this function to sqlite3_free(). | 
| */ | 
| static sqlite3_index_info *allocateIndexInfo( | 
| -  Parse *pParse, | 
| +  Parse *pParse, | 
| WhereClause *pWC, | 
| struct SrcList_item *pSrc, | 
| ExprList *pOrderBy | 
| @@ -1964,16 +1739,16 @@ static sqlite3_index_info *allocateIndexInfo( | 
| int nOrderBy; | 
| sqlite3_index_info *pIdxInfo; | 
|  | 
| -  WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName)); | 
| - | 
| /* Count the number of possible WHERE clause constraints referring | 
| ** to this virtual table */ | 
| for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ | 
| if( pTerm->leftCursor != pSrc->iCursor ) continue; | 
| -    assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); | 
| -    testcase( pTerm->eOperator==WO_IN ); | 
| -    testcase( pTerm->eOperator==WO_ISNULL ); | 
| -    if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; | 
| +    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); | 
| +    testcase( pTerm->eOperator & WO_IN ); | 
| +    testcase( pTerm->eOperator & WO_ISNULL ); | 
| +    testcase( pTerm->eOperator & WO_ALL ); | 
| +    if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; | 
| +    if( pTerm->wtFlags & TERM_VNULL ) continue; | 
| nTerm++; | 
| } | 
|  | 
| @@ -1983,12 +1758,13 @@ static sqlite3_index_info *allocateIndexInfo( | 
| */ | 
| nOrderBy = 0; | 
| if( pOrderBy ){ | 
| -    for(i=0; i<pOrderBy->nExpr; i++){ | 
| +    int n = pOrderBy->nExpr; | 
| +    for(i=0; i<n; i++){ | 
| Expr *pExpr = pOrderBy->a[i].pExpr; | 
| if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; | 
| } | 
| -    if( i==pOrderBy->nExpr ){ | 
| -      nOrderBy = pOrderBy->nExpr; | 
| +    if( i==n){ | 
| +      nOrderBy = n; | 
| } | 
| } | 
|  | 
| @@ -1999,7 +1775,6 @@ static sqlite3_index_info *allocateIndexInfo( | 
| + sizeof(*pIdxOrderBy)*nOrderBy ); | 
| if( pIdxInfo==0 ){ | 
| sqlite3ErrorMsg(pParse, "out of memory"); | 
| -    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ | 
| return 0; | 
| } | 
|  | 
| @@ -2019,14 +1794,19 @@ static sqlite3_index_info *allocateIndexInfo( | 
| pUsage; | 
|  | 
| for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ | 
| +    u8 op; | 
| if( pTerm->leftCursor != pSrc->iCursor ) continue; | 
| -    assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); | 
| -    testcase( pTerm->eOperator==WO_IN ); | 
| -    testcase( pTerm->eOperator==WO_ISNULL ); | 
| -    if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; | 
| +    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); | 
| +    testcase( pTerm->eOperator & WO_IN ); | 
| +    testcase( pTerm->eOperator & WO_ISNULL ); | 
| +    testcase( pTerm->eOperator & WO_ALL ); | 
| +    if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; | 
| +    if( pTerm->wtFlags & TERM_VNULL ) continue; | 
| pIdxCons[j].iColumn = pTerm->u.leftColumn; | 
| pIdxCons[j].iTermOffset = i; | 
| -    pIdxCons[j].op = (u8)pTerm->eOperator; | 
| +    op = (u8)pTerm->eOperator & WO_ALL; | 
| +    if( op==WO_IN ) op = WO_EQ; | 
| +    pIdxCons[j].op = op; | 
| /* The direct assignment in the previous line is possible only because | 
| ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The | 
| ** following asserts verify this fact. */ | 
| @@ -2036,7 +1816,7 @@ static sqlite3_index_info *allocateIndexInfo( | 
| assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); | 
| assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); | 
| assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); | 
| -    assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); | 
| +    assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); | 
| j++; | 
| } | 
| for(i=0; i<nOrderBy; i++){ | 
| @@ -2051,8 +1831,8 @@ static sqlite3_index_info *allocateIndexInfo( | 
| /* | 
| ** The table object reference passed as the second argument to this function | 
| ** must represent a virtual table. This function invokes the xBestIndex() | 
| -** method of the virtual table with the sqlite3_index_info pointer passed | 
| -** as the argument. | 
| +** method of the virtual table with the sqlite3_index_info object that | 
| +** comes in as the 3rd argument to this function. | 
| ** | 
| ** If an error occurs, pParse is populated with an error message and a | 
| ** non-zero value is returned. Otherwise, 0 is returned and the output | 
| @@ -2067,7 +1847,6 @@ static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ | 
| int i; | 
| int rc; | 
|  | 
| -  WHERETRACE(("xBestIndex for %s\n", pTab->zName)); | 
| TRACE_IDX_INPUTS(p); | 
| rc = pVtab->pModule->xBestIndex(pVtab, p); | 
| TRACE_IDX_OUTPUTS(p); | 
| @@ -2093,310 +1872,235 @@ static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ | 
|  | 
| return pParse->nErr; | 
| } | 
| +#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ | 
|  | 
|  | 
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | 
| /* | 
| -** Compute the best index for a virtual table. | 
| -** | 
| -** The best index is computed by the xBestIndex method of the virtual | 
| -** table module.  This routine is really just a wrapper that sets up | 
| -** the sqlite3_index_info structure that is used to communicate with | 
| -** xBestIndex. | 
| -** | 
| -** In a join, this routine might be called multiple times for the | 
| -** same virtual table.  The sqlite3_index_info structure is created | 
| -** and initialized on the first invocation and reused on all subsequent | 
| -** invocations.  The sqlite3_index_info structure is also used when | 
| -** code is generated to access the virtual table.  The whereInfoDelete() | 
| -** routine takes care of freeing the sqlite3_index_info structure after | 
| -** everybody has finished with it. | 
| +** Estimate the location of a particular key among all keys in an | 
| +** index.  Store the results in aStat as follows: | 
| +** | 
| +**    aStat[0]      Est. number of rows less than pVal | 
| +**    aStat[1]      Est. number of rows equal to pVal | 
| +** | 
| +** Return SQLITE_OK on success. | 
| */ | 
| -static void bestVirtualIndex( | 
| -  Parse *pParse,                  /* The parsing context */ | 
| -  WhereClause *pWC,               /* The WHERE clause */ | 
| -  struct SrcList_item *pSrc,      /* The FROM clause term to search */ | 
| -  Bitmask notReady,               /* Mask of cursors not available for index */ | 
| -  Bitmask notValid,               /* Cursors not valid for any purpose */ | 
| -  ExprList *pOrderBy,             /* The order by clause */ | 
| -  WhereCost *pCost,               /* Lowest cost query plan */ | 
| -  sqlite3_index_info **ppIdxInfo  /* Index information passed to xBestIndex */ | 
| +static void whereKeyStats( | 
| +  Parse *pParse,              /* Database connection */ | 
| +  Index *pIdx,                /* Index to consider domain of */ | 
| +  UnpackedRecord *pRec,       /* Vector of values to consider */ | 
| +  int roundUp,                /* Round up if true.  Round down if false */ | 
| +  tRowcnt *aStat              /* OUT: stats written here */ | 
| ){ | 
| -  Table *pTab = pSrc->pTab; | 
| -  sqlite3_index_info *pIdxInfo; | 
| -  struct sqlite3_index_constraint *pIdxCons; | 
| -  struct sqlite3_index_constraint_usage *pUsage; | 
| -  WhereTerm *pTerm; | 
| -  int i, j; | 
| -  int nOrderBy; | 
| -  double rCost; | 
| - | 
| -  /* Make sure wsFlags is initialized to some sane value. Otherwise, if the | 
| -  ** malloc in allocateIndexInfo() fails and this function returns leaving | 
| -  ** wsFlags in an uninitialized state, the caller may behave unpredictably. | 
| -  */ | 
| -  memset(pCost, 0, sizeof(*pCost)); | 
| -  pCost->plan.wsFlags = WHERE_VIRTUALTABLE; | 
| +  IndexSample *aSample = pIdx->aSample; | 
| +  int iCol;                   /* Index of required stats in anEq[] etc. */ | 
| +  int iMin = 0;               /* Smallest sample not yet tested */ | 
| +  int i = pIdx->nSample;      /* Smallest sample larger than or equal to pRec */ | 
| +  int iTest;                  /* Next sample to test */ | 
| +  int res;                    /* Result of comparison operation */ | 
| + | 
| +#ifndef SQLITE_DEBUG | 
| +  UNUSED_PARAMETER( pParse ); | 
| +#endif | 
| +  assert( pRec!=0 ); | 
| +  iCol = pRec->nField - 1; | 
| +  assert( pIdx->nSample>0 ); | 
| +  assert( pRec->nField>0 && iCol<pIdx->nSampleCol ); | 
| +  do{ | 
| +    iTest = (iMin+i)/2; | 
| +    res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec); | 
| +    if( res<0 ){ | 
| +      iMin = iTest+1; | 
| +    }else{ | 
| +      i = iTest; | 
| +    } | 
| +  }while( res && iMin<i ); | 
| + | 
| +#ifdef SQLITE_DEBUG | 
| +  /* The following assert statements check that the binary search code | 
| +  ** above found the right answer. This block serves no purpose other | 
| +  ** than to invoke the asserts.  */ | 
| +  if( res==0 ){ | 
| +    /* If (res==0) is true, then sample $i must be equal to pRec */ | 
| +    assert( i<pIdx->nSample ); | 
| +    assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) | 
| +         || pParse->db->mallocFailed ); | 
| +  }else{ | 
| +    /* Otherwise, pRec must be smaller than sample $i and larger than | 
| +    ** sample ($i-1).  */ | 
| +    assert( i==pIdx->nSample | 
| +         || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 | 
| +         || pParse->db->mallocFailed ); | 
| +    assert( i==0 | 
| +         || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 | 
| +         || pParse->db->mallocFailed ); | 
| +  } | 
| +#endif /* ifdef SQLITE_DEBUG */ | 
|  | 
| -  /* If the sqlite3_index_info structure has not been previously | 
| -  ** allocated and initialized, then allocate and initialize it now. | 
| +  /* At this point, aSample[i] is the first sample that is greater than | 
| +  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less | 
| +  ** than pVal.  If aSample[i]==pVal, then res==0. | 
| */ | 
| -  pIdxInfo = *ppIdxInfo; | 
| -  if( pIdxInfo==0 ){ | 
| -    *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy); | 
| -  } | 
| -  if( pIdxInfo==0 ){ | 
| -    return; | 
| +  if( res==0 ){ | 
| +    aStat[0] = aSample[i].anLt[iCol]; | 
| +    aStat[1] = aSample[i].anEq[iCol]; | 
| +  }else{ | 
| +    tRowcnt iLower, iUpper, iGap; | 
| +    if( i==0 ){ | 
| +      iLower = 0; | 
| +      iUpper = aSample[0].anLt[iCol]; | 
| +    }else{ | 
| +      i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); | 
| +      iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol]; | 
| +      iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol]; | 
| +    } | 
| +    aStat[1] = pIdx->aAvgEq[iCol]; | 
| +    if( iLower>=iUpper ){ | 
| +      iGap = 0; | 
| +    }else{ | 
| +      iGap = iUpper - iLower; | 
| +    } | 
| +    if( roundUp ){ | 
| +      iGap = (iGap*2)/3; | 
| +    }else{ | 
| +      iGap = iGap/3; | 
| +    } | 
| +    aStat[0] = iLower + iGap; | 
| } | 
| +} | 
| +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | 
|  | 
| -  /* At this point, the sqlite3_index_info structure that pIdxInfo points | 
| -  ** to will have been initialized, either during the current invocation or | 
| -  ** during some prior invocation.  Now we just have to customize the | 
| -  ** details of pIdxInfo for the current invocation and pass it to | 
| -  ** xBestIndex. | 
| -  */ | 
| +/* | 
| +** If it is not NULL, pTerm is a term that provides an upper or lower | 
| +** bound on a range scan. Without considering pTerm, it is estimated | 
| +** that the scan will visit nNew rows. This function returns the number | 
| +** estimated to be visited after taking pTerm into account. | 
| +** | 
| +** If the user explicitly specified a likelihood() value for this term, | 
| +** then the return value is the likelihood multiplied by the number of | 
| +** input rows. Otherwise, this function assumes that an "IS NOT NULL" term | 
| +** has a likelihood of 0.50, and any other term a likelihood of 0.25. | 
| +*/ | 
| +static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ | 
| +  LogEst nRet = nNew; | 
| +  if( pTerm ){ | 
| +    if( pTerm->truthProb<=0 ){ | 
| +      nRet += pTerm->truthProb; | 
| +    }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ | 
| +      nRet -= 20;        assert( 20==sqlite3LogEst(4) ); | 
| +    } | 
| +  } | 
| +  return nRet; | 
| +} | 
|  | 
| -  /* The module name must be defined. Also, by this point there must | 
| -  ** be a pointer to an sqlite3_vtab structure. Otherwise | 
| -  ** sqlite3ViewGetColumnNames() would have picked up the error. | 
| -  */ | 
| -  assert( pTab->azModuleArg && pTab->azModuleArg[0] ); | 
| -  assert( sqlite3GetVTable(pParse->db, pTab) ); | 
| - | 
| -  /* Set the aConstraint[].usable fields and initialize all | 
| -  ** output variables to zero. | 
| -  ** | 
| -  ** aConstraint[].usable is true for constraints where the right-hand | 
| -  ** side contains only references to tables to the left of the current | 
| -  ** table.  In other words, if the constraint is of the form: | 
| -  ** | 
| -  **           column = expr | 
| -  ** | 
| -  ** and we are evaluating a join, then the constraint on column is | 
| -  ** only valid if all tables referenced in expr occur to the left | 
| -  ** of the table containing column. | 
| -  ** | 
| -  ** The aConstraints[] array contains entries for all constraints | 
| -  ** on the current table.  That way we only have to compute it once | 
| -  ** even though we might try to pick the best index multiple times. | 
| -  ** For each attempt at picking an index, the order of tables in the | 
| -  ** join might be different so we have to recompute the usable flag | 
| -  ** each time. | 
| -  */ | 
| -  pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; | 
| -  pUsage = pIdxInfo->aConstraintUsage; | 
| -  for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ | 
| -    j = pIdxCons->iTermOffset; | 
| -    pTerm = &pWC->a[j]; | 
| -    pIdxCons->usable = (pTerm->prereqRight¬Ready) ? 0 : 1; | 
| -  } | 
| -  memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); | 
| -  if( pIdxInfo->needToFreeIdxStr ){ | 
| -    sqlite3_free(pIdxInfo->idxStr); | 
| -  } | 
| -  pIdxInfo->idxStr = 0; | 
| -  pIdxInfo->idxNum = 0; | 
| -  pIdxInfo->needToFreeIdxStr = 0; | 
| -  pIdxInfo->orderByConsumed = 0; | 
| -  /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */ | 
| -  pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2); | 
| -  nOrderBy = pIdxInfo->nOrderBy; | 
| -  if( !pOrderBy ){ | 
| -    pIdxInfo->nOrderBy = 0; | 
| -  } | 
| - | 
| -  if( vtabBestIndex(pParse, pTab, pIdxInfo) ){ | 
| -    return; | 
| -  } | 
| - | 
| -  pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; | 
| -  for(i=0; i<pIdxInfo->nConstraint; i++){ | 
| -    if( pUsage[i].argvIndex>0 ){ | 
| -      pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight; | 
| -    } | 
| -  } | 
| - | 
| -  /* If there is an ORDER BY clause, and the selected virtual table index | 
| -  ** does not satisfy it, increase the cost of the scan accordingly. This | 
| -  ** matches the processing for non-virtual tables in bestBtreeIndex(). | 
| -  */ | 
| -  rCost = pIdxInfo->estimatedCost; | 
| -  if( pOrderBy && pIdxInfo->orderByConsumed==0 ){ | 
| -    rCost += estLog(rCost)*rCost; | 
| -  } | 
| - | 
| -  /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the | 
| -  ** inital value of lowestCost in this loop. If it is, then the | 
| -  ** (cost<lowestCost) test below will never be true. | 
| -  ** | 
| -  ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT | 
| -  ** is defined. | 
| -  */ | 
| -  if( (SQLITE_BIG_DBL/((double)2))<rCost ){ | 
| -    pCost->rCost = (SQLITE_BIG_DBL/((double)2)); | 
| -  }else{ | 
| -    pCost->rCost = rCost; | 
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | 
| +/* | 
| +** This function is called to estimate the number of rows visited by a | 
| +** range-scan on a skip-scan index. For example: | 
| +** | 
| +**   CREATE INDEX i1 ON t1(a, b, c); | 
| +**   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; | 
| +** | 
| +** Value pLoop->nOut is currently set to the estimated number of rows | 
| +** visited for scanning (a=? AND b=?). This function reduces that estimate | 
| +** by some factor to account for the (c BETWEEN ? AND ?) expression based | 
| +** on the stat4 data for the index. this scan will be peformed multiple | 
| +** times (once for each (a,b) combination that matches a=?) is dealt with | 
| +** by the caller. | 
| +** | 
| +** It does this by scanning through all stat4 samples, comparing values | 
| +** extracted from pLower and pUpper with the corresponding column in each | 
| +** sample. If L and U are the number of samples found to be less than or | 
| +** equal to the values extracted from pLower and pUpper respectively, and | 
| +** N is the total number of samples, the pLoop->nOut value is adjusted | 
| +** as follows: | 
| +** | 
| +**   nOut = nOut * ( min(U - L, 1) / N ) | 
| +** | 
| +** If pLower is NULL, or a value cannot be extracted from the term, L is | 
| +** set to zero. If pUpper is NULL, or a value cannot be extracted from it, | 
| +** U is set to N. | 
| +** | 
| +** Normally, this function sets *pbDone to 1 before returning. However, | 
| +** if no value can be extracted from either pLower or pUpper (and so the | 
| +** estimate of the number of rows delivered remains unchanged), *pbDone | 
| +** is left as is. | 
| +** | 
| +** If an error occurs, an SQLite error code is returned. Otherwise, | 
| +** SQLITE_OK. | 
| +*/ | 
| +static int whereRangeSkipScanEst( | 
| +  Parse *pParse,       /* Parsing & code generating context */ | 
| +  WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */ | 
| +  WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */ | 
| +  WhereLoop *pLoop,    /* Update the .nOut value of this loop */ | 
| +  int *pbDone          /* Set to true if at least one expr. value extracted */ | 
| +){ | 
| +  Index *p = pLoop->u.btree.pIndex; | 
| +  int nEq = pLoop->u.btree.nEq; | 
| +  sqlite3 *db = pParse->db; | 
| +  int nLower = -1; | 
| +  int nUpper = p->nSample+1; | 
| +  int rc = SQLITE_OK; | 
| +  int iCol = p->aiColumn[nEq]; | 
| +  u8 aff = iCol>=0 ? p->pTable->aCol[iCol].affinity : SQLITE_AFF_INTEGER; | 
| +  CollSeq *pColl; | 
| + | 
| +  sqlite3_value *p1 = 0;          /* Value extracted from pLower */ | 
| +  sqlite3_value *p2 = 0;          /* Value extracted from pUpper */ | 
| +  sqlite3_value *pVal = 0;        /* Value extracted from record */ | 
| + | 
| +  pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); | 
| +  if( pLower ){ | 
| +    rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); | 
| +    nLower = 0; | 
| } | 
| -  pCost->plan.u.pVtabIdx = pIdxInfo; | 
| -  if( pIdxInfo->orderByConsumed ){ | 
| -    pCost->plan.wsFlags |= WHERE_ORDERBY; | 
| +  if( pUpper && rc==SQLITE_OK ){ | 
| +    rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); | 
| +    nUpper = p2 ? 0 : p->nSample; | 
| } | 
| -  pCost->plan.nEq = 0; | 
| -  pIdxInfo->nOrderBy = nOrderBy; | 
| - | 
| -  /* Try to find a more efficient access pattern by using multiple indexes | 
| -  ** to optimize an OR expression within the WHERE clause. | 
| -  */ | 
| -  bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); | 
| -} | 
| -#endif /* SQLITE_OMIT_VIRTUALTABLE */ | 
|  | 
| -/* | 
| -** Argument pIdx is a pointer to an index structure that has an array of | 
| -** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column | 
| -** stored in Index.aSample. These samples divide the domain of values stored | 
| -** the index into (SQLITE_INDEX_SAMPLES+1) regions. | 
| -** Region 0 contains all values less than the first sample value. Region | 
| -** 1 contains values between the first and second samples.  Region 2 contains | 
| -** values between samples 2 and 3.  And so on.  Region SQLITE_INDEX_SAMPLES | 
| -** contains values larger than the last sample. | 
| -** | 
| -** If the index contains many duplicates of a single value, then it is | 
| -** possible that two or more adjacent samples can hold the same value. | 
| -** When that is the case, the smallest possible region code is returned | 
| -** when roundUp is false and the largest possible region code is returned | 
| -** when roundUp is true. | 
| -** | 
| -** If successful, this function determines which of the regions value | 
| -** pVal lies in, sets *piRegion to the region index (a value between 0 | 
| -** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK. | 
| -** Or, if an OOM occurs while converting text values between encodings, | 
| -** SQLITE_NOMEM is returned and *piRegion is undefined. | 
| -*/ | 
| -#ifdef SQLITE_ENABLE_STAT2 | 
| -static int whereRangeRegion( | 
| -  Parse *pParse,              /* Database connection */ | 
| -  Index *pIdx,                /* Index to consider domain of */ | 
| -  sqlite3_value *pVal,        /* Value to consider */ | 
| -  int roundUp,                /* Return largest valid region if true */ | 
| -  int *piRegion               /* OUT: Region of domain in which value lies */ | 
| -){ | 
| -  assert( roundUp==0 || roundUp==1 ); | 
| -  if( ALWAYS(pVal) ){ | 
| -    IndexSample *aSample = pIdx->aSample; | 
| -    int i = 0; | 
| -    int eType = sqlite3_value_type(pVal); | 
| - | 
| -    if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ | 
| -      double r = sqlite3_value_double(pVal); | 
| -      for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ | 
| -        if( aSample[i].eType==SQLITE_NULL ) continue; | 
| -        if( aSample[i].eType>=SQLITE_TEXT ) break; | 
| -        if( roundUp ){ | 
| -          if( aSample[i].u.r>r ) break; | 
| -        }else{ | 
| -          if( aSample[i].u.r>=r ) break; | 
| -        } | 
| -      } | 
| -    }else if( eType==SQLITE_NULL ){ | 
| -      i = 0; | 
| -      if( roundUp ){ | 
| -        while( i<SQLITE_INDEX_SAMPLES && aSample[i].eType==SQLITE_NULL ) i++; | 
| -      } | 
| -    }else{ | 
| -      sqlite3 *db = pParse->db; | 
| -      CollSeq *pColl; | 
| -      const u8 *z; | 
| -      int n; | 
| - | 
| -      /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */ | 
| -      assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); | 
| - | 
| -      if( eType==SQLITE_BLOB ){ | 
| -        z = (const u8 *)sqlite3_value_blob(pVal); | 
| -        pColl = db->pDfltColl; | 
| -        assert( pColl->enc==SQLITE_UTF8 ); | 
| -      }else{ | 
| -        pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl); | 
| -        if( pColl==0 ){ | 
| -          sqlite3ErrorMsg(pParse, "no such collation sequence: %s", | 
| -                          *pIdx->azColl); | 
| -          return SQLITE_ERROR; | 
| -        } | 
| -        z = (const u8 *)sqlite3ValueText(pVal, pColl->enc); | 
| -        if( !z ){ | 
| -          return SQLITE_NOMEM; | 
| -        } | 
| -        assert( z && pColl && pColl->xCmp ); | 
| +  if( p1 || p2 ){ | 
| +    int i; | 
| +    int nDiff; | 
| +    for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ | 
| +      rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); | 
| +      if( rc==SQLITE_OK && p1 ){ | 
| +        int res = sqlite3MemCompare(p1, pVal, pColl); | 
| +        if( res>=0 ) nLower++; | 
| } | 
| -      n = sqlite3ValueBytes(pVal, pColl->enc); | 
| - | 
| -      for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ | 
| -        int c; | 
| -        int eSampletype = aSample[i].eType; | 
| -        if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue; | 
| -        if( (eSampletype!=eType) ) break; | 
| -#ifndef SQLITE_OMIT_UTF16 | 
| -        if( pColl->enc!=SQLITE_UTF8 ){ | 
| -          int nSample; | 
| -          char *zSample = sqlite3Utf8to16( | 
| -              db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample | 
| -          ); | 
| -          if( !zSample ){ | 
| -            assert( db->mallocFailed ); | 
| -            return SQLITE_NOMEM; | 
| -          } | 
| -          c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z); | 
| -          sqlite3DbFree(db, zSample); | 
| -        }else | 
| -#endif | 
| -        { | 
| -          c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z); | 
| -        } | 
| -        if( c-roundUp>=0 ) break; | 
| +      if( rc==SQLITE_OK && p2 ){ | 
| +        int res = sqlite3MemCompare(p2, pVal, pColl); | 
| +        if( res>=0 ) nUpper++; | 
| } | 
| } | 
| +    nDiff = (nUpper - nLower); | 
| +    if( nDiff<=0 ) nDiff = 1; | 
| + | 
| +    /* If there is both an upper and lower bound specified, and the | 
| +    ** comparisons indicate that they are close together, use the fallback | 
| +    ** method (assume that the scan visits 1/64 of the rows) for estimating | 
| +    ** the number of rows visited. Otherwise, estimate the number of rows | 
| +    ** using the method described in the header comment for this function. */ | 
| +    if( nDiff!=1 || pUpper==0 || pLower==0 ){ | 
| +      int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); | 
| +      pLoop->nOut -= nAdjust; | 
| +      *pbDone = 1; | 
| +      WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n", | 
| +                           nLower, nUpper, nAdjust*-1, pLoop->nOut)); | 
| +    } | 
|  | 
| -    assert( i>=0 && i<=SQLITE_INDEX_SAMPLES ); | 
| -    *piRegion = i; | 
| +  }else{ | 
| +    assert( *pbDone==0 ); | 
| } | 
| -  return SQLITE_OK; | 
| -} | 
| -#endif   /* #ifdef SQLITE_ENABLE_STAT2 */ | 
|  | 
| -/* | 
| -** If expression pExpr represents a literal value, set *pp to point to | 
| -** an sqlite3_value structure containing the same value, with affinity | 
| -** aff applied to it, before returning. It is the responsibility of the | 
| -** caller to eventually release this structure by passing it to | 
| -** sqlite3ValueFree(). | 
| -** | 
| -** If the current parse is a recompile (sqlite3Reprepare()) and pExpr | 
| -** is an SQL variable that currently has a non-NULL value bound to it, | 
| -** create an sqlite3_value structure containing this value, again with | 
| -** affinity aff applied to it, instead. | 
| -** | 
| -** If neither of the above apply, set *pp to NULL. | 
| -** | 
| -** If an error occurs, return an error code. Otherwise, SQLITE_OK. | 
| -*/ | 
| -#ifdef SQLITE_ENABLE_STAT2 | 
| -static int valueFromExpr( | 
| -  Parse *pParse, | 
| -  Expr *pExpr, | 
| -  u8 aff, | 
| -  sqlite3_value **pp | 
| -){ | 
| -  if( pExpr->op==TK_VARIABLE | 
| -   || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) | 
| -  ){ | 
| -    int iVar = pExpr->iColumn; | 
| -    sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); /* IMP: R-23257-02778 */ | 
| -    *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff); | 
| -    return SQLITE_OK; | 
| -  } | 
| -  return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp); | 
| +  sqlite3ValueFree(p1); | 
| +  sqlite3ValueFree(p2); | 
| +  sqlite3ValueFree(pVal); | 
| + | 
| +  return rc; | 
| } | 
| -#endif | 
| +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | 
|  | 
| /* | 
| ** This function is used to estimate the number of rows that will be visited | 
| @@ -2413,116 +2117,188 @@ static int valueFromExpr( | 
| ** If either of the upper or lower bound is not present, then NULL is passed in | 
| ** place of the corresponding WhereTerm. | 
| ** | 
| -** The nEq parameter is passed the index of the index column subject to the | 
| -** range constraint. Or, equivalently, the number of equality constraints | 
| -** optimized by the proposed index scan. For example, assuming index p is | 
| -** on t1(a, b), and the SQL query is: | 
| +** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index | 
| +** column subject to the range constraint. Or, equivalently, the number of | 
| +** equality constraints optimized by the proposed index scan. For example, | 
| +** assuming index p is on t1(a, b), and the SQL query is: | 
| ** | 
| **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... | 
| ** | 
| -** then nEq should be passed the value 1 (as the range restricted column, | 
| -** b, is the second left-most column of the index). Or, if the query is: | 
| +** then nEq is set to 1 (as the range restricted column, b, is the second | 
| +** left-most column of the index). Or, if the query is: | 
| ** | 
| **   ... FROM t1 WHERE a > ? AND a < ? ... | 
| ** | 
| -** then nEq should be passed 0. | 
| +** then nEq is set to 0. | 
| ** | 
| -** The returned value is an integer between 1 and 100, inclusive. A return | 
| -** value of 1 indicates that the proposed range scan is expected to visit | 
| -** approximately 1/100th (1%) of the rows selected by the nEq equality | 
| -** constraints (if any). A return value of 100 indicates that it is expected | 
| -** that the range scan will visit every row (100%) selected by the equality | 
| -** constraints. | 
| -** | 
| -** In the absence of sqlite_stat2 ANALYZE data, each range inequality | 
| -** reduces the search space by 3/4ths.  Hence a single constraint (x>?) | 
| -** results in a return of 25 and a range constraint (x>? AND x<?) results | 
| -** in a return of 6. | 
| +** When this function is called, *pnOut is set to the sqlite3LogEst() of the | 
| +** number of rows that the index scan is expected to visit without | 
| +** considering the range constraints. If nEq is 0, this is the number of | 
| +** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) | 
| +** to account for the range constraints pLower and pUpper. | 
| +** | 
| +** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be | 
| +** used, a single range inequality reduces the search space by a factor of 4. | 
| +** and a pair of constraints (x>? AND x<?) reduces the expected number of | 
| +** rows visited by a factor of 64. | 
| */ | 
| static int whereRangeScanEst( | 
| Parse *pParse,       /* Parsing & code generating context */ | 
| -  Index *p,            /* The index containing the range-compared column; "x" */ | 
| -  int nEq,             /* index into p->aCol[] of the range-compared column */ | 
| +  WhereLoopBuilder *pBuilder, | 
| WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */ | 
| WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */ | 
| -  int *piEst           /* OUT: Return value */ | 
| +  WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */ | 
| ){ | 
| int rc = SQLITE_OK; | 
| +  int nOut = pLoop->nOut; | 
| +  LogEst nNew; | 
|  | 
| -#ifdef SQLITE_ENABLE_STAT2 | 
| - | 
| -  if( nEq==0 && p->aSample ){ | 
| -    sqlite3_value *pLowerVal = 0; | 
| -    sqlite3_value *pUpperVal = 0; | 
| -    int iEst; | 
| -    int iLower = 0; | 
| -    int iUpper = SQLITE_INDEX_SAMPLES; | 
| -    int roundUpUpper = 0; | 
| -    int roundUpLower = 0; | 
| -    u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity; | 
| - | 
| -    if( pLower ){ | 
| -      Expr *pExpr = pLower->pExpr->pRight; | 
| -      rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal); | 
| -      assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE ); | 
| -      roundUpLower = (pLower->eOperator==WO_GT) ?1:0; | 
| -    } | 
| -    if( rc==SQLITE_OK && pUpper ){ | 
| -      Expr *pExpr = pUpper->pExpr->pRight; | 
| -      rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal); | 
| -      assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE ); | 
| -      roundUpUpper = (pUpper->eOperator==WO_LE) ?1:0; | 
| -    } | 
| - | 
| -    if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){ | 
| -      sqlite3ValueFree(pLowerVal); | 
| -      sqlite3ValueFree(pUpperVal); | 
| -      goto range_est_fallback; | 
| -    }else if( pLowerVal==0 ){ | 
| -      rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper); | 
| -      if( pLower ) iLower = iUpper/2; | 
| -    }else if( pUpperVal==0 ){ | 
| -      rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower); | 
| -      if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2; | 
| -    }else{ | 
| -      rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper); | 
| -      if( rc==SQLITE_OK ){ | 
| -        rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower); | 
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | 
| +  Index *p = pLoop->u.btree.pIndex; | 
| +  int nEq = pLoop->u.btree.nEq; | 
| + | 
| +  if( p->nSample>0 | 
| +   && nEq<p->nSampleCol | 
| +   && OptimizationEnabled(pParse->db, SQLITE_Stat3) | 
| +  ){ | 
| +    if( nEq==pBuilder->nRecValid ){ | 
| +      UnpackedRecord *pRec = pBuilder->pRec; | 
| +      tRowcnt a[2]; | 
| +      u8 aff; | 
| + | 
| +      /* Variable iLower will be set to the estimate of the number of rows in | 
| +      ** the index that are less than the lower bound of the range query. The | 
| +      ** lower bound being the concatenation of $P and $L, where $P is the | 
| +      ** key-prefix formed by the nEq values matched against the nEq left-most | 
| +      ** columns of the index, and $L is the value in pLower. | 
| +      ** | 
| +      ** Or, if pLower is NULL or $L cannot be extracted from it (because it | 
| +      ** is not a simple variable or literal value), the lower bound of the | 
| +      ** range is $P. Due to a quirk in the way whereKeyStats() works, even | 
| +      ** if $L is available, whereKeyStats() is called for both ($P) and | 
| +      ** ($P:$L) and the larger of the two returned values used. | 
| +      ** | 
| +      ** Similarly, iUpper is to be set to the estimate of the number of rows | 
| +      ** less than the upper bound of the range query. Where the upper bound | 
| +      ** is either ($P) or ($P:$U). Again, even if $U is available, both values | 
| +      ** of iUpper are requested of whereKeyStats() and the smaller used. | 
| +      */ | 
| +      tRowcnt iLower; | 
| +      tRowcnt iUpper; | 
| + | 
| +      if( pRec ){ | 
| +        testcase( pRec->nField!=pBuilder->nRecValid ); | 
| +        pRec->nField = pBuilder->nRecValid; | 
| +      } | 
| +      if( nEq==p->nKeyCol ){ | 
| +        aff = SQLITE_AFF_INTEGER; | 
| +      }else{ | 
| +        aff = p->pTable->aCol[p->aiColumn[nEq]].affinity; | 
| +      } | 
| +      /* Determine iLower and iUpper using ($P) only. */ | 
| +      if( nEq==0 ){ | 
| +        iLower = 0; | 
| +        iUpper = sqlite3LogEstToInt(p->aiRowLogEst[0]); | 
| +      }else{ | 
| +        /* Note: this call could be optimized away - since the same values must | 
| +        ** have been requested when testing key $P in whereEqualScanEst().  */ | 
| +        whereKeyStats(pParse, p, pRec, 0, a); | 
| +        iLower = a[0]; | 
| +        iUpper = a[0] + a[1]; | 
| +      } | 
| + | 
| +      assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); | 
| +      assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); | 
| +      assert( p->aSortOrder!=0 ); | 
| +      if( p->aSortOrder[nEq] ){ | 
| +        /* The roles of pLower and pUpper are swapped for a DESC index */ | 
| +        SWAP(WhereTerm*, pLower, pUpper); | 
| +      } | 
| + | 
