Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(525)

Side by Side Diff: third_party/sqlite/src/src/malloc.c

Issue 901033002: Import SQLite 3.8.7.4. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Chromium changes to support SQLite 3.8.7.4. Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 ** 2001 September 15 2 ** 2001 September 15
3 ** 3 **
4 ** The author disclaims copyright to this source code. In place of 4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing: 5 ** a legal notice, here is a blessing:
6 ** 6 **
7 ** May you do good and not evil. 7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others. 8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give. 9 ** May you share freely, never taking more than you give.
10 ** 10 **
(...skipping 112 matching lines...) Expand 10 before | Expand all | Expand 10 after
123 #endif 123 #endif
124 124
125 /* 125 /*
126 ** Set the soft heap-size limit for the library. Passing a zero or 126 ** Set the soft heap-size limit for the library. Passing a zero or
127 ** negative value indicates no limit. 127 ** negative value indicates no limit.
128 */ 128 */
129 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 129 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
130 sqlite3_int64 priorLimit; 130 sqlite3_int64 priorLimit;
131 sqlite3_int64 excess; 131 sqlite3_int64 excess;
132 #ifndef SQLITE_OMIT_AUTOINIT 132 #ifndef SQLITE_OMIT_AUTOINIT
133 sqlite3_initialize(); 133 int rc = sqlite3_initialize();
134 if( rc ) return -1;
134 #endif 135 #endif
135 sqlite3_mutex_enter(mem0.mutex); 136 sqlite3_mutex_enter(mem0.mutex);
136 priorLimit = mem0.alarmThreshold; 137 priorLimit = mem0.alarmThreshold;
137 sqlite3_mutex_leave(mem0.mutex); 138 sqlite3_mutex_leave(mem0.mutex);
138 if( n<0 ) return priorLimit; 139 if( n<0 ) return priorLimit;
139 if( n>0 ){ 140 if( n>0 ){
140 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); 141 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n);
141 }else{ 142 }else{
142 sqlite3MemoryAlarm(0, 0, 0); 143 sqlite3MemoryAlarm(0, 0, 0);
143 } 144 }
(...skipping 115 matching lines...) Expand 10 before | Expand all | Expand 10 after
259 ** lock is already held. 260 ** lock is already held.
260 */ 261 */
261 static int mallocWithAlarm(int n, void **pp){ 262 static int mallocWithAlarm(int n, void **pp){
262 int nFull; 263 int nFull;
263 void *p; 264 void *p;
264 assert( sqlite3_mutex_held(mem0.mutex) ); 265 assert( sqlite3_mutex_held(mem0.mutex) );
265 nFull = sqlite3GlobalConfig.m.xRoundup(n); 266 nFull = sqlite3GlobalConfig.m.xRoundup(n);
266 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 267 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
267 if( mem0.alarmCallback!=0 ){ 268 if( mem0.alarmCallback!=0 ){
268 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 269 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
269 if( nUsed+nFull >= mem0.alarmThreshold ){ 270 if( nUsed >= mem0.alarmThreshold - nFull ){
270 mem0.nearlyFull = 1; 271 mem0.nearlyFull = 1;
271 sqlite3MallocAlarm(nFull); 272 sqlite3MallocAlarm(nFull);
272 }else{ 273 }else{
273 mem0.nearlyFull = 0; 274 mem0.nearlyFull = 0;
274 } 275 }
275 } 276 }
276 p = sqlite3GlobalConfig.m.xMalloc(nFull); 277 p = sqlite3GlobalConfig.m.xMalloc(nFull);
277 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 278 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
278 if( p==0 && mem0.alarmCallback ){ 279 if( p==0 && mem0.alarmCallback ){
279 sqlite3MallocAlarm(nFull); 280 sqlite3MallocAlarm(nFull);
280 p = sqlite3GlobalConfig.m.xMalloc(nFull); 281 p = sqlite3GlobalConfig.m.xMalloc(nFull);
281 } 282 }
282 #endif 283 #endif
283 if( p ){ 284 if( p ){
284 nFull = sqlite3MallocSize(p); 285 nFull = sqlite3MallocSize(p);
285 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); 286 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
286 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1); 287 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1);
287 } 288 }
288 *pp = p; 289 *pp = p;
289 return nFull; 290 return nFull;
290 } 291 }
291 292
292 /* 293 /*
293 ** Allocate memory. This routine is like sqlite3_malloc() except that it 294 ** Allocate memory. This routine is like sqlite3_malloc() except that it
294 ** assumes the memory subsystem has already been initialized. 295 ** assumes the memory subsystem has already been initialized.
