OLD | NEW |
1 /* | 1 /* |
2 ** 2001 September 15 | 2 ** 2001 September 15 |
3 ** | 3 ** |
4 ** The author disclaims copyright to this source code. In place of | 4 ** The author disclaims copyright to this source code. In place of |
5 ** a legal notice, here is a blessing: | 5 ** a legal notice, here is a blessing: |
6 ** | 6 ** |
7 ** May you do good and not evil. | 7 ** May you do good and not evil. |
8 ** May you find forgiveness for yourself and forgive others. | 8 ** May you find forgiveness for yourself and forgive others. |
9 ** May you share freely, never taking more than you give. | 9 ** May you share freely, never taking more than you give. |
10 ** | 10 ** |
(...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
47 ** | 47 ** |
48 ** 3. The remainder of the node contains the node entries. Each entry | 48 ** 3. The remainder of the node contains the node entries. Each entry |
49 ** consists of a single 8-byte integer followed by an even number | 49 ** consists of a single 8-byte integer followed by an even number |
50 ** of 4-byte coordinates. For leaf nodes the integer is the rowid | 50 ** of 4-byte coordinates. For leaf nodes the integer is the rowid |
51 ** of a record. For internal nodes it is the node number of a | 51 ** of a record. For internal nodes it is the node number of a |
52 ** child page. | 52 ** child page. |
53 */ | 53 */ |
54 | 54 |
55 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE) | 55 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE) |
56 | 56 |
57 /* | |
58 ** This file contains an implementation of a couple of different variants | |
59 ** of the r-tree algorithm. See the README file for further details. The | |
60 ** same data-structure is used for all, but the algorithms for insert and | |
61 ** delete operations vary. The variants used are selected at compile time | |
62 ** by defining the following symbols: | |
63 */ | |
64 | |
65 /* Either, both or none of the following may be set to activate | |
66 ** r*tree variant algorithms. | |
67 */ | |
68 #define VARIANT_RSTARTREE_CHOOSESUBTREE 0 | |
69 #define VARIANT_RSTARTREE_REINSERT 1 | |
70 | |
71 /* | |
72 ** Exactly one of the following must be set to 1. | |
73 */ | |
74 #define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0 | |
75 #define VARIANT_GUTTMAN_LINEAR_SPLIT 0 | |
76 #define VARIANT_RSTARTREE_SPLIT 1 | |
77 | |
78 #define VARIANT_GUTTMAN_SPLIT \ | |
79 (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT) | |
80 | |
81 #if VARIANT_GUTTMAN_QUADRATIC_SPLIT | |
82 #define PickNext QuadraticPickNext | |
83 #define PickSeeds QuadraticPickSeeds | |
84 #define AssignCells splitNodeGuttman | |
85 #endif | |
86 #if VARIANT_GUTTMAN_LINEAR_SPLIT | |
87 #define PickNext LinearPickNext | |
88 #define PickSeeds LinearPickSeeds | |
89 #define AssignCells splitNodeGuttman | |
90 #endif | |
91 #if VARIANT_RSTARTREE_SPLIT | |
92 #define AssignCells splitNodeStartree | |
93 #endif | |
94 | |
95 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) | |
96 # define NDEBUG 1 | |
97 #endif | |
98 | |
99 #ifndef SQLITE_CORE | 57 #ifndef SQLITE_CORE |
100 #include "sqlite3ext.h" | 58 #include "sqlite3ext.h" |
101 SQLITE_EXTENSION_INIT1 | 59 SQLITE_EXTENSION_INIT1 |
102 #else | 60 #else |
103 #include "sqlite3.h" | 61 #include "sqlite3.h" |
104 #endif | 62 #endif |
105 | 63 |
106 #include <string.h> | 64 #include <string.h> |
107 #include <assert.h> | 65 #include <assert.h> |
| 66 #include <stdio.h> |
108 | 67 |
109 #ifndef SQLITE_AMALGAMATION | 68 #ifndef SQLITE_AMALGAMATION |
110 #include "sqlite3rtree.h" | 69 #include "sqlite3rtree.h" |
111 typedef sqlite3_int64 i64; | 70 typedef sqlite3_int64 i64; |
112 typedef unsigned char u8; | 71 typedef unsigned char u8; |
| 72 typedef unsigned short u16; |
113 typedef unsigned int u32; | 73 typedef unsigned int u32; |
114 #endif | 74 #endif |
115 | 75 |
116 /* The following macro is used to suppress compiler warnings. | 76 /* The following macro is used to suppress compiler warnings. |
117 */ | 77 */ |
118 #ifndef UNUSED_PARAMETER | 78 #ifndef UNUSED_PARAMETER |
119 # define UNUSED_PARAMETER(x) (void)(x) | 79 # define UNUSED_PARAMETER(x) (void)(x) |
120 #endif | 80 #endif |
121 | 81 |
122 typedef struct Rtree Rtree; | 82 typedef struct Rtree Rtree; |
123 typedef struct RtreeCursor RtreeCursor; | 83 typedef struct RtreeCursor RtreeCursor; |
124 typedef struct RtreeNode RtreeNode; | 84 typedef struct RtreeNode RtreeNode; |
125 typedef struct RtreeCell RtreeCell; | 85 typedef struct RtreeCell RtreeCell; |
126 typedef struct RtreeConstraint RtreeConstraint; | 86 typedef struct RtreeConstraint RtreeConstraint; |
127 typedef struct RtreeMatchArg RtreeMatchArg; | 87 typedef struct RtreeMatchArg RtreeMatchArg; |
128 typedef struct RtreeGeomCallback RtreeGeomCallback; | 88 typedef struct RtreeGeomCallback RtreeGeomCallback; |
129 typedef union RtreeCoord RtreeCoord; | 89 typedef union RtreeCoord RtreeCoord; |
| 90 typedef struct RtreeSearchPoint RtreeSearchPoint; |
130 | 91 |
131 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ | 92 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ |
132 #define RTREE_MAX_DIMENSIONS 5 | 93 #define RTREE_MAX_DIMENSIONS 5 |
133 | 94 |
134 /* Size of hash table Rtree.aHash. This hash table is not expected to | 95 /* Size of hash table Rtree.aHash. This hash table is not expected to |
135 ** ever contain very many entries, so a fixed number of buckets is | 96 ** ever contain very many entries, so a fixed number of buckets is |
136 ** used. | 97 ** used. |
137 */ | 98 */ |
138 #define HASHSIZE 128 | 99 #define HASHSIZE 97 |
| 100 |
| 101 /* The xBestIndex method of this virtual table requires an estimate of |
| 102 ** the number of rows in the virtual table to calculate the costs of |
| 103 ** various strategies. If possible, this estimate is loaded from the |
| 104 ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum). |
| 105 ** Otherwise, if no sqlite_stat1 entry is available, use |
| 106 ** RTREE_DEFAULT_ROWEST. |
| 107 */ |
| 108 #define RTREE_DEFAULT_ROWEST 1048576 |
| 109 #define RTREE_MIN_ROWEST 100 |
139 | 110 |
140 /* | 111 /* |
141 ** An rtree virtual-table object. | 112 ** An rtree virtual-table object. |
142 */ | 113 */ |
143 struct Rtree { | 114 struct Rtree { |
144 sqlite3_vtab base; | 115 sqlite3_vtab base; /* Base class. Must be first */ |
145 sqlite3 *db; /* Host database connection */ | 116 sqlite3 *db; /* Host database connection */ |
146 int iNodeSize; /* Size in bytes of each node in the node table */ | 117 int iNodeSize; /* Size in bytes of each node in the node table */ |
147 int nDim; /* Number of dimensions */ | 118 u8 nDim; /* Number of dimensions */ |
148 int nBytesPerCell; /* Bytes consumed per cell */ | 119 u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */ |
| 120 u8 nBytesPerCell; /* Bytes consumed per cell */ |
149 int iDepth; /* Current depth of the r-tree structure */ | 121 int iDepth; /* Current depth of the r-tree structure */ |
150 char *zDb; /* Name of database containing r-tree table */ | 122 char *zDb; /* Name of database containing r-tree table */ |
151 char *zName; /* Name of r-tree table */ | 123 char *zName; /* Name of r-tree table */ |
152 RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ | |
153 int nBusy; /* Current number of users of this structure */ | 124 int nBusy; /* Current number of users of this structure */ |
| 125 i64 nRowEst; /* Estimated number of rows in this table */ |
154 | 126 |
155 /* List of nodes removed during a CondenseTree operation. List is | 127 /* List of nodes removed during a CondenseTree operation. List is |
156 ** linked together via the pointer normally used for hash chains - | 128 ** linked together via the pointer normally used for hash chains - |
157 ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree | 129 ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree |
158 ** headed by the node (leaf nodes have RtreeNode.iNode==0). | 130 ** headed by the node (leaf nodes have RtreeNode.iNode==0). |
159 */ | 131 */ |
160 RtreeNode *pDeleted; | 132 RtreeNode *pDeleted; |
161 int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ | 133 int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ |
162 | 134 |
163 /* Statements to read/write/delete a record from xxx_node */ | 135 /* Statements to read/write/delete a record from xxx_node */ |
164 sqlite3_stmt *pReadNode; | 136 sqlite3_stmt *pReadNode; |
165 sqlite3_stmt *pWriteNode; | 137 sqlite3_stmt *pWriteNode; |
166 sqlite3_stmt *pDeleteNode; | 138 sqlite3_stmt *pDeleteNode; |
167 | 139 |
168 /* Statements to read/write/delete a record from xxx_rowid */ | 140 /* Statements to read/write/delete a record from xxx_rowid */ |
169 sqlite3_stmt *pReadRowid; | 141 sqlite3_stmt *pReadRowid; |
170 sqlite3_stmt *pWriteRowid; | 142 sqlite3_stmt *pWriteRowid; |
171 sqlite3_stmt *pDeleteRowid; | 143 sqlite3_stmt *pDeleteRowid; |
172 | 144 |
173 /* Statements to read/write/delete a record from xxx_parent */ | 145 /* Statements to read/write/delete a record from xxx_parent */ |
174 sqlite3_stmt *pReadParent; | 146 sqlite3_stmt *pReadParent; |
175 sqlite3_stmt *pWriteParent; | 147 sqlite3_stmt *pWriteParent; |
176 sqlite3_stmt *pDeleteParent; | 148 sqlite3_stmt *pDeleteParent; |
177 | 149 |
178 int eCoordType; | 150 RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ |
179 }; | 151 }; |
180 | 152 |
181 /* Possible values for eCoordType: */ | 153 /* Possible values for Rtree.eCoordType: */ |
182 #define RTREE_COORD_REAL32 0 | 154 #define RTREE_COORD_REAL32 0 |
183 #define RTREE_COORD_INT32 1 | 155 #define RTREE_COORD_INT32 1 |
184 | 156 |
185 /* | 157 /* |
| 158 ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will |
| 159 ** only deal with integer coordinates. No floating point operations |
| 160 ** will be done. |
| 161 */ |
| 162 #ifdef SQLITE_RTREE_INT_ONLY |
| 163 typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */ |
| 164 typedef int RtreeValue; /* Low accuracy coordinate */ |
| 165 # define RTREE_ZERO 0 |
| 166 #else |
| 167 typedef double RtreeDValue; /* High accuracy coordinate */ |
| 168 typedef float RtreeValue; /* Low accuracy coordinate */ |
| 169 # define RTREE_ZERO 0.0 |
| 170 #endif |
| 171 |
| 172 /* |
| 173 ** When doing a search of an r-tree, instances of the following structure |
| 174 ** record intermediate results from the tree walk. |
| 175 ** |
| 176 ** The id is always a node-id. For iLevel>=1 the id is the node-id of |
| 177 ** the node that the RtreeSearchPoint represents. When iLevel==0, however, |
| 178 ** the id is of the parent node and the cell that RtreeSearchPoint |