| +      /* If possible, improve on the iLower estimate using ($P:$L). */ | 
| +      if( pLower ){ | 
| +        int bOk;                    /* True if value is extracted from pExpr */ | 
| +        Expr *pExpr = pLower->pExpr->pRight; | 
| +        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); | 
| +        if( rc==SQLITE_OK && bOk ){ | 
| +          tRowcnt iNew; | 
| +          whereKeyStats(pParse, p, pRec, 0, a); | 
| +          iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); | 
| +          if( iNew>iLower ) iLower = iNew; | 
| +          nOut--; | 
| +          pLower = 0; | 
| +        } | 
| +      } | 
| + | 
| +      /* If possible, improve on the iUpper estimate using ($P:$U). */ | 
| +      if( pUpper ){ | 
| +        int bOk;                    /* True if value is extracted from pExpr */ | 
| +        Expr *pExpr = pUpper->pExpr->pRight; | 
| +        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); | 
| +        if( rc==SQLITE_OK && bOk ){ | 
| +          tRowcnt iNew; | 
| +          whereKeyStats(pParse, p, pRec, 1, a); | 
| +          iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); | 
| +          if( iNew<iUpper ) iUpper = iNew; | 
| +          nOut--; | 
| +          pUpper = 0; | 
| +        } | 
| } | 
| -    } | 
| -    WHERETRACE(("range scan regions: %d..%d\n", iLower, iUpper)); | 
|  | 
| -    iEst = iUpper - iLower; | 
| -    testcase( iEst==SQLITE_INDEX_SAMPLES ); | 
| -    assert( iEst<=SQLITE_INDEX_SAMPLES ); | 
| -    if( iEst<1 ){ | 
| -      *piEst = 50/SQLITE_INDEX_SAMPLES; | 
| +      pBuilder->pRec = pRec; | 
| +      if( rc==SQLITE_OK ){ | 
| +        if( iUpper>iLower ){ | 
| +          nNew = sqlite3LogEst(iUpper - iLower); | 
| +        }else{ | 
| +          nNew = 10;        assert( 10==sqlite3LogEst(2) ); | 
| +        } | 
| +        if( nNew<nOut ){ | 
| +          nOut = nNew; | 
| +        } | 
| +        WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n", | 
| +                           (u32)iLower, (u32)iUpper, nOut)); | 
| +      } | 
| }else{ | 
| -      *piEst = (iEst*100)/SQLITE_INDEX_SAMPLES; | 
| +      int bDone = 0; | 
| +      rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); | 
| +      if( bDone ) return rc; | 
| } | 
| -    sqlite3ValueFree(pLowerVal); | 
| -    sqlite3ValueFree(pUpperVal); | 
| -    return rc; | 
| } | 
| -range_est_fallback: | 
| #else | 
| UNUSED_PARAMETER(pParse); | 
| -  UNUSED_PARAMETER(p); | 
| -  UNUSED_PARAMETER(nEq); | 
| -#endif | 
| +  UNUSED_PARAMETER(pBuilder); | 
| assert( pLower || pUpper ); | 
| -  *piEst = 100; | 
| -  if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *piEst /= 4; | 
| -  if( pUpper ) *piEst /= 4; | 
| +#endif | 
| +  assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); | 
| +  nNew = whereRangeAdjust(pLower, nOut); | 
| +  nNew = whereRangeAdjust(pUpper, nNew); | 
| + | 
| +  /* TUNING: If there is both an upper and lower limit, assume the range is | 
| +  ** reduced by an additional 75%. This means that, by default, an open-ended | 
| +  ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the | 
| +  ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to | 
| +  ** match 1/64 of the index. */ | 
| +  if( pLower && pUpper ) nNew -= 20; | 
| + | 
| +  nOut -= (pLower!=0) + (pUpper!=0); | 
| +  if( nNew<10 ) nNew = 10; | 
| +  if( nNew<nOut ) nOut = nNew; | 
| +#if defined(WHERETRACE_ENABLED) | 
| +  if( pLoop->nOut>nOut ){ | 
| +    WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", | 
| +                    pLoop->nOut, nOut)); | 
| +  } | 
| +#endif | 
| +  pLoop->nOut = (LogEst)nOut; | 
| return rc; | 
| } | 
|  | 
| -#ifdef SQLITE_ENABLE_STAT2 | 
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | 
| /* | 
| ** Estimate the number of rows that will be returned based on | 
| ** an equality constraint x=VALUE and where that VALUE occurs in | 
| ** the histogram data.  This only works when x is the left-most | 
| -** column of an index and sqlite_stat2 histogram data is available | 
| +** column of an index and sqlite_stat3 histogram data is available | 
| ** for that index.  When pExpr==NULL that means the constraint is | 
| ** "x IS NULL" instead of "x=VALUE". | 
| ** | 
| @@ -2537,45 +2313,53 @@ range_est_fallback: | 
| */ | 
| static int whereEqualScanEst( | 
| Parse *pParse,       /* Parsing & code generating context */ | 
| -  Index *p,            /* The index whose left-most column is pTerm */ | 
| +  WhereLoopBuilder *pBuilder, | 
| Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */ | 
| -  double *pnRow        /* Write the revised row estimate here */ | 
| +  tRowcnt *pnRow       /* Write the revised row estimate here */ | 
| ){ | 
| -  sqlite3_value *pRhs = 0;  /* VALUE on right-hand side of pTerm */ | 
| -  int iLower, iUpper;       /* Range of histogram regions containing pRhs */ | 
| +  Index *p = pBuilder->pNew->u.btree.pIndex; | 
| +  int nEq = pBuilder->pNew->u.btree.nEq; | 
| +  UnpackedRecord *pRec = pBuilder->pRec; | 
| u8 aff;                   /* Column affinity */ | 
| int rc;                   /* Subfunction return code */ | 
| -  double nRowEst;           /* New estimate of the number of rows */ | 
| +  tRowcnt a[2];             /* Statistics */ | 
| +  int bOk; | 
|  | 
| +  assert( nEq>=1 ); | 
| +  assert( nEq<=p->nColumn ); | 
| assert( p->aSample!=0 ); | 
| -  aff = p->pTable->aCol[p->aiColumn[0]].affinity; | 
| -  if( pExpr ){ | 
| -    rc = valueFromExpr(pParse, pExpr, aff, &pRhs); | 
| -    if( rc ) goto whereEqualScanEst_cancel; | 
| -  }else{ | 
| -    pRhs = sqlite3ValueNew(pParse->db); | 
| -  } | 
| -  if( pRhs==0 ) return SQLITE_NOTFOUND; | 
| -  rc = whereRangeRegion(pParse, p, pRhs, 0, &iLower); | 
| -  if( rc ) goto whereEqualScanEst_cancel; | 
| -  rc = whereRangeRegion(pParse, p, pRhs, 1, &iUpper); | 
| -  if( rc ) goto whereEqualScanEst_cancel; | 
| -  WHERETRACE(("equality scan regions: %d..%d\n", iLower, iUpper)); | 
| -  if( iLower>=iUpper ){ | 
| -    nRowEst = p->aiRowEst[0]/(SQLITE_INDEX_SAMPLES*2); | 
| -    if( nRowEst<*pnRow ) *pnRow = nRowEst; | 
| -  }else{ | 
| -    nRowEst = (iUpper-iLower)*p->aiRowEst[0]/SQLITE_INDEX_SAMPLES; | 
| -    *pnRow = nRowEst; | 
| +  assert( p->nSample>0 ); | 
| +  assert( pBuilder->nRecValid<nEq ); | 
| + | 
| +  /* If values are not available for all fields of the index to the left | 
| +  ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ | 
| +  if( pBuilder->nRecValid<(nEq-1) ){ | 
| +    return SQLITE_NOTFOUND; | 
| +  } | 
| + | 
| +  /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() | 
| +  ** below would return the same value.  */ | 
| +  if( nEq>=p->nColumn ){ | 
| +    *pnRow = 1; | 
| +    return SQLITE_OK; | 
| } | 
|  | 
| -whereEqualScanEst_cancel: | 
| -  sqlite3ValueFree(pRhs); | 
| +  aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity; | 
| +  rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk); | 
| +  pBuilder->pRec = pRec; | 
| +  if( rc!=SQLITE_OK ) return rc; | 
| +  if( bOk==0 ) return SQLITE_NOTFOUND; | 
| +  pBuilder->nRecValid = nEq; | 
| + | 
| +  whereKeyStats(pParse, p, pRec, 0, a); | 
| +  WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1])); | 
| +  *pnRow = a[1]; | 
| + | 
| return rc; | 
| } | 
| -#endif /* defined(SQLITE_ENABLE_STAT2) */ | 
| +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | 
|  | 
| -#ifdef SQLITE_ENABLE_STAT2 | 
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | 
| /* | 
| ** Estimate the number of rows that will be returned based on | 
| ** an IN constraint where the right-hand side of the IN operator | 
| @@ -2594,660 +2378,113 @@ whereEqualScanEst_cancel: | 
| */ | 
| static int whereInScanEst( | 
| Parse *pParse,       /* Parsing & code generating context */ | 
| -  Index *p,            /* The index whose left-most column is pTerm */ | 
| +  WhereLoopBuilder *pBuilder, | 
| ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ | 
| -  double *pnRow        /* Write the revised row estimate here */ | 
| +  tRowcnt *pnRow       /* Write the revised row estimate here */ | 
| ){ | 
| -  sqlite3_value *pVal = 0;  /* One value from list */ | 
| -  int iLower, iUpper;       /* Range of histogram regions containing pRhs */ | 
| -  u8 aff;                   /* Column affinity */ | 
| -  int rc = SQLITE_OK;       /* Subfunction return code */ | 
| -  double nRowEst;           /* New estimate of the number of rows */ | 
| -  int nSpan = 0;            /* Number of histogram regions spanned */ | 
| -  int nSingle = 0;          /* Histogram regions hit by a single value */ | 
| -  int nNotFound = 0;        /* Count of values that are not constants */ | 
| -  int i;                               /* Loop counter */ | 
| -  u8 aSpan[SQLITE_INDEX_SAMPLES+1];    /* Histogram regions that are spanned */ | 
| -  u8 aSingle[SQLITE_INDEX_SAMPLES+1];  /* Histogram regions hit once */ | 
| +  Index *p = pBuilder->pNew->u.btree.pIndex; | 
| +  i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); | 
| +  int nRecValid = pBuilder->nRecValid; | 
| +  int rc = SQLITE_OK;     /* Subfunction return code */ | 
| +  tRowcnt nEst;           /* Number of rows for a single term */ | 
| +  tRowcnt nRowEst = 0;    /* New estimate of the number of rows */ | 
| +  int i;                  /* Loop counter */ | 
|  | 
| assert( p->aSample!=0 ); | 
| -  aff = p->pTable->aCol[p->aiColumn[0]].affinity; | 
| -  memset(aSpan, 0, sizeof(aSpan)); | 
| -  memset(aSingle, 0, sizeof(aSingle)); | 
| -  for(i=0; i<pList->nExpr; i++){ | 
| -    sqlite3ValueFree(pVal); | 
| -    rc = valueFromExpr(pParse, pList->a[i].pExpr, aff, &pVal); | 
| -    if( rc ) break; | 
| -    if( pVal==0 || sqlite3_value_type(pVal)==SQLITE_NULL ){ | 
| -      nNotFound++; | 
| -      continue; | 
| -    } | 
| -    rc = whereRangeRegion(pParse, p, pVal, 0, &iLower); | 
| -    if( rc ) break; | 
| -    rc = whereRangeRegion(pParse, p, pVal, 1, &iUpper); | 
| -    if( rc ) break; | 
| -    if( iLower>=iUpper ){ | 
| -      aSingle[iLower] = 1; | 
| -    }else{ | 
| -      assert( iLower>=0 && iUpper<=SQLITE_INDEX_SAMPLES ); | 
| -      while( iLower<iUpper ) aSpan[iLower++] = 1; | 
| -    } | 
| +  for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ | 
| +    nEst = nRow0; | 
| +    rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); | 
| +    nRowEst += nEst; | 
| +    pBuilder->nRecValid = nRecValid; | 
| } | 
| + | 
| if( rc==SQLITE_OK ){ | 
| -    for(i=nSpan=0; i<=SQLITE_INDEX_SAMPLES; i++){ | 
| -      if( aSpan[i] ){ | 
| -        nSpan++; | 
| -      }else if( aSingle[i] ){ | 
| -        nSingle++; | 
| -      } | 
| -    } | 
| -    nRowEst = (nSpan*2+nSingle)*p->aiRowEst[0]/(2*SQLITE_INDEX_SAMPLES) | 
| -               + nNotFound*p->aiRowEst[1]; | 
| -    if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0]; | 
| +    if( nRowEst > nRow0 ) nRowEst = nRow0; | 
| *pnRow = nRowEst; | 
| -    WHERETRACE(("IN row estimate: nSpan=%d, nSingle=%d, nNotFound=%d, est=%g\n", | 
| -                 nSpan, nSingle, nNotFound, nRowEst)); | 
| +    WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); | 
| } | 
| -  sqlite3ValueFree(pVal); | 
| +  assert( pBuilder->nRecValid==nRecValid ); | 
| return rc; | 
| } | 
| -#endif /* defined(SQLITE_ENABLE_STAT2) */ | 
| - | 
| +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | 
|  | 
| /* | 
| -** Find the best query plan for accessing a particular table.  Write the | 
| -** best query plan and its cost into the WhereCost object supplied as the | 
| -** last parameter. | 
| -** | 
| -** The lowest cost plan wins.  The cost is an estimate of the amount of | 
| -** CPU and disk I/O needed to process the requested result. | 
| -** Factors that influence cost include: | 
| -** | 
| -**    *  The estimated number of rows that will be retrieved.  (The | 
| -**       fewer the better.) | 
| +** Disable a term in the WHERE clause.  Except, do not disable the term | 
| +** if it controls a LEFT OUTER JOIN and it did not originate in the ON | 
| +** or USING clause of that join. | 
| ** | 
| -**    *  Whether or not sorting must occur. | 
| +** Consider the term t2.z='ok' in the following queries: | 
| ** | 
| -**    *  Whether or not there must be separate lookups in the | 
| -**       index and in the main table. | 
| +**   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' | 
| +**   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' | 
| +**   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' | 
| ** | 
| -** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in | 
| -** the SQL statement, then this function only considers plans using the | 
| -** named index. If no such plan is found, then the returned cost is | 
| -** SQLITE_BIG_DBL. If a plan is found that uses the named index, | 
| -** then the cost is calculated in the usual way. | 
| +** The t2.z='ok' is disabled in the in (2) because it originates | 
| +** in the ON clause.  The term is disabled in (3) because it is not part | 
| +** of a LEFT OUTER JOIN.  In (1), the term is not disabled. | 
| ** | 
| -** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table | 
| -** in the SELECT statement, then no indexes are considered. However, the | 
| -** selected plan may still take advantage of the built-in rowid primary key | 
| -** index. | 
| +** Disabling a term causes that term to not be tested in the inner loop | 
| +** of the join.  Disabling is an optimization.  When terms are satisfied | 
| +** by indices, we disable them to prevent redundant tests in the inner | 
| +** loop.  We would get the correct results if nothing were ever disabled, | 
| +** but joins might run a little slower.  The trick is to disable as much | 
| +** as we can without disabling too much.  If we disabled in (1), we'd get | 
| +** the wrong answer.  See ticket #813. | 
| */ | 
| -static void bestBtreeIndex( | 
| -  Parse *pParse,              /* The parsing context */ | 
| -  WhereClause *pWC,           /* The WHERE clause */ | 
| -  struct SrcList_item *pSrc,  /* The FROM clause term to search */ | 
| -  Bitmask notReady,           /* Mask of cursors not available for indexing */ | 
| -  Bitmask notValid,           /* Cursors not available for any purpose */ | 
| -  ExprList *pOrderBy,         /* The ORDER BY clause */ | 
| -  WhereCost *pCost            /* Lowest cost query plan */ | 
| -){ | 
| -  int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */ | 
| -  Index *pProbe;              /* An index we are evaluating */ | 
| -  Index *pIdx;                /* Copy of pProbe, or zero for IPK index */ | 
| -  int eqTermMask;             /* Current mask of valid equality operators */ | 
| -  int idxEqTermMask;          /* Index mask of valid equality operators */ | 
| -  Index sPk;                  /* A fake index object for the primary key */ | 
| -  unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */ | 
| -  int aiColumnPk = -1;        /* The aColumn[] value for the sPk index */ | 
| -  int wsFlagMask;             /* Allowed flags in pCost->plan.wsFlag */ | 
| - | 
| -  /* Initialize the cost to a worst-case value */ | 
| -  memset(pCost, 0, sizeof(*pCost)); | 
| -  pCost->rCost = SQLITE_BIG_DBL; | 
| - | 
| -  /* If the pSrc table is the right table of a LEFT JOIN then we may not | 
| -  ** use an index to satisfy IS NULL constraints on that table.  This is | 
| -  ** because columns might end up being NULL if the table does not match - | 
| -  ** a circumstance which the index cannot help us discover.  Ticket #2177. | 
| -  */ | 
| -  if( pSrc->jointype & JT_LEFT ){ | 
| -    idxEqTermMask = WO_EQ|WO_IN; | 
| -  }else{ | 
| -    idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL; | 
| +static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ | 
| +  if( pTerm | 
| +      && (pTerm->wtFlags & TERM_CODED)==0 | 
| +      && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) | 
| +      && (pLevel->notReady & pTerm->prereqAll)==0 | 
| +  ){ | 
| +    pTerm->wtFlags |= TERM_CODED; | 
| +    if( pTerm->iParent>=0 ){ | 
| +      WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; | 
| +      if( (--pOther->nChild)==0 ){ | 
| +        disableTerm(pLevel, pOther); | 
| +      } | 
| +    } | 
| } | 
| +} | 
|  | 
| -  if( pSrc->pIndex ){ | 
| -    /* An INDEXED BY clause specifies a particular index to use */ | 
| -    pIdx = pProbe = pSrc->pIndex; | 
| -    wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); | 
| -    eqTermMask = idxEqTermMask; | 
| -  }else{ | 
| -    /* There is no INDEXED BY clause.  Create a fake Index object in local | 
| -    ** variable sPk to represent the rowid primary key index.  Make this | 
| -    ** fake index the first in a chain of Index objects with all of the real | 
| -    ** indices to follow */ | 
| -    Index *pFirst;                  /* First of real indices on the table */ | 
| -    memset(&sPk, 0, sizeof(Index)); | 
| -    sPk.nColumn = 1; | 
| -    sPk.aiColumn = &aiColumnPk; | 
| -    sPk.aiRowEst = aiRowEstPk; | 
| -    sPk.onError = OE_Replace; | 
| -    sPk.pTable = pSrc->pTab; | 
| -    aiRowEstPk[0] = pSrc->pTab->nRowEst; | 
| -    aiRowEstPk[1] = 1; | 
| -    pFirst = pSrc->pTab->pIndex; | 
| -    if( pSrc->notIndexed==0 ){ | 
| -      /* The real indices of the table are only considered if the | 
| -      ** NOT INDEXED qualifier is omitted from the FROM clause */ | 
| -      sPk.pNext = pFirst; | 
| -    } | 
| -    pProbe = &sPk; | 
| -    wsFlagMask = ~( | 
| -        WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE | 
| -    ); | 
| -    eqTermMask = WO_EQ|WO_IN; | 
| -    pIdx = 0; | 
| +/* | 
| +** Code an OP_Affinity opcode to apply the column affinity string zAff | 
| +** to the n registers starting at base. | 
| +** | 
| +** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the | 
| +** beginning and end of zAff are ignored.  If all entries in zAff are | 
| +** SQLITE_AFF_NONE, then no code gets generated. | 
| +** | 
| +** This routine makes its own copy of zAff so that the caller is free | 
| +** to modify zAff after this routine returns. | 
| +*/ | 
| +static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ | 
| +  Vdbe *v = pParse->pVdbe; | 
| +  if( zAff==0 ){ | 
| +    assert( pParse->db->mallocFailed ); | 
| +    return; | 
| } | 
| +  assert( v!=0 ); | 
|  | 
| -  /* Loop over all indices looking for the best one to use | 
| +  /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning | 
| +  ** and end of the affinity string. | 
| */ | 
| -  for(; pProbe; pIdx=pProbe=pProbe->pNext){ | 
| -    const unsigned int * const aiRowEst = pProbe->aiRowEst; | 
| -    double cost;                /* Cost of using pProbe */ | 
| -    double nRow;                /* Estimated number of rows in result set */ | 
| -    double log10N;              /* base-10 logarithm of nRow (inexact) */ | 
| -    int rev;                    /* True to scan in reverse order */ | 
| -    int wsFlags = 0; | 
| -    Bitmask used = 0; | 
| - | 
| -    /* The following variables are populated based on the properties of | 
| -    ** index being evaluated. They are then used to determine the expected | 
| -    ** cost and number of rows returned. | 
| -    ** | 
| -    **  nEq: | 
| -    **    Number of equality terms that can be implemented using the index. | 
| -    **    In other words, the number of initial fields in the index that | 
| -    **    are used in == or IN or NOT NULL constraints of the WHERE clause. | 
| -    ** | 
| -    **  nInMul: | 
| -    **    The "in-multiplier". This is an estimate of how many seek operations | 
| -    **    SQLite must perform on the index in question. For example, if the | 
| -    **    WHERE clause is: | 
| -    ** | 
| -    **      WHERE a IN (1, 2, 3) AND b IN (4, 5, 6) | 
| -    ** | 
| -    **    SQLite must perform 9 lookups on an index on (a, b), so nInMul is | 
| -    **    set to 9. Given the same schema and either of the following WHERE | 
| -    **    clauses: | 
| -    ** | 
| -    **      WHERE a =  1 | 
| -    **      WHERE a >= 2 | 
| -    ** | 
| -    **    nInMul is set to 1. | 
| -    ** | 
| -    **    If there exists a WHERE term of the form "x IN (SELECT ...)", then | 
| -    **    the sub-select is assumed to return 25 rows for the purposes of | 
| -    **    determining nInMul. | 
| -    ** | 
| -    **  bInEst: | 
| -    **    Set to true if there was at least one "x IN (SELECT ...)" term used | 
| -    **    in determining the value of nInMul.  Note that the RHS of the | 
| -    **    IN operator must be a SELECT, not a value list, for this variable | 
| -    **    to be true. | 
| -    ** | 
| -    **  estBound: | 
| -    **    An estimate on the amount of the table that must be searched.  A | 
| -    **    value of 100 means the entire table is searched.  Range constraints | 
| -    **    might reduce this to a value less than 100 to indicate that only | 
| -    **    a fraction of the table needs searching.  In the absence of | 
| -    **    sqlite_stat2 ANALYZE data, a single inequality reduces the search | 
| -    **    space to 1/4rd its original size.  So an x>? constraint reduces | 
| -    **    estBound to 25.  Two constraints (x>? AND x<?) reduce estBound to 6. | 
| -    ** | 
| -    **  bSort: | 
| -    **    Boolean. True if there is an ORDER BY clause that will require an | 
| -    **    external sort (i.e. scanning the index being evaluated will not | 
| -    **    correctly order records). | 
| -    ** | 
| -    **  bLookup: | 
| -    **    Boolean. True if a table lookup is required for each index entry | 
| -    **    visited.  In other words, true if this is not a covering index. | 
| -    **    This is always false for the rowid primary key index of a table. | 
| -    **    For other indexes, it is true unless all the columns of the table | 
| -    **    used by the SELECT statement are present in the index (such an | 
| -    **    index is sometimes described as a covering index). | 
| -    **    For example, given the index on (a, b), the second of the following | 
| -    **    two queries requires table b-tree lookups in order to find the value | 
| -    **    of column c, but the first does not because columns a and b are | 
| -    **    both available in the index. | 
| -    ** | 
| -    **             SELECT a, b    FROM tbl WHERE a = 1; | 
| -    **             SELECT a, b, c FROM tbl WHERE a = 1; | 
| -    */ | 
| -    int nEq;                      /* Number of == or IN terms matching index */ | 
| -    int bInEst = 0;               /* True if "x IN (SELECT...)" seen */ | 
| -    int nInMul = 1;               /* Number of distinct equalities to lookup */ | 
| -    int estBound = 100;           /* Estimated reduction in search space */ | 
| -    int nBound = 0;               /* Number of range constraints seen */ | 
| -    int bSort = 0;                /* True if external sort required */ | 
| -    int bLookup = 0;              /* True if not a covering index */ | 
| -    WhereTerm *pTerm;             /* A single term of the WHERE clause */ | 
| -#ifdef SQLITE_ENABLE_STAT2 | 
| -    WhereTerm *pFirstTerm = 0;    /* First term matching the index */ | 
| -#endif | 
| - | 
| -    /* Determine the values of nEq and nInMul */ | 
| -    for(nEq=0; nEq<pProbe->nColumn; nEq++){ | 
| -      int j = pProbe->aiColumn[nEq]; | 
| -      pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx); | 
| -      if( pTerm==0 ) break; | 
| -      wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ); | 
| -      if( pTerm->eOperator & WO_IN ){ | 
| -        Expr *pExpr = pTerm->pExpr; | 
| -        wsFlags |= WHERE_COLUMN_IN; | 
| -        if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | 
| -          /* "x IN (SELECT ...)":  Assume the SELECT returns 25 rows */ | 
| -          nInMul *= 25; | 
| -          bInEst = 1; | 
| -        }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ | 
| -          /* "x IN (value, value, ...)" */ | 
| -          nInMul *= pExpr->x.pList->nExpr; | 
| -        } | 
| -      }else if( pTerm->eOperator & WO_ISNULL ){ | 
| -        wsFlags |= WHERE_COLUMN_NULL; | 
| -      } | 
| -#ifdef SQLITE_ENABLE_STAT2 | 
| -      if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm; | 
| -#endif | 
| -      used |= pTerm->prereqRight; | 
| -    } | 
| - | 
| -    /* Determine the value of estBound. */ | 
| -    if( nEq<pProbe->nColumn && pProbe->bUnordered==0 ){ | 
| -      int j = pProbe->aiColumn[nEq]; | 
| -      if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ | 
| -        WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx); | 
| -        WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx); | 
| -        whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &estBound); | 
| -        if( pTop ){ | 
| -          nBound = 1; | 
| -          wsFlags |= WHERE_TOP_LIMIT; | 
| -          used |= pTop->prereqRight; | 
| -        } | 
| -        if( pBtm ){ | 
| -          nBound++; | 
| -          wsFlags |= WHERE_BTM_LIMIT; | 
| -          used |= pBtm->prereqRight; | 
| -        } | 
| -        wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE); | 
| -      } | 
| -    }else if( pProbe->onError!=OE_None ){ | 
| -      testcase( wsFlags & WHERE_COLUMN_IN ); | 
| -      testcase( wsFlags & WHERE_COLUMN_NULL ); | 
| -      if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){ | 
| -        wsFlags |= WHERE_UNIQUE; | 
| -      } | 
| -    } | 
| +  while( n>0 && zAff[0]==SQLITE_AFF_NONE ){ | 
| +    n--; | 
| +    base++; | 
| +    zAff++; | 
| +  } | 
| +  while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){ | 
| +    n--; | 
| +  } | 
|  | 
| -    /* If there is an ORDER BY clause and the index being considered will | 
| -    ** naturally scan rows in the required order, set the appropriate flags | 
| -    ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index | 
| -    ** will scan rows in a different order, set the bSort variable.  */ | 
| -    if( pOrderBy ){ | 
| -      if( (wsFlags & WHERE_COLUMN_IN)==0 | 
| -        && pProbe->bUnordered==0 | 
| -        && isSortingIndex(pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy, | 
| -                          nEq, wsFlags, &rev) | 
| -      ){ | 
| -        wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY; | 
| -        wsFlags |= (rev ? WHERE_REVERSE : 0); | 
| -      }else{ | 
| -        bSort = 1; | 
| -      } | 
| -    } | 
| - | 
| -    /* If currently calculating the cost of using an index (not the IPK | 
| -    ** index), determine if all required column data may be obtained without | 
| -    ** using the main table (i.e. if the index is a covering | 
| -    ** index for this query). If it is, set the WHERE_IDX_ONLY flag in | 
| -    ** wsFlags. Otherwise, set the bLookup variable to true.  */ | 
| -    if( pIdx && wsFlags ){ | 
| -      Bitmask m = pSrc->colUsed; | 
| -      int j; | 
| -      for(j=0; j<pIdx->nColumn; j++){ | 
| -        int x = pIdx->aiColumn[j]; | 
| -        if( x<BMS-1 ){ | 
| -          m &= ~(((Bitmask)1)<<x); | 
| -        } | 
| -      } | 
| -      if( m==0 ){ | 
| -        wsFlags |= WHERE_IDX_ONLY; | 
| -      }else{ | 
| -        bLookup = 1; | 
| -      } | 
| -    } | 
| - | 
| -    /* | 
| -    ** Estimate the number of rows of output.  For an "x IN (SELECT...)" | 
| -    ** constraint, do not let the estimate exceed half the rows in the table. | 
| -    */ | 
| -    nRow = (double)(aiRowEst[nEq] * nInMul); | 
| -    if( bInEst && nRow*2>aiRowEst[0] ){ | 
| -      nRow = aiRowEst[0]/2; | 
| -      nInMul = (int)(nRow / aiRowEst[nEq]); | 
| -    } | 
| - | 
| -#ifdef SQLITE_ENABLE_STAT2 | 
| -    /* If the constraint is of the form x=VALUE and histogram | 
| -    ** data is available for column x, then it might be possible | 
| -    ** to get a better estimate on the number of rows based on | 
| -    ** VALUE and how common that value is according to the histogram. | 
| -    */ | 
| -    if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 ){ | 
| -      if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){ | 
| -        testcase( pFirstTerm->eOperator==WO_EQ ); | 
| -        testcase( pFirstTerm->eOperator==WO_ISNULL ); | 
| -        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow); | 
| -      }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){ | 
| -        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow); | 
| -      } | 
| -    } | 
| -#endif /* SQLITE_ENABLE_STAT2 */ | 
| - | 
| -    /* Adjust the number of output rows and downward to reflect rows | 
| -    ** that are excluded by range constraints. | 
| -    */ | 
| -    nRow = (nRow * (double)estBound) / (double)100; | 
| -    if( nRow<1 ) nRow = 1; | 
| - | 
| -    /* Experiments run on real SQLite databases show that the time needed | 
| -    ** to do a binary search to locate a row in a table or index is roughly | 
| -    ** log10(N) times the time to move from one row to the next row within | 
| -    ** a table or index.  The actual times can vary, with the size of | 
| -    ** records being an important factor.  Both moves and searches are | 
| -    ** slower with larger records, presumably because fewer records fit | 
| -    ** on one page and hence more pages have to be fetched. | 
| -    ** | 
| -    ** The ANALYZE command and the sqlite_stat1 and sqlite_stat2 tables do | 
| -    ** not give us data on the relative sizes of table and index records. | 
| -    ** So this computation assumes table records are about twice as big | 
| -    ** as index records | 
| -    */ | 
| -    if( (wsFlags & WHERE_NOT_FULLSCAN)==0 ){ | 
| -      /* The cost of a full table scan is a number of move operations equal | 
| -      ** to the number of rows in the table. | 
| -      ** | 
| -      ** We add an additional 4x penalty to full table scans.  This causes | 
| -      ** the cost function to err on the side of choosing an index over | 
| -      ** choosing a full scan.  This 4x full-scan penalty is an arguable | 
| -      ** decision and one which we expect to revisit in the future.  But | 
| -      ** it seems to be working well enough at the moment. | 
| -      */ | 
| -      cost = aiRowEst[0]*4; | 
| -    }else{ | 
| -      log10N = estLog(aiRowEst[0]); | 
| -      cost = nRow; | 
| -      if( pIdx ){ | 
| -        if( bLookup ){ | 
| -          /* For an index lookup followed by a table lookup: | 
| -          **    nInMul index searches to find the start of each index range | 
| -          **  + nRow steps through the index | 
| -          **  + nRow table searches to lookup the table entry using the rowid | 
| -          */ | 
| -          cost += (nInMul + nRow)*log10N; | 
| -        }else{ | 
| -          /* For a covering index: | 
| -          **     nInMul index searches to find the initial entry | 
| -          **   + nRow steps through the index | 
| -          */ | 
| -          cost += nInMul*log10N; | 
| -        } | 
| -      }else{ | 
| -        /* For a rowid primary key lookup: | 
| -        **    nInMult table searches to find the initial entry for each range | 
| -        **  + nRow steps through the table | 
| -        */ | 
| -        cost += nInMul*log10N; | 
| -      } | 
| -    } | 
| - | 
| -    /* Add in the estimated cost of sorting the result.  Actual experimental | 
| -    ** measurements of sorting performance in SQLite show that sorting time | 
| -    ** adds C*N*log10(N) to the cost, where N is the number of rows to be | 
| -    ** sorted and C is a factor between 1.95 and 4.3.  We will split the | 
| -    ** difference and select C of 3.0. | 
| -    */ | 
| -    if( bSort ){ | 
| -      cost += nRow*estLog(nRow)*3; | 
| -    } | 
| - | 
| -    /**** Cost of using this index has now been computed ****/ | 
| - | 
| -    /* If there are additional constraints on this table that cannot | 
| -    ** be used with the current index, but which might lower the number | 
| -    ** of output rows, adjust the nRow value accordingly.  This only | 
| -    ** matters if the current index is the least costly, so do not bother | 
| -    ** with this step if we already know this index will not be chosen. | 
| -    ** Also, never reduce the output row count below 2 using this step. | 
| -    ** | 
| -    ** It is critical that the notValid mask be used here instead of | 
| -    ** the notReady mask.  When computing an "optimal" index, the notReady | 
| -    ** mask will only have one bit set - the bit for the current table. | 
| -    ** The notValid mask, on the other hand, always has all bits set for | 
| -    ** tables that are not in outer loops.  If notReady is used here instead | 
| -    ** of notValid, then a optimal index that depends on inner joins loops | 
| -    ** might be selected even when there exists an optimal index that has | 
| -    ** no such dependency. | 
| -    */ | 
| -    if( nRow>2 && cost<=pCost->rCost ){ | 
| -      int k;                       /* Loop counter */ | 
| -      int nSkipEq = nEq;           /* Number of == constraints to skip */ | 
| -      int nSkipRange = nBound;     /* Number of < constraints to skip */ | 
| -      Bitmask thisTab;             /* Bitmap for pSrc */ | 
| - | 
| -      thisTab = getMask(pWC->pMaskSet, iCur); | 
| -      for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){ | 
| -        if( pTerm->wtFlags & TERM_VIRTUAL ) continue; | 
| -        if( (pTerm->prereqAll & notValid)!=thisTab ) continue; | 
| -        if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){ | 
| -          if( nSkipEq ){ | 
| -            /* Ignore the first nEq equality matches since the index | 
| -            ** has already accounted for these */ | 
| -            nSkipEq--; | 
| -          }else{ | 
| -            /* Assume each additional equality match reduces the result | 
| -            ** set size by a factor of 10 */ | 
| -            nRow /= 10; | 
| -          } | 
| -        }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){ | 
| -          if( nSkipRange ){ | 
| -            /* Ignore the first nSkipRange range constraints since the index | 
| -            ** has already accounted for these */ | 
| -            nSkipRange--; | 
| -          }else{ | 
| -            /* Assume each additional range constraint reduces the result | 
| -            ** set size by a factor of 3.  Indexed range constraints reduce | 
| -            ** the search space by a larger factor: 4.  We make indexed range | 
| -            ** more selective intentionally because of the subjective | 
| -            ** observation that indexed range constraints really are more | 
| -            ** selective in practice, on average. */ | 
| -            nRow /= 3; | 
| -          } | 
| -        }else if( pTerm->eOperator!=WO_NOOP ){ | 
| -          /* Any other expression lowers the output row count by half */ | 
| -          nRow /= 2; | 
| -        } | 
| -      } | 
| -      if( nRow<2 ) nRow = 2; | 