295 */ 296 */
296 void *sqlite3Malloc(int n){ 297 void *sqlite3Malloc(u64 n){
297 void *p; 298 void *p;
298 if( n<=0 /* IMP: R-65312-04917 */ 299 if( n==0 || n>=0x7fffff00 ){
299 || n>=0x7fffff00
300 ){
301 /* A memory allocation of a number of bytes which is near the maximum 300 /* A memory allocation of a number of bytes which is near the maximum
302 ** signed integer value might cause an integer overflow inside of the 301 ** signed integer value might cause an integer overflow inside of the
303 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 302 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving
304 ** 255 bytes of overhead. SQLite itself will never use anything near 303 ** 255 bytes of overhead. SQLite itself will never use anything near
305 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 304 ** this amount. The only way to reach the limit is with sqlite3_malloc() */
306 p = 0; 305 p = 0;
307 }else if( sqlite3GlobalConfig.bMemstat ){ 306 }else if( sqlite3GlobalConfig.bMemstat ){
308 sqlite3_mutex_enter(mem0.mutex); 307 sqlite3_mutex_enter(mem0.mutex);
309 mallocWithAlarm(n, &p); 308 mallocWithAlarm((int)n, &p);
310 sqlite3_mutex_leave(mem0.mutex); 309 sqlite3_mutex_leave(mem0.mutex);
311 }else{ 310 }else{
312 p = sqlite3GlobalConfig.m.xMalloc(n); 311 p = sqlite3GlobalConfig.m.xMalloc((int)n);
313 } 312 }
314 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-04675-44850 */ 313 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */
315 return p; 314 return p;
316 } 315 }
317 316
318 /* 317 /*
319 ** This version of the memory allocation is for use by the application. 318 ** This version of the memory allocation is for use by the application.
320 ** First make sure the memory subsystem is initialized, then do the 319 ** First make sure the memory subsystem is initialized, then do the
321 ** allocation. 320 ** allocation.
322 */ 321 */
323 void *sqlite3_malloc(int n){ 322 void *sqlite3_malloc(int n){
324 #ifndef SQLITE_OMIT_AUTOINIT 323 #ifndef SQLITE_OMIT_AUTOINIT
325 if( sqlite3_initialize() ) return 0; 324 if( sqlite3_initialize() ) return 0;
326 #endif 325 #endif
326 return n<=0 ? 0 : sqlite3Malloc(n);
327 }
328 void *sqlite3_malloc64(sqlite3_uint64 n){
329 #ifndef SQLITE_OMIT_AUTOINIT
330 if( sqlite3_initialize() ) return 0;
331 #endif
327 return sqlite3Malloc(n); 332 return sqlite3Malloc(n);
328 } 333 }
329 334
330 /* 335 /*
331 ** Each thread may only have a single outstanding allocation from 336 ** Each thread may only have a single outstanding allocation from
332 ** xScratchMalloc(). We verify this constraint in the single-threaded 337 ** xScratchMalloc(). We verify this constraint in the single-threaded
333 ** case by setting scratchAllocOut to 1 when an allocation 338 ** case by setting scratchAllocOut to 1 when an allocation
334 ** is outstanding clearing it when the allocation is freed. 339 ** is outstanding clearing it when the allocation is freed.
335 */ 340 */
336 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 341 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
337 static int scratchAllocOut = 0; 342 static int scratchAllocOut = 0;
338 #endif 343 #endif
339 344
340 345
341 /* 346 /*
342 ** Allocate memory that is to be used and released right away. 347 ** Allocate memory that is to be used and released right away.