| 179 ** represents is the iCell-th entry in the parent node. |
| 180 */ |
| 181 struct RtreeSearchPoint { |
| 182 RtreeDValue rScore; /* The score for this node. Smallest goes first. */ |
| 183 sqlite3_int64 id; /* Node ID */ |
| 184 u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */ |
| 185 u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */ |
| 186 u8 iCell; /* Cell index within the node */ |
| 187 }; |
| 188 |
| 189 /* |
186 ** The minimum number of cells allowed for a node is a third of the | 190 ** The minimum number of cells allowed for a node is a third of the |
187 ** maximum. In Gutman's notation: | 191 ** maximum. In Gutman's notation: |
188 ** | 192 ** |
189 ** m = M/3 | 193 ** m = M/3 |
190 ** | 194 ** |
191 ** If an R*-tree "Reinsert" operation is required, the same number of | 195 ** If an R*-tree "Reinsert" operation is required, the same number of |
192 ** cells are removed from the overfull node and reinserted into the tree. | 196 ** cells are removed from the overfull node and reinserted into the tree. |
193 */ | 197 */ |
194 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) | 198 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) |
195 #define RTREE_REINSERT(p) RTREE_MINCELLS(p) | 199 #define RTREE_REINSERT(p) RTREE_MINCELLS(p) |
196 #define RTREE_MAXCELLS 51 | 200 #define RTREE_MAXCELLS 51 |
197 | 201 |
198 /* | 202 /* |
199 ** The smallest possible node-size is (512-64)==448 bytes. And the largest | 203 ** The smallest possible node-size is (512-64)==448 bytes. And the largest |
200 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). | 204 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). |
201 ** Therefore all non-root nodes must contain at least 3 entries. Since | 205 ** Therefore all non-root nodes must contain at least 3 entries. Since |
202 ** 2^40 is greater than 2^64, an r-tree structure always has a depth of | 206 ** 2^40 is greater than 2^64, an r-tree structure always has a depth of |
203 ** 40 or less. | 207 ** 40 or less. |
204 */ | 208 */ |
205 #define RTREE_MAX_DEPTH 40 | 209 #define RTREE_MAX_DEPTH 40 |
206 | 210 |
| 211 |
| 212 /* |
| 213 ** Number of entries in the cursor RtreeNode cache. The first entry is |
| 214 ** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining |
| 215 ** entries cache the RtreeNode for the first elements of the priority queue. |
| 216 */ |
| 217 #define RTREE_CACHE_SZ 5 |
| 218 |
207 /* | 219 /* |
208 ** An rtree cursor object. | 220 ** An rtree cursor object. |
209 */ | 221 */ |
210 struct RtreeCursor { | 222 struct RtreeCursor { |
211 sqlite3_vtab_cursor base; | 223 sqlite3_vtab_cursor base; /* Base class. Must be first */ |
212 RtreeNode *pNode; /* Node cursor is currently pointing at */ | 224 u8 atEOF; /* True if at end of search */ |
213 int iCell; /* Index of current cell in pNode */ | 225 u8 bPoint; /* True if sPoint is valid */ |
214 int iStrategy; /* Copy of idxNum search parameter */ | 226 int iStrategy; /* Copy of idxNum search parameter */ |
215 int nConstraint; /* Number of entries in aConstraint */ | 227 int nConstraint; /* Number of entries in aConstraint */ |
216 RtreeConstraint *aConstraint; /* Search constraints. */ | 228 RtreeConstraint *aConstraint; /* Search constraints. */ |
| 229 int nPointAlloc; /* Number of slots allocated for aPoint[] */ |
| 230 int nPoint; /* Number of slots used in aPoint[] */ |
| 231 int mxLevel; /* iLevel value for root of the tree */ |
| 232 RtreeSearchPoint *aPoint; /* Priority queue for search points */ |
| 233 RtreeSearchPoint sPoint; /* Cached next search point */ |
| 234 RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */ |
| 235 u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */ |
217 }; | 236 }; |
218 | 237 |
| 238 /* Return the Rtree of a RtreeCursor */ |
| 239 #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab)) |
| 240 |
| 241 /* |
| 242 ** A coordinate can be either a floating point number or a integer. All |
| 243 ** coordinates within a single R-Tree are always of the same time. |
| 244 */ |
219 union RtreeCoord { | 245 union RtreeCoord { |
220 float f; | 246 RtreeValue f; /* Floating point value */ |
221 int i; | 247 int i; /* Integer value */ |
| 248 u32 u; /* Unsigned for byte-order conversions */ |
222 }; | 249 }; |
223 | 250 |
224 /* | 251 /* |
225 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord | 252 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord |
226 ** formatted as a double. This macro assumes that local variable pRtree points | 253 ** formatted as a RtreeDValue (double or int64). This macro assumes that local |
227 ** to the Rtree structure associated with the RtreeCoord. | 254 ** variable pRtree points to the Rtree structure associated with the |
| 255 ** RtreeCoord. |
228 */ | 256 */ |
229 #define DCOORD(coord) ( \ | 257 #ifdef SQLITE_RTREE_INT_ONLY |
230 (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ | 258 # define DCOORD(coord) ((RtreeDValue)coord.i) |
231 ((double)coord.f) : \ | 259 #else |
232 ((double)coord.i) \ | 260 # define DCOORD(coord) ( \ |
233 ) | 261 (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ |
| 262 ((double)coord.f) : \ |
| 263 ((double)coord.i) \ |
| 264 ) |
| 265 #endif |
234 | 266 |
235 /* | 267 /* |
236 ** A search constraint. | 268 ** A search constraint. |
237 */ | 269 */ |
238 struct RtreeConstraint { | 270 struct RtreeConstraint { |
239 int iCoord; /* Index of constrained coordinate */ | 271 int iCoord; /* Index of constrained coordinate */ |
240 int op; /* Constraining operation */ | 272 int op; /* Constraining operation */ |
241 double rValue; /* Constraint value. */ | 273 union { |
242 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *); | 274 RtreeDValue rValue; /* Constraint value. */ |
243 sqlite3_rtree_geometry *pGeom; /* Constraint callback argument for a MATCH */ | 275 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*); |
| 276 int (*xQueryFunc)(sqlite3_rtree_query_info*); |
| 277 } u; |
| 278 sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */ |
244 }; | 279 }; |
245 | 280 |
246 /* Possible values for RtreeConstraint.op */ | 281 /* Possible values for RtreeConstraint.op */ |
247 #define RTREE_EQ 0x41 | 282 #define RTREE_EQ 0x41 /* A */ |
248 #define RTREE_LE 0x42 | 283 #define RTREE_LE 0x42 /* B */ |
249 #define RTREE_LT 0x43 | 284 #define RTREE_LT 0x43 /* C */ |
250 #define RTREE_GE 0x44 | 285 #define RTREE_GE 0x44 /* D */ |
251 #define RTREE_GT 0x45 | 286 #define RTREE_GT 0x45 /* E */ |
252 #define RTREE_MATCH 0x46 | 287 #define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */ |
| 288 #define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */ |
| 289 |
253 | 290 |
254 /* | 291 /* |
255 ** An rtree structure node. | 292 ** An rtree structure node. |
256 */ | 293 */ |
257 struct RtreeNode { | 294 struct RtreeNode { |
258 RtreeNode *pParent; /* Parent node */ | 295 RtreeNode *pParent; /* Parent node */ |
259 i64 iNode; | 296 i64 iNode; /* The node number */ |
260 int nRef; | 297 int nRef; /* Number of references to this node */ |
261 int isDirty; | 298 int isDirty; /* True if the node needs to be written to disk */ |
262 u8 *zData; | 299 u8 *zData; /* Content of the node, as should be on disk */ |
263 RtreeNode *pNext; /* Next node in this hash chain */ | 300 RtreeNode *pNext; /* Next node in this hash collision chain */ |
264 }; | 301 }; |
| 302 |
| 303 /* Return the number of cells in a node */ |
265 #define NCELL(pNode) readInt16(&(pNode)->zData[2]) | 304 #define NCELL(pNode) readInt16(&(pNode)->zData[2]) |
266 | 305 |
267 /* | 306 /* |
268 ** Structure to store a deserialized rtree record. | 307 ** A single cell from a node, deserialized |
269 */ | 308 */ |
270 struct RtreeCell { | 309 struct RtreeCell { |
271 i64 iRowid; | 310 i64 iRowid; /* Node or entry ID */ |
272 RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; | 311 RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */ |
273 }; | 312 }; |
274 | 313 |
275 | 314 |
| 315 /* |
| 316 ** This object becomes the sqlite3_user_data() for the SQL functions |
| 317 ** that are created by sqlite3_rtree_geometry_callback() and |
| 318 ** sqlite3_rtree_query_callback() and which appear on the right of MATCH |
| 319 ** operators in order to constrain a search. |
| 320 ** |
| 321 ** xGeom and xQueryFunc are the callback functions. Exactly one of |
| 322 ** xGeom and xQueryFunc fields is non-NULL, depending on whether the |
| 323 ** SQL function was created using sqlite3_rtree_geometry_callback() or |
| 324 ** sqlite3_rtree_query_callback(). |
| 325 ** |
| 326 ** This object is deleted automatically by the destructor mechanism in |
| 327 ** sqlite3_create_function_v2(). |
| 328 */ |
| 329 struct RtreeGeomCallback { |
| 330 int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); |
| 331 int (*xQueryFunc)(sqlite3_rtree_query_info*); |
| 332 void (*xDestructor)(void*); |
| 333 void *pContext; |
| 334 }; |
| 335 |
| 336 |
276 /* | 337 /* |
277 ** Value for the first field of every RtreeMatchArg object. The MATCH | 338 ** Value for the first field of every RtreeMatchArg object. The MATCH |
278 ** operator tests that the first field of a blob operand matches this | 339 ** operator tests that the first field of a blob operand matches this |
279 ** value to avoid operating on invalid blobs (which could cause a segfault). | 340 ** value to avoid operating on invalid blobs (which could cause a segfault). |
280 */ | 341 */ |
281 #define RTREE_GEOMETRY_MAGIC 0x891245AB | 342 #define RTREE_GEOMETRY_MAGIC 0x891245AB |
282 | 343 |
283 /* | 344 /* |
284 ** An instance of this structure must be supplied as a blob argument to | 345 ** An instance of this structure (in the form of a BLOB) is returned by |
285 ** the right-hand-side of an SQL MATCH operator used to constrain an | 346 ** the SQL functions that sqlite3_rtree_geometry_callback() and |
286 ** r-tree query. | 347 ** sqlite3_rtree_query_callback() create, and is read as the right-hand |
| 348 ** operand to the MATCH operator of an R-Tree. |
287 */ | 349 */ |
288 struct RtreeMatchArg { | 350 struct RtreeMatchArg { |
289 u32 magic; /* Always RTREE_GEOMETRY_MAGIC */ | 351 u32 magic; /* Always RTREE_GEOMETRY_MAGIC */ |
290 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *); | 352 RtreeGeomCallback cb; /* Info about the callback functions */ |
291 void *pContext; | 353 int nParam; /* Number of parameters to the SQL function */ |
292 int nParam; | 354 RtreeDValue aParam[1]; /* Values for parameters to the SQL function */ |
293 double aParam[1]; | |
294 }; | |
295 | |
296 /* | |
297 ** When a geometry callback is created (see sqlite3_rtree_geometry_callback), | |