| -    } | 
| - | 
| - | 
| -    WHERETRACE(( | 
| -      "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n" | 
| -      "         notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n", | 
| -      pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), | 
| -      nEq, nInMul, estBound, bSort, bLookup, wsFlags, | 
| -      notReady, log10N, nRow, cost, used | 
| -    )); | 
| - | 
| -    /* If this index is the best we have seen so far, then record this | 
| -    ** index and its cost in the pCost structure. | 
| -    */ | 
| -    if( (!pIdx || wsFlags) | 
| -     && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->plan.nRow)) | 
| -    ){ | 
| -      pCost->rCost = cost; | 
| -      pCost->used = used; | 
| -      pCost->plan.nRow = nRow; | 
| -      pCost->plan.wsFlags = (wsFlags&wsFlagMask); | 
| -      pCost->plan.nEq = nEq; | 
| -      pCost->plan.u.pIdx = pIdx; | 
| -    } | 
| - | 
| -    /* If there was an INDEXED BY clause, then only that one index is | 
| -    ** considered. */ | 
| -    if( pSrc->pIndex ) break; | 
| - | 
| -    /* Reset masks for the next index in the loop */ | 
| -    wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); | 
| -    eqTermMask = idxEqTermMask; | 
| -  } | 
| - | 
| -  /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag | 
| -  ** is set, then reverse the order that the index will be scanned | 
| -  ** in. This is used for application testing, to help find cases | 
| -  ** where application behaviour depends on the (undefined) order that | 
| -  ** SQLite outputs rows in in the absence of an ORDER BY clause.  */ | 
| -  if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){ | 
| -    pCost->plan.wsFlags |= WHERE_REVERSE; | 
| -  } | 
| - | 
| -  assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 ); | 
| -  assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 ); | 
| -  assert( pSrc->pIndex==0 | 
| -       || pCost->plan.u.pIdx==0 | 
| -       || pCost->plan.u.pIdx==pSrc->pIndex | 
| -  ); | 
| - | 
| -  WHERETRACE(("best index is: %s\n", | 
| -    ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" : | 
| -         pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk") | 
| -  )); | 
| - | 
| -  bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); | 
| -  bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost); | 
| -  pCost->plan.wsFlags |= eqTermMask; | 
| -} | 
| - | 
| -/* | 
| -** Find the query plan for accessing table pSrc->pTab. Write the | 
| -** best query plan and its cost into the WhereCost object supplied | 
| -** as the last parameter. This function may calculate the cost of | 
| -** both real and virtual table scans. | 
| -*/ | 
| -static void bestIndex( | 
| -  Parse *pParse,              /* The parsing context */ | 
| -  WhereClause *pWC,           /* The WHERE clause */ | 
| -  struct SrcList_item *pSrc,  /* The FROM clause term to search */ | 
| -  Bitmask notReady,           /* Mask of cursors not available for indexing */ | 
| -  Bitmask notValid,           /* Cursors not available for any purpose */ | 
| -  ExprList *pOrderBy,         /* The ORDER BY clause */ | 
| -  WhereCost *pCost            /* Lowest cost query plan */ | 
| -){ | 
| -#ifndef SQLITE_OMIT_VIRTUALTABLE | 
| -  if( IsVirtual(pSrc->pTab) ){ | 
| -    sqlite3_index_info *p = 0; | 
| -    bestVirtualIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost,&p); | 
| -    if( p->needToFreeIdxStr ){ | 
| -      sqlite3_free(p->idxStr); | 
| -    } | 
| -    sqlite3DbFree(pParse->db, p); | 
| -  }else | 
| -#endif | 
| -  { | 
| -    bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); | 
| -  } | 
| -} | 
| - | 
| -/* | 
| -** Disable a term in the WHERE clause.  Except, do not disable the term | 
| -** if it controls a LEFT OUTER JOIN and it did not originate in the ON | 
| -** or USING clause of that join. | 
| -** | 
| -** Consider the term t2.z='ok' in the following queries: | 
| -** | 
| -**   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' | 
| -**   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' | 
| -**   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' | 
| -** | 
| -** The t2.z='ok' is disabled in the in (2) because it originates | 
| -** in the ON clause.  The term is disabled in (3) because it is not part | 
| -** of a LEFT OUTER JOIN.  In (1), the term is not disabled. | 
| -** | 
| -** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are | 
| -** completely satisfied by indices. | 
| -** | 
| -** Disabling a term causes that term to not be tested in the inner loop | 
| -** of the join.  Disabling is an optimization.  When terms are satisfied | 
| -** by indices, we disable them to prevent redundant tests in the inner | 
| -** loop.  We would get the correct results if nothing were ever disabled, | 
| -** but joins might run a little slower.  The trick is to disable as much | 
| -** as we can without disabling too much.  If we disabled in (1), we'd get | 
| -** the wrong answer.  See ticket #813. | 
| -*/ | 
| -static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ | 
| -  if( pTerm | 
| -      && (pTerm->wtFlags & TERM_CODED)==0 | 
| -      && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) | 
| -  ){ | 
| -    pTerm->wtFlags |= TERM_CODED; | 
| -    if( pTerm->iParent>=0 ){ | 
| -      WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; | 
| -      if( (--pOther->nChild)==0 ){ | 
| -        disableTerm(pLevel, pOther); | 
| -      } | 
| -    } | 
| -  } | 
| -} | 
| - | 
| -/* | 
| -** Code an OP_Affinity opcode to apply the column affinity string zAff | 
| -** to the n registers starting at base. | 
| -** | 
| -** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the | 
| -** beginning and end of zAff are ignored.  If all entries in zAff are | 
| -** SQLITE_AFF_NONE, then no code gets generated. | 
| -** | 
| -** This routine makes its own copy of zAff so that the caller is free | 
| -** to modify zAff after this routine returns. | 
| -*/ | 
| -static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ | 
| -  Vdbe *v = pParse->pVdbe; | 
| -  if( zAff==0 ){ | 
| -    assert( pParse->db->mallocFailed ); | 
| -    return; | 
| -  } | 
| -  assert( v!=0 ); | 
| - | 
| -  /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning | 
| -  ** and end of the affinity string. | 
| -  */ | 
| -  while( n>0 && zAff[0]==SQLITE_AFF_NONE ){ | 
| -    n--; | 
| -    base++; | 
| -    zAff++; | 
| -  } | 
| -  while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){ | 
| -    n--; | 
| -  } | 
| - | 
| -  /* Code the OP_Affinity opcode if there is anything left to do. */ | 
| -  if( n>0 ){ | 
| -    sqlite3VdbeAddOp2(v, OP_Affinity, base, n); | 
| -    sqlite3VdbeChangeP4(v, -1, zAff, n); | 
| -    sqlite3ExprCacheAffinityChange(pParse, base, n); | 
| -  } | 
| -} | 
| +  /* Code the OP_Affinity opcode if there is anything left to do. */ | 
| +  if( n>0 ){ | 
| +    sqlite3VdbeAddOp2(v, OP_Affinity, base, n); | 
| +    sqlite3VdbeChangeP4(v, -1, zAff, n); | 
| +    sqlite3ExprCacheAffinityChange(pParse, base, n); | 
| +  } | 
| +} | 
|  | 
|  | 
| /* | 
| @@ -3264,7 +2501,9 @@ static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ | 
| static int codeEqualityTerm( | 
| Parse *pParse,      /* The parsing context */ | 
| WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */ | 
| -  WhereLevel *pLevel, /* When level of the FROM clause we are working on */ | 
| +  WhereLevel *pLevel, /* The level of the FROM clause we are working on */ | 
| +  int iEq,            /* Index of the equality term within this level */ | 
| +  int bRev,           /* True for reverse-order IN operations */ | 
| int iTarget         /* Attempt to leave results in this register */ | 
| ){ | 
| Expr *pX = pTerm->pExpr; | 
| @@ -3282,13 +2521,29 @@ static int codeEqualityTerm( | 
| int eType; | 
| int iTab; | 
| struct InLoop *pIn; | 
| +    WhereLoop *pLoop = pLevel->pWLoop; | 
|  | 
| +    if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 | 
| +      && pLoop->u.btree.pIndex!=0 | 
| +      && pLoop->u.btree.pIndex->aSortOrder[iEq] | 
| +    ){ | 
| +      testcase( iEq==0 ); | 
| +      testcase( bRev ); | 
| +      bRev = !bRev; | 
| +    } | 
| assert( pX->op==TK_IN ); | 
| iReg = iTarget; | 
| -    eType = sqlite3FindInIndex(pParse, pX, 0); | 
| +    eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); | 
| +    if( eType==IN_INDEX_INDEX_DESC ){ | 
| +      testcase( bRev ); | 
| +      bRev = !bRev; | 
| +    } | 
| iTab = pX->iTable; | 
| -    sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); | 
| -    assert( pLevel->plan.wsFlags & WHERE_IN_ABLE ); | 
| +    sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); | 
| +    VdbeCoverageIf(v, bRev); | 
| +    VdbeCoverageIf(v, !bRev); | 
| +    assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); | 
| +    pLoop->wsFlags |= WHERE_IN_ABLE; | 
| if( pLevel->u.in.nIn==0 ){ | 
| pLevel->addrNxt = sqlite3VdbeMakeLabel(v); | 
| } | 
| @@ -3305,7 +2560,8 @@ static int codeEqualityTerm( | 
| }else{ | 
| pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); | 
| } | 
| -      sqlite3VdbeAddOp1(v, OP_IsNull, iReg); | 
| +      pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; | 
| +      sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); | 
| }else{ | 
| pLevel->u.in.nIn = 0; | 
| } | 
| @@ -3317,7 +2573,7 @@ static int codeEqualityTerm( | 
|  | 
| /* | 
| ** Generate code that will evaluate all == and IN constraints for an | 
| -** index. | 
| +** index scan. | 
| ** | 
| ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). | 
| ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10 | 
| @@ -3332,9 +2588,15 @@ static int codeEqualityTerm( | 
| ** The only thing it does is allocate the pLevel->iMem memory cell and | 
| ** compute the affinity string. | 
| ** | 
| -** This routine always allocates at least one memory cell and returns | 
| -** the index of that memory cell. The code that | 
| -** calls this routine will use that memory cell to store the termination | 
| +** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints | 
| +** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is | 
| +** an inequality constraint (such as the "c>=5 AND c<10" in the example) that | 
| +** occurs after the nEq quality constraints. | 
| +** | 
| +** This routine allocates a range of nEq+nExtraReg memory cells and returns | 
| +** the index of the first memory cell in that range. The code that | 
| +** calls this routine will use that memory range to store keys for | 
| +** start and termination conditions of the loop. | 
| ** key value of the loop.  If one or more IN operators appear, then | 
| ** this routine allocates an additional nEq memory cells for internal | 
| ** use. | 
| @@ -3357,29 +2619,33 @@ static int codeEqualityTerm( | 
| static int codeAllEqualityTerms( | 
| Parse *pParse,        /* Parsing context */ | 
| WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */ | 
| -  WhereClause *pWC,     /* The WHERE clause */ | 
| -  Bitmask notReady,     /* Which parts of FROM have not yet been coded */ | 
| +  int bRev,             /* Reverse the order of IN operators */ | 
| int nExtraReg,        /* Number of extra registers to allocate */ | 
| char **pzAff          /* OUT: Set to point to affinity string */ | 
| ){ | 
| -  int nEq = pLevel->plan.nEq;   /* The number of == or IN constraints to code */ | 
| +  u16 nEq;                      /* The number of == or IN constraints to code */ | 
| +  u16 nSkip;                    /* Number of left-most columns to skip */ | 
| Vdbe *v = pParse->pVdbe;      /* The vm under construction */ | 
| Index *pIdx;                  /* The index being used for this loop */ | 
| -  int iCur = pLevel->iTabCur;   /* The cursor of the table */ | 
| WhereTerm *pTerm;             /* A single constraint term */ | 
| +  WhereLoop *pLoop;             /* The WhereLoop object */ | 
| int j;                        /* Loop counter */ | 
| int regBase;                  /* Base register */ | 
| int nReg;                     /* Number of registers to allocate */ | 
| char *zAff;                   /* Affinity string to return */ | 
|  | 
| /* This module is only called on query plans that use an index. */ | 
| -  assert( pLevel->plan.wsFlags & WHERE_INDEXED ); | 
| -  pIdx = pLevel->plan.u.pIdx; | 
| +  pLoop = pLevel->pWLoop; | 
| +  assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); | 
| +  nEq = pLoop->u.btree.nEq; | 
| +  nSkip = pLoop->u.btree.nSkip; | 
| +  pIdx = pLoop->u.btree.pIndex; | 
| +  assert( pIdx!=0 ); | 
|  | 
| /* Figure out how many memory cells we will need then allocate them. | 
| */ | 
| regBase = pParse->nMem + 1; | 
| -  nReg = pLevel->plan.nEq + nExtraReg; | 
| +  nReg = pLoop->u.btree.nEq + nExtraReg; | 
| pParse->nMem += nReg; | 
|  | 
| zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); | 
| @@ -3387,19 +2653,37 @@ static int codeAllEqualityTerms( | 
| pParse->db->mallocFailed = 1; | 
| } | 
|  | 
| +  if( nSkip ){ | 
| +    int iIdxCur = pLevel->iIdxCur; | 
| +    sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); | 
| +    VdbeCoverageIf(v, bRev==0); | 
| +    VdbeCoverageIf(v, bRev!=0); | 
| +    VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); | 
| +    j = sqlite3VdbeAddOp0(v, OP_Goto); | 
| +    pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), | 
| +                            iIdxCur, 0, regBase, nSkip); | 
| +    VdbeCoverageIf(v, bRev==0); | 
| +    VdbeCoverageIf(v, bRev!=0); | 
| +    sqlite3VdbeJumpHere(v, j); | 
| +    for(j=0; j<nSkip; j++){ | 
| +      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); | 
| +      assert( pIdx->aiColumn[j]>=0 ); | 
| +      VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName)); | 
| +    } | 
| +  } | 
| + | 
| /* Evaluate the equality constraints | 
| */ | 
| -  assert( pIdx->nColumn>=nEq ); | 
| -  for(j=0; j<nEq; j++){ | 
| +  assert( zAff==0 || (int)strlen(zAff)>=nEq ); | 
| +  for(j=nSkip; j<nEq; j++){ | 
| int r1; | 
| -    int k = pIdx->aiColumn[j]; | 
| -    pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx); | 
| -    if( NEVER(pTerm==0) ) break; | 
| -    /* The following true for indices with redundant columns. | 
| +    pTerm = pLoop->aLTerm[j]; | 
| +    assert( pTerm!=0 ); | 
| +    /* The following testcase is true for indices with redundant columns. | 
| ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ | 
| testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); | 
| -    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ | 
| -    r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); | 
| +    testcase( pTerm->wtFlags & TERM_VIRTUAL ); | 
| +    r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); | 
| if( r1!=regBase+j ){ | 
| if( nReg==1 ){ | 
| sqlite3ReleaseTempReg(pParse, regBase); | 
| @@ -3412,7 +2696,10 @@ static int codeAllEqualityTerms( | 
| testcase( pTerm->eOperator & WO_IN ); | 
| if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ | 
| Expr *pRight = pTerm->pExpr->pRight; | 
| -      sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk); | 
| +      if( sqlite3ExprCanBeNull(pRight) ){ | 
| +        sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); | 
| +        VdbeCoverage(v); | 
| +      } | 
| if( zAff ){ | 
| if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ | 
| zAff[j] = SQLITE_AFF_NONE; | 
| @@ -3443,16 +2730,15 @@ static void explainAppendTerm( | 
| const char *zOp             /* Name of the operator */ | 
| ){ | 
| if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); | 
| -  sqlite3StrAccumAppend(pStr, zColumn, -1); | 
| +  sqlite3StrAccumAppendAll(pStr, zColumn); | 
| sqlite3StrAccumAppend(pStr, zOp, 1); | 
| sqlite3StrAccumAppend(pStr, "?", 1); | 
| } | 
|  | 
| /* | 
| ** Argument pLevel describes a strategy for scanning table pTab. This | 
| -** function returns a pointer to a string buffer containing a description | 
| -** of the subset of table rows scanned by the strategy in the form of an | 
| -** SQL expression. Or, if all rows are scanned, NULL is returned. | 
| +** function appends text to pStr that describes the subset of table | 
| +** rows scanned by the strategy in the form of an SQL expression. | 
| ** | 
| ** For example, if the query: | 
| ** | 
| @@ -3462,39 +2748,37 @@ static void explainAppendTerm( | 
| ** string similar to: | 
| ** | 
| **   "a=? AND b>?" | 
| -** | 
| -** The returned pointer points to memory obtained from sqlite3DbMalloc(). | 
| -** It is the responsibility of the caller to free the buffer when it is | 
| -** no longer required. | 
| */ | 
| -static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){ | 
| -  WherePlan *pPlan = &pLevel->plan; | 
| -  Index *pIndex = pPlan->u.pIdx; | 
| -  int nEq = pPlan->nEq; | 
| +static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){ | 
| +  Index *pIndex = pLoop->u.btree.pIndex; | 
| +  u16 nEq = pLoop->u.btree.nEq; | 
| +  u16 nSkip = pLoop->u.btree.nSkip; | 
| int i, j; | 
| Column *aCol = pTab->aCol; | 
| -  int *aiColumn = pIndex->aiColumn; | 
| -  StrAccum txt; | 
| +  i16 *aiColumn = pIndex->aiColumn; | 
|  | 
| -  if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){ | 
| -    return 0; | 
| -  } | 
| -  sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH); | 
| -  txt.db = db; | 
| -  sqlite3StrAccumAppend(&txt, " (", 2); | 
| +  if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; | 
| +  sqlite3StrAccumAppend(pStr, " (", 2); | 
| for(i=0; i<nEq; i++){ | 
| -    explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "="); | 
| +    char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName; | 
| +    if( i>=nSkip ){ | 
| +      explainAppendTerm(pStr, i, z, "="); | 
| +    }else{ | 
| +      if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); | 
| +      sqlite3XPrintf(pStr, 0, "ANY(%s)", z); | 
| +    } | 
| } | 
|  | 
| j = i; | 
| -  if( pPlan->wsFlags&WHERE_BTM_LIMIT ){ | 
| -    explainAppendTerm(&txt, i++, aCol[aiColumn[j]].zName, ">"); | 
| +  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ | 
| +    char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; | 
| +    explainAppendTerm(pStr, i++, z, ">"); | 
| } | 
| -  if( pPlan->wsFlags&WHERE_TOP_LIMIT ){ | 
| -    explainAppendTerm(&txt, i, aCol[aiColumn[j]].zName, "<"); | 
| +  if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ | 
| +    char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; | 
| +    explainAppendTerm(pStr, i, z, "<"); | 
| } | 
| -  sqlite3StrAccumAppend(&txt, ")", 1); | 
| -  return sqlite3StrAccumFinish(&txt); | 
| +  sqlite3StrAccumAppend(pStr, ")", 1); | 
| } | 
|  | 
| /* | 
| @@ -3511,69 +2795,93 @@ static void explainOneScan( | 
| int iFrom,                      /* Value for "from" column of output */ | 
| u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */ | 
| ){ | 
| -  if( pParse->explain==2 ){ | 
| -    u32 flags = pLevel->plan.wsFlags; | 
| +#ifndef SQLITE_DEBUG | 
| +  if( pParse->explain==2 ) | 
| +#endif | 
| +  { | 
| struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; | 
| Vdbe *v = pParse->pVdbe;      /* VM being constructed */ | 
| sqlite3 *db = pParse->db;     /* Database handle */ | 
| -    char *zMsg;                   /* Text to add to EQP output */ | 
| -    sqlite3_int64 nRow;           /* Expected number of rows visited by scan */ | 
| int iId = pParse->iSelectId;  /* Select id (left-most output column) */ | 
| int isSearch;                 /* True for a SEARCH. False for SCAN. */ | 
| +    WhereLoop *pLoop;             /* The controlling WhereLoop object */ | 
| +    u32 flags;                    /* Flags that describe this loop */ | 
| +    char *zMsg;                   /* Text to add to EQP output */ | 
| +    StrAccum str;                 /* EQP output string */ | 
| +    char zBuf[100];               /* Initial space for EQP output string */ | 
|  | 
| +    pLoop = pLevel->pWLoop; | 
| +    flags = pLoop->wsFlags; | 
| if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return; | 
|  | 
| -    isSearch = (pLevel->plan.nEq>0) | 
| -             || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 | 
| -             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); | 
| +    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 | 
| +            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) | 
| +            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); | 
|  | 
| -    zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN"); | 
| +    sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); | 
| +    str.db = db; | 
| +    sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); | 
| if( pItem->pSelect ){ | 
| -      zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId); | 
| +      sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId); | 
| }else{ | 
| -      zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName); | 
| +      sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName); | 
| } | 
|  | 
| if( pItem->zAlias ){ | 
| -      zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); | 
| -    } | 
| -    if( (flags & WHERE_INDEXED)!=0 ){ | 
| -      char *zWhere = explainIndexRange(db, pLevel, pItem->pTab); | 
| -      zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg, | 
| -          ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""), | 
| -          ((flags & WHERE_IDX_ONLY)?"COVERING ":""), | 
| -          ((flags & WHERE_TEMP_INDEX)?"":" "), | 
| -          ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName), | 
| -          zWhere | 
| -      ); | 
| -      sqlite3DbFree(db, zWhere); | 
| -    }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ | 
| -      zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg); | 
| - | 
| -      if( flags&WHERE_ROWID_EQ ){ | 
| -        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg); | 
| +      sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias); | 
| +    } | 
| +    if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ | 
| +      const char *zFmt = 0; | 
| +      Index *pIdx; | 
| + | 
| +      assert( pLoop->u.btree.pIndex!=0 ); | 
| +      pIdx = pLoop->u.btree.pIndex; | 
| +      assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); | 
| +      if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ | 
| +        if( isSearch ){ | 
| +          zFmt = "PRIMARY KEY"; | 
| +        } | 
| +      }else if( flags & WHERE_AUTO_INDEX ){ | 
| +        zFmt = "AUTOMATIC COVERING INDEX"; | 
| +      }else if( flags & WHERE_IDX_ONLY ){ | 
| +        zFmt = "COVERING INDEX %s"; | 
| +      }else{ | 
| +        zFmt = "INDEX %s"; | 
| +      } | 
| +      if( zFmt ){ | 
| +        sqlite3StrAccumAppend(&str, " USING ", 7); | 
| +        sqlite3XPrintf(&str, 0, zFmt, pIdx->zName); | 
| +        explainIndexRange(&str, pLoop, pItem->pTab); | 
| +      } | 
| +    }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ | 
| +      const char *zRange; | 
| +      if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ | 
| +        zRange = "(rowid=?)"; | 
| }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ | 
| -        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg); | 
| +        zRange = "(rowid>? AND rowid<?)"; | 
| }else if( flags&WHERE_BTM_LIMIT ){ | 
| -        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg); | 
| -      }else if( flags&WHERE_TOP_LIMIT ){ | 
| -        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg); | 
| +        zRange = "(rowid>?)"; | 
| +      }else{ | 
| +        assert( flags&WHERE_TOP_LIMIT); | 
| +        zRange = "(rowid<?)"; | 
| } | 
| +      sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY "); | 
| +      sqlite3StrAccumAppendAll(&str, zRange); | 
| } | 
| #ifndef SQLITE_OMIT_VIRTUALTABLE | 
| else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ | 
| -      sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; | 
| -      zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, | 
| -                  pVtabIdx->idxNum, pVtabIdx->idxStr); | 
| +      sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s", | 
| +                  pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); | 
| } | 
| #endif | 
| -    if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){ | 
| -      testcase( wctrlFlags & WHERE_ORDERBY_MIN ); | 
| -      nRow = 1; | 
| +#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS | 
| +    if( pLoop->nOut>=10 ){ | 
| +      sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); | 
| }else{ | 
| -      nRow = (sqlite3_int64)pLevel->plan.nRow; | 
| +      sqlite3StrAccumAppend(&str, " (~1 row)", 9); | 
| } | 
| -    zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow); | 
| +#endif | 
| +    zMsg = sqlite3StrAccumFinish(&str); | 
| sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC); | 
| } | 
| } | 
| @@ -3589,7 +2897,6 @@ static void explainOneScan( | 
| static Bitmask codeOneLoopStart( | 
| WhereInfo *pWInfo,   /* Complete information about the WHERE clause */ | 
| int iLevel,          /* Which level of pWInfo->a[] should be coded */ | 
| -  u16 wctrlFlags,      /* One of the WHERE_* flags defined in sqliteInt.h */ | 
| Bitmask notReady     /* Which tables are currently available */ | 
| ){ | 
| int j, k;            /* Loop counters */ | 
| @@ -3598,9 +2905,11 @@ static Bitmask codeOneLoopStart( | 
| int omitTable;       /* True if we use the index only */ | 
| int bRev;            /* True if we need to scan in reverse order */ | 
| WhereLevel *pLevel;  /* The where level to be coded */ | 
| +  WhereLoop *pLoop;    /* The WhereLoop object being coded */ | 
| WhereClause *pWC;    /* Decomposition of the entire WHERE clause */ | 
| WhereTerm *pTerm;               /* A WHERE clause term */ | 
| Parse *pParse;                  /* Parsing context */ | 
| +  sqlite3 *db;                    /* Database connection */ | 
| Vdbe *v;                        /* The prepared stmt under constructions */ | 
| struct SrcList_item *pTabItem;  /* FROM clause term being coded */ | 
| int addrBrk;                    /* Jump here to break out of the loop */ | 
| @@ -3610,13 +2919,17 @@ static Bitmask codeOneLoopStart( | 
|  | 
| pParse = pWInfo->pParse; | 
| v = pParse->pVdbe; | 
| -  pWC = pWInfo->pWC; | 
| +  pWC = &pWInfo->sWC; | 
| +  db = pParse->db; | 
| pLevel = &pWInfo->a[iLevel]; | 
| +  pLoop = pLevel->pWLoop; | 
| pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; | 
| iCur = pTabItem->iCursor; | 
| -  bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; | 
| -  omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 | 
| -           && (wctrlFlags & WHERE_FORCE_TABLE)==0; | 
| +  pLevel->notReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur); | 
| +  bRev = (pWInfo->revMask>>iLevel)&1; | 
| +  omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 | 
| +           && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; | 
| +  VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); | 
|  | 
| /* Create labels for the "break" and "continue" instructions | 
| ** for the current loop.  Jump to addrBrk to break out of a loop. | 
| @@ -3641,72 +2954,88 @@ static Bitmask codeOneLoopStart( | 
| VdbeComment((v, "init LEFT JOIN no-match flag")); | 
| } | 
|  | 
| +  /* Special case of a FROM clause subquery implemented as a co-routine */ | 
| +  if( pTabItem->viaCoroutine ){ | 
| +    int regYield = pTabItem->regReturn; | 
| +    sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); | 
| +    pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); | 
| +    VdbeCoverage(v); | 
| +    VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); | 
| +    pLevel->op = OP_Goto; | 
| +  }else | 
| + | 
| #ifndef SQLITE_OMIT_VIRTUALTABLE | 
| -  if(  (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ | 
| -    /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext | 
| +  if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ | 
| +    /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext | 
| **          to access the data. | 
| */ | 
| int iReg;   /* P3 Value for OP_VFilter */ | 
| -    sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; | 
| -    int nConstraint = pVtabIdx->nConstraint; | 
| -    struct sqlite3_index_constraint_usage *aUsage = | 
| -                                                pVtabIdx->aConstraintUsage; | 
| -    const struct sqlite3_index_constraint *aConstraint = | 
| -                                                pVtabIdx->aConstraint; | 
| +    int addrNotFound; | 
| +    int nConstraint = pLoop->nLTerm; | 
|  | 
| sqlite3ExprCachePush(pParse); | 
| iReg = sqlite3GetTempRange(pParse, nConstraint+2); | 
| -    for(j=1; j<=nConstraint; j++){ | 
| -      for(k=0; k<nConstraint; k++){ | 
| -        if( aUsage[k].argvIndex==j ){ | 
| -          int iTerm = aConstraint[k].iTermOffset; | 
| -          sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1); | 
| -          break; | 
| -        } | 
| +    addrNotFound = pLevel->addrBrk; | 
| +    for(j=0; j<nConstraint; j++){ | 
| +      int iTarget = iReg+j+2; | 
| +      pTerm = pLoop->aLTerm[j]; | 
| +      if( pTerm==0 ) continue; | 
| +      if( pTerm->eOperator & WO_IN ){ | 
| +        codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); | 
| +        addrNotFound = pLevel->addrNxt; | 
| +      }else{ | 
| +        sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); | 
| } | 
| -      if( k==nConstraint ) break; | 
| } | 
| -    sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg); | 
| -    sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); | 
| -    sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr, | 
| -                      pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); | 
| -    pVtabIdx->needToFreeIdxStr = 0; | 
| -    for(j=0; j<nConstraint; j++){ | 
| -      if( aUsage[j].omit ){ | 
| -        int iTerm = aConstraint[j].iTermOffset; | 
| -        disableTerm(pLevel, &pWC->a[iTerm]); | 
| +    sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); | 
| +    sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); | 
| +    sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, | 
| +                      pLoop->u.vtab.idxStr, | 
| +                      pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); | 
| +    VdbeCoverage(v); | 
| +    pLoop->u.vtab.needFree = 0; | 
| +    for(j=0; j<nConstraint && j<16; j++){ | 
| +      if( (pLoop->u.vtab.omitMask>>j)&1 ){ | 
| +        disableTerm(pLevel, pLoop->aLTerm[j]); | 
| } | 
| } | 
| pLevel->op = OP_VNext; | 
| pLevel->p1 = iCur; | 
| pLevel->p2 = sqlite3VdbeCurrentAddr(v); | 
| sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); | 
| -    sqlite3ExprCachePop(pParse, 1); | 
| +    sqlite3ExprCachePop(pParse); | 
| }else | 
| #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 
|  | 
| -  if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){ | 
| -    /* Case 1:  We can directly reference a single row using an | 
| +  if( (pLoop->wsFlags & WHERE_IPK)!=0 | 
| +   && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 | 
| +  ){ | 
| +    /* Case 2:  We can directly reference a single row using an | 
| **          equality comparison against the ROWID field.  Or | 
| **          we reference multiple rows using a "rowid IN (...)" | 
| **          construct. | 
| */ | 
| -    iReleaseReg = sqlite3GetTempReg(pParse); | 
| -    pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); | 
| +    assert( pLoop->u.btree.nEq==1 ); | 
| +    pTerm = pLoop->aLTerm[0]; | 
| assert( pTerm!=0 ); | 
| assert( pTerm->pExpr!=0 ); | 
| -    assert( pTerm->leftCursor==iCur ); | 
| assert( omitTable==0 ); | 
| -    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ | 
| -    iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg); | 
| +    testcase( pTerm->wtFlags & TERM_VIRTUAL ); | 
| +    iReleaseReg = ++pParse->nMem; | 
| +    iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); | 
| +    if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); | 
| addrNxt = pLevel->addrNxt; | 
| -    sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); | 
| +    sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); | 
| sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); | 
| +    VdbeCoverage(v); | 
| +    sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); | 
| sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); | 
| VdbeComment((v, "pk")); | 
| pLevel->op = OP_Noop; | 
| -  }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){ | 
| -    /* Case 2:  We have an inequality comparison against the ROWID field. | 
| +  }else if( (pLoop->wsFlags & WHERE_IPK)!=0 | 
| +         && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 | 
| +  ){ | 
| +    /* Case 3:  We have an inequality comparison against the ROWID field. | 
| */ | 
| int testOp = OP_Noop; | 
| int start; | 
| @@ -3714,8 +3043,11 @@ static Bitmask codeOneLoopStart( | 
| WhereTerm *pStart, *pEnd; | 
|  | 
| assert( omitTable==0 ); | 
| -    pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0); | 
| -    pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0); | 
| +    j = 0; | 
| +    pStart = pEnd = 0; | 
| +    if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; | 
| +    if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; | 
| +    assert( pStart!=0 || pEnd!=0 ); | 
| if( bRev ){ | 
| pTerm = pStart; | 
| pStart = pEnd; | 
| @@ -3729,34 +3061,42 @@ static Bitmask codeOneLoopStart( | 
| ** seek opcodes.  It depends on a particular ordering of TK_xx | 
| */ | 
| const u8 aMoveOp[] = { | 
| -           /* TK_GT */  OP_SeekGt, | 
| -           /* TK_LE */  OP_SeekLe, | 
| -           /* TK_LT */  OP_SeekLt, | 
| -           /* TK_GE */  OP_SeekGe | 
| +           /* TK_GT */  OP_SeekGT, | 
| +           /* TK_LE */  OP_SeekLE, | 
| +           /* TK_LT */  OP_SeekLT, | 
| +           /* TK_GE */  OP_SeekGE | 
| }; | 
| assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */ | 
| assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */ | 
| assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */ | 
|  | 
| -      testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ | 
| +      assert( (pStart->wtFlags & TERM_VNULL)==0 ); | 
| +      testcase( pStart->wtFlags & TERM_VIRTUAL ); | 
| pX = pStart->pExpr; | 
| assert( pX!=0 ); | 
| -      assert( pStart->leftCursor==iCur ); | 
| +      testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ | 
| r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); | 
| sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); | 
| VdbeComment((v, "pk")); | 
| +      VdbeCoverageIf(v, pX->op==TK_GT); | 
| +      VdbeCoverageIf(v, pX->op==TK_LE); | 
| +      VdbeCoverageIf(v, pX->op==TK_LT); | 
| +      VdbeCoverageIf(v, pX->op==TK_GE); | 
| sqlite3ExprCacheAffinityChange(pParse, r1, 1); | 