343 ** This routine is similar to alloca() in that it is not intended 348 ** This routine is similar to alloca() in that it is not intended
344 ** for situations where the memory might be held long-term. This 349 ** for situations where the memory might be held long-term. This
345 ** routine is intended to get memory to old large transient data 350 ** routine is intended to get memory to old large transient data
346 ** structures that would not normally fit on the stack of an 351 ** structures that would not normally fit on the stack of an
347 ** embedded processor. 352 ** embedded processor.
348 */ 353 */
349 void *sqlite3ScratchMalloc(int n){ 354 void *sqlite3ScratchMalloc(int n){
350 void *p; 355 void *p;
351 assert( n>0 ); 356 assert( n>0 );
352 357
353 sqlite3_mutex_enter(mem0.mutex); 358 sqlite3_mutex_enter(mem0.mutex);
359 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
354 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ 360 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
355 p = mem0.pScratchFree; 361 p = mem0.pScratchFree;
356 mem0.pScratchFree = mem0.pScratchFree->pNext; 362 mem0.pScratchFree = mem0.pScratchFree->pNext;
357 mem0.nScratchFree--; 363 mem0.nScratchFree--;
358 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); 364 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
359 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
360 sqlite3_mutex_leave(mem0.mutex); 365 sqlite3_mutex_leave(mem0.mutex);
361 }else{ 366 }else{
362 if( sqlite3GlobalConfig.bMemstat ){ 367 sqlite3_mutex_leave(mem0.mutex);
363 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 368 p = sqlite3Malloc(n);
364 n = mallocWithAlarm(n, &p); 369 if( sqlite3GlobalConfig.bMemstat && p ){
365 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n); 370 sqlite3_mutex_enter(mem0.mutex);
371 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p));
366 sqlite3_mutex_leave(mem0.mutex); 372 sqlite3_mutex_leave(mem0.mutex);
367 }else{
368 sqlite3_mutex_leave(mem0.mutex);
369 p = sqlite3GlobalConfig.m.xMalloc(n);
370 } 373 }
371 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); 374 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
372 } 375 }
373 assert( sqlite3_mutex_notheld(mem0.mutex) ); 376 assert( sqlite3_mutex_notheld(mem0.mutex) );
374 377
375 378
376 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 379 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
377 /* Verify that no more than two scratch allocations per thread 380 /* Verify that no more than two scratch allocations per thread
378 ** are outstanding at one time. (This is only checked in the 381 ** are outstanding at one time. (This is only checked in the
379 ** single-threaded case since checking in the multi-threaded case 382 ** single-threaded case since checking in the multi-threaded case
(...skipping 45 matching lines...) Expand 10 before | Expand all | Expand 10 after
425 } 428 }
426 } 429 }
427 } 430 }
428 } 431 }
429 432
430 /* 433 /*
431 ** TRUE if p is a lookaside memory allocation from db 434 ** TRUE if p is a lookaside memory allocation from db
432 */ 435 */
433 #ifndef SQLITE_OMIT_LOOKASIDE 436 #ifndef SQLITE_OMIT_LOOKASIDE
434 static int isLookaside(sqlite3 *db, void *p){ 437 static int isLookaside(sqlite3 *db, void *p){
435 return p && p>=db->lookaside.pStart && p<db->lookaside.pEnd; 438 return p>=db->lookaside.pStart && p<db->lookaside.pEnd;
436 } 439 }
437 #else 440 #else
438 #define isLookaside(A,B) 0 441 #define isLookaside(A,B) 0
439 #endif 442 #endif
440 443
441 /* 444 /*
442 ** Return the size of a memory allocation previously obtained from 445 ** Return the size of a memory allocation previously obtained from
443 ** sqlite3Malloc() or sqlite3_malloc(). 446 ** sqlite3Malloc() or sqlite3_malloc().