298 ** a single instance of the following structure is allocated. It is used | |
299 ** as the context for the user-function created by by s_r_g_c(). The object | |
300 ** is eventually deleted by the destructor mechanism provided by | |
301 ** sqlite3_create_function_v2() (which is called by s_r_g_c() to create | |
302 ** the geometry callback function). | |
303 */ | |
304 struct RtreeGeomCallback { | |
305 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *); | |
306 void *pContext; | |
307 }; | 355 }; |
308 | 356 |
309 #ifndef MAX | 357 #ifndef MAX |
310 # define MAX(x,y) ((x) < (y) ? (y) : (x)) | 358 # define MAX(x,y) ((x) < (y) ? (y) : (x)) |
311 #endif | 359 #endif |
312 #ifndef MIN | 360 #ifndef MIN |
313 # define MIN(x,y) ((x) > (y) ? (y) : (x)) | 361 # define MIN(x,y) ((x) > (y) ? (y) : (x)) |
314 #endif | 362 #endif |
315 | 363 |
316 /* | 364 /* |
(...skipping 73 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
390 static void nodeZero(Rtree *pRtree, RtreeNode *p){ | 438 static void nodeZero(Rtree *pRtree, RtreeNode *p){ |
391 memset(&p->zData[2], 0, pRtree->iNodeSize-2); | 439 memset(&p->zData[2], 0, pRtree->iNodeSize-2); |
392 p->isDirty = 1; | 440 p->isDirty = 1; |
393 } | 441 } |
394 | 442 |
395 /* | 443 /* |
396 ** Given a node number iNode, return the corresponding key to use | 444 ** Given a node number iNode, return the corresponding key to use |
397 ** in the Rtree.aHash table. | 445 ** in the Rtree.aHash table. |
398 */ | 446 */ |
399 static int nodeHash(i64 iNode){ | 447 static int nodeHash(i64 iNode){ |
400 return ( | 448 return iNode % HASHSIZE; |
401 (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^ | |
402 (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0) | |
403 ) % HASHSIZE; | |
404 } | 449 } |
405 | 450 |
406 /* | 451 /* |
407 ** Search the node hash table for node iNode. If found, return a pointer | 452 ** Search the node hash table for node iNode. If found, return a pointer |
408 ** to it. Otherwise, return 0. | 453 ** to it. Otherwise, return 0. |
409 */ | 454 */ |
410 static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ | 455 static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ |
411 RtreeNode *p; | 456 RtreeNode *p; |
412 for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); | 457 for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); |
413 return p; | 458 return p; |
(...skipping 39 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
453 pNode->pParent = pParent; | 498 pNode->pParent = pParent; |
454 pNode->isDirty = 1; | 499 pNode->isDirty = 1; |
455 nodeReference(pParent); | 500 nodeReference(pParent); |
456 } | 501 } |
457 return pNode; | 502 return pNode; |
458 } | 503 } |
459 | 504 |
460 /* | 505 /* |
461 ** Obtain a reference to an r-tree node. | 506 ** Obtain a reference to an r-tree node. |
462 */ | 507 */ |
463 static int | 508 static int nodeAcquire( |
464 nodeAcquire( | |
465 Rtree *pRtree, /* R-tree structure */ | 509 Rtree *pRtree, /* R-tree structure */ |
466 i64 iNode, /* Node number to load */ | 510 i64 iNode, /* Node number to load */ |
467 RtreeNode *pParent, /* Either the parent node or NULL */ | 511 RtreeNode *pParent, /* Either the parent node or NULL */ |
468 RtreeNode **ppNode /* OUT: Acquired node */ | 512 RtreeNode **ppNode /* OUT: Acquired node */ |
469 ){ | 513 ){ |
470 int rc; | 514 int rc; |
471 int rc2 = SQLITE_OK; | 515 int rc2 = SQLITE_OK; |
472 RtreeNode *pNode; | 516 RtreeNode *pNode; |
473 | 517 |
474 /* Check if the requested node is already in the hash table. If so, | 518 /* Check if the requested node is already in the hash table. If so, |
(...skipping 35 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
510 | 554 |
511 /* If the root node was just loaded, set pRtree->iDepth to the height | 555 /* If the root node was just loaded, set pRtree->iDepth to the height |
512 ** of the r-tree structure. A height of zero means all data is stored on | 556 ** of the r-tree structure. A height of zero means all data is stored on |
513 ** the root node. A height of one means the children of the root node | 557 ** the root node. A height of one means the children of the root node |
514 ** are the leaves, and so on. If the depth as specified on the root node | 558 ** are the leaves, and so on. If the depth as specified on the root node |
515 ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. | 559 ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. |
516 */ | 560 */ |
517 if( pNode && iNode==1 ){ | 561 if( pNode && iNode==1 ){ |
518 pRtree->iDepth = readInt16(pNode->zData); | 562 pRtree->iDepth = readInt16(pNode->zData); |
519 if( pRtree->iDepth>RTREE_MAX_DEPTH ){ | 563 if( pRtree->iDepth>RTREE_MAX_DEPTH ){ |
520 rc = SQLITE_CORRUPT; | 564 rc = SQLITE_CORRUPT_VTAB; |
521 } | 565 } |
522 } | 566 } |
523 | 567 |
524 /* If no error has occurred so far, check if the "number of entries" | 568 /* If no error has occurred so far, check if the "number of entries" |
525 ** field on the node is too large. If so, set the return code to | 569 ** field on the node is too large. If so, set the return code to |
526 ** SQLITE_CORRUPT. | 570 ** SQLITE_CORRUPT_VTAB. |
527 */ | 571 */ |
528 if( pNode && rc==SQLITE_OK ){ | 572 if( pNode && rc==SQLITE_OK ){ |
529 if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ | 573 if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ |
530 rc = SQLITE_CORRUPT; | 574 rc = SQLITE_CORRUPT_VTAB; |
531 } | 575 } |
532 } | 576 } |
533 | 577 |
534 if( rc==SQLITE_OK ){ | 578 if( rc==SQLITE_OK ){ |
535 if( pNode!=0 ){ | 579 if( pNode!=0 ){ |
536 nodeHashInsert(pRtree, pNode); | 580 nodeHashInsert(pRtree, pNode); |
537 }else{ | 581 }else{ |
538 rc = SQLITE_CORRUPT; | 582 rc = SQLITE_CORRUPT_VTAB; |
539 } | 583 } |
540 *ppNode = pNode; | 584 *ppNode = pNode; |
541 }else{ | 585 }else{ |
542 sqlite3_free(pNode); | 586 sqlite3_free(pNode); |
543 *ppNode = 0; | 587 *ppNode = 0; |
544 } | 588 } |
545 | 589 |
546 return rc; | 590 return rc; |
547 } | 591 } |
548 | 592 |
549 /* | 593 /* |
550 ** Overwrite cell iCell of node pNode with the contents of pCell. | 594 ** Overwrite cell iCell of node pNode with the contents of pCell. |
551 */ | 595 */ |
552 static void nodeOverwriteCell( | 596 static void nodeOverwriteCell( |
553 Rtree *pRtree, | 597 Rtree *pRtree, /* The overall R-Tree */ |
554 RtreeNode *pNode, | 598 RtreeNode *pNode, /* The node into which the cell is to be written */ |
555 RtreeCell *pCell, | 599 RtreeCell *pCell, /* The cell to write */ |
556 int iCell | 600 int iCell /* Index into pNode into which pCell is written */ |
557 ){ | 601 ){ |
558 int ii; | 602 int ii; |
559 u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; | 603 u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
560 p += writeInt64(p, pCell->iRowid); | 604 p += writeInt64(p, pCell->iRowid); |
561 for(ii=0; ii<(pRtree->nDim*2); ii++){ | 605 for(ii=0; ii<(pRtree->nDim*2); ii++){ |
562 p += writeCoord(p, &pCell->aCoord[ii]); | 606 p += writeCoord(p, &pCell->aCoord[ii]); |
563 } | 607 } |
564 pNode->isDirty = 1; | 608 pNode->isDirty = 1; |
565 } | 609 } |
566 | 610 |
567 /* | 611 /* |
568 ** Remove cell the cell with index iCell from node pNode. | 612 ** Remove the cell with index iCell from node pNode. |
569 */ | 613 */ |
570 static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ | 614 static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ |
571 u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; | 615 u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
572 u8 *pSrc = &pDst[pRtree->nBytesPerCell]; | 616 u8 *pSrc = &pDst[pRtree->nBytesPerCell]; |
573 int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; | 617 int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; |
574 memmove(pDst, pSrc, nByte); | 618 memmove(pDst, pSrc, nByte); |
575 writeInt16(&pNode->zData[2], NCELL(pNode)-1); | 619 writeInt16(&pNode->zData[2], NCELL(pNode)-1); |
576 pNode->isDirty = 1; | 620 pNode->isDirty = 1; |
577 } | 621 } |
578 | 622 |
579 /* | 623 /* |
580 ** Insert the contents of cell pCell into node pNode. If the insert | 624 ** Insert the contents of cell pCell into node pNode. If the insert |
581 ** is successful, return SQLITE_OK. | 625 ** is successful, return SQLITE_OK. |
582 ** | 626 ** |
583 ** If there is not enough free space in pNode, return SQLITE_FULL. | 627 ** If there is not enough free space in pNode, return SQLITE_FULL. |
584 */ | 628 */ |
585 static int | 629 static int nodeInsertCell( |
586 nodeInsertCell( | 630 Rtree *pRtree, /* The overall R-Tree */ |
587 Rtree *pRtree, | 631 RtreeNode *pNode, /* Write new cell into this node */ |
588 RtreeNode *pNode, | 632 RtreeCell *pCell /* The cell to be inserted */ |
589 RtreeCell *pCell | |
590 ){ | 633 ){ |
591 int nCell; /* Current number of cells in pNode */ | 634 int nCell; /* Current number of cells in pNode */ |
592 int nMaxCell; /* Maximum number of cells for pNode */ | 635 int nMaxCell; /* Maximum number of cells for pNode */ |
593 | 636 |
594 nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; | 637 nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; |
595 nCell = NCELL(pNode); | 638 nCell = NCELL(pNode); |
596 | 639 |
597 assert( nCell<=nMaxCell ); | 640 assert( nCell<=nMaxCell ); |
598 if( nCell<nMaxCell ){ | 641 if( nCell<nMaxCell ){ |
599 nodeOverwriteCell(pRtree, pNode, pCell, nCell); | 642 nodeOverwriteCell(pRtree, pNode, pCell, nCell); |
600 writeInt16(&pNode->zData[2], nCell+1); | 643 writeInt16(&pNode->zData[2], nCell+1); |
601 pNode->isDirty = 1; | 644 pNode->isDirty = 1; |
602 } | 645 } |
603 | 646 |
604 return (nCell==nMaxCell); | 647 return (nCell==nMaxCell); |
605 } | 648 } |
606 | 649 |
607 /* | 650 /* |
608 ** If the node is dirty, write it out to the database. | 651 ** If the node is dirty, write it out to the database. |
609 */ | 652 */ |
610 static int | 653 static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){ |
611 nodeWrite(Rtree *pRtree, RtreeNode *pNode){ | |
612 int rc = SQLITE_OK; | 654 int rc = SQLITE_OK; |
613 if( pNode->isDirty ){ | 655 if( pNode->isDirty ){ |
614 sqlite3_stmt *p = pRtree->pWriteNode; | 656 sqlite3_stmt *p = pRtree->pWriteNode; |
615 if( pNode->iNode ){ | 657 if( pNode->iNode ){ |
616 sqlite3_bind_int64(p, 1, pNode->iNode); | 658 sqlite3_bind_int64(p, 1, pNode->iNode); |
617 }else{ | 659 }else{ |
618 sqlite3_bind_null(p, 1); | 660 sqlite3_bind_null(p, 1); |
619 } | 661 } |
620 sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); | 662 sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); |
621 sqlite3_step(p); | 663 sqlite3_step(p); |
622 pNode->isDirty = 0; | 664 pNode->isDirty = 0; |
623 rc = sqlite3_reset(p); | 665 rc = sqlite3_reset(p); |