| sqlite3ReleaseTempReg(pParse, rTemp); | 
| disableTerm(pLevel, pStart); | 
| }else{ | 
| sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); | 
| +      VdbeCoverageIf(v, bRev==0); | 
| +      VdbeCoverageIf(v, bRev!=0); | 
| } | 
| if( pEnd ){ | 
| Expr *pX; | 
| pX = pEnd->pExpr; | 
| assert( pX!=0 ); | 
| -      assert( pEnd->leftCursor==iCur ); | 
| -      testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ | 
| +      assert( (pEnd->wtFlags & TERM_VNULL)==0 ); | 
| +      testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ | 
| +      testcase( pEnd->wtFlags & TERM_VIRTUAL ); | 
| memEndValue = ++pParse->nMem; | 
| sqlite3ExprCode(pParse, pX->pRight, memEndValue); | 
| if( pX->op==TK_LT || pX->op==TK_GT ){ | 
| @@ -3770,20 +3110,20 @@ static Bitmask codeOneLoopStart( | 
| pLevel->op = bRev ? OP_Prev : OP_Next; | 
| pLevel->p1 = iCur; | 
| pLevel->p2 = start; | 
| -    if( pStart==0 && pEnd==0 ){ | 
| -      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; | 
| -    }else{ | 
| -      assert( pLevel->p5==0 ); | 
| -    } | 
| +    assert( pLevel->p5==0 ); | 
| if( testOp!=OP_Noop ){ | 
| -      iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); | 
| +      iRowidReg = ++pParse->nMem; | 
| sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); | 
| sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); | 
| sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); | 
| +      VdbeCoverageIf(v, testOp==OP_Le); | 
| +      VdbeCoverageIf(v, testOp==OP_Lt); | 
| +      VdbeCoverageIf(v, testOp==OP_Ge); | 
| +      VdbeCoverageIf(v, testOp==OP_Gt); | 
| sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); | 
| } | 
| -  }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ | 
| -    /* Case 3: A scan using an index. | 
| +  }else if( pLoop->wsFlags & WHERE_INDEXED ){ | 
| +    /* Case 4: A scan using an index. | 
| ** | 
| **         The WHERE clause may contain zero or more equality | 
| **         terms ("==" or "IN" operators) that refer to the N | 
| @@ -3819,20 +3159,19 @@ static Bitmask codeOneLoopStart( | 
| 0, | 
| OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */ | 
| OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */ | 
| -      OP_SeekGt,           /* 4: (start_constraints  && !startEq && !bRev) */ | 
| -      OP_SeekLt,           /* 5: (start_constraints  && !startEq &&  bRev) */ | 
| -      OP_SeekGe,           /* 6: (start_constraints  &&  startEq && !bRev) */ | 
| -      OP_SeekLe            /* 7: (start_constraints  &&  startEq &&  bRev) */ | 
| +      OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */ | 
| +      OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */ | 
| +      OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */ | 
| +      OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */ | 
| }; | 
| static const u8 aEndOp[] = { | 
| -      OP_Noop,             /* 0: (!end_constraints) */ | 
| -      OP_IdxGE,            /* 1: (end_constraints && !bRev) */ | 
| -      OP_IdxLT             /* 2: (end_constraints && bRev) */ | 
| +      OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */ | 
| +      OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */ | 
| +      OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */ | 
| +      OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */ | 
| }; | 
| -    int nEq = pLevel->plan.nEq;  /* Number of == or IN terms */ | 
| -    int isMinQuery = 0;          /* If this is an optimized SELECT min(x).. */ | 
| +    u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */ | 
| int regBase;                 /* Base register holding constraint values */ | 
| -    int r1;                      /* Temp register */ | 
| WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */ | 
| WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */ | 
| int startEq;                 /* True if range start uses ==, >= or <= */ | 
| @@ -3844,11 +3183,13 @@ static Bitmask codeOneLoopStart( | 
| int nExtraReg = 0;           /* Number of extra registers needed */ | 
| int op;                      /* Instruction opcode */ | 
| char *zStartAff;             /* Affinity for start of range constraint */ | 
| -    char *zEndAff;               /* Affinity for end of range constraint */ | 
| +    char cEndAff = 0;            /* Affinity for end of range constraint */ | 
| +    u8 bSeekPastNull = 0;        /* True to seek past initial nulls */ | 
| +    u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */ | 
|  | 
| -    pIdx = pLevel->plan.u.pIdx; | 
| +    pIdx = pLoop->u.btree.pIndex; | 
| iIdxCur = pLevel->iIdxCur; | 
| -    k = pIdx->aiColumn[nEq];     /* Column for inequality constraints */ | 
| +    assert( nEq>=pLoop->u.btree.nSkip ); | 
|  | 
| /* If this loop satisfies a sort order (pOrderBy) request that | 
| ** was passed to this function to implement a "SELECT min(x) ..." | 
| @@ -3858,50 +3199,62 @@ static Bitmask codeOneLoopStart( | 
| ** the first one after the nEq equality constraints in the index, | 
| ** this requires some special handling. | 
| */ | 
| -    if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0 | 
| -     && (pLevel->plan.wsFlags&WHERE_ORDERBY) | 
| -     && (pIdx->nColumn>nEq) | 
| +    assert( pWInfo->pOrderBy==0 | 
| +         || pWInfo->pOrderBy->nExpr==1 | 
| +         || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); | 
| +    if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 | 
| +     && pWInfo->nOBSat>0 | 
| +     && (pIdx->nKeyCol>nEq) | 
| ){ | 
| -      /* assert( pOrderBy->nExpr==1 ); */ | 
| -      /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */ | 
| -      isMinQuery = 1; | 
| +      assert( pLoop->u.btree.nSkip==0 ); | 
| +      bSeekPastNull = 1; | 
| nExtraReg = 1; | 
| } | 
|  | 
| /* Find any inequality constraint terms for the start and end | 
| ** of the range. | 
| */ | 
| -    if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){ | 
| -      pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx); | 
| +    j = nEq; | 
| +    if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ | 
| +      pRangeStart = pLoop->aLTerm[j++]; | 
| nExtraReg = 1; | 
| } | 
| -    if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){ | 
| -      pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx); | 
| +    if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ | 
| +      pRangeEnd = pLoop->aLTerm[j++]; | 
| nExtraReg = 1; | 
| +      if( pRangeStart==0 | 
| +       && (j = pIdx->aiColumn[nEq])>=0 | 
| +       && pIdx->pTable->aCol[j].notNull==0 | 
| +      ){ | 
| +        bSeekPastNull = 1; | 
| +      } | 
| } | 
| +    assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); | 
|  | 
| /* Generate code to evaluate all constraint terms using == or IN | 
| ** and store the values of those terms in an array of registers | 
| ** starting at regBase. | 
| */ | 
| -    regBase = codeAllEqualityTerms( | 
| -        pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff | 
| -    ); | 
| -    zEndAff = sqlite3DbStrDup(pParse->db, zStartAff); | 
| +    regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); | 
| +    assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); | 
| +    if( zStartAff ) cEndAff = zStartAff[nEq]; | 
| addrNxt = pLevel->addrNxt; | 
|  | 
| /* If we are doing a reverse order scan on an ascending index, or | 
| ** a forward order scan on a descending index, interchange the | 
| ** start and end terms (pRangeStart and pRangeEnd). | 
| */ | 
| -    if( nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ | 
| +    if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) | 
| +     || (bRev && pIdx->nKeyCol==nEq) | 
| +    ){ | 
| SWAP(WhereTerm *, pRangeEnd, pRangeStart); | 
| +      SWAP(u8, bSeekPastNull, bStopAtNull); | 
| } | 
|  | 
| -    testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); | 
| -    testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); | 
| -    testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); | 
| -    testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); | 
| +    testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); | 
| +    testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); | 
| +    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); | 
| +    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); | 
| startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); | 
| endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); | 
| start_constraints = pRangeStart || nEq>0; | 
| @@ -3911,8 +3264,11 @@ static Bitmask codeOneLoopStart( | 
| if( pRangeStart ){ | 
| Expr *pRight = pRangeStart->pExpr->pRight; | 
| sqlite3ExprCode(pParse, pRight, regBase+nEq); | 
| -      if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){ | 
| -        sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); | 
| +      if( (pRangeStart->wtFlags & TERM_VNULL)==0 | 
| +       && sqlite3ExprCanBeNull(pRight) | 
| +      ){ | 
| +        sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); | 
| +        VdbeCoverage(v); | 
| } | 
| if( zStartAff ){ | 
| if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ | 
| @@ -3926,23 +3282,24 @@ static Bitmask codeOneLoopStart( | 
| } | 
| } | 
| nConstraint++; | 
| -      testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ | 
| -    }else if( isMinQuery ){ | 
| +      testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); | 
| +    }else if( bSeekPastNull ){ | 
| sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); | 
| nConstraint++; | 
| startEq = 0; | 
| start_constraints = 1; | 
| } | 
| -    codeApplyAffinity(pParse, regBase, nConstraint, zStartAff); | 
| +    codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); | 
| op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; | 
| assert( op!=0 ); | 
| -    testcase( op==OP_Rewind ); | 
| -    testcase( op==OP_Last ); | 
| -    testcase( op==OP_SeekGt ); | 
| -    testcase( op==OP_SeekGe ); | 
| -    testcase( op==OP_SeekLe ); | 
| -    testcase( op==OP_SeekLt ); | 
| sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); | 
| +    VdbeCoverage(v); | 
| +    VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind ); | 
| +    VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last ); | 
| +    VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT ); | 
| +    VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE ); | 
| +    VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE ); | 
| +    VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT ); | 
|  | 
| /* Load the value for the inequality constraint at the end of the | 
| ** range (if any). | 
| @@ -3952,67 +3309,64 @@ static Bitmask codeOneLoopStart( | 
| Expr *pRight = pRangeEnd->pExpr->pRight; | 
| sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); | 
| sqlite3ExprCode(pParse, pRight, regBase+nEq); | 
| -      if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){ | 
| -        sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); | 
| +      if( (pRangeEnd->wtFlags & TERM_VNULL)==0 | 
| +       && sqlite3ExprCanBeNull(pRight) | 
| +      ){ | 
| +        sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); | 
| +        VdbeCoverage(v); | 
| } | 
| -      if( zEndAff ){ | 
| -        if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){ | 
| -          /* Since the comparison is to be performed with no conversions | 
| -          ** applied to the operands, set the affinity to apply to pRight to | 
| -          ** SQLITE_AFF_NONE.  */ | 
| -          zEndAff[nEq] = SQLITE_AFF_NONE; | 
| -        } | 
| -        if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){ | 
| -          zEndAff[nEq] = SQLITE_AFF_NONE; | 
| -        } | 
| -      } | 
| -      codeApplyAffinity(pParse, regBase, nEq+1, zEndAff); | 
| +      if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE | 
| +       && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) | 
| +      ){ | 
| +        codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); | 
| +      } | 
| +      nConstraint++; | 
| +      testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); | 
| +    }else if( bStopAtNull ){ | 
| +      sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); | 
| +      endEq = 0; | 
| nConstraint++; | 
| -      testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ | 
| } | 
| -    sqlite3DbFree(pParse->db, zStartAff); | 
| -    sqlite3DbFree(pParse->db, zEndAff); | 
| +    sqlite3DbFree(db, zStartAff); | 
|  | 
| /* Top of the loop body */ | 
| pLevel->p2 = sqlite3VdbeCurrentAddr(v); | 
|  | 
| /* Check if the index cursor is past the end of the range. */ | 
| -    op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; | 
| -    testcase( op==OP_Noop ); | 
| -    testcase( op==OP_IdxGE ); | 
| -    testcase( op==OP_IdxLT ); | 
| -    if( op!=OP_Noop ){ | 
| +    if( nConstraint ){ | 
| +      op = aEndOp[bRev*2 + endEq]; | 
| sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); | 
| -      sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0); | 
| +      testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT ); | 
| +      testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE ); | 
| +      testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT ); | 
| +      testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE ); | 
| } | 
|  | 
| -    /* If there are inequality constraints, check that the value | 
| -    ** of the table column that the inequality contrains is not NULL. | 
| -    ** If it is, jump to the next iteration of the loop. | 
| -    */ | 
| -    r1 = sqlite3GetTempReg(pParse); | 
| -    testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ); | 
| -    testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ); | 
| -    if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){ | 
| -      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); | 
| -      sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); | 
| -    } | 
| -    sqlite3ReleaseTempReg(pParse, r1); | 
| - | 
| /* Seek the table cursor, if required */ | 
| disableTerm(pLevel, pRangeStart); | 
| disableTerm(pLevel, pRangeEnd); | 
| -    if( !omitTable ){ | 
| -      iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); | 
| +    if( omitTable ){ | 
| +      /* pIdx is a covering index.  No need to access the main table. */ | 
| +    }else if( HasRowid(pIdx->pTable) ){ | 
| +      iRowidReg = ++pParse->nMem; | 
| sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); | 
| sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); | 
| sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */ | 
| +    }else if( iCur!=iIdxCur ){ | 
| +      Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); | 
| +      iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); | 
| +      for(j=0; j<pPk->nKeyCol; j++){ | 
| +        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); | 
| +        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); | 
| +      } | 
| +      sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, | 
| +                           iRowidReg, pPk->nKeyCol); VdbeCoverage(v); | 
| } | 
|  | 
| /* Record the instruction used to terminate the loop. Disable | 
| ** WHERE clause terms made redundant by the index range scan. | 
| */ | 
| -    if( pLevel->plan.wsFlags & WHERE_UNIQUE ){ | 
| +    if( pLoop->wsFlags & WHERE_ONEROW ){ | 
| pLevel->op = OP_Noop; | 
| }else if( bRev ){ | 
| pLevel->op = OP_Prev; | 
| @@ -4020,11 +3374,17 @@ static Bitmask codeOneLoopStart( | 
| pLevel->op = OP_Next; | 
| } | 
| pLevel->p1 = iIdxCur; | 
| +    pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; | 
| +    if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ | 
| +      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; | 
| +    }else{ | 
| +      assert( pLevel->p5==0 ); | 
| +    } | 
| }else | 
|  | 
| #ifndef SQLITE_OMIT_OR_OPTIMIZATION | 
| -  if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ | 
| -    /* Case 4:  Two or more separately indexed terms connected by OR | 
| +  if( pLoop->wsFlags & WHERE_MULTI_OR ){ | 
| +    /* Case 5:  Two or more separately indexed terms connected by OR | 
| ** | 
| ** Example: | 
| ** | 
| @@ -4062,9 +3422,15 @@ static Bitmask codeOneLoopStart( | 
| ** | 
| **       B: <after the loop> | 
| ** | 
| +    ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then | 
| +    ** use an ephemeral index instead of a RowSet to record the primary | 
| +    ** keys of the rows we have already seen. | 
| +    ** | 
| */ | 
| WhereClause *pOrWc;    /* The OR-clause broken out into subterms */ | 
| SrcList *pOrTab;       /* Shortened table list or OR-clause generation */ | 
| +    Index *pCov = 0;             /* Potential covering index (or NULL) */ | 
| +    int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */ | 
|  | 
| int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */ | 
| int regRowset = 0;                        /* Register for RowSet object */ | 
| @@ -4072,17 +3438,20 @@ static Bitmask codeOneLoopStart( | 
| int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */ | 
| int iRetInit;                             /* Address of regReturn init */ | 
| int untestedTerms = 0;             /* Some terms not completely tested */ | 
| -    int ii; | 
| +    int ii;                            /* Loop counter */ | 
| +    u16 wctrlFlags;                    /* Flags for sub-WHERE clause */ | 
| +    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */ | 
| +    Table *pTab = pTabItem->pTab; | 
|  | 
| -    pTerm = pLevel->plan.u.pTerm; | 
| +    pTerm = pLoop->aLTerm[0]; | 
| assert( pTerm!=0 ); | 
| -    assert( pTerm->eOperator==WO_OR ); | 
| +    assert( pTerm->eOperator & WO_OR ); | 
| assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); | 
| pOrWc = &pTerm->u.pOrInfo->wc; | 
| pLevel->op = OP_Return; | 
| pLevel->p1 = regReturn; | 
|  | 
| -    /* Set up a new SrcList ni pOrTab containing the table being scanned | 
| +    /* Set up a new SrcList in pOrTab containing the table being scanned | 
| ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. | 
| ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). | 
| */ | 
| @@ -4090,10 +3459,10 @@ static Bitmask codeOneLoopStart( | 
| int nNotReady;                 /* The number of notReady tables */ | 
| struct SrcList_item *origSrc;     /* Original list of tables */ | 
| nNotReady = pWInfo->nLevel - iLevel - 1; | 
| -      pOrTab = sqlite3StackAllocRaw(pParse->db, | 
| +      pOrTab = sqlite3StackAllocRaw(db, | 
| sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); | 
| if( pOrTab==0 ) return notReady; | 
| -      pOrTab->nAlloc = (i16)(nNotReady + 1); | 
| +      pOrTab->nAlloc = (u8)(nNotReady + 1); | 
| pOrTab->nSrc = pOrTab->nAlloc; | 
| memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); | 
| origSrc = pWInfo->pTabList->a; | 
| @@ -4105,7 +3474,8 @@ static Bitmask codeOneLoopStart( | 
| } | 
|  | 
| /* Initialize the rowset register to contain NULL. An SQL NULL is | 
| -    ** equivalent to an empty rowset. | 
| +    ** equivalent to an empty rowset.  Or, create an ephemeral index | 
| +    ** capable of holding primary keys in the case of a WITHOUT ROWID. | 
| ** | 
| ** Also initialize regReturn to contain the address of the instruction | 
| ** immediately following the OP_Return at the bottom of the loop. This | 
| @@ -4115,166 +3485,2452 @@ static Bitmask codeOneLoopStart( | 
| ** fall through to the next instruction, just as an OP_Next does if | 
| ** called on an uninitialized cursor. | 
| */ | 
| -    if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ | 
| -      regRowset = ++pParse->nMem; | 
| +    if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ | 
| +      if( HasRowid(pTab) ){ | 
| +        regRowset = ++pParse->nMem; | 
| +        sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); | 
| +      }else{ | 
| +        Index *pPk = sqlite3PrimaryKeyIndex(pTab); | 
| +        regRowset = pParse->nTab++; | 
| +        sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); | 
| +        sqlite3VdbeSetP4KeyInfo(pParse, pPk); | 
| +      } | 
| regRowid = ++pParse->nMem; | 
| -      sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); | 
| } | 
| iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); | 
|  | 
| +    /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y | 
| +    ** Then for every term xN, evaluate as the subexpression: xN AND z | 
| +    ** That way, terms in y that are factored into the disjunction will | 
| +    ** be picked up by the recursive calls to sqlite3WhereBegin() below. | 
| +    ** | 
| +    ** Actually, each subexpression is converted to "xN AND w" where w is | 
| +    ** the "interesting" terms of z - terms that did not originate in the | 
| +    ** ON or USING clause of a LEFT JOIN, and terms that are usable as | 
| +    ** indices. | 
| +    ** | 
| +    ** This optimization also only applies if the (x1 OR x2 OR ...) term | 
| +    ** is not contained in the ON clause of a LEFT JOIN. | 
| +    ** See ticket http://www.sqlite.org/src/info/f2369304e4 | 
| +    */ | 
| +    if( pWC->nTerm>1 ){ | 
| +      int iTerm; | 
| +      for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ | 
| +        Expr *pExpr = pWC->a[iTerm].pExpr; | 
| +        if( &pWC->a[iTerm] == pTerm ) continue; | 
| +        if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; | 
| +        testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); | 
| +        testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); | 
| +        if( pWC->a[iTerm].wtFlags & (TERM_ORINFO|TERM_VIRTUAL) ) continue; | 
| +        if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; | 
| +        pExpr = sqlite3ExprDup(db, pExpr, 0); | 
| +        pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); | 
| +      } | 
| +      if( pAndExpr ){ | 
| +        pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); | 
| +      } | 
| +    } | 
| + | 
| +    /* Run a separate WHERE clause for each term of the OR clause.  After | 
| +    ** eliminating duplicates from other WHERE clauses, the action for each | 
| +    ** sub-WHERE clause is to to invoke the main loop body as a subroutine. | 
| +    */ | 
| +    wctrlFlags =  WHERE_OMIT_OPEN_CLOSE | 
| +                | WHERE_FORCE_TABLE | 
| +                | WHERE_ONETABLE_ONLY; | 
| for(ii=0; ii<pOrWc->nTerm; ii++){ | 
| WhereTerm *pOrTerm = &pOrWc->a[ii]; | 
| -      if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){ | 
| -        WhereInfo *pSubWInfo;          /* Info for single OR-term scan */ | 
| +      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ | 
| +        WhereInfo *pSubWInfo;           /* Info for single OR-term scan */ | 
| +        Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ | 
| +        int j1 = 0;                     /* Address of jump operation */ | 
| +        if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ | 
| +          pAndExpr->pLeft = pOrExpr; | 
| +          pOrExpr = pAndExpr; | 
| +        } | 
| /* Loop through table entries that match term pOrTerm. */ | 
| -        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0, | 
| -                        WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | | 
| -                        WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY); | 
| +        WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); | 
| +        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, | 
| +                                      wctrlFlags, iCovCur); | 
| +        assert( pSubWInfo || pParse->nErr || db->mallocFailed ); | 
| if( pSubWInfo ){ | 
| +          WhereLoop *pSubLoop; | 
| explainOneScan( | 
| pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 | 
| ); | 
| -          if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ | 
| -            int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); | 
| +          /* This is the sub-WHERE clause body.  First skip over | 
| +          ** duplicate rows from prior sub-WHERE clauses, and record the | 
| +          ** rowid (or PRIMARY KEY) for the current row so that the same | 
| +          ** row will be skipped in subsequent sub-WHERE clauses. | 
| +          */ | 
| +          if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ | 
| int r; | 
| -            r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, | 
| -                                         regRowid); | 
| -            sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, | 
| -                                 sqlite3VdbeCurrentAddr(v)+2, r, iSet); | 
| +            int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); | 
| +            if( HasRowid(pTab) ){ | 
| +              r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); | 
| +              j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet); | 
| +              VdbeCoverage(v); | 
| +            }else{ | 
| +              Index *pPk = sqlite3PrimaryKeyIndex(pTab); | 
| +              int nPk = pPk->nKeyCol; | 
| +              int iPk; | 
| + | 
| +              /* Read the PK into an array of temp registers. */ | 
| +              r = sqlite3GetTempRange(pParse, nPk); | 
| +              for(iPk=0; iPk<nPk; iPk++){ | 
| +                int iCol = pPk->aiColumn[iPk]; | 
| +                sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur, r+iPk, 0); | 
| +              } | 
| + | 
| +              /* Check if the temp table already contains this key. If so, | 
| +              ** the row has already been included in the result set and | 
| +              ** can be ignored (by jumping past the Gosub below). Otherwise, | 
| +              ** insert the key into the temp table and proceed with processing | 
| +              ** the row. | 
| +              ** | 
| +              ** Use some of the same optimizations as OP_RowSetTest: If iSet | 
| +              ** is zero, assume that the key cannot already be present in | 
| +              ** the temp table. And if iSet is -1, assume that there is no | 
| +              ** need to insert the key into the temp table, as it will never | 
| +              ** be tested for.  */ | 
| +              if( iSet ){ | 
| +                j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); | 
| +                VdbeCoverage(v); | 
| +              } | 
| +              if( iSet>=0 ){ | 
| +                sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); | 
| +                sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); | 
| +                if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); | 
| +              } | 
| + | 
| +              /* Release the array of temp registers */ | 
| +              sqlite3ReleaseTempRange(pParse, r, nPk); | 
| +            } | 
| +          } | 
| + | 
| +          /* Invoke the main loop body as a subroutine */ | 
| +          sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); | 
| + | 
| +          /* Jump here (skipping the main loop body subroutine) if the | 
| +          ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ | 
| +          if( j1 ) sqlite3VdbeJumpHere(v, j1); | 
| + | 
| +          /* The pSubWInfo->untestedTerms flag means that this OR term | 
| +          ** contained one or more AND term from a notReady table.  The | 
| +          ** terms from the notReady table could not be tested and will | 
| +          ** need to be tested later. | 
| +          */ | 
| +          if( pSubWInfo->untestedTerms ) untestedTerms = 1; | 
| + | 
| +          /* If all of the OR-connected terms are optimized using the same | 
| +          ** index, and the index is opened using the same cursor number | 
| +          ** by each call to sqlite3WhereBegin() made by this loop, it may | 
| +          ** be possible to use that index as a covering index. | 
| +          ** | 
| +          ** If the call to sqlite3WhereBegin() above resulted in a scan that | 
| +          ** uses an index, and this is either the first OR-connected term | 
| +          ** processed or the index is the same as that used by all previous | 
| +          ** terms, set pCov to the candidate covering index. Otherwise, set | 
| +          ** pCov to NULL to indicate that no candidate covering index will | 
| +          ** be available. | 
| +          */ | 
| +          pSubLoop = pSubWInfo->a[0].pWLoop; | 
| +          assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); | 
| +          if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 | 
| +           && (ii==0 || pSubLoop->u.btree.pIndex==pCov) | 
| +           && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) | 
| +          ){ | 
| +            assert( pSubWInfo->a[0].iIdxCur==iCovCur ); | 
| +            pCov = pSubLoop->u.btree.pIndex; | 
| +            wctrlFlags |= WHERE_REOPEN_IDX; | 
| +          }else{ | 
| +            pCov = 0; | 
| +          } | 
| + | 
| +          /* Finish the loop through table entries that match term pOrTerm. */ | 
| +          sqlite3WhereEnd(pSubWInfo); | 
| +        } | 
| +      } | 
| +    } | 
| +    pLevel->u.pCovidx = pCov; | 
| +    if( pCov ) pLevel->iIdxCur = iCovCur; | 
| +    if( pAndExpr ){ | 
| +      pAndExpr->pLeft = 0; | 
| +      sqlite3ExprDelete(db, pAndExpr); | 
| +    } | 
| +    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); | 
| +    sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); | 
| +    sqlite3VdbeResolveLabel(v, iLoopBody); | 
| + | 
| +    if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); | 
| +    if( !untestedTerms ) disableTerm(pLevel, pTerm); | 
| +  }else | 
| +#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ | 
| + | 
| +  { | 
| +    /* Case 6:  There is no usable index.  We must do a complete | 
| +    **          scan of the entire table. | 
| +    */ | 
| +    static const u8 aStep[] = { OP_Next, OP_Prev }; | 
| +    static const u8 aStart[] = { OP_Rewind, OP_Last }; | 
| +    assert( bRev==0 || bRev==1 ); | 
| +    if( pTabItem->isRecursive ){ | 
| +      /* Tables marked isRecursive have only a single row that is stored in | 
| +      ** a pseudo-cursor.  No need to Rewind or Next such cursors. */ | 
| +      pLevel->op = OP_Noop; | 
| +    }else{ | 
| +      pLevel->op = aStep[bRev]; | 
| +      pLevel->p1 = iCur; | 
| +      pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); | 
| +      VdbeCoverageIf(v, bRev==0); | 
| +      VdbeCoverageIf(v, bRev!=0); | 
| +      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; | 
| +    } | 
| +  } | 
| + | 
| +  /* Insert code to test every subexpression that can be completely | 
| +  ** computed using the current set of tables. | 
| +  */ | 
| +  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ | 
| +    Expr *pE; | 
| +    testcase( pTerm->wtFlags & TERM_VIRTUAL ); | 
| +    testcase( pTerm->wtFlags & TERM_CODED ); | 
| +    if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; | 
| +    if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ | 
| +      testcase( pWInfo->untestedTerms==0 | 
| +               && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); | 
| +      pWInfo->untestedTerms = 1; | 
| +      continue; | 
| +    } | 
| +    pE = pTerm->pExpr; | 
| +    assert( pE!=0 ); | 
| +    if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ | 
| +      continue; | 
| +    } | 
| +    sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); | 
| +    pTerm->wtFlags |= TERM_CODED; | 
| +  } | 
| + | 
| +  /* Insert code to test for implied constraints based on transitivity | 
| +  ** of the "==" operator. | 
| +  ** | 
| +  ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" | 
| +  ** and we are coding the t1 loop and the t2 loop has not yet coded, | 
| +  ** then we cannot use the "t1.a=t2.b" constraint, but we can code | 
| +  ** the implied "t1.a=123" constraint. | 
| +  */ | 
| +  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ | 
| +    Expr *pE, *pEAlt; | 
| +    WhereTerm *pAlt; | 
| +    if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; | 
| +    if( pTerm->eOperator!=(WO_EQUIV|WO_EQ) ) continue; | 
| +    if( pTerm->leftCursor!=iCur ) continue; | 
| +    if( pLevel->iLeftJoin ) continue; | 
| +    pE = pTerm->pExpr; | 
| +    assert( !ExprHasProperty(pE, EP_FromJoin) ); | 
| +    assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); | 
| +    pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0); | 
| +    if( pAlt==0 ) continue; | 
| +    if( pAlt->wtFlags & (TERM_CODED) ) continue; | 
| +    testcase( pAlt->eOperator & WO_EQ ); | 
| +    testcase( pAlt->eOperator & WO_IN ); | 
| +    VdbeModuleComment((v, "begin transitive constraint")); | 
| +    pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); | 
| +    if( pEAlt ){ | 
| +      *pEAlt = *pAlt->pExpr; | 
| +      pEAlt->pLeft = pE->pLeft; | 
| +      sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); | 
| +      sqlite3StackFree(db, pEAlt); | 
| +    } | 
| +  } | 
| + | 
| +  /* For a LEFT OUTER JOIN, generate code that will record the fact that | 
| +  ** at least one row of the right table has matched the left table. | 
| +  */ | 
| +  if( pLevel->iLeftJoin ){ | 
| +    pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); | 
| +    sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); | 
| +    VdbeComment((v, "record LEFT JOIN hit")); | 
| +    sqlite3ExprCacheClear(pParse); | 
| +    for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ | 
| +      testcase( pTerm->wtFlags & TERM_VIRTUAL ); | 
| +      testcase( pTerm->wtFlags & TERM_CODED ); | 
| +      if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; | 
| +      if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ | 
| +        assert( pWInfo->untestedTerms ); | 
| +        continue; | 
| +      } | 
| +      assert( pTerm->pExpr ); | 
| +      sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); | 
| +      pTerm->wtFlags |= TERM_CODED; | 
| +    } | 
| +  } | 
| + | 
| +  return pLevel->notReady; | 
| +} | 
| + | 
| +#ifdef WHERETRACE_ENABLED | 
| +/* | 
| +** Print the content of a WhereTerm object | 
| +*/ | 
| +static void whereTermPrint(WhereTerm *pTerm, int iTerm){ | 
| +  if( pTerm==0 ){ | 
| +    sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); | 
| +  }else{ | 
| +    char zType[4]; | 
| +    memcpy(zType, "...", 4); | 
| +    if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; | 
| +    if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E'; | 
| +    if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; | 
| +    sqlite3DebugPrintf("TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x\n", | 
| +                       iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb, | 
| +                       pTerm->eOperator); | 