444 */ 447 */
445 int sqlite3MallocSize(void *p){ 448 int sqlite3MallocSize(void *p){
446 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 449 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
447 assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
448 return sqlite3GlobalConfig.m.xSize(p); 450 return sqlite3GlobalConfig.m.xSize(p);
449 } 451 }
450 int sqlite3DbMallocSize(sqlite3 *db, void *p){ 452 int sqlite3DbMallocSize(sqlite3 *db, void *p){
451 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 453 if( db==0 ){
452 if( db && isLookaside(db, p) ){ 454 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) );
453 return db->lookaside.sz; 455 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
456 return sqlite3MallocSize(p);
454 }else{ 457 }else{
455 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 458 assert( sqlite3_mutex_held(db->mutex) );
456 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 459 if( isLookaside(db, p) ){
457 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 460 return db->lookaside.sz;
458 return sqlite3GlobalConfig.m.xSize(p); 461 }else{
462 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
463 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
464 return sqlite3GlobalConfig.m.xSize(p);
465 }
459 } 466 }
460 } 467 }
468 sqlite3_uint64 sqlite3_msize(void *p){
469 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) );
470 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
471 return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p);
472 }
461 473
462 /* 474 /*
463 ** Free memory previously obtained from sqlite3Malloc(). 475 ** Free memory previously obtained from sqlite3Malloc().
464 */ 476 */
465 void sqlite3_free(void *p){ 477 void sqlite3_free(void *p){
466 if( p==0 ) return; /* IMP: R-49053-54554 */ 478 if( p==0 ) return; /* IMP: R-49053-54554 */
467 assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
468 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 479 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
480 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) );
469 if( sqlite3GlobalConfig.bMemstat ){ 481 if( sqlite3GlobalConfig.bMemstat ){
470 sqlite3_mutex_enter(mem0.mutex); 482 sqlite3_mutex_enter(mem0.mutex);
471 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); 483 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
472 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); 484 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
473 sqlite3GlobalConfig.m.xFree(p); 485 sqlite3GlobalConfig.m.xFree(p);
474 sqlite3_mutex_leave(mem0.mutex); 486 sqlite3_mutex_leave(mem0.mutex);
475 }else{ 487 }else{
476 sqlite3GlobalConfig.m.xFree(p); 488 sqlite3GlobalConfig.m.xFree(p);
477 } 489 }
478 } 490 }
479 491
480 /* 492 /*
493 ** Add the size of memory allocation "p" to the count in
494 ** *db->pnBytesFreed.
495 */
496 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
497 *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
498 }
499
500 /*
481 ** Free memory that might be associated with a particular database 501 ** Free memory that might be associated with a particular database
482 ** connection. 502 ** connection.
483 */ 503 */
484 void sqlite3DbFree(sqlite3 *db, void *p){ 504 void sqlite3DbFree(sqlite3 *db, void *p){
485 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 505 assert( db==0 || sqlite3_mutex_held(db->mutex) );
506 if( p==0 ) return;
486 if( db ){ 507 if( db ){
487 if( db->pnBytesFreed ){ 508 if( db->pnBytesFreed ){
488 *db->pnBytesFreed += sqlite3DbMallocSize(db, p); 509 measureAllocationSize(db, p);
489 return; 510 return;
490 } 511 }
491 if( isLookaside(db, p) ){ 512 if( isLookaside(db, p) ){
492 LookasideSlot *pBuf = (LookasideSlot*)p; 513 LookasideSlot *pBuf = (LookasideSlot*)p;
514 #if SQLITE_DEBUG
515 /* Trash all content in the buffer being freed */
516 memset(p, 0xaa, db->lookaside.sz);
517 #endif
493 pBuf->pNext = db->lookaside.pFree; 518 pBuf->pNext = db->lookaside.pFree;
494 db->lookaside.pFree = pBuf; 519 db->lookaside.pFree = pBuf;
495 db->lookaside.nOut--; 520 db->lookaside.nOut--;
496 return; 521 return;
497 } 522 }
498 } 523 }
499 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 524 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
500 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 525 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
501 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 526 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