624 if( pNode->iNode==0 && rc==SQLITE_OK ){ | 666 if( pNode->iNode==0 && rc==SQLITE_OK ){ |
625 pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); | 667 pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); |
626 nodeHashInsert(pRtree, pNode); | 668 nodeHashInsert(pRtree, pNode); |
627 } | 669 } |
628 } | 670 } |
629 return rc; | 671 return rc; |
630 } | 672 } |
631 | 673 |
632 /* | 674 /* |
633 ** Release a reference to a node. If the node is dirty and the reference | 675 ** Release a reference to a node. If the node is dirty and the reference |
634 ** count drops to zero, the node data is written to the database. | 676 ** count drops to zero, the node data is written to the database. |
635 */ | 677 */ |
636 static int | 678 static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ |
637 nodeRelease(Rtree *pRtree, RtreeNode *pNode){ | |
638 int rc = SQLITE_OK; | 679 int rc = SQLITE_OK; |
639 if( pNode ){ | 680 if( pNode ){ |
640 assert( pNode->nRef>0 ); | 681 assert( pNode->nRef>0 ); |
641 pNode->nRef--; | 682 pNode->nRef--; |
642 if( pNode->nRef==0 ){ | 683 if( pNode->nRef==0 ){ |
643 if( pNode->iNode==1 ){ | 684 if( pNode->iNode==1 ){ |
644 pRtree->iDepth = -1; | 685 pRtree->iDepth = -1; |
645 } | 686 } |
646 if( pNode->pParent ){ | 687 if( pNode->pParent ){ |
647 rc = nodeRelease(pRtree, pNode->pParent); | 688 rc = nodeRelease(pRtree, pNode->pParent); |
648 } | 689 } |
649 if( rc==SQLITE_OK ){ | 690 if( rc==SQLITE_OK ){ |
650 rc = nodeWrite(pRtree, pNode); | 691 rc = nodeWrite(pRtree, pNode); |
651 } | 692 } |
652 nodeHashDelete(pRtree, pNode); | 693 nodeHashDelete(pRtree, pNode); |
653 sqlite3_free(pNode); | 694 sqlite3_free(pNode); |
654 } | 695 } |
655 } | 696 } |
656 return rc; | 697 return rc; |
657 } | 698 } |
658 | 699 |
659 /* | 700 /* |
660 ** Return the 64-bit integer value associated with cell iCell of | 701 ** Return the 64-bit integer value associated with cell iCell of |
661 ** node pNode. If pNode is a leaf node, this is a rowid. If it is | 702 ** node pNode. If pNode is a leaf node, this is a rowid. If it is |
662 ** an internal node, then the 64-bit integer is a child page number. | 703 ** an internal node, then the 64-bit integer is a child page number. |
663 */ | 704 */ |
664 static i64 nodeGetRowid( | 705 static i64 nodeGetRowid( |
665 Rtree *pRtree, | 706 Rtree *pRtree, /* The overall R-Tree */ |
666 RtreeNode *pNode, | 707 RtreeNode *pNode, /* The node from which to extract the ID */ |
667 int iCell | 708 int iCell /* The cell index from which to extract the ID */ |
668 ){ | 709 ){ |
669 assert( iCell<NCELL(pNode) ); | 710 assert( iCell<NCELL(pNode) ); |
670 return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); | 711 return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); |
671 } | 712 } |
672 | 713 |
673 /* | 714 /* |
674 ** Return coordinate iCoord from cell iCell in node pNode. | 715 ** Return coordinate iCoord from cell iCell in node pNode. |
675 */ | 716 */ |
676 static void nodeGetCoord( | 717 static void nodeGetCoord( |
677 Rtree *pRtree, | 718 Rtree *pRtree, /* The overall R-Tree */ |
678 RtreeNode *pNode, | 719 RtreeNode *pNode, /* The node from which to extract a coordinate */ |
679 int iCell, | 720 int iCell, /* The index of the cell within the node */ |
680 int iCoord, | 721 int iCoord, /* Which coordinate to extract */ |
681 RtreeCoord *pCoord /* Space to write result to */ | 722 RtreeCoord *pCoord /* OUT: Space to write result to */ |
682 ){ | 723 ){ |
683 readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); | 724 readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); |
684 } | 725 } |
685 | 726 |
686 /* | 727 /* |
687 ** Deserialize cell iCell of node pNode. Populate the structure pointed | 728 ** Deserialize cell iCell of node pNode. Populate the structure pointed |
688 ** to by pCell with the results. | 729 ** to by pCell with the results. |
689 */ | 730 */ |
690 static void nodeGetCell( | 731 static void nodeGetCell( |
691 Rtree *pRtree, | 732 Rtree *pRtree, /* The overall R-Tree */ |
692 RtreeNode *pNode, | 733 RtreeNode *pNode, /* The node containing the cell to be read */ |
693 int iCell, | 734 int iCell, /* Index of the cell within the node */ |
694 RtreeCell *pCell | 735 RtreeCell *pCell /* OUT: Write the cell contents here */ |
695 ){ | 736 ){ |
696 int ii; | 737 u8 *pData; |
| 738 u8 *pEnd; |
| 739 RtreeCoord *pCoord; |
697 pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); | 740 pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); |
698 for(ii=0; ii<pRtree->nDim*2; ii++){ | 741 pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell); |
699 nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]); | 742 pEnd = pData + pRtree->nDim*8; |
| 743 pCoord = pCell->aCoord; |
| 744 for(; pData<pEnd; pData+=4, pCoord++){ |
| 745 readCoord(pData, pCoord); |
700 } | 746 } |
701 } | 747 } |
702 | 748 |
703 | 749 |
704 /* Forward declaration for the function that does the work of | 750 /* Forward declaration for the function that does the work of |
705 ** the virtual table module xCreate() and xConnect() methods. | 751 ** the virtual table module xCreate() and xConnect() methods. |
706 */ | 752 */ |
707 static int rtreeInit( | 753 static int rtreeInit( |
708 sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int | 754 sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int |
709 ); | 755 ); |
(...skipping 105 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
815 } | 861 } |
816 | 862 |
817 | 863 |
818 /* | 864 /* |
819 ** Free the RtreeCursor.aConstraint[] array and its contents. | 865 ** Free the RtreeCursor.aConstraint[] array and its contents. |
820 */ | 866 */ |
821 static void freeCursorConstraints(RtreeCursor *pCsr){ | 867 static void freeCursorConstraints(RtreeCursor *pCsr){ |
822 if( pCsr->aConstraint ){ | 868 if( pCsr->aConstraint ){ |
823 int i; /* Used to iterate through constraint array */ | 869 int i; /* Used to iterate through constraint array */ |
824 for(i=0; i<pCsr->nConstraint; i++){ | 870 for(i=0; i<pCsr->nConstraint; i++){ |
825 sqlite3_rtree_geometry *pGeom = pCsr->aConstraint[i].pGeom; | 871 sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo; |
826 if( pGeom ){ | 872 if( pInfo ){ |
827 if( pGeom->xDelUser ) pGeom->xDelUser(pGeom->pUser); | 873 if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser); |
828 sqlite3_free(pGeom); | 874 sqlite3_free(pInfo); |
829 } | 875 } |
830 } | 876 } |
831 sqlite3_free(pCsr->aConstraint); | 877 sqlite3_free(pCsr->aConstraint); |
832 pCsr->aConstraint = 0; | 878 pCsr->aConstraint = 0; |
833 } | 879 } |
834 } | 880 } |
835 | 881 |
836 /* | 882 /* |
837 ** Rtree virtual table module xClose method. | 883 ** Rtree virtual table module xClose method. |
838 */ | 884 */ |
839 static int rtreeClose(sqlite3_vtab_cursor *cur){ | 885 static int rtreeClose(sqlite3_vtab_cursor *cur){ |
840 Rtree *pRtree = (Rtree *)(cur->pVtab); | 886 Rtree *pRtree = (Rtree *)(cur->pVtab); |
841 int rc; | 887 int ii; |
842 RtreeCursor *pCsr = (RtreeCursor *)cur; | 888 RtreeCursor *pCsr = (RtreeCursor *)cur; |
843 freeCursorConstraints(pCsr); | 889 freeCursorConstraints(pCsr); |
844 rc = nodeRelease(pRtree, pCsr->pNode); | 890 sqlite3_free(pCsr->aPoint); |
| 891 for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]); |
845 sqlite3_free(pCsr); | 892 sqlite3_free(pCsr); |
846 return rc; | 893 return SQLITE_OK; |
847 } | 894 } |
848 | 895 |
849 /* | 896 /* |
850 ** Rtree virtual table module xEof method. | 897 ** Rtree virtual table module xEof method. |
851 ** | 898 ** |
852 ** Return non-zero if the cursor does not currently point to a valid | 899 ** Return non-zero if the cursor does not currently point to a valid |
853 ** record (i.e if the scan has finished), or zero otherwise. | 900 ** record (i.e if the scan has finished), or zero otherwise. |
854 */ | 901 */ |
855 static int rtreeEof(sqlite3_vtab_cursor *cur){ | 902 static int rtreeEof(sqlite3_vtab_cursor *cur){ |
856 RtreeCursor *pCsr = (RtreeCursor *)cur; | 903 RtreeCursor *pCsr = (RtreeCursor *)cur; |
857 return (pCsr->pNode==0); | 904 return pCsr->atEOF; |
858 } | 905 } |
859 | 906 |
860 /* | 907 /* |
861 ** The r-tree constraint passed as the second argument to this function is | 908 ** Convert raw bits from the on-disk RTree record into a coordinate value. |
862 ** guaranteed to be a MATCH constraint. | 909 ** The on-disk format is big-endian and needs to be converted for little- |
| 910 ** endian platforms. The on-disk record stores integer coordinates if |
| 911 ** eInt is true and it stores 32-bit floating point records if eInt is |
| 912 ** false. a[] is the four bytes of the on-disk record to be decoded. |
| 913 ** Store the results in "r". |
| 914 ** |
| 915 ** There are three versions of this macro, one each for little-endian and |
| 916 ** big-endian processors and a third generic implementation. The endian- |
| 917 ** specific implementations are much faster and are preferred if the |
| 918 ** processor endianness is known at compile-time. The SQLITE_BYTEORDER |
| 919 ** macro is part of sqliteInt.h and hence the endian-specific |
| 920 ** implementation will only be used if this module is compiled as part |
| 921 ** of the amalgamation. |
863 */ | 922 */ |
864 static int testRtreeGeom( | 923 #if defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==1234 |
865 Rtree *pRtree, /* R-Tree object */ | 924 #define RTREE_DECODE_COORD(eInt, a, r) { \ |
866 RtreeConstraint *pConstraint, /* MATCH constraint to test */ | 925 RtreeCoord c; /* Coordinate decoded */ \ |
867 RtreeCell *pCell, /* Cell to test */ | 926 memcpy(&c.u,a,4); \ |
868 int *pbRes /* OUT: Test result */ | 927 c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \ |
| 928 ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \ |
| 929 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
| 930 } |
| 931 #elif defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==4321 |
| 932 #define RTREE_DECODE_COORD(eInt, a, r) { \ |
| 933 RtreeCoord c; /* Coordinate decoded */ \ |
| 934 memcpy(&c.u,a,4); \ |
| 935 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
| 936 } |
| 937 #else |
| 938 #define RTREE_DECODE_COORD(eInt, a, r) { \ |
| 939 RtreeCoord c; /* Coordinate decoded */ \ |
| 940 c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \ |
| 941 +((u32)a[2]<<8) + a[3]; \ |
| 942 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
| 943 } |
| 944 #endif |
| 945 |
| 946 /* |
| 947 ** Check the RTree node or entry given by pCellData and p against the MATCH |
| 948 ** constraint pConstraint. |
| 949 */ |
| 950 static int rtreeCallbackConstraint( |