| +    sqlite3TreeViewExpr(0, pTerm->pExpr, 0); | 
| +  } | 
| +} | 
| +#endif | 
| + | 
| +#ifdef WHERETRACE_ENABLED | 
| +/* | 
| +** Print a WhereLoop object for debugging purposes | 
| +*/ | 
| +static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ | 
| +  WhereInfo *pWInfo = pWC->pWInfo; | 
| +  int nb = 1+(pWInfo->pTabList->nSrc+7)/8; | 
| +  struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; | 
| +  Table *pTab = pItem->pTab; | 
| +  sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, | 
| +                     p->iTab, nb, p->maskSelf, nb, p->prereq); | 
| +  sqlite3DebugPrintf(" %12s", | 
| +                     pItem->zAlias ? pItem->zAlias : pTab->zName); | 
| +  if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ | 
| +    const char *zName; | 
| +    if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ | 
| +      if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ | 
| +        int i = sqlite3Strlen30(zName) - 1; | 
| +        while( zName[i]!='_' ) i--; | 
| +        zName += i; | 
| +      } | 
| +      sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); | 
| +    }else{ | 
| +      sqlite3DebugPrintf("%20s",""); | 
| +    } | 
| +  }else{ | 
| +    char *z; | 
| +    if( p->u.vtab.idxStr ){ | 
| +      z = sqlite3_mprintf("(%d,\"%s\",%x)", | 
| +                p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); | 
| +    }else{ | 
| +      z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); | 
| +    } | 
| +    sqlite3DebugPrintf(" %-19s", z); | 
| +    sqlite3_free(z); | 
| +  } | 
| +  if( p->wsFlags & WHERE_SKIPSCAN ){ | 
| +    sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->u.btree.nSkip); | 
| +  }else{ | 
| +    sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); | 
| +  } | 
| +  sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); | 
| +  if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ | 
| +    int i; | 
| +    for(i=0; i<p->nLTerm; i++){ | 
| +      whereTermPrint(p->aLTerm[i], i); | 
| +    } | 
| +  } | 
| +} | 
| +#endif | 
| + | 
| +/* | 
| +** Convert bulk memory into a valid WhereLoop that can be passed | 
| +** to whereLoopClear harmlessly. | 
| +*/ | 
| +static void whereLoopInit(WhereLoop *p){ | 
| +  p->aLTerm = p->aLTermSpace; | 
| +  p->nLTerm = 0; | 
| +  p->nLSlot = ArraySize(p->aLTermSpace); | 
| +  p->wsFlags = 0; | 
| +} | 
| + | 
| +/* | 
| +** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact. | 
| +*/ | 
| +static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ | 
| +  if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ | 
| +    if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ | 
| +      sqlite3_free(p->u.vtab.idxStr); | 
| +      p->u.vtab.needFree = 0; | 
| +      p->u.vtab.idxStr = 0; | 
| +    }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ | 
| +      sqlite3DbFree(db, p->u.btree.pIndex->zColAff); | 
| +      sqlite3KeyInfoUnref(p->u.btree.pIndex->pKeyInfo); | 
| +      sqlite3DbFree(db, p->u.btree.pIndex); | 
| +      p->u.btree.pIndex = 0; | 
| +    } | 
| +  } | 
| +} | 
| + | 
| +/* | 
| +** Deallocate internal memory used by a WhereLoop object | 
| +*/ | 
| +static void whereLoopClear(sqlite3 *db, WhereLoop *p){ | 
| +  if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); | 
| +  whereLoopClearUnion(db, p); | 
| +  whereLoopInit(p); | 
| +} | 
| + | 
| +/* | 
| +** Increase the memory allocation for pLoop->aLTerm[] to be at least n. | 
| +*/ | 
| +static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ | 
| +  WhereTerm **paNew; | 
| +  if( p->nLSlot>=n ) return SQLITE_OK; | 
| +  n = (n+7)&~7; | 
| +  paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n); | 
| +  if( paNew==0 ) return SQLITE_NOMEM; | 
| +  memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); | 
| +  if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); | 
| +  p->aLTerm = paNew; | 
| +  p->nLSlot = n; | 
| +  return SQLITE_OK; | 
| +} | 
| + | 
| +/* | 
| +** Transfer content from the second pLoop into the first. | 
| +*/ | 
| +static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ | 
| +  whereLoopClearUnion(db, pTo); | 
| +  if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ | 
| +    memset(&pTo->u, 0, sizeof(pTo->u)); | 
| +    return SQLITE_NOMEM; | 
| +  } | 
| +  memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); | 
| +  memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); | 
| +  if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ | 
| +    pFrom->u.vtab.needFree = 0; | 
| +  }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ | 
| +    pFrom->u.btree.pIndex = 0; | 
| +  } | 
| +  return SQLITE_OK; | 
| +} | 
| + | 
| +/* | 
| +** Delete a WhereLoop object | 
| +*/ | 
| +static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ | 
| +  whereLoopClear(db, p); | 
| +  sqlite3DbFree(db, p); | 
| +} | 
| + | 
| +/* | 
| +** Free a WhereInfo structure | 
| +*/ | 
| +static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ | 
| +  if( ALWAYS(pWInfo) ){ | 
| +    whereClauseClear(&pWInfo->sWC); | 
| +    while( pWInfo->pLoops ){ | 
| +      WhereLoop *p = pWInfo->pLoops; | 
| +      pWInfo->pLoops = p->pNextLoop; | 
| +      whereLoopDelete(db, p); | 
| +    } | 
| +    sqlite3DbFree(db, pWInfo); | 
| +  } | 
| +} | 
| + | 
| +/* | 
| +** Return TRUE if both of the following are true: | 
| +** | 
| +**   (1)  X has the same or lower cost that Y | 
| +**   (2)  X is a proper subset of Y | 
| +** | 
| +** By "proper subset" we mean that X uses fewer WHERE clause terms | 
| +** than Y and that every WHERE clause term used by X is also used | 
| +** by Y. | 
| +** | 
| +** If X is a proper subset of Y then Y is a better choice and ought | 
| +** to have a lower cost.  This routine returns TRUE when that cost | 
| +** relationship is inverted and needs to be adjusted. | 
| +*/ | 
| +static int whereLoopCheaperProperSubset( | 
| +  const WhereLoop *pX,       /* First WhereLoop to compare */ | 
| +  const WhereLoop *pY        /* Compare against this WhereLoop */ | 
| +){ | 
| +  int i, j; | 
| +  if( pX->nLTerm >= pY->nLTerm ) return 0; /* X is not a subset of Y */ | 
| +  if( pX->rRun >= pY->rRun ){ | 
| +    if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */ | 
| +    if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */ | 
| +  } | 
| +  for(i=pX->nLTerm-1; i>=0; i--){ | 
| +    for(j=pY->nLTerm-1; j>=0; j--){ | 
| +      if( pY->aLTerm[j]==pX->aLTerm[i] ) break; | 
| +    } | 
| +    if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */ | 
| +  } | 
| +  return 1;  /* All conditions meet */ | 
| +} | 
| + | 
| +/* | 
| +** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so | 
| +** that: | 
| +** | 
| +**   (1) pTemplate costs less than any other WhereLoops that are a proper | 
| +**       subset of pTemplate | 
| +** | 
| +**   (2) pTemplate costs more than any other WhereLoops for which pTemplate | 
| +**       is a proper subset. | 
| +** | 
| +** To say "WhereLoop X is a proper subset of Y" means that X uses fewer | 
| +** WHERE clause terms than Y and that every WHERE clause term used by X is | 
| +** also used by Y. | 
| +** | 
| +** This adjustment is omitted for SKIPSCAN loops.  In a SKIPSCAN loop, the | 
| +** WhereLoop.nLTerm field is not an accurate measure of the number of WHERE | 
| +** clause terms covered, since some of the first nLTerm entries in aLTerm[] | 
| +** will be NULL (because they are skipped).  That makes it more difficult | 
| +** to compare the loops.  We could add extra code to do the comparison, and | 
| +** perhaps we will someday.  But SKIPSCAN is sufficiently uncommon, and this | 
| +** adjustment is sufficient minor, that it is very difficult to construct | 
| +** a test case where the extra code would improve the query plan.  Better | 
| +** to avoid the added complexity and just omit cost adjustments to SKIPSCAN | 
| +** loops. | 
| +*/ | 
| +static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ | 
| +  if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; | 
| +  if( (pTemplate->wsFlags & WHERE_SKIPSCAN)!=0 ) return; | 
| +  for(; p; p=p->pNextLoop){ | 
| +    if( p->iTab!=pTemplate->iTab ) continue; | 
| +    if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; | 
| +    if( (p->wsFlags & WHERE_SKIPSCAN)!=0 ) continue; | 
| +    if( whereLoopCheaperProperSubset(p, pTemplate) ){ | 
| +      /* Adjust pTemplate cost downward so that it is cheaper than its | 
| +      ** subset p */ | 
| +      pTemplate->rRun = p->rRun; | 
| +      pTemplate->nOut = p->nOut - 1; | 
| +    }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ | 
| +      /* Adjust pTemplate cost upward so that it is costlier than p since | 
| +      ** pTemplate is a proper subset of p */ | 
| +      pTemplate->rRun = p->rRun; | 
| +      pTemplate->nOut = p->nOut + 1; | 
| +    } | 
| +  } | 
| +} | 
| + | 
| +/* | 
| +** Search the list of WhereLoops in *ppPrev looking for one that can be | 
| +** supplanted by pTemplate. | 
| +** | 
| +** Return NULL if the WhereLoop list contains an entry that can supplant | 
| +** pTemplate, in other words if pTemplate does not belong on the list. | 
| +** | 
| +** If pX is a WhereLoop that pTemplate can supplant, then return the | 
| +** link that points to pX. | 
| +** | 
| +** If pTemplate cannot supplant any existing element of the list but needs | 
| +** to be added to the list, then return a pointer to the tail of the list. | 
| +*/ | 
| +static WhereLoop **whereLoopFindLesser( | 
| +  WhereLoop **ppPrev, | 
| +  const WhereLoop *pTemplate | 
| +){ | 
| +  WhereLoop *p; | 
| +  for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ | 
| +    if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ | 
| +      /* If either the iTab or iSortIdx values for two WhereLoop are different | 
| +      ** then those WhereLoops need to be considered separately.  Neither is | 
| +      ** a candidate to replace the other. */ | 
| +      continue; | 
| +    } | 
| +    /* In the current implementation, the rSetup value is either zero | 
| +    ** or the cost of building an automatic index (NlogN) and the NlogN | 
| +    ** is the same for compatible WhereLoops. */ | 
| +    assert( p->rSetup==0 || pTemplate->rSetup==0 | 
| +                 || p->rSetup==pTemplate->rSetup ); | 
| + | 
| +    /* whereLoopAddBtree() always generates and inserts the automatic index | 
| +    ** case first.  Hence compatible candidate WhereLoops never have a larger | 
| +    ** rSetup. Call this SETUP-INVARIANT */ | 
| +    assert( p->rSetup>=pTemplate->rSetup ); | 
| + | 
| +    /* Any loop using an appliation-defined index (or PRIMARY KEY or | 
| +    ** UNIQUE constraint) with one or more == constraints is better | 
| +    ** than an automatic index. */ | 
| +    if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 | 
| +     && (pTemplate->wsFlags & WHERE_INDEXED)!=0 | 
| +     && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 | 
| +     && (p->prereq & pTemplate->prereq)==pTemplate->prereq | 
| +    ){ | 
| +      break; | 
| +    } | 
| + | 
| +    /* If existing WhereLoop p is better than pTemplate, pTemplate can be | 
| +    ** discarded.  WhereLoop p is better if: | 
| +    **   (1)  p has no more dependencies than pTemplate, and | 
| +    **   (2)  p has an equal or lower cost than pTemplate | 
| +    */ | 
| +    if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */ | 
| +     && p->rSetup<=pTemplate->rSetup                  /* (2a) */ | 
| +     && p->rRun<=pTemplate->rRun                      /* (2b) */ | 
| +     && p->nOut<=pTemplate->nOut                      /* (2c) */ | 
| +    ){ | 
| +      return 0;  /* Discard pTemplate */ | 
| +    } | 
| + | 
| +    /* If pTemplate is always better than p, then cause p to be overwritten | 
| +    ** with pTemplate.  pTemplate is better than p if: | 
| +    **   (1)  pTemplate has no more dependences than p, and | 
| +    **   (2)  pTemplate has an equal or lower cost than p. | 
| +    */ | 
| +    if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */ | 
| +     && p->rRun>=pTemplate->rRun                             /* (2a) */ | 
| +     && p->nOut>=pTemplate->nOut                             /* (2b) */ | 
| +    ){ | 
| +      assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ | 
| +      break;   /* Cause p to be overwritten by pTemplate */ | 
| +    } | 
| +  } | 
| +  return ppPrev; | 
| +} | 
| + | 
| +/* | 
| +** Insert or replace a WhereLoop entry using the template supplied. | 
| +** | 
| +** An existing WhereLoop entry might be overwritten if the new template | 
| +** is better and has fewer dependencies.  Or the template will be ignored | 
| +** and no insert will occur if an existing WhereLoop is faster and has | 
| +** fewer dependencies than the template.  Otherwise a new WhereLoop is | 
| +** added based on the template. | 
| +** | 
| +** If pBuilder->pOrSet is not NULL then we care about only the | 
| +** prerequisites and rRun and nOut costs of the N best loops.  That | 
| +** information is gathered in the pBuilder->pOrSet object.  This special | 
| +** processing mode is used only for OR clause processing. | 
| +** | 
| +** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we | 
| +** still might overwrite similar loops with the new template if the | 
| +** new template is better.  Loops may be overwritten if the following | 
| +** conditions are met: | 
| +** | 
| +**    (1)  They have the same iTab. | 
| +**    (2)  They have the same iSortIdx. | 
| +**    (3)  The template has same or fewer dependencies than the current loop | 
| +**    (4)  The template has the same or lower cost than the current loop | 
| +*/ | 
| +static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ | 
| +  WhereLoop **ppPrev, *p; | 
| +  WhereInfo *pWInfo = pBuilder->pWInfo; | 
| +  sqlite3 *db = pWInfo->pParse->db; | 
| + | 
| +  /* If pBuilder->pOrSet is defined, then only keep track of the costs | 
| +  ** and prereqs. | 
| +  */ | 
| +  if( pBuilder->pOrSet!=0 ){ | 
| +#if WHERETRACE_ENABLED | 
| +    u16 n = pBuilder->pOrSet->n; | 
| +    int x = | 
| +#endif | 
| +    whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, | 
| +                                    pTemplate->nOut); | 
| +#if WHERETRACE_ENABLED /* 0x8 */ | 
| +    if( sqlite3WhereTrace & 0x8 ){ | 
| +      sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n); | 
| +      whereLoopPrint(pTemplate, pBuilder->pWC); | 
| +    } | 
| +#endif | 
| +    return SQLITE_OK; | 
| +  } | 
| + | 
| +  /* Look for an existing WhereLoop to replace with pTemplate | 
| +  */ | 
| +  whereLoopAdjustCost(pWInfo->pLoops, pTemplate); | 
| +  ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); | 
| + | 
| +  if( ppPrev==0 ){ | 
| +    /* There already exists a WhereLoop on the list that is better | 
| +    ** than pTemplate, so just ignore pTemplate */ | 
| +#if WHERETRACE_ENABLED /* 0x8 */ | 
| +    if( sqlite3WhereTrace & 0x8 ){ | 
| +      sqlite3DebugPrintf("   skip: "); | 
| +      whereLoopPrint(pTemplate, pBuilder->pWC); | 
| +    } | 
| +#endif | 
| +    return SQLITE_OK; | 
| +  }else{ | 
| +    p = *ppPrev; | 
| +  } | 
| + | 
| +  /* If we reach this point it means that either p[] should be overwritten | 
| +  ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new | 
| +  ** WhereLoop and insert it. | 
| +  */ | 
| +#if WHERETRACE_ENABLED /* 0x8 */ | 
| +  if( sqlite3WhereTrace & 0x8 ){ | 
| +    if( p!=0 ){ | 
| +      sqlite3DebugPrintf("replace: "); | 
| +      whereLoopPrint(p, pBuilder->pWC); | 
| +    } | 
| +    sqlite3DebugPrintf("    add: "); | 
| +    whereLoopPrint(pTemplate, pBuilder->pWC); | 
| +  } | 
| +#endif | 
| +  if( p==0 ){ | 
| +    /* Allocate a new WhereLoop to add to the end of the list */ | 
| +    *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop)); | 
| +    if( p==0 ) return SQLITE_NOMEM; | 
| +    whereLoopInit(p); | 
| +    p->pNextLoop = 0; | 
| +  }else{ | 
| +    /* We will be overwriting WhereLoop p[].  But before we do, first | 
| +    ** go through the rest of the list and delete any other entries besides | 
| +    ** p[] that are also supplated by pTemplate */ | 
| +    WhereLoop **ppTail = &p->pNextLoop; | 
| +    WhereLoop *pToDel; | 
| +    while( *ppTail ){ | 
| +      ppTail = whereLoopFindLesser(ppTail, pTemplate); | 
| +      if( ppTail==0 ) break; | 
| +      pToDel = *ppTail; | 
| +      if( pToDel==0 ) break; | 
| +      *ppTail = pToDel->pNextLoop; | 
| +#if WHERETRACE_ENABLED /* 0x8 */ | 
| +      if( sqlite3WhereTrace & 0x8 ){ | 
| +        sqlite3DebugPrintf(" delete: "); | 
| +        whereLoopPrint(pToDel, pBuilder->pWC); | 
| +      } | 
| +#endif | 
| +      whereLoopDelete(db, pToDel); | 
| +    } | 
| +  } | 
| +  whereLoopXfer(db, p, pTemplate); | 
| +  if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ | 
| +    Index *pIndex = p->u.btree.pIndex; | 
| +    if( pIndex && pIndex->tnum==0 ){ | 
| +      p->u.btree.pIndex = 0; | 
| +    } | 
| +  } | 
| +  return SQLITE_OK; | 
| +} | 
| + | 
| +/* | 
| +** Adjust the WhereLoop.nOut value downward to account for terms of the | 
| +** WHERE clause that reference the loop but which are not used by an | 
| +** index. | 
| +** | 
| +** In the current implementation, the first extra WHERE clause term reduces | 
| +** the number of output rows by a factor of 10 and each additional term | 
| +** reduces the number of output rows by sqrt(2). | 
| +*/ | 
| +static void whereLoopOutputAdjust( | 
| +  WhereClause *pWC,      /* The WHERE clause */ | 
| +  WhereLoop *pLoop,      /* The loop to adjust downward */ | 
| +  LogEst nRow            /* Number of rows in the entire table */ | 
| +){ | 
| +  WhereTerm *pTerm, *pX; | 
| +  Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); | 
| +  int i, j; | 
| +  int nEq = 0;    /* Number of = constraints not within likely()/unlikely() */ | 
| + | 
| +  for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ | 
| +    if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; | 
| +    if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; | 
| +    if( (pTerm->prereqAll & notAllowed)!=0 ) continue; | 
| +    for(j=pLoop->nLTerm-1; j>=0; j--){ | 
| +      pX = pLoop->aLTerm[j]; | 
| +      if( pX==0 ) continue; | 
| +      if( pX==pTerm ) break; | 
| +      if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; | 
| +    } | 
| +    if( j<0 ){ | 
| +      if( pTerm->truthProb<=0 ){ | 
| +        pLoop->nOut += pTerm->truthProb; | 
| +      }else{ | 
| +        pLoop->nOut--; | 
| +        if( pTerm->eOperator&WO_EQ ) nEq++; | 
| +      } | 
| +    } | 
| +  } | 
| +  /* TUNING:  If there is at least one equality constraint in the WHERE | 
| +  ** clause that does not have a likelihood() explicitly assigned to it | 
| +  ** then do not let the estimated number of output rows exceed half | 
| +  ** the number of rows in the table. */ | 
| +  if( nEq && pLoop->nOut>nRow-10 ){ | 
| +    pLoop->nOut = nRow - 10; | 
| +  } | 
| +} | 
| + | 
| +/* | 
| +** Adjust the cost C by the costMult facter T.  This only occurs if | 
| +** compiled with -DSQLITE_ENABLE_COSTMULT | 
| +*/ | 
| +#ifdef SQLITE_ENABLE_COSTMULT | 
| +# define ApplyCostMultiplier(C,T)  C += T | 
| +#else | 
| +# define ApplyCostMultiplier(C,T) | 
| +#endif | 
| + | 
| +/* | 
| +** We have so far matched pBuilder->pNew->u.btree.nEq terms of the | 
| +** index pIndex. Try to match one more. | 
| +** | 
| +** When this function is called, pBuilder->pNew->nOut contains the | 
| +** number of rows expected to be visited by filtering using the nEq | 
| +** terms only. If it is modified, this value is restored before this | 
| +** function returns. | 
| +** | 
| +** If pProbe->tnum==0, that means pIndex is a fake index used for the | 
| +** INTEGER PRIMARY KEY. | 
| +*/ | 
| +static int whereLoopAddBtreeIndex( | 
| +  WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */ | 
| +  struct SrcList_item *pSrc,      /* FROM clause term being analyzed */ | 
| +  Index *pProbe,                  /* An index on pSrc */ | 
| +  LogEst nInMul                   /* log(Number of iterations due to IN) */ | 
| +){ | 
| +  WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */ | 
| +  Parse *pParse = pWInfo->pParse;        /* Parsing context */ | 
| +  sqlite3 *db = pParse->db;       /* Database connection malloc context */ | 
| +  WhereLoop *pNew;                /* Template WhereLoop under construction */ | 
| +  WhereTerm *pTerm;               /* A WhereTerm under consideration */ | 
| +  int opMask;                     /* Valid operators for constraints */ | 
| +  WhereScan scan;                 /* Iterator for WHERE terms */ | 
| +  Bitmask saved_prereq;           /* Original value of pNew->prereq */ | 
| +  u16 saved_nLTerm;               /* Original value of pNew->nLTerm */ | 
| +  u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */ | 
| +  u16 saved_nSkip;                /* Original value of pNew->u.btree.nSkip */ | 
| +  u32 saved_wsFlags;              /* Original value of pNew->wsFlags */ | 
| +  LogEst saved_nOut;              /* Original value of pNew->nOut */ | 
| +  int iCol;                       /* Index of the column in the table */ | 
| +  int rc = SQLITE_OK;             /* Return code */ | 
| +  LogEst rSize;                   /* Number of rows in the table */ | 
| +  LogEst rLogSize;                /* Logarithm of table size */ | 
| +  WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ | 
| + | 
| +  pNew = pBuilder->pNew; | 
| +  if( db->mallocFailed ) return SQLITE_NOMEM; | 
| + | 
| +  assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); | 
| +  assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); | 
| +  if( pNew->wsFlags & WHERE_BTM_LIMIT ){ | 
| +    opMask = WO_LT|WO_LE; | 
| +  }else if( pProbe->tnum<=0 || (pSrc->jointype & JT_LEFT)!=0 ){ | 
| +    opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE; | 
| +  }else{ | 
| +    opMask = WO_EQ|WO_IN|WO_ISNULL|WO_GT|WO_GE|WO_LT|WO_LE; | 
| +  } | 
| +  if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); | 
| + | 
| +  assert( pNew->u.btree.nEq<pProbe->nColumn ); | 
| +  iCol = pProbe->aiColumn[pNew->u.btree.nEq]; | 
| + | 
| +  pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol, | 
| +                        opMask, pProbe); | 
| +  saved_nEq = pNew->u.btree.nEq; | 
| +  saved_nSkip = pNew->u.btree.nSkip; | 
| +  saved_nLTerm = pNew->nLTerm; | 
| +  saved_wsFlags = pNew->wsFlags; | 
| +  saved_prereq = pNew->prereq; | 
| +  saved_nOut = pNew->nOut; | 
| +  pNew->rSetup = 0; | 
| +  rSize = pProbe->aiRowLogEst[0]; | 
| +  rLogSize = estLog(rSize); | 
| + | 
| +  /* Consider using a skip-scan if there are no WHERE clause constraints | 
| +  ** available for the left-most terms of the index, and if the average | 
| +  ** number of repeats in the left-most terms is at least 18. | 
| +  ** | 
| +  ** The magic number 18 is selected on the basis that scanning 17 rows | 
| +  ** is almost always quicker than an index seek (even though if the index | 
| +  ** contains fewer than 2^17 rows we assume otherwise in other parts of | 
| +  ** the code). And, even if it is not, it should not be too much slower. | 
| +  ** On the other hand, the extra seeks could end up being significantly | 
| +  ** more expensive.  */ | 
| +  assert( 42==sqlite3LogEst(18) ); | 
| +  if( saved_nEq==saved_nSkip | 
| +   && saved_nEq+1<pProbe->nKeyCol | 
| +   && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */ | 
| +   && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK | 
| +  ){ | 
| +    LogEst nIter; | 
| +    pNew->u.btree.nEq++; | 
| +    pNew->u.btree.nSkip++; | 
| +    pNew->aLTerm[pNew->nLTerm++] = 0; | 
| +    pNew->wsFlags |= WHERE_SKIPSCAN; | 
| +    nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; | 
| +    if( pTerm ){ | 
| +      /* TUNING:  When estimating skip-scan for a term that is also indexable, | 
| +      ** multiply the cost of the skip-scan by 2.0, to make it a little less | 
| +      ** desirable than the regular index lookup. */ | 
| +      nIter += 10;  assert( 10==sqlite3LogEst(2) ); | 
| +    } | 
| +    pNew->nOut -= nIter; | 
| +    /* TUNING:  Because uncertainties in the estimates for skip-scan queries, | 
| +    ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ | 
| +    nIter += 5; | 
| +    whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); | 
| +    pNew->nOut = saved_nOut; | 
| +    pNew->u.btree.nEq = saved_nEq; | 
| +    pNew->u.btree.nSkip = saved_nSkip; | 
| +  } | 
| +  for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ | 
| +    u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */ | 
| +    LogEst rCostIdx; | 
| +    LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */ | 
| +    int nIn = 0; | 
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | 
| +    int nRecValid = pBuilder->nRecValid; | 
| +#endif | 
| +    if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) | 
| +     && (iCol<0 || pSrc->pTab->aCol[iCol].notNull) | 
| +    ){ | 
| +      continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ | 
| +    } | 
| +    if( pTerm->prereqRight & pNew->maskSelf ) continue; | 
| + | 
| +    pNew->wsFlags = saved_wsFlags; | 
| +    pNew->u.btree.nEq = saved_nEq; | 
| +    pNew->nLTerm = saved_nLTerm; | 
| +    if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ | 
| +    pNew->aLTerm[pNew->nLTerm++] = pTerm; | 
| +    pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; | 
| + | 
| +    assert( nInMul==0 | 
| +        || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 | 
| +        || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 | 
| +        || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 | 
| +    ); | 
| + | 
| +    if( eOp & WO_IN ){ | 
| +      Expr *pExpr = pTerm->pExpr; | 
| +      pNew->wsFlags |= WHERE_COLUMN_IN; | 
| +      if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | 
| +        /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */ | 
| +        nIn = 46;  assert( 46==sqlite3LogEst(25) ); | 
| +      }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ | 
| +        /* "x IN (value, value, ...)" */ | 
| +        nIn = sqlite3LogEst(pExpr->x.pList->nExpr); | 
| +      } | 
| +      assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser | 
| +                        ** changes "x IN (?)" into "x=?". */ | 
| + | 
| +    }else if( eOp & (WO_EQ) ){ | 
| +      pNew->wsFlags |= WHERE_COLUMN_EQ; | 
| +      if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){ | 
| +        if( iCol>=0 && !IsUniqueIndex(pProbe) ){ | 
| +          pNew->wsFlags |= WHERE_UNQ_WANTED; | 
| +        }else{ | 
| +          pNew->wsFlags |= WHERE_ONEROW; | 
| +        } | 
| +      } | 
| +    }else if( eOp & WO_ISNULL ){ | 
| +      pNew->wsFlags |= WHERE_COLUMN_NULL; | 
| +    }else if( eOp & (WO_GT|WO_GE) ){ | 
| +      testcase( eOp & WO_GT ); | 
| +      testcase( eOp & WO_GE ); | 
| +      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; | 
| +      pBtm = pTerm; | 
| +      pTop = 0; | 
| +    }else{ | 
| +      assert( eOp & (WO_LT|WO_LE) ); | 
| +      testcase( eOp & WO_LT ); | 
| +      testcase( eOp & WO_LE ); | 
| +      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; | 
| +      pTop = pTerm; | 
| +      pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? | 
| +                     pNew->aLTerm[pNew->nLTerm-2] : 0; | 
| +    } | 
| + | 
| +    /* At this point pNew->nOut is set to the number of rows expected to | 
| +    ** be visited by the index scan before considering term pTerm, or the | 
| +    ** values of nIn and nInMul. In other words, assuming that all | 
| +    ** "x IN(...)" terms are replaced with "x = ?". This block updates | 
| +    ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */ | 
| +    assert( pNew->nOut==saved_nOut ); | 
| +    if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ | 
| +      /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 | 
| +      ** data, using some other estimate.  */ | 
| +      whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); | 
| +    }else{ | 
| +      int nEq = ++pNew->u.btree.nEq; | 
| +      assert( eOp & (WO_ISNULL|WO_EQ|WO_IN) ); | 
| + | 
| +      assert( pNew->nOut==saved_nOut ); | 
| +      if( pTerm->truthProb<=0 && iCol>=0 ){ | 
| +        assert( (eOp & WO_IN) || nIn==0 ); | 
| +        testcase( eOp & WO_IN ); | 
| +        pNew->nOut += pTerm->truthProb; | 
| +        pNew->nOut -= nIn; | 
| +      }else{ | 
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | 
| +        tRowcnt nOut = 0; | 
| +        if( nInMul==0 | 
| +         && pProbe->nSample | 
| +         && pNew->u.btree.nEq<=pProbe->nSampleCol | 
| +         && OptimizationEnabled(db, SQLITE_Stat3) | 
| +         && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) | 
| +        ){ | 
| +          Expr *pExpr = pTerm->pExpr; | 
| +          if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){ | 
| +            testcase( eOp & WO_EQ ); | 
| +            testcase( eOp & WO_ISNULL ); | 
| +            rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); | 
| +          }else{ | 
| +            rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); | 
| +          } | 
| +          if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; | 
| +          if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */ | 
| +          if( nOut ){ | 
| +            pNew->nOut = sqlite3LogEst(nOut); | 
| +            if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; | 
| +            pNew->nOut -= nIn; | 
| +          } | 
| +        } | 
| +        if( nOut==0 ) | 
| +#endif | 
| +        { | 
| +          pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); | 
| +          if( eOp & WO_ISNULL ){ | 
| +            /* TUNING: If there is no likelihood() value, assume that a | 
| +            ** "col IS NULL" expression matches twice as many rows | 
| +            ** as (col=?). */ | 
| +            pNew->nOut += 10; | 
| +          } | 
| +        } | 
| +      } | 
| +    } | 
| + | 
| +    /* Set rCostIdx to the cost of visiting selected rows in index. Add | 
| +    ** it to pNew->rRun, which is currently set to the cost of the index | 
| +    ** seek only. Then, if this is a non-covering index, add the cost of | 
| +    ** visiting the rows in the main table.  */ | 
| +    rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; | 
| +    pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); | 
| +    if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ | 
| +      pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); | 
| +    } | 
| +    ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); | 
| + | 
| +    nOutUnadjusted = pNew->nOut; | 
| +    pNew->rRun += nInMul + nIn; | 
| +    pNew->nOut += nInMul + nIn; | 
| +    whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); | 
| +    rc = whereLoopInsert(pBuilder, pNew); | 
| + | 
| +    if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ | 
| +      pNew->nOut = saved_nOut; | 
| +    }else{ | 
| +      pNew->nOut = nOutUnadjusted; | 
| +    } | 
| + | 
| +    if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 | 
| +     && pNew->u.btree.nEq<pProbe->nColumn | 
| +    ){ | 
| +      whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); | 
| +    } | 
| +    pNew->nOut = saved_nOut; | 
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | 
| +    pBuilder->nRecValid = nRecValid; | 
| +#endif | 
| +  } | 
| +  pNew->prereq = saved_prereq; | 
| +  pNew->u.btree.nEq = saved_nEq; | 
| +  pNew->u.btree.nSkip = saved_nSkip; | 
| +  pNew->wsFlags = saved_wsFlags; | 
| +  pNew->nOut = saved_nOut; | 
| +  pNew->nLTerm = saved_nLTerm; | 
| +  return rc; | 
| +} | 
| + | 
| +/* | 
| +** Return True if it is possible that pIndex might be useful in | 
| +** implementing the ORDER BY clause in pBuilder. | 
| +** | 
| +** Return False if pBuilder does not contain an ORDER BY clause or | 
| +** if there is no way for pIndex to be useful in implementing that | 
| +** ORDER BY clause. | 
| +*/ | 
| +static int indexMightHelpWithOrderBy( | 
| +  WhereLoopBuilder *pBuilder, | 
| +  Index *pIndex, | 
| +  int iCursor | 
| +){ | 
| +  ExprList *pOB; | 
| +  int ii, jj; | 
| + | 
| +  if( pIndex->bUnordered ) return 0; | 
| +  if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; | 
| +  for(ii=0; ii<pOB->nExpr; ii++){ | 
| +    Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); | 
| +    if( pExpr->op!=TK_COLUMN ) return 0; | 
| +    if( pExpr->iTable==iCursor ){ | 
| +      if( pExpr->iColumn<0 ) return 1; | 
| +      for(jj=0; jj<pIndex->nKeyCol; jj++){ | 
| +        if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; | 
| +      } | 
| +    } | 
| +  } | 
| +  return 0; | 
| +} | 
| + | 
| +/* | 
| +** Return a bitmask where 1s indicate that the corresponding column of | 
| +** the table is used by an index.  Only the first 63 columns are considered. | 
| +*/ | 
| +static Bitmask columnsInIndex(Index *pIdx){ | 
| +  Bitmask m = 0; | 
| +  int j; | 
| +  for(j=pIdx->nColumn-1; j>=0; j--){ | 
| +    int x = pIdx->aiColumn[j]; | 
| +    if( x>=0 ){ | 
| +      testcase( x==BMS-1 ); | 
| +      testcase( x==BMS-2 ); | 
| +      if( x<BMS-1 ) m |= MASKBIT(x); | 
| +    } | 
| +  } | 
| +  return m; | 
| +} | 
| + | 
| +/* Check to see if a partial index with pPartIndexWhere can be used | 
| +** in the current query.  Return true if it can be and false if not. | 
| +*/ | 
| +static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ | 
| +  int i; | 
| +  WhereTerm *pTerm; | 
| +  for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ | 
| +    if( sqlite3ExprImpliesExpr(pTerm->pExpr, pWhere, iTab) ) return 1; | 
| +  } | 
| +  return 0; | 
| +} | 
| + | 
| +/* | 
| +** Add all WhereLoop objects for a single table of the join where the table | 
| +** is idenfied by pBuilder->pNew->iTab.  That table is guaranteed to be | 
| +** a b-tree table, not a virtual table. | 
| +** | 
| +** The costs (WhereLoop.rRun) of the b-tree loops added by this function | 
| +** are calculated as follows: | 
| +** | 
| +** For a full scan, assuming the table (or index) contains nRow rows: | 
| +** | 
| +**     cost = nRow * 3.0                    // full-table scan | 
| +**     cost = nRow * K                      // scan of covering index | 
| +**     cost = nRow * (K+3.0)                // scan of non-covering index | 
| +** | 
| +** where K is a value between 1.1 and 3.0 set based on the relative | 
| +** estimated average size of the index and table records. | 
| +** | 
| +** For an index scan, where nVisit is the number of index rows visited | 
| +** by the scan, and nSeek is the number of seek operations required on | 
| +** the index b-tree: | 
| +** | 
| +**     cost = nSeek * (log(nRow) + K * nVisit)          // covering index | 