502 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 527 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
503 sqlite3_free(p); 528 sqlite3_free(p);
504 } 529 }
505 530
506 /* 531 /*
507 ** Change the size of an existing memory allocation 532 ** Change the size of an existing memory allocation
508 */ 533 */
509 void *sqlite3Realloc(void *pOld, int nBytes){ 534 void *sqlite3Realloc(void *pOld, u64 nBytes){
510 int nOld, nNew; 535 int nOld, nNew, nDiff;
511 void *pNew; 536 void *pNew;
537 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
538 assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
512 if( pOld==0 ){ 539 if( pOld==0 ){
513 return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */ 540 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
514 } 541 }
515 if( nBytes<=0 ){ 542 if( nBytes==0 ){
516 sqlite3_free(pOld); /* IMP: R-31593-10574 */ 543 sqlite3_free(pOld); /* IMP: R-26507-47431 */
517 return 0; 544 return 0;
518 } 545 }
519 if( nBytes>=0x7fffff00 ){ 546 if( nBytes>=0x7fffff00 ){
520 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 547 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
521 return 0; 548 return 0;
522 } 549 }
523 nOld = sqlite3MallocSize(pOld); 550 nOld = sqlite3MallocSize(pOld);
524 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 551 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
525 ** argument to xRealloc is always a value returned by a prior call to 552 ** argument to xRealloc is always a value returned by a prior call to
526 ** xRoundup. */ 553 ** xRoundup. */
527 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); 554 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
528 if( nOld==nNew ){ 555 if( nOld==nNew ){
529 pNew = pOld; 556 pNew = pOld;
530 }else if( sqlite3GlobalConfig.bMemstat ){ 557 }else if( sqlite3GlobalConfig.bMemstat ){
531 sqlite3_mutex_enter(mem0.mutex); 558 sqlite3_mutex_enter(mem0.mutex);
532 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); 559 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
533 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= 560 nDiff = nNew - nOld;
534 mem0.alarmThreshold ){ 561 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >=
535 sqlite3MallocAlarm(nNew-nOld); 562 mem0.alarmThreshold-nDiff ){
563 sqlite3MallocAlarm(nDiff);
536 } 564 }
537 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
538 assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
539 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 565 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
540 if( pNew==0 && mem0.alarmCallback ){ 566 if( pNew==0 && mem0.alarmCallback ){
541 sqlite3MallocAlarm(nBytes); 567 sqlite3MallocAlarm((int)nBytes);
542 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 568 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
543 } 569 }
544 if( pNew ){ 570 if( pNew ){
545 nNew = sqlite3MallocSize(pNew); 571 nNew = sqlite3MallocSize(pNew);
546 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 572 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
547 } 573 }
548 sqlite3_mutex_leave(mem0.mutex); 574 sqlite3_mutex_leave(mem0.mutex);
549 }else{ 575 }else{
550 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 576 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
551 } 577 }
552 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */ 578 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
553 return pNew; 579 return pNew;
554 } 580 }
555 581
556 /* 582 /*
557 ** The public interface to sqlite3Realloc. Make sure that the memory 583 ** The public interface to sqlite3Realloc. Make sure that the memory
558 ** subsystem is initialized prior to invoking sqliteRealloc. 584 ** subsystem is initialized prior to invoking sqliteRealloc.
559 */ 585 */
560 void *sqlite3_realloc(void *pOld, int n){ 586 void *sqlite3_realloc(void *pOld, int n){
561 #ifndef SQLITE_OMIT_AUTOINIT 587 #ifndef SQLITE_OMIT_AUTOINIT
562 if( sqlite3_initialize() ) return 0; 588 if( sqlite3_initialize() ) return 0;
563 #endif 589 #endif
590 if( n<0 ) n = 0; /* IMP: R-26507-47431 */
591 return sqlite3Realloc(pOld, n);
592 }
593 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
594 #ifndef SQLITE_OMIT_AUTOINIT
595 if( sqlite3_initialize() ) return 0;
596 #endif
564 return sqlite3Realloc(pOld, n); 597 return sqlite3Realloc(pOld, n);
565 } 598 }
566 599
567 600
568 /* 601 /*
569 ** Allocate and zero memory. 602 ** Allocate and zero memory.