| 951 RtreeConstraint *pConstraint, /* The constraint to test */ |
| 952 int eInt, /* True if RTree holding integer coordinates */ |
| 953 u8 *pCellData, /* Raw cell content */ |
| 954 RtreeSearchPoint *pSearch, /* Container of this cell */ |
| 955 sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */ |
| 956 int *peWithin /* OUT: visibility of the cell */ |
869 ){ | 957 ){ |
870 int i; | 958 int i; /* Loop counter */ |
871 double aCoord[RTREE_MAX_DIMENSIONS*2]; | 959 sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */ |
872 int nCoord = pRtree->nDim*2; | 960 int nCoord = pInfo->nCoord; /* No. of coordinates */ |
| 961 int rc; /* Callback return code */ |
| 962 sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */ |
873 | 963 |
874 assert( pConstraint->op==RTREE_MATCH ); | 964 assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY ); |
875 assert( pConstraint->pGeom ); | 965 assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 ); |
876 | 966 |
877 for(i=0; i<nCoord; i++){ | 967 if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){ |
878 aCoord[i] = DCOORD(pCell->aCoord[i]); | 968 pInfo->iRowid = readInt64(pCellData); |
879 } | 969 } |
880 return pConstraint->xGeom(pConstraint->pGeom, nCoord, aCoord, pbRes); | 970 pCellData += 8; |
881 } | 971 for(i=0; i<nCoord; i++, pCellData += 4){ |
882 | 972 RTREE_DECODE_COORD(eInt, pCellData, aCoord[i]); |
883 /* | 973 } |
884 ** Cursor pCursor currently points to a cell in a non-leaf page. | 974 if( pConstraint->op==RTREE_MATCH ){ |
885 ** Set *pbEof to true if the sub-tree headed by the cell is filtered | 975 rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo, |
886 ** (excluded) by the constraints in the pCursor->aConstraint[] | 976 nCoord, aCoord, &i); |
887 ** array, or false otherwise. | 977 if( i==0 ) *peWithin = NOT_WITHIN; |
888 ** | 978 *prScore = RTREE_ZERO; |
889 ** Return SQLITE_OK if successful or an SQLite error code if an error | 979 }else{ |
890 ** occurs within a geometry callback. | 980 pInfo->aCoord = aCoord; |
891 */ | 981 pInfo->iLevel = pSearch->iLevel - 1; |
892 static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){ | 982 pInfo->rScore = pInfo->rParentScore = pSearch->rScore; |
893 RtreeCell cell; | 983 pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin; |
894 int ii; | 984 rc = pConstraint->u.xQueryFunc(pInfo); |
895 int bRes = 0; | 985 if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin; |
896 int rc = SQLITE_OK; | 986 if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){ |
897 | 987 *prScore = pInfo->rScore; |
898 nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); | |
899 for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){ | |
900 RtreeConstraint *p = &pCursor->aConstraint[ii]; | |
901 double cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]); | |
902 double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]); | |
903 | |
904 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE | |
905 || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH | |
906 ); | |
907 | |
908 switch( p->op ){ | |
909 case RTREE_LE: case RTREE_LT: | |
910 bRes = p->rValue<cell_min; | |
911 break; | |
912 | |
913 case RTREE_GE: case RTREE_GT: | |
914 bRes = p->rValue>cell_max; | |
915 break; | |
916 | |
917 case RTREE_EQ: | |
918 bRes = (p->rValue>cell_max || p->rValue<cell_min); | |
919 break; | |
920 | |
921 default: { | |
922 assert( p->op==RTREE_MATCH ); | |
923 rc = testRtreeGeom(pRtree, p, &cell, &bRes); | |
924 bRes = !bRes; | |
925 break; | |
926 } | |
927 } | 988 } |
928 } | 989 } |
929 | |
930 *pbEof = bRes; | |
931 return rc; | 990 return rc; |
932 } | 991 } |
933 | 992 |
934 /* | 993 /* |
935 ** Test if the cell that cursor pCursor currently points to | 994 ** Check the internal RTree node given by pCellData against constraint p. |
936 ** would be filtered (excluded) by the constraints in the | 995 ** If this constraint cannot be satisfied by any child within the node, |
937 ** pCursor->aConstraint[] array. If so, set *pbEof to true before | 996 ** set *peWithin to NOT_WITHIN. |
938 ** returning. If the cell is not filtered (excluded) by the constraints, | |
939 ** set pbEof to zero. | |
940 ** | |
941 ** Return SQLITE_OK if successful or an SQLite error code if an error | |
942 ** occurs within a geometry callback. | |
943 ** | |
944 ** This function assumes that the cell is part of a leaf node. | |
945 */ | 997 */ |
946 static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){ | 998 static void rtreeNonleafConstraint( |
947 RtreeCell cell; | 999 RtreeConstraint *p, /* The constraint to test */ |
948 int ii; | 1000 int eInt, /* True if RTree holds integer coordinates */ |
949 *pbEof = 0; | 1001 u8 *pCellData, /* Raw cell content as appears on disk */ |
| 1002 int *peWithin /* Adjust downward, as appropriate */ |
| 1003 ){ |
| 1004 sqlite3_rtree_dbl val; /* Coordinate value convert to a double */ |
950 | 1005 |
951 nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); | 1006 /* p->iCoord might point to either a lower or upper bound coordinate |
952 for(ii=0; ii<pCursor->nConstraint; ii++){ | 1007 ** in a coordinate pair. But make pCellData point to the lower bound. |
953 RtreeConstraint *p = &pCursor->aConstraint[ii]; | 1008 */ |
954 double coord = DCOORD(cell.aCoord[p->iCoord]); | 1009 pCellData += 8 + 4*(p->iCoord&0xfe); |
955 int res; | |
956 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE | |
957 || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH | |
958 ); | |
959 switch( p->op ){ | |
960 case RTREE_LE: res = (coord<=p->rValue); break; | |
961 case RTREE_LT: res = (coord<p->rValue); break; | |
962 case RTREE_GE: res = (coord>=p->rValue); break; | |
963 case RTREE_GT: res = (coord>p->rValue); break; | |
964 case RTREE_EQ: res = (coord==p->rValue); break; | |
965 default: { | |
966 int rc; | |
967 assert( p->op==RTREE_MATCH ); | |
968 rc = testRtreeGeom(pRtree, p, &cell, &res); | |
969 if( rc!=SQLITE_OK ){ | |
970 return rc; | |
971 } | |
972 break; | |
973 } | |
974 } | |
975 | 1010 |
976 if( !res ){ | 1011 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE |
977 *pbEof = 1; | 1012 || p->op==RTREE_GT || p->op==RTREE_EQ ); |
978 return SQLITE_OK; | 1013 switch( p->op ){ |
979 } | 1014 case RTREE_LE: |
| 1015 case RTREE_LT: |
| 1016 case RTREE_EQ: |
| 1017 RTREE_DECODE_COORD(eInt, pCellData, val); |
| 1018 /* val now holds the lower bound of the coordinate pair */ |
| 1019 if( p->u.rValue>=val ) return; |
| 1020 if( p->op!=RTREE_EQ ) break; /* RTREE_LE and RTREE_LT end here */ |
| 1021 /* Fall through for the RTREE_EQ case */ |
| 1022 |
| 1023 default: /* RTREE_GT or RTREE_GE, or fallthrough of RTREE_EQ */ |
| 1024 pCellData += 4; |
| 1025 RTREE_DECODE_COORD(eInt, pCellData, val); |
| 1026 /* val now holds the upper bound of the coordinate pair */ |
| 1027 if( p->u.rValue<=val ) return; |
980 } | 1028 } |
981 | 1029 *peWithin = NOT_WITHIN; |
982 return SQLITE_OK; | |
983 } | 1030 } |
984 | 1031 |
985 /* | 1032 /* |
986 ** Cursor pCursor currently points at a node that heads a sub-tree of | 1033 ** Check the leaf RTree cell given by pCellData against constraint p. |
987 ** height iHeight (if iHeight==0, then the node is a leaf). Descend | 1034 ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN. |
988 ** to point to the left-most cell of the sub-tree that matches the | 1035 ** If the constraint is satisfied, leave *peWithin unchanged. |
989 ** configured constraints. | 1036 ** |
| 1037 ** The constraint is of the form: xN op $val |
| 1038 ** |
| 1039 ** The op is given by p->op. The xN is p->iCoord-th coordinate in |
| 1040 ** pCellData. $val is given by p->u.rValue. |
990 */ | 1041 */ |
991 static int descendToCell( | 1042 static void rtreeLeafConstraint( |
992 Rtree *pRtree, | 1043 RtreeConstraint *p, /* The constraint to test */ |
993 RtreeCursor *pCursor, | 1044 int eInt, /* True if RTree holds integer coordinates */ |
994 int iHeight, | 1045 u8 *pCellData, /* Raw cell content as appears on disk */ |
995 int *pEof /* OUT: Set to true if cannot descend */ | 1046 int *peWithin /* Adjust downward, as appropriate */ |
996 ){ | 1047 ){ |
997 int isEof; | 1048 RtreeDValue xN; /* Coordinate value converted to a double */ |
998 int rc; | |
999 int ii; | |
1000 RtreeNode *pChild; | |
1001 sqlite3_int64 iRowid; | |
1002 | 1049 |
1003 RtreeNode *pSavedNode = pCursor->pNode; | 1050 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE |
1004 int iSavedCell = pCursor->iCell; | 1051 || p->op==RTREE_GT || p->op==RTREE_EQ ); |
1005 | 1052 pCellData += 8 + p->iCoord*4; |
1006 assert( iHeight>=0 ); | 1053 RTREE_DECODE_COORD(eInt, pCellData, xN); |
1007 | 1054 switch( p->op ){ |
1008 if( iHeight==0 ){ | 1055 case RTREE_LE: if( xN <= p->u.rValue ) return; break; |
1009 rc = testRtreeEntry(pRtree, pCursor, &isEof); | 1056 case RTREE_LT: if( xN < p->u.rValue ) return; break; |
1010 }else{ | 1057 case RTREE_GE: if( xN >= p->u.rValue ) return; break; |
1011 rc = testRtreeCell(pRtree, pCursor, &isEof); | 1058 case RTREE_GT: if( xN > p->u.rValue ) return; break; |
| 1059 default: if( xN == p->u.rValue ) return; break; |
1012 } | 1060 } |
1013 if( rc!=SQLITE_OK || isEof || iHeight==0 ){ | 1061 *peWithin = NOT_WITHIN; |
1014 goto descend_to_cell_out; | |
1015 } | |
1016 | |
1017 iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell); | |
1018 rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild); | |
1019 if( rc!=SQLITE_OK ){ | |
1020 goto descend_to_cell_out; | |
1021 } | |
1022 | |
1023 nodeRelease(pRtree, pCursor->pNode); | |
1024 pCursor->pNode = pChild; | |
1025 isEof = 1; | |
1026 for(ii=0; isEof && ii<NCELL(pChild); ii++){ | |
1027 pCursor->iCell = ii; | |
1028 rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof); | |
1029 if( rc!=SQLITE_OK ){ | |
1030 goto descend_to_cell_out; | |
1031 } | |
1032 } | |
1033 | |
1034 if( isEof ){ | |
1035 assert( pCursor->pNode==pChild ); | |
1036 nodeReference(pSavedNode); | |
1037 nodeRelease(pRtree, pChild); | |
1038 pCursor->pNode = pSavedNode; | |
1039 pCursor->iCell = iSavedCell; | |
1040 } | |
1041 | |
1042 descend_to_cell_out: | |
1043 *pEof = isEof; | |
1044 return rc; | |
1045 } | 1062 } |
1046 | 1063 |
1047 /* | 1064 /* |
1048 ** One of the cells in node pNode is guaranteed to have a 64-bit | 1065 ** One of the cells in node pNode is guaranteed to have a 64-bit |
1049 ** integer value equal to iRowid. Return the index of this cell. | 1066 ** integer value equal to iRowid. Return the index of this cell. |
1050 */ | 1067 */ |
1051 static int nodeRowidIndex( | 1068 static int nodeRowidIndex( |
1052 Rtree *pRtree, | 1069 Rtree *pRtree, |