| +**     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index | 
| +** | 
| +** Normally, nSeek is 1. nSeek values greater than 1 come about if the | 
| +** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when | 
| +** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. | 
| +** | 
| +** The estimated values (nRow, nVisit, nSeek) often contain a large amount | 
| +** of uncertainty.  For this reason, scoring is designed to pick plans that | 
| +** "do the least harm" if the estimates are inaccurate.  For example, a | 
| +** log(nRow) factor is omitted from a non-covering index scan in order to | 
| +** bias the scoring in favor of using an index, since the worst-case | 
| +** performance of using an index is far better than the worst-case performance | 
| +** of a full table scan. | 
| +*/ | 
| +static int whereLoopAddBtree( | 
| +  WhereLoopBuilder *pBuilder, /* WHERE clause information */ | 
| +  Bitmask mExtra              /* Extra prerequesites for using this table */ | 
| +){ | 
| +  WhereInfo *pWInfo;          /* WHERE analysis context */ | 
| +  Index *pProbe;              /* An index we are evaluating */ | 
| +  Index sPk;                  /* A fake index object for the primary key */ | 
| +  LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */ | 
| +  i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */ | 
| +  SrcList *pTabList;          /* The FROM clause */ | 
| +  struct SrcList_item *pSrc;  /* The FROM clause btree term to add */ | 
| +  WhereLoop *pNew;            /* Template WhereLoop object */ | 
| +  int rc = SQLITE_OK;         /* Return code */ | 
| +  int iSortIdx = 1;           /* Index number */ | 
| +  int b;                      /* A boolean value */ | 
| +  LogEst rSize;               /* number of rows in the table */ | 
| +  LogEst rLogSize;            /* Logarithm of the number of rows in the table */ | 
| +  WhereClause *pWC;           /* The parsed WHERE clause */ | 
| +  Table *pTab;                /* Table being queried */ | 
| + | 
| +  pNew = pBuilder->pNew; | 
| +  pWInfo = pBuilder->pWInfo; | 
| +  pTabList = pWInfo->pTabList; | 
| +  pSrc = pTabList->a + pNew->iTab; | 
| +  pTab = pSrc->pTab; | 
| +  pWC = pBuilder->pWC; | 
| +  assert( !IsVirtual(pSrc->pTab) ); | 
| + | 
| +  if( pSrc->pIndex ){ | 
| +    /* An INDEXED BY clause specifies a particular index to use */ | 
| +    pProbe = pSrc->pIndex; | 
| +  }else if( !HasRowid(pTab) ){ | 
| +    pProbe = pTab->pIndex; | 
| +  }else{ | 
| +    /* There is no INDEXED BY clause.  Create a fake Index object in local | 
| +    ** variable sPk to represent the rowid primary key index.  Make this | 
| +    ** fake index the first in a chain of Index objects with all of the real | 
| +    ** indices to follow */ | 
| +    Index *pFirst;                  /* First of real indices on the table */ | 
| +    memset(&sPk, 0, sizeof(Index)); | 
| +    sPk.nKeyCol = 1; | 
| +    sPk.nColumn = 1; | 
| +    sPk.aiColumn = &aiColumnPk; | 
| +    sPk.aiRowLogEst = aiRowEstPk; | 
| +    sPk.onError = OE_Replace; | 
| +    sPk.pTable = pTab; | 
| +    sPk.szIdxRow = pTab->szTabRow; | 
| +    aiRowEstPk[0] = pTab->nRowLogEst; | 
| +    aiRowEstPk[1] = 0; | 
| +    pFirst = pSrc->pTab->pIndex; | 
| +    if( pSrc->notIndexed==0 ){ | 
| +      /* The real indices of the table are only considered if the | 
| +      ** NOT INDEXED qualifier is omitted from the FROM clause */ | 
| +      sPk.pNext = pFirst; | 
| +    } | 
| +    pProbe = &sPk; | 
| +  } | 
| +  rSize = pTab->nRowLogEst; | 
| +  rLogSize = estLog(rSize); | 
| + | 
| +#ifndef SQLITE_OMIT_AUTOMATIC_INDEX | 
| +  /* Automatic indexes */ | 
| +  if( !pBuilder->pOrSet | 
| +   && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 | 
| +   && pSrc->pIndex==0 | 
| +   && !pSrc->viaCoroutine | 
| +   && !pSrc->notIndexed | 
| +   && HasRowid(pTab) | 
| +   && !pSrc->isCorrelated | 
| +   && !pSrc->isRecursive | 
| +  ){ | 
| +    /* Generate auto-index WhereLoops */ | 
| +    WhereTerm *pTerm; | 
| +    WhereTerm *pWCEnd = pWC->a + pWC->nTerm; | 
| +    for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ | 
| +      if( pTerm->prereqRight & pNew->maskSelf ) continue; | 
| +      if( termCanDriveIndex(pTerm, pSrc, 0) ){ | 
| +        pNew->u.btree.nEq = 1; | 
| +        pNew->u.btree.nSkip = 0; | 
| +        pNew->u.btree.pIndex = 0; | 
| +        pNew->nLTerm = 1; | 
| +        pNew->aLTerm[0] = pTerm; | 
| +        /* TUNING: One-time cost for computing the automatic index is | 
| +        ** estimated to be X*N*log2(N) where N is the number of rows in | 
| +        ** the table being indexed and where X is 7 (LogEst=28) for normal | 
| +        ** tables or 1.375 (LogEst=4) for views and subqueries.  The value | 
| +        ** of X is smaller for views and subqueries so that the query planner | 
| +        ** will be more aggressive about generating automatic indexes for | 
| +        ** those objects, since there is no opportunity to add schema | 
| +        ** indexes on subqueries and views. */ | 
| +        pNew->rSetup = rLogSize + rSize + 4; | 
| +        if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ | 
| +          pNew->rSetup += 24; | 
| +        } | 
| +        ApplyCostMultiplier(pNew->rSetup, pTab->costMult); | 
| +        /* TUNING: Each index lookup yields 20 rows in the table.  This | 
| +        ** is more than the usual guess of 10 rows, since we have no way | 
| +        ** of knowing how selective the index will ultimately be.  It would | 
| +        ** not be unreasonable to make this value much larger. */ | 
| +        pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) ); | 
| +        pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); | 
| +        pNew->wsFlags = WHERE_AUTO_INDEX; | 
| +        pNew->prereq = mExtra | pTerm->prereqRight; | 
| +        rc = whereLoopInsert(pBuilder, pNew); | 
| +      } | 
| +    } | 
| +  } | 
| +#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ | 
| + | 
| +  /* Loop over all indices | 
| +  */ | 
| +  for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ | 
| +    if( pProbe->pPartIdxWhere!=0 | 
| +     && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ | 
| +      testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */ | 
| +      continue;  /* Partial index inappropriate for this query */ | 
| +    } | 
| +    rSize = pProbe->aiRowLogEst[0]; | 
| +    pNew->u.btree.nEq = 0; | 
| +    pNew->u.btree.nSkip = 0; | 
| +    pNew->nLTerm = 0; | 
| +    pNew->iSortIdx = 0; | 
| +    pNew->rSetup = 0; | 
| +    pNew->prereq = mExtra; | 
| +    pNew->nOut = rSize; | 
| +    pNew->u.btree.pIndex = pProbe; | 
| +    b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); | 
| +    /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ | 
| +    assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); | 
| +    if( pProbe->tnum<=0 ){ | 
| +      /* Integer primary key index */ | 
| +      pNew->wsFlags = WHERE_IPK; | 
| + | 
| +      /* Full table scan */ | 
| +      pNew->iSortIdx = b ? iSortIdx : 0; | 
| +      /* TUNING: Cost of full table scan is (N*3.0). */ | 
| +      pNew->rRun = rSize + 16; | 
| +      ApplyCostMultiplier(pNew->rRun, pTab->costMult); | 
| +      whereLoopOutputAdjust(pWC, pNew, rSize); | 
| +      rc = whereLoopInsert(pBuilder, pNew); | 
| +      pNew->nOut = rSize; | 
| +      if( rc ) break; | 
| +    }else{ | 
| +      Bitmask m; | 
| +      if( pProbe->isCovering ){ | 
| +        pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; | 
| +        m = 0; | 
| +      }else{ | 
| +        m = pSrc->colUsed & ~columnsInIndex(pProbe); | 
| +        pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; | 
| +      } | 
| + | 
| +      /* Full scan via index */ | 
| +      if( b | 
| +       || !HasRowid(pTab) | 
| +       || ( m==0 | 
| +         && pProbe->bUnordered==0 | 
| +         && (pProbe->szIdxRow<pTab->szTabRow) | 
| +         && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 | 
| +         && sqlite3GlobalConfig.bUseCis | 
| +         && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) | 
| +          ) | 
| +      ){ | 
| +        pNew->iSortIdx = b ? iSortIdx : 0; | 
| + | 
| +        /* The cost of visiting the index rows is N*K, where K is | 
| +        ** between 1.1 and 3.0, depending on the relative sizes of the | 
| +        ** index and table rows. If this is a non-covering index scan, | 
| +        ** also add the cost of visiting table rows (N*3.0).  */ | 
| +        pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; | 
| +        if( m!=0 ){ | 
| +          pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16); | 
| +        } | 
| +        ApplyCostMultiplier(pNew->rRun, pTab->costMult); | 
| +        whereLoopOutputAdjust(pWC, pNew, rSize); | 
| +        rc = whereLoopInsert(pBuilder, pNew); | 
| +        pNew->nOut = rSize; | 
| +        if( rc ) break; | 
| +      } | 
| +    } | 
| + | 
| +    rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); | 
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | 
| +    sqlite3Stat4ProbeFree(pBuilder->pRec); | 
| +    pBuilder->nRecValid = 0; | 
| +    pBuilder->pRec = 0; | 
| +#endif | 
| + | 
| +    /* If there was an INDEXED BY clause, then only that one index is | 
| +    ** considered. */ | 
| +    if( pSrc->pIndex ) break; | 
| +  } | 
| +  return rc; | 
| +} | 
| + | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE | 
| +/* | 
| +** Add all WhereLoop objects for a table of the join identified by | 
| +** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table. | 
| +*/ | 
| +static int whereLoopAddVirtual( | 
| +  WhereLoopBuilder *pBuilder,  /* WHERE clause information */ | 
| +  Bitmask mExtra | 
| +){ | 
| +  WhereInfo *pWInfo;           /* WHERE analysis context */ | 
| +  Parse *pParse;               /* The parsing context */ | 
| +  WhereClause *pWC;            /* The WHERE clause */ | 
| +  struct SrcList_item *pSrc;   /* The FROM clause term to search */ | 
| +  Table *pTab; | 
| +  sqlite3 *db; | 
| +  sqlite3_index_info *pIdxInfo; | 
| +  struct sqlite3_index_constraint *pIdxCons; | 
| +  struct sqlite3_index_constraint_usage *pUsage; | 
| +  WhereTerm *pTerm; | 
| +  int i, j; | 
| +  int iTerm, mxTerm; | 
| +  int nConstraint; | 
| +  int seenIn = 0;              /* True if an IN operator is seen */ | 
| +  int seenVar = 0;             /* True if a non-constant constraint is seen */ | 
| +  int iPhase;                  /* 0: const w/o IN, 1: const, 2: no IN,  2: IN */ | 
| +  WhereLoop *pNew; | 
| +  int rc = SQLITE_OK; | 
| + | 
| +  pWInfo = pBuilder->pWInfo; | 
| +  pParse = pWInfo->pParse; | 
| +  db = pParse->db; | 
| +  pWC = pBuilder->pWC; | 
| +  pNew = pBuilder->pNew; | 
| +  pSrc = &pWInfo->pTabList->a[pNew->iTab]; | 
| +  pTab = pSrc->pTab; | 
| +  assert( IsVirtual(pTab) ); | 
| +  pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pBuilder->pOrderBy); | 
| +  if( pIdxInfo==0 ) return SQLITE_NOMEM; | 
| +  pNew->prereq = 0; | 
| +  pNew->rSetup = 0; | 
| +  pNew->wsFlags = WHERE_VIRTUALTABLE; | 
| +  pNew->nLTerm = 0; | 
| +  pNew->u.vtab.needFree = 0; | 
| +  pUsage = pIdxInfo->aConstraintUsage; | 
| +  nConstraint = pIdxInfo->nConstraint; | 
| +  if( whereLoopResize(db, pNew, nConstraint) ){ | 
| +    sqlite3DbFree(db, pIdxInfo); | 
| +    return SQLITE_NOMEM; | 
| +  } | 
| + | 
| +  for(iPhase=0; iPhase<=3; iPhase++){ | 
| +    if( !seenIn && (iPhase&1)!=0 ){ | 
| +      iPhase++; | 
| +      if( iPhase>3 ) break; | 
| +    } | 
| +    if( !seenVar && iPhase>1 ) break; | 
| +    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; | 
| +    for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ | 
| +      j = pIdxCons->iTermOffset; | 
| +      pTerm = &pWC->a[j]; | 
| +      switch( iPhase ){ | 
| +        case 0:    /* Constants without IN operator */ | 
| +          pIdxCons->usable = 0; | 
| +          if( (pTerm->eOperator & WO_IN)!=0 ){ | 
| +            seenIn = 1; | 
| +          } | 
| +          if( pTerm->prereqRight!=0 ){ | 
| +            seenVar = 1; | 
| +          }else if( (pTerm->eOperator & WO_IN)==0 ){ | 
| +            pIdxCons->usable = 1; | 
| +          } | 
| +          break; | 
| +        case 1:    /* Constants with IN operators */ | 
| +          assert( seenIn ); | 
| +          pIdxCons->usable = (pTerm->prereqRight==0); | 
| +          break; | 
| +        case 2:    /* Variables without IN */ | 
| +          assert( seenVar ); | 
| +          pIdxCons->usable = (pTerm->eOperator & WO_IN)==0; | 
| +          break; | 
| +        default:   /* Variables with IN */ | 
| +          assert( seenVar && seenIn ); | 
| +          pIdxCons->usable = 1; | 
| +          break; | 
| +      } | 
| +    } | 
| +    memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); | 
| +    if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); | 
| +    pIdxInfo->idxStr = 0; | 
| +    pIdxInfo->idxNum = 0; | 
| +    pIdxInfo->needToFreeIdxStr = 0; | 
| +    pIdxInfo->orderByConsumed = 0; | 
| +    pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; | 
| +    pIdxInfo->estimatedRows = 25; | 
| +    rc = vtabBestIndex(pParse, pTab, pIdxInfo); | 
| +    if( rc ) goto whereLoopAddVtab_exit; | 
| +    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; | 
| +    pNew->prereq = mExtra; | 
| +    mxTerm = -1; | 
| +    assert( pNew->nLSlot>=nConstraint ); | 
| +    for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; | 
| +    pNew->u.vtab.omitMask = 0; | 
| +    for(i=0; i<nConstraint; i++, pIdxCons++){ | 
| +      if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ | 
| +        j = pIdxCons->iTermOffset; | 
| +        if( iTerm>=nConstraint | 
| +         || j<0 | 
| +         || j>=pWC->nTerm | 
| +         || pNew->aLTerm[iTerm]!=0 | 
| +        ){ | 
| +          rc = SQLITE_ERROR; | 
| +          sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName); | 
| +          goto whereLoopAddVtab_exit; | 
| +        } | 
| +        testcase( iTerm==nConstraint-1 ); | 
| +        testcase( j==0 ); | 
| +        testcase( j==pWC->nTerm-1 ); | 
| +        pTerm = &pWC->a[j]; | 
| +        pNew->prereq |= pTerm->prereqRight; | 
| +        assert( iTerm<pNew->nLSlot ); | 
| +        pNew->aLTerm[iTerm] = pTerm; | 
| +        if( iTerm>mxTerm ) mxTerm = iTerm; | 
| +        testcase( iTerm==15 ); | 
| +        testcase( iTerm==16 ); | 
| +        if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; | 
| +        if( (pTerm->eOperator & WO_IN)!=0 ){ | 
| +          if( pUsage[i].omit==0 ){ | 
| +            /* Do not attempt to use an IN constraint if the virtual table | 
| +            ** says that the equivalent EQ constraint cannot be safely omitted. | 
| +            ** If we do attempt to use such a constraint, some rows might be | 
| +            ** repeated in the output. */ | 
| +            break; | 
| +          } | 
| +          /* A virtual table that is constrained by an IN clause may not | 
| +          ** consume the ORDER BY clause because (1) the order of IN terms | 
| +          ** is not necessarily related to the order of output terms and | 
| +          ** (2) Multiple outputs from a single IN value will not merge | 
| +          ** together.  */ | 
| +          pIdxInfo->orderByConsumed = 0; | 
| +        } | 
| +      } | 
| +    } | 
| +    if( i>=nConstraint ){ | 
| +      pNew->nLTerm = mxTerm+1; | 
| +      assert( pNew->nLTerm<=pNew->nLSlot ); | 
| +      pNew->u.vtab.idxNum = pIdxInfo->idxNum; | 
| +      pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; | 
| +      pIdxInfo->needToFreeIdxStr = 0; | 
| +      pNew->u.vtab.idxStr = pIdxInfo->idxStr; | 
| +      pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? | 
| +                                      pIdxInfo->nOrderBy : 0); | 
| +      pNew->rSetup = 0; | 
| +      pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); | 
| +      pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); | 
| +      whereLoopInsert(pBuilder, pNew); | 
| +      if( pNew->u.vtab.needFree ){ | 
| +        sqlite3_free(pNew->u.vtab.idxStr); | 
| +        pNew->u.vtab.needFree = 0; | 
| +      } | 
| +    } | 
| +  } | 
| + | 
| +whereLoopAddVtab_exit: | 
| +  if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); | 
| +  sqlite3DbFree(db, pIdxInfo); | 
| +  return rc; | 
| +} | 
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */ | 
| + | 
| +/* | 
| +** Add WhereLoop entries to handle OR terms.  This works for either | 
| +** btrees or virtual tables. | 
| +*/ | 
| +static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){ | 
| +  WhereInfo *pWInfo = pBuilder->pWInfo; | 
| +  WhereClause *pWC; | 
| +  WhereLoop *pNew; | 
| +  WhereTerm *pTerm, *pWCEnd; | 
| +  int rc = SQLITE_OK; | 
| +  int iCur; | 
| +  WhereClause tempWC; | 
| +  WhereLoopBuilder sSubBuild; | 
| +  WhereOrSet sSum, sCur; | 
| +  struct SrcList_item *pItem; | 
| + | 
| +  pWC = pBuilder->pWC; | 
| +  pWCEnd = pWC->a + pWC->nTerm; | 
| +  pNew = pBuilder->pNew; | 
| +  memset(&sSum, 0, sizeof(sSum)); | 
| +  pItem = pWInfo->pTabList->a + pNew->iTab; | 
| +  iCur = pItem->iCursor; | 
| + | 
| +  for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ | 
| +    if( (pTerm->eOperator & WO_OR)!=0 | 
| +     && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 | 
| +    ){ | 
| +      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; | 
| +      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; | 
| +      WhereTerm *pOrTerm; | 
| +      int once = 1; | 
| +      int i, j; | 
| + | 
| +      sSubBuild = *pBuilder; | 
| +      sSubBuild.pOrderBy = 0; | 
| +      sSubBuild.pOrSet = &sCur; | 
| + | 
| +      WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); | 
| +      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ | 
| +        if( (pOrTerm->eOperator & WO_AND)!=0 ){ | 
| +          sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; | 
| +        }else if( pOrTerm->leftCursor==iCur ){ | 
| +          tempWC.pWInfo = pWC->pWInfo; | 
| +          tempWC.pOuter = pWC; | 
| +          tempWC.op = TK_AND; | 
| +          tempWC.nTerm = 1; | 
| +          tempWC.a = pOrTerm; | 
| +          sSubBuild.pWC = &tempWC; | 
| +        }else{ | 
| +          continue; | 
| +        } | 
| +        sCur.n = 0; | 
| +#ifdef WHERETRACE_ENABLED | 
| +        WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", | 
| +                   (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); | 
| +        if( sqlite3WhereTrace & 0x400 ){ | 
| +          for(i=0; i<sSubBuild.pWC->nTerm; i++){ | 
| +            whereTermPrint(&sSubBuild.pWC->a[i], i); | 
| +          } | 
| +        } | 
| +#endif | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE | 
| +        if( IsVirtual(pItem->pTab) ){ | 
| +          rc = whereLoopAddVirtual(&sSubBuild, mExtra); | 
| +        }else | 
| +#endif | 
| +        { | 
| +          rc = whereLoopAddBtree(&sSubBuild, mExtra); | 
| +        } | 
| +        if( rc==SQLITE_OK ){ | 
| +          rc = whereLoopAddOr(&sSubBuild, mExtra); | 
| +        } | 
| +        assert( rc==SQLITE_OK || sCur.n==0 ); | 
| +        if( sCur.n==0 ){ | 
| +          sSum.n = 0; | 
| +          break; | 
| +        }else if( once ){ | 
| +          whereOrMove(&sSum, &sCur); | 
| +          once = 0; | 
| +        }else{ | 
| +          WhereOrSet sPrev; | 
| +          whereOrMove(&sPrev, &sSum); | 
| +          sSum.n = 0; | 
| +          for(i=0; i<sPrev.n; i++){ | 
| +            for(j=0; j<sCur.n; j++){ | 
| +              whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, | 
| +                            sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), | 
| +                            sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); | 
| +            } | 
| +          } | 
| +        } | 
| +      } | 
| +      pNew->nLTerm = 1; | 
| +      pNew->aLTerm[0] = pTerm; | 
| +      pNew->wsFlags = WHERE_MULTI_OR; | 
| +      pNew->rSetup = 0; | 
| +      pNew->iSortIdx = 0; | 
| +      memset(&pNew->u, 0, sizeof(pNew->u)); | 
| +      for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ | 
| +        /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs | 
| +        ** of all sub-scans required by the OR-scan. However, due to rounding | 
| +        ** errors, it may be that the cost of the OR-scan is equal to its | 
| +        ** most expensive sub-scan. Add the smallest possible penalty | 
| +        ** (equivalent to multiplying the cost by 1.07) to ensure that | 
| +        ** this does not happen. Otherwise, for WHERE clauses such as the | 
| +        ** following where there is an index on "y": | 
| +        ** | 
| +        **     WHERE likelihood(x=?, 0.99) OR y=? | 
| +        ** | 
| +        ** the planner may elect to "OR" together a full-table scan and an | 
| +        ** index lookup. And other similarly odd results.  */ | 
| +        pNew->rRun = sSum.a[i].rRun + 1; | 
| +        pNew->nOut = sSum.a[i].nOut; | 
| +        pNew->prereq = sSum.a[i].prereq; | 
| +        rc = whereLoopInsert(pBuilder, pNew); | 
| +      } | 
| +      WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); | 
| +    } | 
| +  } | 
| +  return rc; | 
| +} | 
| + | 
| +/* | 
| +** Add all WhereLoop objects for all tables | 
| +*/ | 
| +static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ | 
| +  WhereInfo *pWInfo = pBuilder->pWInfo; | 
| +  Bitmask mExtra = 0; | 
| +  Bitmask mPrior = 0; | 
| +  int iTab; | 
| +  SrcList *pTabList = pWInfo->pTabList; | 
| +  struct SrcList_item *pItem; | 
| +  sqlite3 *db = pWInfo->pParse->db; | 
| +  int nTabList = pWInfo->nLevel; | 
| +  int rc = SQLITE_OK; | 
| +  u8 priorJoinType = 0; | 
| +  WhereLoop *pNew; | 
| + | 
| +  /* Loop over the tables in the join, from left to right */ | 
| +  pNew = pBuilder->pNew; | 
| +  whereLoopInit(pNew); | 
| +  for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){ | 
| +    pNew->iTab = iTab; | 
| +    pNew->maskSelf = getMask(&pWInfo->sMaskSet, pItem->iCursor); | 
| +    if( ((pItem->jointype|priorJoinType) & (JT_LEFT|JT_CROSS))!=0 ){ | 
| +      mExtra = mPrior; | 
| +    } | 
| +    priorJoinType = pItem->jointype; | 
| +    if( IsVirtual(pItem->pTab) ){ | 
| +      rc = whereLoopAddVirtual(pBuilder, mExtra); | 
| +    }else{ | 
| +      rc = whereLoopAddBtree(pBuilder, mExtra); | 
| +    } | 
| +    if( rc==SQLITE_OK ){ | 
| +      rc = whereLoopAddOr(pBuilder, mExtra); | 
| +    } | 
| +    mPrior |= pNew->maskSelf; | 
| +    if( rc || db->mallocFailed ) break; | 
| +  } | 
| +  whereLoopClear(db, pNew); | 
| +  return rc; | 
| +} | 
| + | 
| +/* | 
| +** Examine a WherePath (with the addition of the extra WhereLoop of the 5th | 
| +** parameters) to see if it outputs rows in the requested ORDER BY | 
| +** (or GROUP BY) without requiring a separate sort operation.  Return N: | 
| +** | 
| +**   N>0:   N terms of the ORDER BY clause are satisfied | 
| +**   N==0:  No terms of the ORDER BY clause are satisfied | 
| +**   N<0:   Unknown yet how many terms of ORDER BY might be satisfied. | 
| +** | 
| +** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as | 
| +** strict.  With GROUP BY and DISTINCT the only requirement is that | 
| +** equivalent rows appear immediately adjacent to one another.  GROUP BY | 
| +** and DISTINCT do not require rows to appear in any particular order as long | 
| +** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT | 
| +** the pOrderBy terms can be matched in any order.  With ORDER BY, the | 
| +** pOrderBy terms must be matched in strict left-to-right order. | 
| +*/ | 
| +static i8 wherePathSatisfiesOrderBy( | 
| +  WhereInfo *pWInfo,    /* The WHERE clause */ | 
| +  ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */ | 
| +  WherePath *pPath,     /* The WherePath to check */ | 
| +  u16 wctrlFlags,       /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */ | 
| +  u16 nLoop,            /* Number of entries in pPath->aLoop[] */ | 
| +  WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */ | 
| +  Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */ | 
| +){ | 
| +  u8 revSet;            /* True if rev is known */ | 
| +  u8 rev;               /* Composite sort order */ | 
| +  u8 revIdx;            /* Index sort order */ | 
| +  u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */ | 
| +  u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */ | 
| +  u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */ | 
| +  u16 nKeyCol;          /* Number of key columns in pIndex */ | 
| +  u16 nColumn;          /* Total number of ordered columns in the index */ | 
| +  u16 nOrderBy;         /* Number terms in the ORDER BY clause */ | 
| +  int iLoop;            /* Index of WhereLoop in pPath being processed */ | 
| +  int i, j;             /* Loop counters */ | 
| +  int iCur;             /* Cursor number for current WhereLoop */ | 
| +  int iColumn;          /* A column number within table iCur */ | 
| +  WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ | 
| +  WhereTerm *pTerm;     /* A single term of the WHERE clause */ | 
| +  Expr *pOBExpr;        /* An expression from the ORDER BY clause */ | 
| +  CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */ | 
| +  Index *pIndex;        /* The index associated with pLoop */ | 
| +  sqlite3 *db = pWInfo->pParse->db;  /* Database connection */ | 
| +  Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */ | 
| +  Bitmask obDone;       /* Mask of all ORDER BY terms */ | 
| +  Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */ | 
| +  Bitmask ready;              /* Mask of inner loops */ | 
| + | 
| +  /* | 
| +  ** We say the WhereLoop is "one-row" if it generates no more than one | 
| +  ** row of output.  A WhereLoop is one-row if all of the following are true: | 
| +  **  (a) All index columns match with WHERE_COLUMN_EQ. | 
| +  **  (b) The index is unique | 
| +  ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. | 
| +  ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. | 
| +  ** | 
| +  ** We say the WhereLoop is "order-distinct" if the set of columns from | 
| +  ** that WhereLoop that are in the ORDER BY clause are different for every | 
| +  ** row of the WhereLoop.  Every one-row WhereLoop is automatically | 
| +  ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause | 
| +  ** is not order-distinct. To be order-distinct is not quite the same as being | 
| +  ** UNIQUE since a UNIQUE column or index can have multiple rows that | 
| +  ** are NULL and NULL values are equivalent for the purpose of order-distinct. | 
| +  ** To be order-distinct, the columns must be UNIQUE and NOT NULL. | 
| +  ** | 
| +  ** The rowid for a table is always UNIQUE and NOT NULL so whenever the | 
| +  ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is | 
| +  ** automatically order-distinct. | 
| +  */ | 
| + | 
| +  assert( pOrderBy!=0 ); | 
| +  if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; | 
| + | 
| +  nOrderBy = pOrderBy->nExpr; | 
| +  testcase( nOrderBy==BMS-1 ); | 
| +  if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */ | 
| +  isOrderDistinct = 1; | 
| +  obDone = MASKBIT(nOrderBy)-1; | 
| +  orderDistinctMask = 0; | 
| +  ready = 0; | 
| +  for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ | 
| +    if( iLoop>0 ) ready |= pLoop->maskSelf; | 
| +    pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast; | 
| +    if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ | 
| +      if( pLoop->u.vtab.isOrdered ) obSat = obDone; | 
| +      break; | 
| +    } | 
| +    iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; | 
| + | 
| +    /* Mark off any ORDER BY term X that is a column in the table of | 
| +    ** the current loop for which there is term in the WHERE | 
| +    ** clause of the form X IS NULL or X=? that reference only outer | 
| +    ** loops. | 
| +    */ | 
| +    for(i=0; i<nOrderBy; i++){ | 
| +      if( MASKBIT(i) & obSat ) continue; | 
| +      pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); | 
| +      if( pOBExpr->op!=TK_COLUMN ) continue; | 
| +      if( pOBExpr->iTable!=iCur ) continue; | 
| +      pTerm = findTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, | 
| +                       ~ready, WO_EQ|WO_ISNULL, 0); | 
| +      if( pTerm==0 ) continue; | 
| +      if( (pTerm->eOperator&WO_EQ)!=0 && pOBExpr->iColumn>=0 ){ | 
| +        const char *z1, *z2; | 
| +        pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); | 
| +        if( !pColl ) pColl = db->pDfltColl; | 
| +        z1 = pColl->zName; | 
| +        pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); | 
| +        if( !pColl ) pColl = db->pDfltColl; | 
| +        z2 = pColl->zName; | 
| +        if( sqlite3StrICmp(z1, z2)!=0 ) continue; | 
| +      } | 
| +      obSat |= MASKBIT(i); | 
| +    } | 
| + | 
| +    if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ | 
| +      if( pLoop->wsFlags & WHERE_IPK ){ | 
| +        pIndex = 0; | 
| +        nKeyCol = 0; | 
| +        nColumn = 1; | 
| +      }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ | 
| +        return 0; | 
| +      }else{ | 
| +        nKeyCol = pIndex->nKeyCol; | 
| +        nColumn = pIndex->nColumn; | 
| +        assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); | 
| +        assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable)); | 
| +        isOrderDistinct = IsUniqueIndex(pIndex); | 
| +      } | 
| + | 
| +      /* Loop through all columns of the index and deal with the ones | 
| +      ** that are not constrained by == or IN. | 
| +      */ | 
| +      rev = revSet = 0; | 
| +      distinctColumns = 0; | 
| +      for(j=0; j<nColumn; j++){ | 
| +        u8 bOnce;   /* True to run the ORDER BY search loop */ | 
| + | 
| +        /* Skip over == and IS NULL terms */ | 
| +        if( j<pLoop->u.btree.nEq | 
| +         && pLoop->u.btree.nSkip==0 | 
| +         && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0 | 
| +        ){ | 
| +          if( i & WO_ISNULL ){ | 
| +            testcase( isOrderDistinct ); | 
| +            isOrderDistinct = 0; | 
| +          } | 
| +          continue; | 
| +        } | 
| + | 
| +        /* Get the column number in the table (iColumn) and sort order | 
| +        ** (revIdx) for the j-th column of the index. | 
| +        */ | 
| +        if( pIndex ){ | 
| +          iColumn = pIndex->aiColumn[j]; | 
| +          revIdx = pIndex->aSortOrder[j]; | 
| +          if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; | 
| +        }else{ | 
| +          iColumn = -1; | 
| +          revIdx = 0; | 
| +        } | 
| + | 
| +        /* An unconstrained column that might be NULL means that this | 
| +        ** WhereLoop is not well-ordered | 
| +        */ | 
| +        if( isOrderDistinct | 
| +         && iColumn>=0 | 
| +         && j>=pLoop->u.btree.nEq | 
| +         && pIndex->pTable->aCol[iColumn].notNull==0 | 
| +        ){ | 
| +          isOrderDistinct = 0; | 
| +        } | 
| + | 
| +        /* Find the ORDER BY term that corresponds to the j-th column | 
| +        ** of the index and mark that ORDER BY term off | 
| +        */ | 
| +        bOnce = 1; | 
| +        isMatch = 0; | 
| +        for(i=0; bOnce && i<nOrderBy; i++){ | 
| +          if( MASKBIT(i) & obSat ) continue; | 
| +          pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); | 
| +          testcase( wctrlFlags & WHERE_GROUPBY ); | 
| +          testcase( wctrlFlags & WHERE_DISTINCTBY ); | 
| +          if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; | 
| +          if( pOBExpr->op!=TK_COLUMN ) continue; | 
| +          if( pOBExpr->iTable!=iCur ) continue; | 
| +          if( pOBExpr->iColumn!=iColumn ) continue; | 
| +          if( iColumn>=0 ){ | 
| +            pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); | 
| +            if( !pColl ) pColl = db->pDfltColl; | 
| +            if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; | 
| +          } | 
| +          isMatch = 1; | 
| +          break; | 
| +        } | 
| +        if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ | 
| +          /* Make sure the sort order is compatible in an ORDER BY clause. | 
| +          ** Sort order is irrelevant for a GROUP BY clause. */ | 
| +          if( revSet ){ | 
| +            if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; | 
| +          }else{ | 
| +            rev = revIdx ^ pOrderBy->a[i].sortOrder; | 
| +            if( rev ) *pRevMask |= MASKBIT(iLoop); | 
| +            revSet = 1; | 
| +          } | 
| +        } | 
| +        if( isMatch ){ | 
| +          if( iColumn<0 ){ | 
| +            testcase( distinctColumns==0 ); | 
| +            distinctColumns = 1; | 
| +          } | 
| +          obSat |= MASKBIT(i); | 
| +        }else{ | 
| +          /* No match found */ | 
| +          if( j==0 || j<nKeyCol ){ | 
| +            testcase( isOrderDistinct!=0 ); | 
| +            isOrderDistinct = 0; | 
| +          } | 
| +          break; | 
| +        } | 
| +      } /* end Loop over all index columns */ | 
| +      if( distinctColumns ){ | 
| +        testcase( isOrderDistinct==0 ); | 
| +        isOrderDistinct = 1; | 
| +      } | 
| +    } /* end-if not one-row */ | 
| + | 
| +    /* Mark off any other ORDER BY terms that reference pLoop */ | 
| +    if( isOrderDistinct ){ | 
| +      orderDistinctMask |= pLoop->maskSelf; | 
| +      for(i=0; i<nOrderBy; i++){ | 
| +        Expr *p; | 
| +        Bitmask mTerm; | 
| +        if( MASKBIT(i) & obSat ) continue; | 
| +        p = pOrderBy->a[i].pExpr; | 
| +        mTerm = exprTableUsage(&pWInfo->sMaskSet,p); | 
| +        if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; | 
| +        if( (mTerm&~orderDistinctMask)==0 ){ | 
| +          obSat |= MASKBIT(i); | 
| +        } | 
| +      } | 
| +    } | 
| +  } /* End the loop over all WhereLoops from outer-most down to inner-most */ | 
| +  if( obSat==obDone ) return (i8)nOrderBy; | 
| +  if( !isOrderDistinct ){ | 
| +    for(i=nOrderBy-1; i>0; i--){ | 
| +      Bitmask m = MASKBIT(i) - 1; | 
| +      if( (obSat&m)==m ) return i; | 
| +    } | 
| +    return 0; | 
| +  } | 
| +  return -1; | 
| +} | 
| + | 
| + | 
| +/* | 
| +** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), | 
| +** the planner assumes that the specified pOrderBy list is actually a GROUP | 
| +** BY clause - and so any order that groups rows as required satisfies the | 
| +** request. | 
| +** | 
| +** Normally, in this case it is not possible for the caller to determine | 
| +** whether or not the rows are really being delivered in sorted order, or | 
| +** just in some other order that provides the required grouping. However, | 