570 */ 603 */
571 void *sqlite3MallocZero(int n){ 604 void *sqlite3MallocZero(u64 n){
572 void *p = sqlite3Malloc(n); 605 void *p = sqlite3Malloc(n);
573 if( p ){ 606 if( p ){
574 memset(p, 0, n); 607 memset(p, 0, (size_t)n);
575 } 608 }
576 return p; 609 return p;
577 } 610 }
578 611
579 /* 612 /*
580 ** Allocate and zero memory. If the allocation fails, make 613 ** Allocate and zero memory. If the allocation fails, make
581 ** the mallocFailed flag in the connection pointer. 614 ** the mallocFailed flag in the connection pointer.
582 */ 615 */
583 void *sqlite3DbMallocZero(sqlite3 *db, int n){ 616 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
584 void *p = sqlite3DbMallocRaw(db, n); 617 void *p = sqlite3DbMallocRaw(db, n);
585 if( p ){ 618 if( p ){
586 memset(p, 0, n); 619 memset(p, 0, (size_t)n);
587 } 620 }
588 return p; 621 return p;
589 } 622 }
590 623
591 /* 624 /*
592 ** Allocate and zero memory. If the allocation fails, make 625 ** Allocate and zero memory. If the allocation fails, make
593 ** the mallocFailed flag in the connection pointer. 626 ** the mallocFailed flag in the connection pointer.
594 ** 627 **
595 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 628 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
596 ** failure on the same database connection) then always return 0. 629 ** failure on the same database connection) then always return 0.
597 ** Hence for a particular database connection, once malloc starts 630 ** Hence for a particular database connection, once malloc starts
598 ** failing, it fails consistently until mallocFailed is reset. 631 ** failing, it fails consistently until mallocFailed is reset.
599 ** This is an important assumption. There are many places in the 632 ** This is an important assumption. There are many places in the
600 ** code that do things like this: 633 ** code that do things like this:
601 ** 634 **
602 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 635 ** int *a = (int*)sqlite3DbMallocRaw(db, 100);
603 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 636 ** int *b = (int*)sqlite3DbMallocRaw(db, 200);
604 ** if( b ) a[10] = 9; 637 ** if( b ) a[10] = 9;
605 ** 638 **
606 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 639 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
607 ** that all prior mallocs (ex: "a") worked too. 640 ** that all prior mallocs (ex: "a") worked too.
608 */ 641 */
609 void *sqlite3DbMallocRaw(sqlite3 *db, int n){ 642 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
610 void *p; 643 void *p;
611 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 644 assert( db==0 || sqlite3_mutex_held(db->mutex) );
612 assert( db==0 || db->pnBytesFreed==0 ); 645 assert( db==0 || db->pnBytesFreed==0 );
613 #ifndef SQLITE_OMIT_LOOKASIDE 646 #ifndef SQLITE_OMIT_LOOKASIDE
614 if( db ){ 647 if( db ){
615 LookasideSlot *pBuf; 648 LookasideSlot *pBuf;
616 if( db->mallocFailed ){ 649 if( db->mallocFailed ){
617 return 0; 650 return 0;
618 } 651 }
619 if( db->lookaside.bEnabled ){ 652 if( db->lookaside.bEnabled ){
(...skipping 14 matching lines...) Expand all
634 } 667 }
635 #else 668 #else
636 if( db && db->mallocFailed ){ 669 if( db && db->mallocFailed ){
637 return 0; 670 return 0;
638 } 671 }
639 #endif 672 #endif
640 p = sqlite3Malloc(n); 673 p = sqlite3Malloc(n);
641 if( !p && db ){ 674 if( !p && db ){
642 db->mallocFailed = 1; 675 db->mallocFailed = 1;
643 } 676 }
644 sqlite3MemdebugSetType(p, MEMTYPE_DB | 677 sqlite3MemdebugSetType(p,
645 ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 678 (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
646 return p; 679 return p;
647 } 680 }
648 681
649 /* 682 /*
650 ** Resize the block of memory pointed to by p to n bytes. If the 683 ** Resize the block of memory pointed to by p to n bytes. If the
651 ** resize fails, set the mallocFailed flag in the connection object. 684 ** resize fails, set the mallocFailed flag in the connection object.