1053 RtreeNode *pNode, | 1070 RtreeNode *pNode, |
1054 i64 iRowid, | 1071 i64 iRowid, |
1055 int *piIndex | 1072 int *piIndex |
1056 ){ | 1073 ){ |
1057 int ii; | 1074 int ii; |
1058 int nCell = NCELL(pNode); | 1075 int nCell = NCELL(pNode); |
| 1076 assert( nCell<200 ); |
1059 for(ii=0; ii<nCell; ii++){ | 1077 for(ii=0; ii<nCell; ii++){ |
1060 if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){ | 1078 if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){ |
1061 *piIndex = ii; | 1079 *piIndex = ii; |
1062 return SQLITE_OK; | 1080 return SQLITE_OK; |
1063 } | 1081 } |
1064 } | 1082 } |
1065 return SQLITE_CORRUPT; | 1083 return SQLITE_CORRUPT_VTAB; |
1066 } | 1084 } |
1067 | 1085 |
1068 /* | 1086 /* |
1069 ** Return the index of the cell containing a pointer to node pNode | 1087 ** Return the index of the cell containing a pointer to node pNode |
1070 ** in its parent. If pNode is the root node, return -1. | 1088 ** in its parent. If pNode is the root node, return -1. |
1071 */ | 1089 */ |
1072 static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){ | 1090 static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){ |
1073 RtreeNode *pParent = pNode->pParent; | 1091 RtreeNode *pParent = pNode->pParent; |
1074 if( pParent ){ | 1092 if( pParent ){ |
1075 return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); | 1093 return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); |
1076 } | 1094 } |
1077 *piIndex = -1; | 1095 *piIndex = -1; |
1078 return SQLITE_OK; | 1096 return SQLITE_OK; |
1079 } | 1097 } |
1080 | 1098 |
| 1099 /* |
| 1100 ** Compare two search points. Return negative, zero, or positive if the first |
| 1101 ** is less than, equal to, or greater than the second. |
| 1102 ** |
| 1103 ** The rScore is the primary key. Smaller rScore values come first. |
| 1104 ** If the rScore is a tie, then use iLevel as the tie breaker with smaller |
| 1105 ** iLevel values coming first. In this way, if rScore is the same for all |
| 1106 ** SearchPoints, then iLevel becomes the deciding factor and the result |
| 1107 ** is a depth-first search, which is the desired default behavior. |
| 1108 */ |
| 1109 static int rtreeSearchPointCompare( |
| 1110 const RtreeSearchPoint *pA, |
| 1111 const RtreeSearchPoint *pB |
| 1112 ){ |
| 1113 if( pA->rScore<pB->rScore ) return -1; |
| 1114 if( pA->rScore>pB->rScore ) return +1; |
| 1115 if( pA->iLevel<pB->iLevel ) return -1; |
| 1116 if( pA->iLevel>pB->iLevel ) return +1; |
| 1117 return 0; |
| 1118 } |
| 1119 |
| 1120 /* |
| 1121 ** Interchange to search points in a cursor. |
| 1122 */ |
| 1123 static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){ |
| 1124 RtreeSearchPoint t = p->aPoint[i]; |
| 1125 assert( i<j ); |
| 1126 p->aPoint[i] = p->aPoint[j]; |
| 1127 p->aPoint[j] = t; |
| 1128 i++; j++; |
| 1129 if( i<RTREE_CACHE_SZ ){ |
| 1130 if( j>=RTREE_CACHE_SZ ){ |
| 1131 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); |
| 1132 p->aNode[i] = 0; |
| 1133 }else{ |
| 1134 RtreeNode *pTemp = p->aNode[i]; |
| 1135 p->aNode[i] = p->aNode[j]; |
| 1136 p->aNode[j] = pTemp; |
| 1137 } |
| 1138 } |
| 1139 } |
| 1140 |
| 1141 /* |
| 1142 ** Return the search point with the lowest current score. |
| 1143 */ |
| 1144 static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){ |
| 1145 return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0; |
| 1146 } |
| 1147 |
| 1148 /* |
| 1149 ** Get the RtreeNode for the search point with the lowest score. |
| 1150 */ |
| 1151 static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){ |
| 1152 sqlite3_int64 id; |
| 1153 int ii = 1 - pCur->bPoint; |
| 1154 assert( ii==0 || ii==1 ); |
| 1155 assert( pCur->bPoint || pCur->nPoint ); |
| 1156 if( pCur->aNode[ii]==0 ){ |
| 1157 assert( pRC!=0 ); |
| 1158 id = ii ? pCur->aPoint[0].id : pCur->sPoint.id; |
| 1159 *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]); |
| 1160 } |
| 1161 return pCur->aNode[ii]; |
| 1162 } |
| 1163 |
| 1164 /* |
| 1165 ** Push a new element onto the priority queue |
| 1166 */ |
| 1167 static RtreeSearchPoint *rtreeEnqueue( |
| 1168 RtreeCursor *pCur, /* The cursor */ |
| 1169 RtreeDValue rScore, /* Score for the new search point */ |
| 1170 u8 iLevel /* Level for the new search point */ |
| 1171 ){ |
| 1172 int i, j; |
| 1173 RtreeSearchPoint *pNew; |
| 1174 if( pCur->nPoint>=pCur->nPointAlloc ){ |
| 1175 int nNew = pCur->nPointAlloc*2 + 8; |
| 1176 pNew = sqlite3_realloc(pCur->aPoint, nNew*sizeof(pCur->aPoint[0])); |
| 1177 if( pNew==0 ) return 0; |
| 1178 pCur->aPoint = pNew; |
| 1179 pCur->nPointAlloc = nNew; |
| 1180 } |
| 1181 i = pCur->nPoint++; |
| 1182 pNew = pCur->aPoint + i; |
| 1183 pNew->rScore = rScore; |
| 1184 pNew->iLevel = iLevel; |
| 1185 assert( iLevel>=0 && iLevel<=RTREE_MAX_DEPTH ); |
| 1186 while( i>0 ){ |
| 1187 RtreeSearchPoint *pParent; |
| 1188 j = (i-1)/2; |
| 1189 pParent = pCur->aPoint + j; |
| 1190 if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break; |
| 1191 rtreeSearchPointSwap(pCur, j, i); |
| 1192 i = j; |
| 1193 pNew = pParent; |
| 1194 } |
| 1195 return pNew; |
| 1196 } |
| 1197 |
| 1198 /* |
| 1199 ** Allocate a new RtreeSearchPoint and return a pointer to it. Return |
| 1200 ** NULL if malloc fails. |
| 1201 */ |
| 1202 static RtreeSearchPoint *rtreeSearchPointNew( |
| 1203 RtreeCursor *pCur, /* The cursor */ |
| 1204 RtreeDValue rScore, /* Score for the new search point */ |
| 1205 u8 iLevel /* Level for the new search point */ |
| 1206 ){ |
| 1207 RtreeSearchPoint *pNew, *pFirst; |
| 1208 pFirst = rtreeSearchPointFirst(pCur); |
| 1209 pCur->anQueue[iLevel]++; |
| 1210 if( pFirst==0 |
| 1211 || pFirst->rScore>rScore |
| 1212 || (pFirst->rScore==rScore && pFirst->iLevel>iLevel) |
| 1213 ){ |
| 1214 if( pCur->bPoint ){ |
| 1215 int ii; |
| 1216 pNew = rtreeEnqueue(pCur, rScore, iLevel); |
| 1217 if( pNew==0 ) return 0; |
| 1218 ii = (int)(pNew - pCur->aPoint) + 1; |
| 1219 if( ii<RTREE_CACHE_SZ ){ |
| 1220 assert( pCur->aNode[ii]==0 ); |
| 1221 pCur->aNode[ii] = pCur->aNode[0]; |
| 1222 }else{ |
| 1223 nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]); |
| 1224 } |
| 1225 pCur->aNode[0] = 0; |
| 1226 *pNew = pCur->sPoint; |
| 1227 } |
| 1228 pCur->sPoint.rScore = rScore; |
| 1229 pCur->sPoint.iLevel = iLevel; |
| 1230 pCur->bPoint = 1; |
| 1231 return &pCur->sPoint; |
| 1232 }else{ |
| 1233 return rtreeEnqueue(pCur, rScore, iLevel); |
| 1234 } |
| 1235 } |
| 1236 |
| 1237 #if 0 |
| 1238 /* Tracing routines for the RtreeSearchPoint queue */ |
| 1239 static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){ |
| 1240 if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); } |
| 1241 printf(" %d.%05lld.%02d %g %d", |
| 1242 p->iLevel, p->id, p->iCell, p->rScore, p->eWithin |
| 1243 ); |
| 1244 idx++; |
| 1245 if( idx<RTREE_CACHE_SZ ){ |
| 1246 printf(" %p\n", pCur->aNode[idx]); |
| 1247 }else{ |
| 1248 printf("\n"); |
| 1249 } |
| 1250 } |
| 1251 static void traceQueue(RtreeCursor *pCur, const char *zPrefix){ |
| 1252 int ii; |
| 1253 printf("=== %9s ", zPrefix); |
| 1254 if( pCur->bPoint ){ |
| 1255 tracePoint(&pCur->sPoint, -1, pCur); |
| 1256 } |
| 1257 for(ii=0; ii<pCur->nPoint; ii++){ |
| 1258 if( ii>0 || pCur->bPoint ) printf(" "); |
| 1259 tracePoint(&pCur->aPoint[ii], ii, pCur); |
| 1260 } |
| 1261 } |
| 1262 # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B) |
| 1263 #else |
| 1264 # define RTREE_QUEUE_TRACE(A,B) /* no-op */ |
| 1265 #endif |
| 1266 |
| 1267 /* Remove the search point with the lowest current score. |
| 1268 */ |
| 1269 static void rtreeSearchPointPop(RtreeCursor *p){ |
| 1270 int i, j, k, n; |
| 1271 i = 1 - p->bPoint; |
| 1272 assert( i==0 || i==1 ); |
| 1273 if( p->aNode[i] ){ |
| 1274 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); |
| 1275 p->aNode[i] = 0; |
| 1276 } |
| 1277 if( p->bPoint ){ |
| 1278 p->anQueue[p->sPoint.iLevel]--; |
| 1279 p->bPoint = 0; |
| 1280 }else if( p->nPoint ){ |
| 1281 p->anQueue[p->aPoint[0].iLevel]--; |
| 1282 n = --p->nPoint; |
| 1283 p->aPoint[0] = p->aPoint[n]; |
| 1284 if( n<RTREE_CACHE_SZ-1 ){ |
| 1285 p->aNode[1] = p->aNode[n+1]; |
| 1286 p->aNode[n+1] = 0; |
| 1287 } |
| 1288 i = 0; |
| 1289 while( (j = i*2+1)<n ){ |
| 1290 k = j+1; |
| 1291 if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){ |
| 1292 if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){ |
| 1293 rtreeSearchPointSwap(p, i, k); |
| 1294 i = k; |
| 1295 }else{ |
| 1296 break; |
| 1297 } |
| 1298 }else{ |
| 1299 if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){ |
| 1300 rtreeSearchPointSwap(p, i, j); |
| 1301 i = j; |
| 1302 }else{ |
| 1303 break; |
| 1304 } |
| 1305 } |
| 1306 } |
| 1307 } |
| 1308 } |
| 1309 |
| 1310 |
| 1311 /* |
| 1312 ** Continue the search on cursor pCur until the front of the queue |
| 1313 ** contains an entry suitable for returning as a result-set row, |
| 1314 ** or until the RtreeSearchPoint queue is empty, indicating that the |
| 1315 ** query has completed. |
| 1316 */ |
| 1317 static int rtreeStepToLeaf(RtreeCursor *pCur){ |
| 1318 RtreeSearchPoint *p; |
| 1319 Rtree *pRtree = RTREE_OF_CURSOR(pCur); |
| 1320 RtreeNode *pNode; |
| 1321 int eWithin; |
| 1322 int rc = SQLITE_OK; |
| 1323 int nCell; |
| 1324 int nConstraint = pCur->nConstraint; |
| 1325 int ii; |
| 1326 int eInt; |
| 1327 RtreeSearchPoint x; |
| 1328 |
| 1329 eInt = pRtree->eCoordType==RTREE_COORD_INT32; |
| 1330 while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){ |
| 1331 pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc); |
| 1332 if( rc ) return rc; |
| 1333 nCell = NCELL(pNode); |
| 1334 assert( nCell<200 ); |
| 1335 while( p->iCell<nCell ){ |
| 1336 sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1; |
| 1337 u8 *pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell); |
| 1338 eWithin = FULLY_WITHIN; |
| 1339 for(ii=0; ii<nConstraint; ii++){ |
| 1340 RtreeConstraint *pConstraint = pCur->aConstraint + ii; |
| 1341 if( pConstraint->op>=RTREE_MATCH ){ |
| 1342 rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p, |
| 1343 &rScore, &eWithin); |
| 1344 if( rc ) return rc; |
| 1345 }else if( p->iLevel==1 ){ |
| 1346 rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin); |
| 1347 }else{ |
| 1348 rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin); |
| 1349 } |
| 1350 if( eWithin==NOT_WITHIN ) break; |
| 1351 } |
| 1352 p->iCell++; |
| 1353 if( eWithin==NOT_WITHIN ) continue; |
| 1354 x.iLevel = p->iLevel - 1; |
| 1355 if( x.iLevel ){ |
| 1356 x.id = readInt64(pCellData); |
| 1357 x.iCell = 0; |
| 1358 }else{ |
| 1359 x.id = p->id; |
| 1360 x.iCell = p->iCell - 1; |
| 1361 } |
| 1362 if( p->iCell>=nCell ){ |