| +** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then | 
| +** this function may be called on the returned WhereInfo object. It returns | 
| +** true if the rows really will be sorted in the specified order, or false | 
| +** otherwise. | 
| +** | 
| +** For example, assuming: | 
| +** | 
| +**   CREATE INDEX i1 ON t1(x, Y); | 
| +** | 
| +** then | 
| +** | 
| +**   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1 | 
| +**   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0 | 
| +*/ | 
| +int sqlite3WhereIsSorted(WhereInfo *pWInfo){ | 
| +  assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); | 
| +  assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); | 
| +  return pWInfo->sorted; | 
| +} | 
| + | 
| +#ifdef WHERETRACE_ENABLED | 
| +/* For debugging use only: */ | 
| +static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ | 
| +  static char zName[65]; | 
| +  int i; | 
| +  for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } | 
| +  if( pLast ) zName[i++] = pLast->cId; | 
| +  zName[i] = 0; | 
| +  return zName; | 
| +} | 
| +#endif | 
| + | 
| +/* | 
| +** Return the cost of sorting nRow rows, assuming that the keys have | 
| +** nOrderby columns and that the first nSorted columns are already in | 
| +** order. | 
| +*/ | 
| +static LogEst whereSortingCost( | 
| +  WhereInfo *pWInfo, | 
| +  LogEst nRow, | 
| +  int nOrderBy, | 
| +  int nSorted | 
| +){ | 
| +  /* TUNING: Estimated cost of a full external sort, where N is | 
| +  ** the number of rows to sort is: | 
| +  ** | 
| +  **   cost = (3.0 * N * log(N)). | 
| +  ** | 
| +  ** Or, if the order-by clause has X terms but only the last Y | 
| +  ** terms are out of order, then block-sorting will reduce the | 
| +  ** sorting cost to: | 
| +  ** | 
| +  **   cost = (3.0 * N * log(N)) * (Y/X) | 
| +  ** | 
| +  ** The (Y/X) term is implemented using stack variable rScale | 
| +  ** below.  */ | 
| +  LogEst rScale, rSortCost; | 
| +  assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); | 
| +  rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; | 
| +  rSortCost = nRow + estLog(nRow) + rScale + 16; | 
| + | 
| +  /* TUNING: The cost of implementing DISTINCT using a B-TREE is | 
| +  ** similar but with a larger constant of proportionality. | 
| +  ** Multiply by an additional factor of 3.0.  */ | 
| +  if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ | 
| +    rSortCost += 16; | 
| +  } | 
| + | 
| +  return rSortCost; | 
| +} | 
| + | 
| +/* | 
| +** Given the list of WhereLoop objects at pWInfo->pLoops, this routine | 
| +** attempts to find the lowest cost path that visits each WhereLoop | 
| +** once.  This path is then loaded into the pWInfo->a[].pWLoop fields. | 
| +** | 
| +** Assume that the total number of output rows that will need to be sorted | 
| +** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting | 
| +** costs if nRowEst==0. | 
| +** | 
| +** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation | 
| +** error occurs. | 
| +*/ | 
| +static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ | 
| +  int mxChoice;             /* Maximum number of simultaneous paths tracked */ | 
| +  int nLoop;                /* Number of terms in the join */ | 
| +  Parse *pParse;            /* Parsing context */ | 
| +  sqlite3 *db;              /* The database connection */ | 
| +  int iLoop;                /* Loop counter over the terms of the join */ | 
| +  int ii, jj;               /* Loop counters */ | 
| +  int mxI = 0;              /* Index of next entry to replace */ | 
| +  int nOrderBy;             /* Number of ORDER BY clause terms */ | 
| +  LogEst mxCost = 0;        /* Maximum cost of a set of paths */ | 
| +  LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */ | 
| +  int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */ | 
| +  WherePath *aFrom;         /* All nFrom paths at the previous level */ | 
| +  WherePath *aTo;           /* The nTo best paths at the current level */ | 
| +  WherePath *pFrom;         /* An element of aFrom[] that we are working on */ | 
| +  WherePath *pTo;           /* An element of aTo[] that we are working on */ | 
| +  WhereLoop *pWLoop;        /* One of the WhereLoop objects */ | 
| +  WhereLoop **pX;           /* Used to divy up the pSpace memory */ | 
| +  LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */ | 
| +  char *pSpace;             /* Temporary memory used by this routine */ | 
| +  int nSpace;               /* Bytes of space allocated at pSpace */ | 
| + | 
| +  pParse = pWInfo->pParse; | 
| +  db = pParse->db; | 
| +  nLoop = pWInfo->nLevel; | 
| +  /* TUNING: For simple queries, only the best path is tracked. | 
| +  ** For 2-way joins, the 5 best paths are followed. | 
| +  ** For joins of 3 or more tables, track the 10 best paths */ | 
| +  mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); | 
| +  assert( nLoop<=pWInfo->pTabList->nSrc ); | 
| +  WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst)); | 
| + | 
| +  /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this | 
| +  ** case the purpose of this call is to estimate the number of rows returned | 
| +  ** by the overall query. Once this estimate has been obtained, the caller | 
| +  ** will invoke this function a second time, passing the estimate as the | 
| +  ** nRowEst parameter.  */ | 
| +  if( pWInfo->pOrderBy==0 || nRowEst==0 ){ | 
| +    nOrderBy = 0; | 
| +  }else{ | 
| +    nOrderBy = pWInfo->pOrderBy->nExpr; | 
| +  } | 
| + | 
| +  /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ | 
| +  nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; | 
| +  nSpace += sizeof(LogEst) * nOrderBy; | 
| +  pSpace = sqlite3DbMallocRaw(db, nSpace); | 
| +  if( pSpace==0 ) return SQLITE_NOMEM; | 
| +  aTo = (WherePath*)pSpace; | 
| +  aFrom = aTo+mxChoice; | 
| +  memset(aFrom, 0, sizeof(aFrom[0])); | 
| +  pX = (WhereLoop**)(aFrom+mxChoice); | 
| +  for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ | 
| +    pFrom->aLoop = pX; | 
| +  } | 
| +  if( nOrderBy ){ | 
| +    /* If there is an ORDER BY clause and it is not being ignored, set up | 
| +    ** space for the aSortCost[] array. Each element of the aSortCost array | 
| +    ** is either zero - meaning it has not yet been initialized - or the | 
| +    ** cost of sorting nRowEst rows of data where the first X terms of | 
| +    ** the ORDER BY clause are already in order, where X is the array | 
| +    ** index.  */ | 
| +    aSortCost = (LogEst*)pX; | 
| +    memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); | 
| +  } | 
| +  assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); | 
| +  assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); | 
| + | 
| +  /* Seed the search with a single WherePath containing zero WhereLoops. | 
| +  ** | 
| +  ** TUNING: Do not let the number of iterations go above 25.  If the cost | 
| +  ** of computing an automatic index is not paid back within the first 25 | 
| +  ** rows, then do not use the automatic index. */ | 
| +  aFrom[0].nRow = MIN(pParse->nQueryLoop, 46);  assert( 46==sqlite3LogEst(25) ); | 
| +  nFrom = 1; | 
| +  assert( aFrom[0].isOrdered==0 ); | 
| +  if( nOrderBy ){ | 
| +    /* If nLoop is zero, then there are no FROM terms in the query. Since | 
| +    ** in this case the query may return a maximum of one row, the results | 
| +    ** are already in the requested order. Set isOrdered to nOrderBy to | 
| +    ** indicate this. Or, if nLoop is greater than zero, set isOrdered to | 
| +    ** -1, indicating that the result set may or may not be ordered, | 
| +    ** depending on the loops added to the current plan.  */ | 
| +    aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; | 
| +  } | 
| + | 
| +  /* Compute successively longer WherePaths using the previous generation | 
| +  ** of WherePaths as the basis for the next.  Keep track of the mxChoice | 
| +  ** best paths at each generation */ | 
| +  for(iLoop=0; iLoop<nLoop; iLoop++){ | 
| +    nTo = 0; | 
| +    for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ | 
| +      for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ | 
| +        LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */ | 
| +        LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */ | 
| +        LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */ | 
| +        i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */ | 
| +        Bitmask maskNew;                  /* Mask of src visited by (..) */ | 
| +        Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */ | 
| + | 
| +        if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; | 
| +        if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; | 
| +        /* At this point, pWLoop is a candidate to be the next loop. | 
| +        ** Compute its cost */ | 
| +        rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); | 
| +        rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); | 
| +        nOut = pFrom->nRow + pWLoop->nOut; | 
| +        maskNew = pFrom->maskLoop | pWLoop->maskSelf; | 
| +        if( isOrdered<0 ){ | 
| +          isOrdered = wherePathSatisfiesOrderBy(pWInfo, | 
| +                       pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, | 
| +                       iLoop, pWLoop, &revMask); | 
| +        }else{ | 
| +          revMask = pFrom->revLoop; | 
| +        } | 
| +        if( isOrdered>=0 && isOrdered<nOrderBy ){ | 
| +          if( aSortCost[isOrdered]==0 ){ | 
| +            aSortCost[isOrdered] = whereSortingCost( | 
| +                pWInfo, nRowEst, nOrderBy, isOrdered | 
| +            ); | 
| } | 
| -          sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); | 
| +          rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); | 
|  | 
| -          /* The pSubWInfo->untestedTerms flag means that this OR term | 
| -          ** contained one or more AND term from a notReady table.  The | 
| -          ** terms from the notReady table could not be tested and will | 
| -          ** need to be tested later. | 
| -          */ | 
| -          if( pSubWInfo->untestedTerms ) untestedTerms = 1; | 
| +          WHERETRACE(0x002, | 
| +              ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", | 
| +               aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, | 
| +               rUnsorted, rCost)); | 
| +        }else{ | 
| +          rCost = rUnsorted; | 
| +        } | 
|  | 
| -          /* Finish the loop through table entries that match term pOrTerm. */ | 
| -          sqlite3WhereEnd(pSubWInfo); | 
| +        /* Check to see if pWLoop should be added to the set of | 
| +        ** mxChoice best-so-far paths. | 
| +        ** | 
| +        ** First look for an existing path among best-so-far paths | 
| +        ** that covers the same set of loops and has the same isOrdered | 
| +        ** setting as the current path candidate. | 
| +        ** | 
| +        ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent | 
| +        ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range | 
| +        ** of legal values for isOrdered, -1..64. | 
| +        */ | 
| +        for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ | 
| +          if( pTo->maskLoop==maskNew | 
| +           && ((pTo->isOrdered^isOrdered)&0x80)==0 | 
| +          ){ | 
| +            testcase( jj==nTo-1 ); | 
| +            break; | 
| +          } | 
| +        } | 
| +        if( jj>=nTo ){ | 
| +          /* None of the existing best-so-far paths match the candidate. */ | 
| +          if( nTo>=mxChoice | 
| +           && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) | 
| +          ){ | 
| +            /* The current candidate is no better than any of the mxChoice | 
| +            ** paths currently in the best-so-far buffer.  So discard | 
| +            ** this candidate as not viable. */ | 
| +#ifdef WHERETRACE_ENABLED /* 0x4 */ | 
| +            if( sqlite3WhereTrace&0x4 ){ | 
| +              sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d order=%c\n", | 
| +                  wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, | 
| +                  isOrdered>=0 ? isOrdered+'0' : '?'); | 
| +            } | 
| +#endif | 
| +            continue; | 
| +          } | 
| +          /* If we reach this points it means that the new candidate path | 
| +          ** needs to be added to the set of best-so-far paths. */ | 
| +          if( nTo<mxChoice ){ | 
| +            /* Increase the size of the aTo set by one */ | 
| +            jj = nTo++; | 
| +          }else{ | 
| +            /* New path replaces the prior worst to keep count below mxChoice */ | 
| +            jj = mxI; | 
| +          } | 
| +          pTo = &aTo[jj]; | 
| +#ifdef WHERETRACE_ENABLED /* 0x4 */ | 
| +          if( sqlite3WhereTrace&0x4 ){ | 
| +            sqlite3DebugPrintf("New    %s cost=%-3d,%3d order=%c\n", | 
| +                wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, | 
| +                isOrdered>=0 ? isOrdered+'0' : '?'); | 
| +          } | 
| +#endif | 
| +        }else{ | 
| +          /* Control reaches here if best-so-far path pTo=aTo[jj] covers the | 
| +          ** same set of loops and has the sam isOrdered setting as the | 
| +          ** candidate path.  Check to see if the candidate should replace | 
| +          ** pTo or if the candidate should be skipped */ | 
| +          if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ | 
| +#ifdef WHERETRACE_ENABLED /* 0x4 */ | 
| +            if( sqlite3WhereTrace&0x4 ){ | 
| +              sqlite3DebugPrintf( | 
| +                  "Skip   %s cost=%-3d,%3d order=%c", | 
| +                  wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, | 
| +                  isOrdered>=0 ? isOrdered+'0' : '?'); | 
| +              sqlite3DebugPrintf("   vs %s cost=%-3d,%d order=%c\n", | 
| +                  wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, | 
| +                  pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); | 
| +            } | 
| +#endif | 
| +            /* Discard the candidate path from further consideration */ | 
| +            testcase( pTo->rCost==rCost ); | 
| +            continue; | 
| +          } | 
| +          testcase( pTo->rCost==rCost+1 ); | 
| +          /* Control reaches here if the candidate path is better than the | 
| +          ** pTo path.  Replace pTo with the candidate. */ | 
| +#ifdef WHERETRACE_ENABLED /* 0x4 */ | 
| +          if( sqlite3WhereTrace&0x4 ){ | 
| +            sqlite3DebugPrintf( | 
| +                "Update %s cost=%-3d,%3d order=%c", | 
| +                wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, | 
| +                isOrdered>=0 ? isOrdered+'0' : '?'); | 
| +            sqlite3DebugPrintf("  was %s cost=%-3d,%3d order=%c\n", | 
| +                wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, | 
| +                pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); | 
| +          } | 
| +#endif | 
| +        } | 
| +        /* pWLoop is a winner.  Add it to the set of best so far */ | 
| +        pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; | 
| +        pTo->revLoop = revMask; | 
| +        pTo->nRow = nOut; | 
| +        pTo->rCost = rCost; | 
| +        pTo->rUnsorted = rUnsorted; | 
| +        pTo->isOrdered = isOrdered; | 
| +        memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); | 
| +        pTo->aLoop[iLoop] = pWLoop; | 
| +        if( nTo>=mxChoice ){ | 
| +          mxI = 0; | 
| +          mxCost = aTo[0].rCost; | 
| +          mxUnsorted = aTo[0].nRow; | 
| +          for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ | 
| +            if( pTo->rCost>mxCost | 
| +             || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) | 
| +            ){ | 
| +              mxCost = pTo->rCost; | 
| +              mxUnsorted = pTo->rUnsorted; | 
| +              mxI = jj; | 
| +            } | 
| +          } | 
| } | 
| } | 
| } | 
| -    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); | 
| -    sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); | 
| -    sqlite3VdbeResolveLabel(v, iLoopBody); | 
|  | 
| -    if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab); | 
| -    if( !untestedTerms ) disableTerm(pLevel, pTerm); | 
| -  }else | 
| -#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ | 
| +#ifdef WHERETRACE_ENABLED  /* >=2 */ | 
| +    if( sqlite3WhereTrace>=2 ){ | 
| +      sqlite3DebugPrintf("---- after round %d ----\n", iLoop); | 
| +      for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ | 
| +        sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", | 
| +           wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, | 
| +           pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); | 
| +        if( pTo->isOrdered>0 ){ | 
| +          sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); | 
| +        }else{ | 
| +          sqlite3DebugPrintf("\n"); | 
| +        } | 
| +      } | 
| +    } | 
| +#endif | 
|  | 
| -  { | 
| -    /* Case 5:  There is no usable index.  We must do a complete | 
| -    **          scan of the entire table. | 
| -    */ | 
| -    static const u8 aStep[] = { OP_Next, OP_Prev }; | 
| -    static const u8 aStart[] = { OP_Rewind, OP_Last }; | 
| -    assert( bRev==0 || bRev==1 ); | 
| -    assert( omitTable==0 ); | 
| -    pLevel->op = aStep[bRev]; | 
| -    pLevel->p1 = iCur; | 
| -    pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); | 
| -    pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; | 
| +    /* Swap the roles of aFrom and aTo for the next generation */ | 
| +    pFrom = aTo; | 
| +    aTo = aFrom; | 
| +    aFrom = pFrom; | 
| +    nFrom = nTo; | 
| } | 
| -  notReady &= ~getMask(pWC->pMaskSet, iCur); | 
|  | 
| -  /* Insert code to test every subexpression that can be completely | 
| -  ** computed using the current set of tables. | 
| -  ** | 
| -  ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through | 
| -  ** the use of indices become tests that are evaluated against each row of | 
| -  ** the relevant input tables. | 
| -  */ | 
| -  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ | 
| -    Expr *pE; | 
| -    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ | 
| -    testcase( pTerm->wtFlags & TERM_CODED ); | 
| -    if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; | 
| -    if( (pTerm->prereqAll & notReady)!=0 ){ | 
| -      testcase( pWInfo->untestedTerms==0 | 
| -               && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); | 
| -      pWInfo->untestedTerms = 1; | 
| -      continue; | 
| -    } | 
| -    pE = pTerm->pExpr; | 
| -    assert( pE!=0 ); | 
| -    if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ | 
| -      continue; | 
| +  if( nFrom==0 ){ | 
| +    sqlite3ErrorMsg(pParse, "no query solution"); | 
| +    sqlite3DbFree(db, pSpace); | 
| +    return SQLITE_ERROR; | 
| +  } | 
| + | 
| +  /* Find the lowest cost path.  pFrom will be left pointing to that path */ | 
| +  pFrom = aFrom; | 
| +  for(ii=1; ii<nFrom; ii++){ | 
| +    if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; | 
| +  } | 
| +  assert( pWInfo->nLevel==nLoop ); | 
| +  /* Load the lowest cost path into pWInfo */ | 
| +  for(iLoop=0; iLoop<nLoop; iLoop++){ | 
| +    WhereLevel *pLevel = pWInfo->a + iLoop; | 
| +    pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; | 
| +    pLevel->iFrom = pWLoop->iTab; | 
| +    pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; | 
| +  } | 
| +  if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 | 
| +   && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 | 
| +   && pWInfo->eDistinct==WHERE_DISTINCT_NOOP | 
| +   && nRowEst | 
| +  ){ | 
| +    Bitmask notUsed; | 
| +    int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, | 
| +                 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); | 
| +    if( rc==pWInfo->pResultSet->nExpr ){ | 
| +      pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; | 
| } | 
| -    sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); | 
| -    pTerm->wtFlags |= TERM_CODED; | 
| } | 
| - | 
| -  /* For a LEFT OUTER JOIN, generate code that will record the fact that | 
| -  ** at least one row of the right table has matched the left table. | 
| -  */ | 
| -  if( pLevel->iLeftJoin ){ | 
| -    pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); | 
| -    sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); | 
| -    VdbeComment((v, "record LEFT JOIN hit")); | 
| -    sqlite3ExprCacheClear(pParse); | 
| -    for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ | 
| -      testcase( pTerm->wtFlags & TERM_VIRTUAL );  /* IMP: R-30575-11662 */ | 
| -      testcase( pTerm->wtFlags & TERM_CODED ); | 
| -      if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; | 
| -      if( (pTerm->prereqAll & notReady)!=0 ){ | 
| -        assert( pWInfo->untestedTerms ); | 
| -        continue; | 
| +  if( pWInfo->pOrderBy ){ | 
| +    if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ | 
| +      if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ | 
| +        pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; | 
| +      } | 
| +    }else{ | 
| +      pWInfo->nOBSat = pFrom->isOrdered; | 
| +      if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; | 
| +      pWInfo->revMask = pFrom->revLoop; | 
| +    } | 
| +    if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) | 
| +        && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr | 
| +    ){ | 
| +      Bitmask revMask = 0; | 
| +      int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, | 
| +          pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask | 
| +      ); | 
| +      assert( pWInfo->sorted==0 ); | 
| +      if( nOrder==pWInfo->pOrderBy->nExpr ){ | 
| +        pWInfo->sorted = 1; | 
| +        pWInfo->revMask = revMask; | 
| } | 
| -      assert( pTerm->pExpr ); | 
| -      sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); | 
| -      pTerm->wtFlags |= TERM_CODED; | 
| } | 
| } | 
| -  sqlite3ReleaseTempReg(pParse, iReleaseReg); | 
| - | 
| -  return notReady; | 
| -} | 
|  | 
| -#if defined(SQLITE_TEST) | 
| -/* | 
| -** The following variable holds a text description of query plan generated | 
| -** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin | 
| -** overwrites the previous.  This information is used for testing and | 
| -** analysis only. | 
| -*/ | 
| -char sqlite3_query_plan[BMS*2*40];  /* Text of the join */ | 
| -static int nQPlan = 0;              /* Next free slow in _query_plan[] */ | 
|  | 
| -#endif /* SQLITE_TEST */ | 
| +  pWInfo->nRowOut = pFrom->nRow; | 
|  | 
| +  /* Free temporary memory and return success */ | 
| +  sqlite3DbFree(db, pSpace); | 
| +  return SQLITE_OK; | 
| +} | 
|  | 
| /* | 
| -** Free a WhereInfo structure | 
| +** Most queries use only a single table (they are not joins) and have | 
| +** simple == constraints against indexed fields.  This routine attempts | 
| +** to plan those simple cases using much less ceremony than the | 
| +** general-purpose query planner, and thereby yield faster sqlite3_prepare() | 
| +** times for the common case. | 
| +** | 
| +** Return non-zero on success, if this query can be handled by this | 
| +** no-frills query planner.  Return zero if this query needs the | 
| +** general-purpose query planner. | 
| */ | 
| -static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ | 
| -  if( ALWAYS(pWInfo) ){ | 
| -    int i; | 
| -    for(i=0; i<pWInfo->nLevel; i++){ | 
| -      sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; | 
| -      if( pInfo ){ | 
| -        /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */ | 
| -        if( pInfo->needToFreeIdxStr ){ | 
| -          sqlite3_free(pInfo->idxStr); | 
| -        } | 
| -        sqlite3DbFree(db, pInfo); | 
| +static int whereShortCut(WhereLoopBuilder *pBuilder){ | 
| +  WhereInfo *pWInfo; | 
| +  struct SrcList_item *pItem; | 
| +  WhereClause *pWC; | 
| +  WhereTerm *pTerm; | 
| +  WhereLoop *pLoop; | 
| +  int iCur; | 
| +  int j; | 
| +  Table *pTab; | 
| +  Index *pIdx; | 
| + | 
| +  pWInfo = pBuilder->pWInfo; | 
| +  if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0; | 
| +  assert( pWInfo->pTabList->nSrc>=1 ); | 
| +  pItem = pWInfo->pTabList->a; | 
| +  pTab = pItem->pTab; | 
| +  if( IsVirtual(pTab) ) return 0; | 
| +  if( pItem->zIndex ) return 0; | 
| +  iCur = pItem->iCursor; | 
| +  pWC = &pWInfo->sWC; | 
| +  pLoop = pBuilder->pNew; | 
| +  pLoop->wsFlags = 0; | 
| +  pLoop->u.btree.nSkip = 0; | 
| +  pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0); | 
| +  if( pTerm ){ | 
| +    pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; | 
| +    pLoop->aLTerm[0] = pTerm; | 
| +    pLoop->nLTerm = 1; | 
| +    pLoop->u.btree.nEq = 1; | 
| +    /* TUNING: Cost of a rowid lookup is 10 */ | 
| +    pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */ | 
| +  }else{ | 
| +    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | 
| +      assert( pLoop->aLTermSpace==pLoop->aLTerm ); | 
| +      assert( ArraySize(pLoop->aLTermSpace)==4 ); | 
| +      if( !IsUniqueIndex(pIdx) | 
| +       || pIdx->pPartIdxWhere!=0 | 
| +       || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) | 
| +      ) continue; | 
| +      for(j=0; j<pIdx->nKeyCol; j++){ | 
| +        pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx); | 
| +        if( pTerm==0 ) break; | 
| +        pLoop->aLTerm[j] = pTerm; | 
| } | 
| -      if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){ | 
| -        Index *pIdx = pWInfo->a[i].plan.u.pIdx; | 
| -        if( pIdx ){ | 
| -          sqlite3DbFree(db, pIdx->zColAff); | 
| -          sqlite3DbFree(db, pIdx); | 
| -        } | 
| +      if( j!=pIdx->nKeyCol ) continue; | 
| +      pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; | 
| +      if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ | 
| +        pLoop->wsFlags |= WHERE_IDX_ONLY; | 
| } | 
| +      pLoop->nLTerm = j; | 
| +      pLoop->u.btree.nEq = j; | 
| +      pLoop->u.btree.pIndex = pIdx; | 
| +      /* TUNING: Cost of a unique index lookup is 15 */ | 
| +      pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */ | 
| +      break; | 
| } | 
| -    whereClauseClear(pWInfo->pWC); | 
| -    sqlite3DbFree(db, pWInfo); | 
| } | 
| +  if( pLoop->wsFlags ){ | 
| +    pLoop->nOut = (LogEst)1; | 
| +    pWInfo->a[0].pWLoop = pLoop; | 
| +    pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur); | 
| +    pWInfo->a[0].iTabCur = iCur; | 
| +    pWInfo->nRowOut = 1; | 
| +    if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr; | 
| +    if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ | 
| +      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; | 
| +    } | 
| +#ifdef SQLITE_DEBUG | 
| +    pLoop->cId = '0'; | 
| +#endif | 
| +    return 1; | 
| +  } | 
| +  return 0; | 
| } | 
|  | 
| - | 
| /* | 
| ** Generate the beginning of the loop used for WHERE clause processing. | 
| ** The return value is a pointer to an opaque structure that contains | 
| @@ -4350,39 +6006,56 @@ static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ | 
| ** | 
| ** ORDER BY CLAUSE PROCESSING | 
| ** | 
| -** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, | 
| +** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause | 
| +** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement | 
| ** if there is one.  If there is no ORDER BY clause or if this routine | 
| -** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. | 
| +** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. | 
| ** | 
| -** If an index can be used so that the natural output order of the table | 
| -** scan is correct for the ORDER BY clause, then that index is used and | 
| -** *ppOrderBy is set to NULL.  This is an optimization that prevents an | 
| -** unnecessary sort of the result set if an index appropriate for the | 
| -** ORDER BY clause already exists. | 
| -** | 
| -** If the where clause loops cannot be arranged to provide the correct | 
| -** output order, then the *ppOrderBy is unchanged. | 
| +** The iIdxCur parameter is the cursor number of an index.  If | 
| +** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index | 
| +** to use for OR clause processing.  The WHERE clause should use this | 
| +** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is | 
| +** the first cursor in an array of cursors for all indices.  iIdxCur should | 
| +** be used to compute the appropriate cursor depending on which index is | 
| +** used. | 
| */ | 
| WhereInfo *sqlite3WhereBegin( | 
| Parse *pParse,        /* The parser context */ | 
| -  SrcList *pTabList,    /* A list of all tables to be scanned */ | 
| +  SrcList *pTabList,    /* FROM clause: A list of all tables to be scanned */ | 
| Expr *pWhere,         /* The WHERE clause */ | 
| -  ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ | 
| -  u16 wctrlFlags        /* One of the WHERE_* flags defined in sqliteInt.h */ | 
| +  ExprList *pOrderBy,   /* An ORDER BY (or GROUP BY) clause, or NULL */ | 
| +  ExprList *pResultSet, /* Result set of the query */ | 
| +  u16 wctrlFlags,       /* One of the WHERE_* flags defined in sqliteInt.h */ | 
| +  int iIdxCur           /* If WHERE_ONETABLE_ONLY is set, index cursor number */ | 
| ){ | 
| -  int i;                     /* Loop counter */ | 
| int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */ | 
| int nTabList;              /* Number of elements in pTabList */ | 
| WhereInfo *pWInfo;         /* Will become the return value of this function */ | 
| Vdbe *v = pParse->pVdbe;   /* The virtual database engine */ | 
| Bitmask notReady;          /* Cursors that are not yet positioned */ | 
| +  WhereLoopBuilder sWLB;     /* The WhereLoop builder */ | 
| WhereMaskSet *pMaskSet;    /* The expression mask set */ | 
| -  WhereClause *pWC;               /* Decomposition of the WHERE clause */ | 
| -  struct SrcList_item *pTabItem;  /* A single entry from pTabList */ | 
| -  WhereLevel *pLevel;             /* A single level in the pWInfo list */ | 
| -  int iFrom;                      /* First unused FROM clause element */ | 
| -  int andFlags;              /* AND-ed combination of all pWC->a[].wtFlags */ | 
| +  WhereLevel *pLevel;        /* A single level in pWInfo->a[] */ | 
| +  WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */ | 
| +  int ii;                    /* Loop counter */ | 
| sqlite3 *db;               /* Database connection */ | 
| +  int rc;                    /* Return code */ | 
| + | 
| + | 
| +  /* Variable initialization */ | 
| +  db = pParse->db; | 
| +  memset(&sWLB, 0, sizeof(sWLB)); | 
| + | 
| +  /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ | 
| +  testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); | 
| +  if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; | 
| +  sWLB.pOrderBy = pOrderBy; | 
| + | 
| +  /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via | 
| +  ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ | 
| +  if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ | 
| +    wctrlFlags &= ~WHERE_WANT_DISTINCT; | 
| +  } | 
|  | 
| /* The number of tables in the FROM clause is limited by the number of | 
| ** bits in a Bitmask | 
| @@ -4407,41 +6080,57 @@ WhereInfo *sqlite3WhereBegin( | 
| ** field (type Bitmask) it must be aligned on an 8-byte boundary on | 
| ** some architectures. Hence the ROUND8() below. | 
| */ | 
| -  db = pParse->db; | 
| nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); | 
| -  pWInfo = sqlite3DbMallocZero(db, | 
| -      nByteWInfo + | 
| -      sizeof(WhereClause) + | 
| -      sizeof(WhereMaskSet) | 
| -  ); | 
| +  pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop)); | 
| if( db->mallocFailed ){ | 
| sqlite3DbFree(db, pWInfo); | 
| pWInfo = 0; | 
| goto whereBeginError; | 
| } | 
| +  pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; | 
| pWInfo->nLevel = nTabList; | 
| pWInfo->pParse = pParse; | 
| pWInfo->pTabList = pTabList; | 
| -  pWInfo->iBreak = sqlite3VdbeMakeLabel(v); | 
| -  pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo]; | 
| +  pWInfo->pOrderBy = pOrderBy; | 
| +  pWInfo->pResultSet = pResultSet; | 
| +  pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); | 
| pWInfo->wctrlFlags = wctrlFlags; | 
| pWInfo->savedNQueryLoop = pParse->nQueryLoop; | 
| -  pMaskSet = (WhereMaskSet*)&pWC[1]; | 
| +  pMaskSet = &pWInfo->sMaskSet; | 
| +  sWLB.pWInfo = pWInfo; | 
| +  sWLB.pWC = &pWInfo->sWC; | 
| +  sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); | 
| +  assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); | 
| +  whereLoopInit(sWLB.pNew); | 
| +#ifdef SQLITE_DEBUG | 
| +  sWLB.pNew->cId = '*'; | 
| +#endif | 
|  | 
| /* Split the WHERE clause into separate subexpressions where each | 
| ** subexpression is separated by an AND operator. | 
| */ | 
| initMaskSet(pMaskSet); | 
| -  whereClauseInit(pWC, pParse, pMaskSet); | 
| -  sqlite3ExprCodeConstants(pParse, pWhere); | 
| -  whereSplit(pWC, pWhere, TK_AND);   /* IMP: R-15842-53296 */ | 
| +  whereClauseInit(&pWInfo->sWC, pWInfo); | 
| +  whereSplit(&pWInfo->sWC, pWhere, TK_AND); | 
|  | 
| /* Special case: a WHERE clause that is constant.  Evaluate the | 
| ** expression and either jump over all of the code or fall thru. | 
| */ | 
| -  if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ | 
| -    sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); | 
| -    pWhere = 0; | 
| +  for(ii=0; ii<sWLB.pWC->nTerm; ii++){ | 
| +    if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ | 
| +      sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, | 
| +                         SQLITE_JUMPIFNULL); | 
| +      sWLB.pWC->a[ii].wtFlags |= TERM_CODED; | 
| +    } | 
| +  } | 
| + | 
| +  /* Special case: No FROM clause | 
| +  */ | 
| +  if( nTabList==0 ){ | 
| +    if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; | 
| +    if( wctrlFlags & WHERE_WANT_DISTINCT ){ | 
| +      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; | 
| +    } | 
| } | 
|  | 
| /* Assign a bit from the bitmask to every term in the FROM clause. | 
| @@ -4455,30 +6144,19 @@ WhereInfo *sqlite3WhereBegin( | 
| ** bitmask for all tables to the left of the join.  Knowing the bitmask | 
| ** for all tables to the left of a left join is important.  Ticket #3015. | 
| ** | 
| -  ** Configure the WhereClause.vmask variable so that bits that correspond | 
| -  ** to virtual table cursors are set. This is used to selectively disable | 
| -  ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful | 
| -  ** with virtual tables. | 
| -  ** | 
| ** Note that bitmasks are created for all pTabList->nSrc tables in | 