652 */ 685 */
653 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ 686 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
654 void *pNew = 0; 687 void *pNew = 0;
655 assert( db!=0 ); 688 assert( db!=0 );
656 assert( sqlite3_mutex_held(db->mutex) ); 689 assert( sqlite3_mutex_held(db->mutex) );
657 if( db->mallocFailed==0 ){ 690 if( db->mallocFailed==0 ){
658 if( p==0 ){ 691 if( p==0 ){
659 return sqlite3DbMallocRaw(db, n); 692 return sqlite3DbMallocRaw(db, n);
660 } 693 }
661 if( isLookaside(db, p) ){ 694 if( isLookaside(db, p) ){
662 if( n<=db->lookaside.sz ){ 695 if( n<=db->lookaside.sz ){
663 return p; 696 return p;
664 } 697 }
665 pNew = sqlite3DbMallocRaw(db, n); 698 pNew = sqlite3DbMallocRaw(db, n);
666 if( pNew ){ 699 if( pNew ){
667 memcpy(pNew, p, db->lookaside.sz); 700 memcpy(pNew, p, db->lookaside.sz);
668 sqlite3DbFree(db, p); 701 sqlite3DbFree(db, p);
669 } 702 }
670 }else{ 703 }else{
671 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 704 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
672 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 705 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
673 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 706 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
674 pNew = sqlite3_realloc(p, n); 707 pNew = sqlite3_realloc64(p, n);
675 if( !pNew ){ 708 if( !pNew ){
676 sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
677 db->mallocFailed = 1; 709 db->mallocFailed = 1;
678 } 710 }
679 sqlite3MemdebugSetType(pNew, MEMTYPE_DB | 711 sqlite3MemdebugSetType(pNew,
680 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 712 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
681 } 713 }
682 } 714 }
683 return pNew; 715 return pNew;
684 } 716 }
685 717
686 /* 718 /*
687 ** Attempt to reallocate p. If the reallocation fails, then free p 719 ** Attempt to reallocate p. If the reallocation fails, then free p
688 ** and set the mallocFailed flag in the database connection. 720 ** and set the mallocFailed flag in the database connection.
689 */ 721 */
690 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ 722 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
691 void *pNew; 723 void *pNew;
692 pNew = sqlite3DbRealloc(db, p, n); 724 pNew = sqlite3DbRealloc(db, p, n);
693 if( !pNew ){ 725 if( !pNew ){
694 sqlite3DbFree(db, p); 726 sqlite3DbFree(db, p);
695 } 727 }
696 return pNew; 728 return pNew;
697 } 729 }
698 730
699 /* 731 /*
700 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 732 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
701 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 733 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
702 ** is because when memory debugging is turned on, these two functions are 734 ** is because when memory debugging is turned on, these two functions are
703 ** called via macros that record the current file and line number in the 735 ** called via macros that record the current file and line number in the
704 ** ThreadData structure. 736 ** ThreadData structure.