| 1363 RTREE_QUEUE_TRACE(pCur, "POP-S:"); |
| 1364 rtreeSearchPointPop(pCur); |
| 1365 } |
| 1366 if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO; |
| 1367 p = rtreeSearchPointNew(pCur, rScore, x.iLevel); |
| 1368 if( p==0 ) return SQLITE_NOMEM; |
| 1369 p->eWithin = eWithin; |
| 1370 p->id = x.id; |
| 1371 p->iCell = x.iCell; |
| 1372 RTREE_QUEUE_TRACE(pCur, "PUSH-S:"); |
| 1373 break; |
| 1374 } |
| 1375 if( p->iCell>=nCell ){ |
| 1376 RTREE_QUEUE_TRACE(pCur, "POP-Se:"); |
| 1377 rtreeSearchPointPop(pCur); |
| 1378 } |
| 1379 } |
| 1380 pCur->atEOF = p==0; |
| 1381 return SQLITE_OK; |
| 1382 } |
| 1383 |
1081 /* | 1384 /* |
1082 ** Rtree virtual table module xNext method. | 1385 ** Rtree virtual table module xNext method. |
1083 */ | 1386 */ |
1084 static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ | 1387 static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ |
1085 Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab); | |
1086 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; | 1388 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
1087 int rc = SQLITE_OK; | 1389 int rc = SQLITE_OK; |
1088 | 1390 |
1089 /* RtreeCursor.pNode must not be NULL. If is is NULL, then this cursor is | 1391 /* Move to the next entry that matches the configured constraints. */ |
1090 ** already at EOF. It is against the rules to call the xNext() method of | 1392 RTREE_QUEUE_TRACE(pCsr, "POP-Nx:"); |
1091 ** a cursor that has already reached EOF. | 1393 rtreeSearchPointPop(pCsr); |
1092 */ | 1394 rc = rtreeStepToLeaf(pCsr); |
1093 assert( pCsr->pNode ); | |
1094 | |
1095 if( pCsr->iStrategy==1 ){ | |
1096 /* This "scan" is a direct lookup by rowid. There is no next entry. */ | |
1097 nodeRelease(pRtree, pCsr->pNode); | |
1098 pCsr->pNode = 0; | |
1099 }else{ | |
1100 /* Move to the next entry that matches the configured constraints. */ | |
1101 int iHeight = 0; | |
1102 while( pCsr->pNode ){ | |
1103 RtreeNode *pNode = pCsr->pNode; | |
1104 int nCell = NCELL(pNode); | |
1105 for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){ | |
1106 int isEof; | |
1107 rc = descendToCell(pRtree, pCsr, iHeight, &isEof); | |
1108 if( rc!=SQLITE_OK || !isEof ){ | |
1109 return rc; | |
1110 } | |
1111 } | |
1112 pCsr->pNode = pNode->pParent; | |
1113 rc = nodeParentIndex(pRtree, pNode, &pCsr->iCell); | |
1114 if( rc!=SQLITE_OK ){ | |
1115 return rc; | |
1116 } | |
1117 nodeReference(pCsr->pNode); | |
1118 nodeRelease(pRtree, pNode); | |
1119 iHeight++; | |
1120 } | |
1121 } | |
1122 | |
1123 return rc; | 1395 return rc; |
1124 } | 1396 } |
1125 | 1397 |
1126 /* | 1398 /* |
1127 ** Rtree virtual table module xRowid method. | 1399 ** Rtree virtual table module xRowid method. |
1128 */ | 1400 */ |
1129 static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ | 1401 static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ |
1130 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; | |
1131 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; | 1402 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
1132 | 1403 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); |
1133 assert(pCsr->pNode); | 1404 int rc = SQLITE_OK; |
1134 *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); | 1405 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); |
1135 | 1406 if( rc==SQLITE_OK && p ){ |
1136 return SQLITE_OK; | 1407 *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell); |
| 1408 } |
| 1409 return rc; |
1137 } | 1410 } |
1138 | 1411 |
1139 /* | 1412 /* |
1140 ** Rtree virtual table module xColumn method. | 1413 ** Rtree virtual table module xColumn method. |
1141 */ | 1414 */ |
1142 static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ | 1415 static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ |
1143 Rtree *pRtree = (Rtree *)cur->pVtab; | 1416 Rtree *pRtree = (Rtree *)cur->pVtab; |
1144 RtreeCursor *pCsr = (RtreeCursor *)cur; | 1417 RtreeCursor *pCsr = (RtreeCursor *)cur; |
| 1418 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); |
| 1419 RtreeCoord c; |
| 1420 int rc = SQLITE_OK; |
| 1421 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); |
1145 | 1422 |
| 1423 if( rc ) return rc; |
| 1424 if( p==0 ) return SQLITE_OK; |
1146 if( i==0 ){ | 1425 if( i==0 ){ |
1147 i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); | 1426 sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell)); |
1148 sqlite3_result_int64(ctx, iRowid); | |
1149 }else{ | 1427 }else{ |
1150 RtreeCoord c; | 1428 if( rc ) return rc; |
1151 nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c); | 1429 nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c); |
| 1430 #ifndef SQLITE_RTREE_INT_ONLY |
1152 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ | 1431 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
1153 sqlite3_result_double(ctx, c.f); | 1432 sqlite3_result_double(ctx, c.f); |
1154 }else{ | 1433 }else |
| 1434 #endif |
| 1435 { |
1155 assert( pRtree->eCoordType==RTREE_COORD_INT32 ); | 1436 assert( pRtree->eCoordType==RTREE_COORD_INT32 ); |
1156 sqlite3_result_int(ctx, c.i); | 1437 sqlite3_result_int(ctx, c.i); |
1157 } | 1438 } |
1158 } | 1439 } |
1159 | |
1160 return SQLITE_OK; | 1440 return SQLITE_OK; |
1161 } | 1441 } |
1162 | 1442 |
1163 /* | 1443 /* |
1164 ** Use nodeAcquire() to obtain the leaf node containing the record with | 1444 ** Use nodeAcquire() to obtain the leaf node containing the record with |
1165 ** rowid iRowid. If successful, set *ppLeaf to point to the node and | 1445 ** rowid iRowid. If successful, set *ppLeaf to point to the node and |
1166 ** return SQLITE_OK. If there is no such record in the table, set | 1446 ** return SQLITE_OK. If there is no such record in the table, set |
1167 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf | 1447 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf |
1168 ** to zero and return an SQLite error code. | 1448 ** to zero and return an SQLite error code. |
1169 */ | 1449 */ |
1170 static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){ | 1450 static int findLeafNode( |
| 1451 Rtree *pRtree, /* RTree to search */ |
| 1452 i64 iRowid, /* The rowid searching for */ |
| 1453 RtreeNode **ppLeaf, /* Write the node here */ |
| 1454 sqlite3_int64 *piNode /* Write the node-id here */ |
| 1455 ){ |
1171 int rc; | 1456 int rc; |
1172 *ppLeaf = 0; | 1457 *ppLeaf = 0; |
1173 sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); | 1458 sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); |
1174 if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ | 1459 if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ |
1175 i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); | 1460 i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); |
| 1461 if( piNode ) *piNode = iNode; |
1176 rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); | 1462 rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); |
1177 sqlite3_reset(pRtree->pReadRowid); | 1463 sqlite3_reset(pRtree->pReadRowid); |
1178 }else{ | 1464 }else{ |
1179 rc = sqlite3_reset(pRtree->pReadRowid); | 1465 rc = sqlite3_reset(pRtree->pReadRowid); |
1180 } | 1466 } |
1181 return rc; | 1467 return rc; |
1182 } | 1468 } |
1183 | 1469 |
1184 /* | 1470 /* |
1185 ** This function is called to configure the RtreeConstraint object passed | 1471 ** This function is called to configure the RtreeConstraint object passed |
1186 ** as the second argument for a MATCH constraint. The value passed as the | 1472 ** as the second argument for a MATCH constraint. The value passed as the |
1187 ** first argument to this function is the right-hand operand to the MATCH | 1473 ** first argument to this function is the right-hand operand to the MATCH |
1188 ** operator. | 1474 ** operator. |
1189 */ | 1475 */ |
1190 static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ | 1476 static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ |
1191 RtreeMatchArg *p; | 1477 RtreeMatchArg *pBlob; /* BLOB returned by geometry function */ |
1192 sqlite3_rtree_geometry *pGeom; | 1478 sqlite3_rtree_query_info *pInfo; /* Callback information */ |
1193 int nBlob; | 1479 int nBlob; /* Size of the geometry function blob */ |
| 1480 int nExpected; /* Expected size of the BLOB */ |
1194 | 1481 |
1195 /* Check that value is actually a blob. */ | 1482 /* Check that value is actually a blob. */ |
1196 if( !sqlite3_value_type(pValue)==SQLITE_BLOB ) return SQLITE_ERROR; | 1483 if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR; |
1197 | 1484 |
1198 /* Check that the blob is roughly the right size. */ | 1485 /* Check that the blob is roughly the right size. */ |
1199 nBlob = sqlite3_value_bytes(pValue); | 1486 nBlob = sqlite3_value_bytes(pValue); |
1200 if( nBlob<(int)sizeof(RtreeMatchArg) | 1487 if( nBlob<(int)sizeof(RtreeMatchArg) |
1201 || ((nBlob-sizeof(RtreeMatchArg))%sizeof(double))!=0 | 1488 || ((nBlob-sizeof(RtreeMatchArg))%sizeof(RtreeDValue))!=0 |
1202 ){ | 1489 ){ |
1203 return SQLITE_ERROR; | 1490 return SQLITE_ERROR; |
1204 } | 1491 } |
1205 | 1492 |
1206 pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc( | 1493 pInfo = (sqlite3_rtree_query_info*)sqlite3_malloc( sizeof(*pInfo)+nBlob ); |
1207 sizeof(sqlite3_rtree_geometry) + nBlob | 1494 if( !pInfo ) return SQLITE_NOMEM; |
1208 ); | 1495 memset(pInfo, 0, sizeof(*pInfo)); |
1209 if( !pGeom ) return SQLITE_NOMEM; | 1496 pBlob = (RtreeMatchArg*)&pInfo[1]; |
1210 memset(pGeom, 0, sizeof(sqlite3_rtree_geometry)); | |
1211 p = (RtreeMatchArg *)&pGeom[1]; | |
1212 | 1497 |
1213 memcpy(p, sqlite3_value_blob(pValue), nBlob); | 1498 memcpy(pBlob, sqlite3_value_blob(pValue), nBlob); |
1214 if( p->magic!=RTREE_GEOMETRY_MAGIC | 1499 nExpected = (int)(sizeof(RtreeMatchArg) + |
1215 || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(double)) | 1500 (pBlob->nParam-1)*sizeof(RtreeDValue)); |
1216 ){ | 1501 if( pBlob->magic!=RTREE_GEOMETRY_MAGIC || nBlob!=nExpected ){ |
1217 sqlite3_free(pGeom); | 1502 sqlite3_free(pInfo); |
1218 return SQLITE_ERROR; | 1503 return SQLITE_ERROR; |
1219 } | 1504 } |
| 1505 pInfo->pContext = pBlob->cb.pContext; |
| 1506 pInfo->nParam = pBlob->nParam; |
| 1507 pInfo->aParam = pBlob->aParam; |
1220 | 1508 |
1221 pGeom->pContext = p->pContext; | 1509 if( pBlob->cb.xGeom ){ |
1222 pGeom->nParam = p->nParam; | 1510 pCons->u.xGeom = pBlob->cb.xGeom; |
1223 pGeom->aParam = p->aParam; | 1511 }else{ |
1224 | 1512 pCons->op = RTREE_QUERY; |
1225 pCons->xGeom = p->xGeom; | 1513 pCons->u.xQueryFunc = pBlob->cb.xQueryFunc; |
1226 pCons->pGeom = pGeom; | 1514 } |
| 1515 pCons->pInfo = pInfo; |
1227 return SQLITE_OK; | 1516 return SQLITE_OK; |
1228 } | 1517 } |