| ** pTabList, not just the first nTabList tables.  nTabList is normally | 
| ** equal to pTabList->nSrc but might be shortened to 1 if the | 
| ** WHERE_ONETABLE_ONLY flag is set. | 
| */ | 
| -  assert( pWC->vmask==0 && pMaskSet->n==0 ); | 
| -  for(i=0; i<pTabList->nSrc; i++){ | 
| -    createMask(pMaskSet, pTabList->a[i].iCursor); | 
| -#ifndef SQLITE_OMIT_VIRTUALTABLE | 
| -    if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){ | 
| -      pWC->vmask |= ((Bitmask)1 << i); | 
| -    } | 
| -#endif | 
| +  for(ii=0; ii<pTabList->nSrc; ii++){ | 
| +    createMask(pMaskSet, pTabList->a[ii].iCursor); | 
| } | 
| #ifndef NDEBUG | 
| { | 
| Bitmask toTheLeft = 0; | 
| -    for(i=0; i<pTabList->nSrc; i++){ | 
| -      Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor); | 
| +    for(ii=0; ii<pTabList->nSrc; ii++){ | 
| +      Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor); | 
| assert( (m-1)==toTheLeft ); | 
| toTheLeft |= m; | 
| } | 
| @@ -4490,267 +6168,177 @@ WhereInfo *sqlite3WhereBegin( | 
| ** want to analyze these virtual terms, so start analyzing at the end | 
| ** and work forward so that the added virtual terms are never processed. | 
| */ | 
| -  exprAnalyzeAll(pTabList, pWC); | 
| +  exprAnalyzeAll(pTabList, &pWInfo->sWC); | 
| if( db->mallocFailed ){ | 
| goto whereBeginError; | 
| } | 
|  | 
| -  /* Chose the best index to use for each table in the FROM clause. | 
| -  ** | 
| -  ** This loop fills in the following fields: | 
| -  ** | 
| -  **   pWInfo->a[].pIdx      The index to use for this level of the loop. | 
| -  **   pWInfo->a[].wsFlags   WHERE_xxx flags associated with pIdx | 
| -  **   pWInfo->a[].nEq       The number of == and IN constraints | 
| -  **   pWInfo->a[].iFrom     Which term of the FROM clause is being coded | 
| -  **   pWInfo->a[].iTabCur   The VDBE cursor for the database table | 
| -  **   pWInfo->a[].iIdxCur   The VDBE cursor for the index | 
| -  **   pWInfo->a[].pTerm     When wsFlags==WO_OR, the OR-clause term | 
| -  ** | 
| -  ** This loop also figures out the nesting order of tables in the FROM | 
| -  ** clause. | 
| -  */ | 
| -  notReady = ~(Bitmask)0; | 
| -  andFlags = ~0; | 
| -  WHERETRACE(("*** Optimizer Start ***\n")); | 
| -  for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){ | 
| -    WhereCost bestPlan;         /* Most efficient plan seen so far */ | 
| -    Index *pIdx;                /* Index for FROM table at pTabItem */ | 
| -    int j;                      /* For looping over FROM tables */ | 
| -    int bestJ = -1;             /* The value of j */ | 
| -    Bitmask m;                  /* Bitmask value for j or bestJ */ | 
| -    int isOptimal;              /* Iterator for optimal/non-optimal search */ | 
| -    int nUnconstrained;         /* Number tables without INDEXED BY */ | 
| -    Bitmask notIndexed;         /* Mask of tables that cannot use an index */ | 
| - | 
| -    memset(&bestPlan, 0, sizeof(bestPlan)); | 
| -    bestPlan.rCost = SQLITE_BIG_DBL; | 
| -    WHERETRACE(("*** Begin search for loop %d ***\n", i)); | 
| - | 
| -    /* Loop through the remaining entries in the FROM clause to find the | 
| -    ** next nested loop. The loop tests all FROM clause entries | 
| -    ** either once or twice. | 
| -    ** | 
| -    ** The first test is always performed if there are two or more entries | 
| -    ** remaining and never performed if there is only one FROM clause entry | 
| -    ** to choose from.  The first test looks for an "optimal" scan.  In | 
| -    ** this context an optimal scan is one that uses the same strategy | 
| -    ** for the given FROM clause entry as would be selected if the entry | 
| -    ** were used as the innermost nested loop.  In other words, a table | 
| -    ** is chosen such that the cost of running that table cannot be reduced | 
| -    ** by waiting for other tables to run first.  This "optimal" test works | 
| -    ** by first assuming that the FROM clause is on the inner loop and finding | 
| -    ** its query plan, then checking to see if that query plan uses any | 
| -    ** other FROM clause terms that are notReady.  If no notReady terms are | 
| -    ** used then the "optimal" query plan works. | 
| -    ** | 
| -    ** Note that the WhereCost.nRow parameter for an optimal scan might | 
| -    ** not be as small as it would be if the table really were the innermost | 
| -    ** join.  The nRow value can be reduced by WHERE clause constraints | 
| -    ** that do not use indices.  But this nRow reduction only happens if the | 
| -    ** table really is the innermost join. | 
| -    ** | 
| -    ** The second loop iteration is only performed if no optimal scan | 
| -    ** strategies were found by the first iteration. This second iteration | 
| -    ** is used to search for the lowest cost scan overall. | 
| -    ** | 
| -    ** Previous versions of SQLite performed only the second iteration - | 
| -    ** the next outermost loop was always that with the lowest overall | 
| -    ** cost. However, this meant that SQLite could select the wrong plan | 
| -    ** for scripts such as the following: | 
| -    ** | 
| -    **   CREATE TABLE t1(a, b); | 
| -    **   CREATE TABLE t2(c, d); | 
| -    **   SELECT * FROM t2, t1 WHERE t2.rowid = t1.a; | 
| -    ** | 
| -    ** The best strategy is to iterate through table t1 first. However it | 
| -    ** is not possible to determine this with a simple greedy algorithm. | 
| -    ** Since the cost of a linear scan through table t2 is the same | 
| -    ** as the cost of a linear scan through table t1, a simple greedy | 
| -    ** algorithm may choose to use t2 for the outer loop, which is a much | 
| -    ** costlier approach. | 
| -    */ | 
| -    nUnconstrained = 0; | 
| -    notIndexed = 0; | 
| -    for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){ | 
| -      Bitmask mask;             /* Mask of tables not yet ready */ | 
| -      for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){ | 
| -        int doNotReorder;    /* True if this table should not be reordered */ | 
| -        WhereCost sCost;     /* Cost information from best[Virtual]Index() */ | 
| -        ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */ | 
| - | 
| -        doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; | 
| -        if( j!=iFrom && doNotReorder ) break; | 
| -        m = getMask(pMaskSet, pTabItem->iCursor); | 
| -        if( (m & notReady)==0 ){ | 
| -          if( j==iFrom ) iFrom++; | 
| -          continue; | 
| -        } | 
| -        mask = (isOptimal ? m : notReady); | 
| -        pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0); | 
| -        if( pTabItem->pIndex==0 ) nUnconstrained++; | 
| - | 
| -        WHERETRACE(("=== trying table %d with isOptimal=%d ===\n", | 
| -                    j, isOptimal)); | 
| -        assert( pTabItem->pTab ); | 
| -#ifndef SQLITE_OMIT_VIRTUALTABLE | 
| -        if( IsVirtual(pTabItem->pTab) ){ | 
| -          sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo; | 
| -          bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy, | 
| -                           &sCost, pp); | 
| -        }else | 
| -#endif | 
| -        { | 
| -          bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy, | 
| -                         &sCost); | 
| -        } | 
| -        assert( isOptimal || (sCost.used¬Ready)==0 ); | 
| - | 
| -        /* If an INDEXED BY clause is present, then the plan must use that | 
| -        ** index if it uses any index at all */ | 
| -        assert( pTabItem->pIndex==0 | 
| -                  || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 | 
| -                  || sCost.plan.u.pIdx==pTabItem->pIndex ); | 
| +  if( wctrlFlags & WHERE_WANT_DISTINCT ){ | 
| +    if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ | 
| +      /* The DISTINCT marking is pointless.  Ignore it. */ | 
| +      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; | 
| +    }else if( pOrderBy==0 ){ | 
| +      /* Try to ORDER BY the result set to make distinct processing easier */ | 
| +      pWInfo->wctrlFlags |= WHERE_DISTINCTBY; | 
| +      pWInfo->pOrderBy = pResultSet; | 
| +    } | 
| +  } | 
|  | 
| -        if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){ | 
| -          notIndexed |= m; | 
| -        } | 
| +  /* Construct the WhereLoop objects */ | 
| +  WHERETRACE(0xffff,("*** Optimizer Start ***\n")); | 
| +#if defined(WHERETRACE_ENABLED) | 
| +  /* Display all terms of the WHERE clause */ | 
| +  if( sqlite3WhereTrace & 0x100 ){ | 
| +    int i; | 
| +    for(i=0; i<sWLB.pWC->nTerm; i++){ | 
| +      whereTermPrint(&sWLB.pWC->a[i], i); | 
| +    } | 
| +  } | 
| +#endif | 
|  | 
| -        /* Conditions under which this table becomes the best so far: | 
| -        ** | 
| -        **   (1) The table must not depend on other tables that have not | 
| -        **       yet run. | 
| -        ** | 
| -        **   (2) A full-table-scan plan cannot supercede indexed plan unless | 
| -        **       the full-table-scan is an "optimal" plan as defined above. | 
| -        ** | 
| -        **   (3) All tables have an INDEXED BY clause or this table lacks an | 
| -        **       INDEXED BY clause or this table uses the specific | 
| -        **       index specified by its INDEXED BY clause.  This rule ensures | 
| -        **       that a best-so-far is always selected even if an impossible | 
| -        **       combination of INDEXED BY clauses are given.  The error | 
| -        **       will be detected and relayed back to the application later. | 
| -        **       The NEVER() comes about because rule (2) above prevents | 
| -        **       An indexable full-table-scan from reaching rule (3). | 
| -        ** | 
| -        **   (4) The plan cost must be lower than prior plans or else the | 
| -        **       cost must be the same and the number of rows must be lower. | 
| -        */ | 
| -        if( (sCost.used¬Ready)==0                       /* (1) */ | 
| -            && (bestJ<0 || (notIndexed&m)!=0               /* (2) */ | 
| -                || (bestPlan.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 | 
| -                || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0) | 
| -            && (nUnconstrained==0 || pTabItem->pIndex==0   /* (3) */ | 
| -                || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)) | 
| -            && (bestJ<0 || sCost.rCost<bestPlan.rCost      /* (4) */ | 
| -                || (sCost.rCost<=bestPlan.rCost | 
| -                 && sCost.plan.nRow<bestPlan.plan.nRow)) | 
| -        ){ | 
| -          WHERETRACE(("=== table %d is best so far" | 
| -                      " with cost=%g and nRow=%g\n", | 
| -                      j, sCost.rCost, sCost.plan.nRow)); | 
| -          bestPlan = sCost; | 
| -          bestJ = j; | 
| -        } | 
| -        if( doNotReorder ) break; | 
| +  if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ | 
| +    rc = whereLoopAddAll(&sWLB); | 
| +    if( rc ) goto whereBeginError; | 
| + | 
| +    /* Display all of the WhereLoop objects if wheretrace is enabled */ | 
| +#ifdef WHERETRACE_ENABLED /* !=0 */ | 
| +    if( sqlite3WhereTrace ){ | 
| +      WhereLoop *p; | 
| +      int i; | 
| +      static char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" | 
| +                                       "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; | 
| +      for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ | 
| +        p->cId = zLabel[i%sizeof(zLabel)]; | 
| +        whereLoopPrint(p, sWLB.pWC); | 
| } | 
| } | 
| -    assert( bestJ>=0 ); | 
| -    assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); | 
| -    WHERETRACE(("*** Optimizer selects table %d for loop %d" | 
| -                " with cost=%g and nRow=%g\n", | 
| -                bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow)); | 
| -    if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){ | 
| -      *ppOrderBy = 0; | 
| -    } | 
| -    andFlags &= bestPlan.plan.wsFlags; | 
| -    pLevel->plan = bestPlan.plan; | 
| -    testcase( bestPlan.plan.wsFlags & WHERE_INDEXED ); | 
| -    testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX ); | 
| -    if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){ | 
| -      pLevel->iIdxCur = pParse->nTab++; | 
| -    }else{ | 
| -      pLevel->iIdxCur = -1; | 
| +#endif | 
| + | 
| +    wherePathSolver(pWInfo, 0); | 
| +    if( db->mallocFailed ) goto whereBeginError; | 
| +    if( pWInfo->pOrderBy ){ | 
| +       wherePathSolver(pWInfo, pWInfo->nRowOut+1); | 
| +       if( db->mallocFailed ) goto whereBeginError; | 
| } | 
| -    notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor); | 
| -    pLevel->iFrom = (u8)bestJ; | 
| -    if( bestPlan.plan.nRow>=(double)1 ){ | 
| -      pParse->nQueryLoop *= bestPlan.plan.nRow; | 
| +  } | 
| +  if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ | 
| +     pWInfo->revMask = (Bitmask)(-1); | 
| +  } | 
| +  if( pParse->nErr || NEVER(db->mallocFailed) ){ | 
| +    goto whereBeginError; | 
| +  } | 
| +#ifdef WHERETRACE_ENABLED /* !=0 */ | 
| +  if( sqlite3WhereTrace ){ | 
| +    int ii; | 
| +    sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); | 
| +    if( pWInfo->nOBSat>0 ){ | 
| +      sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); | 
| } | 
| - | 
| -    /* Check that if the table scanned by this loop iteration had an | 
| -    ** INDEXED BY clause attached to it, that the named index is being | 
| -    ** used for the scan. If not, then query compilation has failed. | 
| -    ** Return an error. | 
| -    */ | 
| -    pIdx = pTabList->a[bestJ].pIndex; | 
| -    if( pIdx ){ | 
| -      if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){ | 
| -        sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); | 
| -        goto whereBeginError; | 
| -      }else{ | 
| -        /* If an INDEXED BY clause is used, the bestIndex() function is | 
| -        ** guaranteed to find the index specified in the INDEXED BY clause | 
| -        ** if it find an index at all. */ | 
| -        assert( bestPlan.plan.u.pIdx==pIdx ); | 
| +    switch( pWInfo->eDistinct ){ | 
| +      case WHERE_DISTINCT_UNIQUE: { | 
| +        sqlite3DebugPrintf("  DISTINCT=unique"); | 
| +        break; | 
| +      } | 
| +      case WHERE_DISTINCT_ORDERED: { | 
| +        sqlite3DebugPrintf("  DISTINCT=ordered"); | 
| +        break; | 
| +      } | 
| +      case WHERE_DISTINCT_UNORDERED: { | 
| +        sqlite3DebugPrintf("  DISTINCT=unordered"); | 
| +        break; | 
| } | 
| } | 
| +    sqlite3DebugPrintf("\n"); | 
| +    for(ii=0; ii<pWInfo->nLevel; ii++){ | 
| +      whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); | 
| +    } | 
| } | 
| -  WHERETRACE(("*** Optimizer Finished ***\n")); | 
| -  if( pParse->nErr || db->mallocFailed ){ | 
| -    goto whereBeginError; | 
| -  } | 
| - | 
| -  /* If the total query only selects a single row, then the ORDER BY | 
| -  ** clause is irrelevant. | 
| -  */ | 
| -  if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ | 
| -    *ppOrderBy = 0; | 
| +#endif | 
| +  /* Attempt to omit tables from the join that do not effect the result */ | 
| +  if( pWInfo->nLevel>=2 | 
| +   && pResultSet!=0 | 
| +   && OptimizationEnabled(db, SQLITE_OmitNoopJoin) | 
| +  ){ | 
| +    Bitmask tabUsed = exprListTableUsage(pMaskSet, pResultSet); | 
| +    if( sWLB.pOrderBy ) tabUsed |= exprListTableUsage(pMaskSet, sWLB.pOrderBy); | 
| +    while( pWInfo->nLevel>=2 ){ | 
| +      WhereTerm *pTerm, *pEnd; | 
| +      pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; | 
| +      if( (pWInfo->pTabList->a[pLoop->iTab].jointype & JT_LEFT)==0 ) break; | 
| +      if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 | 
| +       && (pLoop->wsFlags & WHERE_ONEROW)==0 | 
| +      ){ | 
| +        break; | 
| +      } | 
| +      if( (tabUsed & pLoop->maskSelf)!=0 ) break; | 
| +      pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; | 
| +      for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ | 
| +        if( (pTerm->prereqAll & pLoop->maskSelf)!=0 | 
| +         && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) | 
| +        ){ | 
| +          break; | 
| +        } | 
| +      } | 
| +      if( pTerm<pEnd ) break; | 
| +      WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); | 
| +      pWInfo->nLevel--; | 
| +      nTabList--; | 
| +    } | 
| } | 
| +  WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); | 
| +  pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; | 
|  | 
| /* If the caller is an UPDATE or DELETE statement that is requesting | 
| ** to use a one-pass algorithm, determine if this is appropriate. | 
| -  ** The one-pass algorithm only works if the WHERE clause constraints | 
| +  ** The one-pass algorithm only works if the WHERE clause constrains | 
| ** the statement to update a single row. | 
| */ | 
| assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); | 
| -  if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ | 
| +  if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 | 
| +   && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){ | 
| pWInfo->okOnePass = 1; | 
| -    pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY; | 
| +    if( HasRowid(pTabList->a[0].pTab) ){ | 
| +      pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY; | 
| +    } | 
| } | 
|  | 
| /* Open all tables in the pTabList and any indices selected for | 
| ** searching those tables. | 
| */ | 
| -  sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ | 
| notReady = ~(Bitmask)0; | 
| -  pWInfo->nRowOut = (double)1; | 
| -  for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){ | 
| +  for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ | 
| Table *pTab;     /* Table to open */ | 
| int iDb;         /* Index of database containing table/index */ | 
| +    struct SrcList_item *pTabItem; | 
|  | 
| pTabItem = &pTabList->a[pLevel->iFrom]; | 
| pTab = pTabItem->pTab; | 
| -    pLevel->iTabCur = pTabItem->iCursor; | 
| -    pWInfo->nRowOut *= pLevel->plan.nRow; | 
| iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | 
| +    pLoop = pLevel->pWLoop; | 
| if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ | 
| /* Do nothing */ | 
| }else | 
| #ifndef SQLITE_OMIT_VIRTUALTABLE | 
| -    if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ | 
| +    if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ | 
| const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); | 
| int iCur = pTabItem->iCursor; | 
| sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); | 
| +    }else if( IsVirtual(pTab) ){ | 
| +      /* noop */ | 
| }else | 
| #endif | 
| -    if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 | 
| -         && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){ | 
| -      int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; | 
| +    if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 | 
| +         && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ | 
| +      int op = OP_OpenRead; | 
| +      if( pWInfo->okOnePass ){ | 
| +        op = OP_OpenWrite; | 
| +        pWInfo->aiCurOnePass[0] = pTabItem->iCursor; | 
| +      }; | 
| sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); | 
| -      testcase( pTab->nCol==BMS-1 ); | 
| -      testcase( pTab->nCol==BMS ); | 
| -      if( !pWInfo->okOnePass && pTab->nCol<BMS ){ | 
| +      assert( pTabItem->iCursor==pLevel->iTabCur ); | 
| +      testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 ); | 
| +      testcase( !pWInfo->okOnePass && pTab->nCol==BMS ); | 
| +      if( !pWInfo->okOnePass && pTab->nCol<BMS && HasRowid(pTab) ){ | 
| Bitmask b = pTabItem->colUsed; | 
| int n = 0; | 
| for(; b; b=b>>1, n++){} | 
| @@ -4761,23 +6349,46 @@ WhereInfo *sqlite3WhereBegin( | 
| }else{ | 
| sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); | 
| } | 
| -#ifndef SQLITE_OMIT_AUTOMATIC_INDEX | 
| -    if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){ | 
| -      constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel); | 
| -    }else | 
| -#endif | 
| -    if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ | 
| -      Index *pIx = pLevel->plan.u.pIdx; | 
| -      KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); | 
| -      int iIdxCur = pLevel->iIdxCur; | 
| +    if( pLoop->wsFlags & WHERE_INDEXED ){ | 
| +      Index *pIx = pLoop->u.btree.pIndex; | 
| +      int iIndexCur; | 
| +      int op = OP_OpenRead; | 
| +      /* iIdxCur is always set if to a positive value if ONEPASS is possible */ | 
| +      assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); | 
| +      if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) | 
| +       && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 | 
| +      ){ | 
| +        /* This is one term of an OR-optimization using the PRIMARY KEY of a | 
| +        ** WITHOUT ROWID table.  No need for a separate index */ | 
| +        iIndexCur = pLevel->iTabCur; | 
| +        op = 0; | 
| +      }else if( pWInfo->okOnePass ){ | 
| +        Index *pJ = pTabItem->pTab->pIndex; | 
| +        iIndexCur = iIdxCur; | 
| +        assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); | 
| +        while( ALWAYS(pJ) && pJ!=pIx ){ | 
| +          iIndexCur++; | 
| +          pJ = pJ->pNext; | 
| +        } | 
| +        op = OP_OpenWrite; | 
| +        pWInfo->aiCurOnePass[1] = iIndexCur; | 
| +      }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){ | 
| +        iIndexCur = iIdxCur; | 
| +        if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx; | 
| +      }else{ | 
| +        iIndexCur = pParse->nTab++; | 
| +      } | 
| +      pLevel->iIdxCur = iIndexCur; | 
| assert( pIx->pSchema==pTab->pSchema ); | 
| -      assert( iIdxCur>=0 ); | 
| -      sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, | 
| -                        (char*)pKey, P4_KEYINFO_HANDOFF); | 
| -      VdbeComment((v, "%s", pIx->zName)); | 
| +      assert( iIndexCur>=0 ); | 
| +      if( op ){ | 
| +        sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); | 
| +        sqlite3VdbeSetP4KeyInfo(pParse, pIx); | 
| +        VdbeComment((v, "%s", pIx->zName)); | 
| +      } | 
| } | 
| -    sqlite3CodeVerifySchema(pParse, iDb); | 
| -    notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor); | 
| +    if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); | 
| +    notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor); | 
| } | 
| pWInfo->iTop = sqlite3VdbeCurrentAddr(v); | 
| if( db->mallocFailed ) goto whereBeginError; | 
| @@ -4787,65 +6398,23 @@ WhereInfo *sqlite3WhereBegin( | 
| ** program. | 
| */ | 
| notReady = ~(Bitmask)0; | 
| -  for(i=0; i<nTabList; i++){ | 
| -    pLevel = &pWInfo->a[i]; | 
| -    explainOneScan(pParse, pTabList, pLevel, i, pLevel->iFrom, wctrlFlags); | 
| -    notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady); | 
| -    pWInfo->iContinue = pLevel->addrCont; | 
| -  } | 
| - | 
| -#ifdef SQLITE_TEST  /* For testing and debugging use only */ | 
| -  /* Record in the query plan information about the current table | 
| -  ** and the index used to access it (if any).  If the table itself | 
| -  ** is not used, its name is just '{}'.  If no index is used | 
| -  ** the index is listed as "{}".  If the primary key is used the | 
| -  ** index name is '*'. | 
| -  */ | 
| -  for(i=0; i<nTabList; i++){ | 
| -    char *z; | 
| -    int n; | 
| -    pLevel = &pWInfo->a[i]; | 
| -    pTabItem = &pTabList->a[pLevel->iFrom]; | 
| -    z = pTabItem->zAlias; | 
| -    if( z==0 ) z = pTabItem->pTab->zName; | 
| -    n = sqlite3Strlen30(z); | 
| -    if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ | 
| -      if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){ | 
| -        memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); | 
| -        nQPlan += 2; | 
| -      }else{ | 
| -        memcpy(&sqlite3_query_plan[nQPlan], z, n); | 
| -        nQPlan += n; | 
| -      } | 
| -      sqlite3_query_plan[nQPlan++] = ' '; | 
| -    } | 
| -    testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ ); | 
| -    testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ); | 
| -    if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ | 
| -      memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); | 
| -      nQPlan += 2; | 
| -    }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ | 
| -      n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName); | 
| -      if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ | 
| -        memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n); | 
| -        nQPlan += n; | 
| -        sqlite3_query_plan[nQPlan++] = ' '; | 
| -      } | 
| -    }else{ | 
| -      memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); | 
| -      nQPlan += 3; | 
| +  for(ii=0; ii<nTabList; ii++){ | 
| +    pLevel = &pWInfo->a[ii]; | 
| +#ifndef SQLITE_OMIT_AUTOMATIC_INDEX | 
| +    if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ | 
| +      constructAutomaticIndex(pParse, &pWInfo->sWC, | 
| +                &pTabList->a[pLevel->iFrom], notReady, pLevel); | 
| +      if( db->mallocFailed ) goto whereBeginError; | 
| } | 
| +#endif | 
| +    explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags); | 
| +    pLevel->addrBody = sqlite3VdbeCurrentAddr(v); | 
| +    notReady = codeOneLoopStart(pWInfo, ii, notReady); | 
| +    pWInfo->iContinue = pLevel->addrCont; | 
| } | 
| -  while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ | 
| -    sqlite3_query_plan[--nQPlan] = 0; | 
| -  } | 
| -  sqlite3_query_plan[nQPlan] = 0; | 
| -  nQPlan = 0; | 
| -#endif /* SQLITE_TEST // Testing and debugging use only */ | 
|  | 
| -  /* Record the continuation address in the WhereInfo structure.  Then | 
| -  ** clean up and return. | 
| -  */ | 
| +  /* Done. */ | 
| +  VdbeModuleComment((v, "Begin WHERE-core")); | 
| return pWInfo; | 
|  | 
| /* Jump here if malloc fails */ | 
| @@ -4866,40 +6435,56 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ | 
| Vdbe *v = pParse->pVdbe; | 
| int i; | 
| WhereLevel *pLevel; | 
| +  WhereLoop *pLoop; | 
| SrcList *pTabList = pWInfo->pTabList; | 
| sqlite3 *db = pParse->db; | 
|  | 
| /* Generate loop termination code. | 
| */ | 
| +  VdbeModuleComment((v, "End WHERE-core")); | 
| sqlite3ExprCacheClear(pParse); | 
| for(i=pWInfo->nLevel-1; i>=0; i--){ | 
| +    int addr; | 
| pLevel = &pWInfo->a[i]; | 
| +    pLoop = pLevel->pWLoop; | 
| sqlite3VdbeResolveLabel(v, pLevel->addrCont); | 
| if( pLevel->op!=OP_Noop ){ | 
| -      sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); | 
| +      sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); | 
| sqlite3VdbeChangeP5(v, pLevel->p5); | 
| +      VdbeCoverage(v); | 
| +      VdbeCoverageIf(v, pLevel->op==OP_Next); | 
| +      VdbeCoverageIf(v, pLevel->op==OP_Prev); | 
| +      VdbeCoverageIf(v, pLevel->op==OP_VNext); | 
| } | 
| -    if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ | 
| +    if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ | 
| struct InLoop *pIn; | 
| int j; | 
| sqlite3VdbeResolveLabel(v, pLevel->addrNxt); | 
| for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ | 
| sqlite3VdbeJumpHere(v, pIn->addrInTop+1); | 
| -        sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop); | 
| +        sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); | 
| +        VdbeCoverage(v); | 
| +        VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); | 
| +        VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); | 
| sqlite3VdbeJumpHere(v, pIn->addrInTop-1); | 
| } | 
| sqlite3DbFree(db, pLevel->u.in.aInLoop); | 
| } | 
| sqlite3VdbeResolveLabel(v, pLevel->addrBrk); | 
| +    if( pLevel->addrSkip ){ | 
| +      sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip); | 
| +      VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); | 
| +      sqlite3VdbeJumpHere(v, pLevel->addrSkip); | 
| +      sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); | 
| +    } | 
| if( pLevel->iLeftJoin ){ | 
| -      int addr; | 
| -      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); | 
| -      assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 | 
| -           || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ); | 
| -      if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){ | 
| +      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); | 
| +      assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 | 
| +           || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); | 
| +      if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ | 
| sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); | 
| } | 
| -      if( pLevel->iIdxCur>=0 ){ | 
| +      if( pLoop->wsFlags & WHERE_INDEXED ){ | 
| sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); | 
| } | 
| if( pLevel->op==OP_Return ){ | 
| @@ -4909,6 +6494,8 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ | 
| } | 
| sqlite3VdbeJumpHere(v, addr); | 
| } | 
| +    VdbeModuleComment((v, "End WHERE-loop%d: %s", i, | 
| +                     pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); | 
| } | 
|  | 
| /* The "break" point is here, just past the end of the outer loop. | 
| @@ -4916,32 +6503,65 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ | 
| */ | 
| sqlite3VdbeResolveLabel(v, pWInfo->iBreak); | 
|  | 
| -  /* Close all of the cursors that were opened by sqlite3WhereBegin. | 
| -  */ | 
| -  assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc ); | 
| +  assert( pWInfo->nLevel<=pTabList->nSrc ); | 
| for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ | 
| +    int k, last; | 
| +    VdbeOp *pOp; | 
| +    Index *pIdx = 0; | 
| struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; | 
| Table *pTab = pTabItem->pTab; | 
| assert( pTab!=0 ); | 
| +    pLoop = pLevel->pWLoop; | 
| + | 
| +    /* For a co-routine, change all OP_Column references to the table of | 
| +    ** the co-routine into OP_SCopy of result contained in a register. | 
| +    ** OP_Rowid becomes OP_Null. | 
| +    */ | 
| +    if( pTabItem->viaCoroutine && !db->mallocFailed ){ | 
| +      last = sqlite3VdbeCurrentAddr(v); | 
| +      k = pLevel->addrBody; | 
| +      pOp = sqlite3VdbeGetOp(v, k); | 
| +      for(; k<last; k++, pOp++){ | 
| +        if( pOp->p1!=pLevel->iTabCur ) continue; | 
| +        if( pOp->opcode==OP_Column ){ | 
| +          pOp->opcode = OP_Copy; | 
| +          pOp->p1 = pOp->p2 + pTabItem->regResult; | 
| +          pOp->p2 = pOp->p3; | 
| +          pOp->p3 = 0; | 
| +        }else if( pOp->opcode==OP_Rowid ){ | 
| +          pOp->opcode = OP_Null; | 
| +          pOp->p1 = 0; | 
| +          pOp->p3 = 0; | 
| +        } | 
| +      } | 
| +      continue; | 
| +    } | 
| + | 
| +    /* Close all of the cursors that were opened by sqlite3WhereBegin. | 
| +    ** Except, do not close cursors that will be reused by the OR optimization | 
| +    ** (WHERE_OMIT_OPEN_CLOSE).  And do not close the OP_OpenWrite cursors | 
| +    ** created for the ONEPASS optimization. | 
| +    */ | 
| if( (pTab->tabFlags & TF_Ephemeral)==0 | 
| && pTab->pSelect==0 | 
| -     && (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 | 
| +     && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 | 
| ){ | 
| -      int ws = pLevel->plan.wsFlags; | 
| +      int ws = pLoop->wsFlags; | 
| if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ | 
| sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); | 
| } | 
| -      if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){ | 
| +      if( (ws & WHERE_INDEXED)!=0 | 
| +       && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 | 
| +       && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] | 
| +      ){ | 
| sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); | 
| } | 
| } | 
|  | 
| -    /* If this scan uses an index, make code substitutions to read data | 
| -    ** from the index in preference to the table. Sometimes, this means | 
| -    ** the table need never be read from. This is a performance boost, | 
| -    ** as the vdbe level waits until the table is read before actually | 
| -    ** seeking the table cursor to the record corresponding to the current | 
| -    ** position in the index. | 
| +    /* If this scan uses an index, make VDBE code substitutions to read data | 
| +    ** from the index instead of from the table where possible.  In some cases | 
| +    ** this optimization prevents the table from ever being read, which can | 
| +    ** yield a significant performance boost. | 
| ** | 
| ** Calls to the code generator in between sqlite3WhereBegin and | 
| ** sqlite3WhereEnd will have created code that references the table | 
| @@ -4949,26 +6569,30 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ | 
| ** that reference the table and converts them into opcodes that | 
| ** reference the index. | 
| */ | 
| -    if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){ | 
| -      int k, j, last; | 
| -      VdbeOp *pOp; | 
| -      Index *pIdx = pLevel->plan.u.pIdx; | 
| - | 
| -      assert( pIdx!=0 ); | 
| -      pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); | 
| +    if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ | 
| +      pIdx = pLoop->u.btree.pIndex; | 
| +    }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ | 
| +      pIdx = pLevel->u.pCovidx; | 
| +    } | 
| +    if( pIdx && !db->mallocFailed ){ | 
| last = sqlite3VdbeCurrentAddr(v); | 
| -      for(k=pWInfo->iTop; k<last; k++, pOp++){ | 
| +      k = pLevel->addrBody; | 
| +      pOp = sqlite3VdbeGetOp(v, k); | 
| +      for(; k<last; k++, pOp++){ | 
| if( pOp->p1!=pLevel->iTabCur ) continue; | 
| if( pOp->opcode==OP_Column ){ | 
| -          for(j=0; j<pIdx->nColumn; j++){ | 
| -            if( pOp->p2==pIdx->aiColumn[j] ){ | 
| -              pOp->p2 = j; | 
| -              pOp->p1 = pLevel->iIdxCur; | 
| -              break; | 
| -            } | 
| +          int x = pOp->p2; | 
| +          assert( pIdx->pTable==pTab ); | 
| +          if( !HasRowid(pTab) ){ | 
| +            Index *pPk = sqlite3PrimaryKeyIndex(pTab); | 
| +            x = pPk->aiColumn[x]; | 
| +          } | 
| +          x = sqlite3ColumnOfIndex(pIdx, x); | 
| +          if( x>=0 ){ | 
| +            pOp->p2 = x; | 
| +            pOp->p1 = pLevel->iIdxCur; | 
| } | 
| -          assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 | 
| -               || j<pIdx->nColumn ); | 
| +          assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); | 
| }else if( pOp->opcode==OP_Rowid ){ | 
| pOp->p1 = pLevel->iIdxCur; | 
| pOp->opcode = OP_IdxRowid; | 
|  |