705 */ 737 */
706 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 738 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
707 char *zNew; 739 char *zNew;
708 size_t n; 740 size_t n;
709 if( z==0 ){ 741 if( z==0 ){
710 return 0; 742 return 0;
711 } 743 }
712 n = sqlite3Strlen30(z) + 1; 744 n = sqlite3Strlen30(z) + 1;
713 assert( (n&0x7fffffff)==n ); 745 assert( (n&0x7fffffff)==n );
714 zNew = sqlite3DbMallocRaw(db, (int)n); 746 zNew = sqlite3DbMallocRaw(db, (int)n);
715 if( zNew ){ 747 if( zNew ){
716 memcpy(zNew, z, n); 748 memcpy(zNew, z, n);
717 } 749 }
718 return zNew; 750 return zNew;
719 } 751 }
720 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ 752 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
721 char *zNew; 753 char *zNew;
722 if( z==0 ){ 754 if( z==0 ){
723 return 0; 755 return 0;
724 } 756 }
725 assert( (n&0x7fffffff)==n ); 757 assert( (n&0x7fffffff)==n );
726 zNew = sqlite3DbMallocRaw(db, n+1); 758 zNew = sqlite3DbMallocRaw(db, n+1);
727 if( zNew ){ 759 if( zNew ){
728 memcpy(zNew, z, n); 760 memcpy(zNew, z, (size_t)n);
729 zNew[n] = 0; 761 zNew[n] = 0;
730 } 762 }
731 return zNew; 763 return zNew;
732 } 764 }
733 765
734 /* 766 /*
735 ** Create a string from the zFromat argument and the va_list that follows. 767 ** Create a string from the zFromat argument and the va_list that follows.
736 ** Store the string in memory obtained from sqliteMalloc() and make *pz 768 ** Store the string in memory obtained from sqliteMalloc() and make *pz
737 ** point to that string. 769 ** point to that string.
738 */ 770 */
739 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 771 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
740 va_list ap; 772 va_list ap;
741 char *z; 773 char *z;
742 774
743 va_start(ap, zFormat); 775 va_start(ap, zFormat);
744 z = sqlite3VMPrintf(db, zFormat, ap); 776 z = sqlite3VMPrintf(db, zFormat, ap);
745 va_end(ap); 777 va_end(ap);
746 sqlite3DbFree(db, *pz); 778 sqlite3DbFree(db, *pz);
747 *pz = z; 779 *pz = z;
748 } 780 }
749 781
782 /*
783 ** Take actions at the end of an API call to indicate an OOM error
784 */
785 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){
786 db->mallocFailed = 0;
787 sqlite3Error(db, SQLITE_NOMEM);
788 return SQLITE_NOMEM;
789 }
750 790
751 /* 791 /*
752 ** This function must be called before exiting any API function (i.e. 792 ** This function must be called before exiting any API function (i.e.
753 ** returning control to the user) that has called sqlite3_malloc or 793 ** returning control to the user) that has called sqlite3_malloc or
754 ** sqlite3_realloc. 794 ** sqlite3_realloc.
755 ** 795 **
756 ** The returned value is normally a copy of the second argument to this 796 ** The returned value is normally a copy of the second argument to this
757 ** function. However, if a malloc() failure has occurred since the previous 797 ** function. However, if a malloc() failure has occurred since the previous
758 ** invocation SQLITE_NOMEM is returned instead. 798 ** invocation SQLITE_NOMEM is returned instead.
759 ** 799 **
760 ** If the first argument, db, is not NULL and a malloc() error has occurred, 800 ** If the first argument, db, is not NULL and a malloc() error has occurred,
761 ** then the connection error-code (the value returned by sqlite3_errcode()) 801 ** then the connection error-code (the value returned by sqlite3_errcode())
762 ** is set to SQLITE_NOMEM. 802 ** is set to SQLITE_NOMEM.
763 */ 803 */
764 int sqlite3ApiExit(sqlite3* db, int rc){ 804 int sqlite3ApiExit(sqlite3* db, int rc){
765 /* If the db handle is not NULL, then we must hold the connection handle 805 /* If the db handle is not NULL, then we must hold the connection handle
766 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 806 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
767 ** is unsafe, as is the call to sqlite3Error(). 807 ** is unsafe, as is the call to sqlite3Error().
768 */ 808 */
769 assert( !db || sqlite3_mutex_held(db->mutex) ); 809 assert( !db || sqlite3_mutex_held(db->mutex) );
770 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){ 810 if( db==0 ) return rc & 0xff;
771 sqlite3Error(db, SQLITE_NOMEM, 0); 811 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
772 db->mallocFailed = 0; 812 return apiOomError(db);
773 rc = SQLITE_NOMEM;
774 } 813 }
775 return rc & (db ? db->errMask : 0xff); 814 return rc & db->errMask;
776 } 815 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698