1229 | 1518 |
1230 /* | 1519 /* |
1231 ** Rtree virtual table module xFilter method. | 1520 ** Rtree virtual table module xFilter method. |
1232 */ | 1521 */ |
1233 static int rtreeFilter( | 1522 static int rtreeFilter( |
1234 sqlite3_vtab_cursor *pVtabCursor, | 1523 sqlite3_vtab_cursor *pVtabCursor, |
1235 int idxNum, const char *idxStr, | 1524 int idxNum, const char *idxStr, |
1236 int argc, sqlite3_value **argv | 1525 int argc, sqlite3_value **argv |
1237 ){ | 1526 ){ |
1238 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; | 1527 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; |
1239 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; | 1528 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
1240 | |
1241 RtreeNode *pRoot = 0; | 1529 RtreeNode *pRoot = 0; |
1242 int ii; | 1530 int ii; |
1243 int rc = SQLITE_OK; | 1531 int rc = SQLITE_OK; |
| 1532 int iCell = 0; |
1244 | 1533 |
1245 rtreeReference(pRtree); | 1534 rtreeReference(pRtree); |
1246 | 1535 |
| 1536 /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ |
1247 freeCursorConstraints(pCsr); | 1537 freeCursorConstraints(pCsr); |
| 1538 sqlite3_free(pCsr->aPoint); |
| 1539 memset(pCsr, 0, sizeof(RtreeCursor)); |
| 1540 pCsr->base.pVtab = (sqlite3_vtab*)pRtree; |
| 1541 |
1248 pCsr->iStrategy = idxNum; | 1542 pCsr->iStrategy = idxNum; |
1249 | |
1250 if( idxNum==1 ){ | 1543 if( idxNum==1 ){ |
1251 /* Special case - lookup by rowid. */ | 1544 /* Special case - lookup by rowid. */ |
1252 RtreeNode *pLeaf; /* Leaf on which the required cell resides */ | 1545 RtreeNode *pLeaf; /* Leaf on which the required cell resides */ |
| 1546 RtreeSearchPoint *p; /* Search point for the the leaf */ |
1253 i64 iRowid = sqlite3_value_int64(argv[0]); | 1547 i64 iRowid = sqlite3_value_int64(argv[0]); |
1254 rc = findLeafNode(pRtree, iRowid, &pLeaf); | 1548 i64 iNode = 0; |
1255 pCsr->pNode = pLeaf; | 1549 rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode); |
1256 if( pLeaf ){ | 1550 if( rc==SQLITE_OK && pLeaf!=0 ){ |
1257 assert( rc==SQLITE_OK ); | 1551 p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0); |
1258 rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &pCsr->iCell); | 1552 assert( p!=0 ); /* Always returns pCsr->sPoint */ |
| 1553 pCsr->aNode[0] = pLeaf; |
| 1554 p->id = iNode; |
| 1555 p->eWithin = PARTLY_WITHIN; |
| 1556 rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell); |
| 1557 p->iCell = iCell; |
| 1558 RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:"); |
| 1559 }else{ |
| 1560 pCsr->atEOF = 1; |
1259 } | 1561 } |
1260 }else{ | 1562 }else{ |
1261 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array | 1563 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array |
1262 ** with the configured constraints. | 1564 ** with the configured constraints. |
1263 */ | 1565 */ |
1264 if( argc>0 ){ | 1566 rc = nodeAcquire(pRtree, 1, 0, &pRoot); |
| 1567 if( rc==SQLITE_OK && argc>0 ){ |
1265 pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); | 1568 pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); |
1266 pCsr->nConstraint = argc; | 1569 pCsr->nConstraint = argc; |
1267 if( !pCsr->aConstraint ){ | 1570 if( !pCsr->aConstraint ){ |
1268 rc = SQLITE_NOMEM; | 1571 rc = SQLITE_NOMEM; |
1269 }else{ | 1572 }else{ |
1270 memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); | 1573 memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); |
1271 assert( (idxStr==0 && argc==0) || (int)strlen(idxStr)==argc*2 ); | 1574 memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1)); |
| 1575 assert( (idxStr==0 && argc==0) |
| 1576 || (idxStr && (int)strlen(idxStr)==argc*2) ); |
1272 for(ii=0; ii<argc; ii++){ | 1577 for(ii=0; ii<argc; ii++){ |
1273 RtreeConstraint *p = &pCsr->aConstraint[ii]; | 1578 RtreeConstraint *p = &pCsr->aConstraint[ii]; |
1274 p->op = idxStr[ii*2]; | 1579 p->op = idxStr[ii*2]; |
1275 p->iCoord = idxStr[ii*2+1]-'a'; | 1580 p->iCoord = idxStr[ii*2+1]-'0'; |
1276 if( p->op==RTREE_MATCH ){ | 1581 if( p->op>=RTREE_MATCH ){ |
1277 /* A MATCH operator. The right-hand-side must be a blob that | 1582 /* A MATCH operator. The right-hand-side must be a blob that |
1278 ** can be cast into an RtreeMatchArg object. One created using | 1583 ** can be cast into an RtreeMatchArg object. One created using |
1279 ** an sqlite3_rtree_geometry_callback() SQL user function. | 1584 ** an sqlite3_rtree_geometry_callback() SQL user function. |
1280 */ | 1585 */ |
1281 rc = deserializeGeometry(argv[ii], p); | 1586 rc = deserializeGeometry(argv[ii], p); |
1282 if( rc!=SQLITE_OK ){ | 1587 if( rc!=SQLITE_OK ){ |
1283 break; | 1588 break; |
1284 } | 1589 } |
| 1590 p->pInfo->nCoord = pRtree->nDim*2; |
| 1591 p->pInfo->anQueue = pCsr->anQueue; |
| 1592 p->pInfo->mxLevel = pRtree->iDepth + 1; |
1285 }else{ | 1593 }else{ |
1286 p->rValue = sqlite3_value_double(argv[ii]); | 1594 #ifdef SQLITE_RTREE_INT_ONLY |
| 1595 p->u.rValue = sqlite3_value_int64(argv[ii]); |
| 1596 #else |
| 1597 p->u.rValue = sqlite3_value_double(argv[ii]); |
| 1598 #endif |
1287 } | 1599 } |
1288 } | 1600 } |
1289 } | 1601 } |
1290 } | 1602 } |
1291 | |
1292 if( rc==SQLITE_OK ){ | 1603 if( rc==SQLITE_OK ){ |
1293 pCsr->pNode = 0; | 1604 RtreeSearchPoint *pNew; |
1294 rc = nodeAcquire(pRtree, 1, 0, &pRoot); | 1605 pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, pRtree->iDepth+1); |
1295 } | 1606 if( pNew==0 ) return SQLITE_NOMEM; |
1296 if( rc==SQLITE_OK ){ | 1607 pNew->id = 1; |
1297 int isEof = 1; | 1608 pNew->iCell = 0; |
1298 int nCell = NCELL(pRoot); | 1609 pNew->eWithin = PARTLY_WITHIN; |
1299 pCsr->pNode = pRoot; | 1610 assert( pCsr->bPoint==1 ); |
1300 for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){ | 1611 pCsr->aNode[0] = pRoot; |
1301 assert( pCsr->pNode==pRoot ); | 1612 pRoot = 0; |
1302 rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof); | 1613 RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:"); |
1303 if( !isEof ){ | 1614 rc = rtreeStepToLeaf(pCsr); |
1304 break; | |
1305 } | |
1306 } | |
1307 if( rc==SQLITE_OK && isEof ){ | |
1308 assert( pCsr->pNode==pRoot ); | |
1309 nodeRelease(pRtree, pRoot); | |
1310 pCsr->pNode = 0; | |
1311 } | |
1312 assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) ); | |
1313 } | 1615 } |
1314 } | 1616 } |
1315 | 1617 |
| 1618 nodeRelease(pRtree, pRoot); |
1316 rtreeRelease(pRtree); | 1619 rtreeRelease(pRtree); |
1317 return rc; | 1620 return rc; |
1318 } | 1621 } |
1319 | 1622 |
1320 /* | 1623 /* |
| 1624 ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this |
| 1625 ** extension is currently being used by a version of SQLite too old to |
| 1626 ** support estimatedRows. In that case this function is a no-op. |
| 1627 */ |
| 1628 static void setEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){ |
| 1629 #if SQLITE_VERSION_NUMBER>=3008002 |
| 1630 if( sqlite3_libversion_number()>=3008002 ){ |
| 1631 pIdxInfo->estimatedRows = nRow; |
| 1632 } |
| 1633 #endif |
| 1634 } |
| 1635 |
| 1636 /* |
1321 ** Rtree virtual table module xBestIndex method. There are three | 1637 ** Rtree virtual table module xBestIndex method. There are three |
1322 ** table scan strategies to choose from (in order from most to | 1638 ** table scan strategies to choose from (in order from most to |
1323 ** least desirable): | 1639 ** least desirable): |
1324 ** | 1640 ** |
1325 ** idxNum idxStr Strategy | 1641 ** idxNum idxStr Strategy |
1326 ** ------------------------------------------------ | 1642 ** ------------------------------------------------ |
1327 ** 1 Unused Direct lookup by rowid. | 1643 ** 1 Unused Direct lookup by rowid. |
1328 ** 2 See below R-tree query or full-table scan. | 1644 ** 2 See below R-tree query or full-table scan. |
1329 ** ------------------------------------------------ | 1645 ** ------------------------------------------------ |
1330 ** | 1646 ** |
(...skipping 14 matching lines...) Expand all Loading... |
1345 ** >= 0x44 ('D') | 1661 ** >= 0x44 ('D') |
1346 ** > 0x45 ('E') | 1662 ** > 0x45 ('E') |
1347 ** MATCH 0x46 ('F') | 1663 ** MATCH 0x46 ('F') |
1348 ** ---------------------- | 1664 ** ---------------------- |
1349 ** | 1665 ** |
1350 ** The second of each pair of bytes identifies the coordinate column | 1666 ** The second of each pair of bytes identifies the coordinate column |
1351 ** to which the constraint applies. The leftmost coordinate column | 1667 ** to which the constraint applies. The leftmost coordinate column |
1352 ** is 'a', the second from the left 'b' etc. | 1668 ** is 'a', the second from the left 'b' etc. |
1353 */ | 1669 */ |
1354 static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ | 1670 static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
| 1671 Rtree *pRtree = (Rtree*)tab; |
1355 int rc = SQLITE_OK; | 1672 int rc = SQLITE_OK; |
1356 int ii; | 1673 int ii; |
| 1674 i64 nRow; /* Estimated rows returned by this scan */ |
1357 | 1675 |
1358 int iIdx = 0; | 1676 int iIdx = 0; |
1359 char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; | 1677 char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; |
1360 memset(zIdxStr, 0, sizeof(zIdxStr)); | 1678 memset(zIdxStr, 0, sizeof(zIdxStr)); |
1361 UNUSED_PARAMETER(tab); | |
1362 | 1679 |
1363 assert( pIdxInfo->idxStr==0 ); | 1680 assert( pIdxInfo->idxStr==0 ); |
1364 for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ | 1681 for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ |
1365 struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; | 1682 struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; |
1366 | 1683 |
1367 if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ | 1684 if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
1368 /* We have an equality constraint on the rowid. Use strategy 1. */ | 1685 /* We have an equality constraint on the rowid. Use strategy 1. */ |
1369 int jj; | 1686 int jj; |
1370 for(jj=0; jj<ii; jj++){ | 1687 for(jj=0; jj<ii; jj++){ |
1371 pIdxInfo->aConstraintUsage[jj].argvIndex = 0; | 1688 pIdxInfo->aConstraintUsage[jj].argvIndex = 0; |
1372 pIdxInfo->aConstraintUsage[jj].omit = 0; | 1689 pIdxInfo->aConstraintUsage[jj].omit = 0; |
1373 } | 1690 } |
1374 pIdxInfo->idxNum = 1; | 1691 pIdxInfo->idxNum = 1; |
1375 pIdxInfo->aConstraintUsage[ii].argvIndex = 1; | 1692 pIdxInfo->aConstraintUsage[ii].argvIndex = 1; |
1376 pIdxInfo->aConstraintUsage[jj].omit = 1; | 1693 pIdxInfo->aConstraintUsage[jj].omit = 1; |
1377 | 1694 |
1378 /* This strategy involves a two rowid lookups on an B-Tree structures | 1695 /* This strategy involves a two rowid lookups on an B-Tree structures |
1379 ** and then a linear search of an R-Tree node. This should be | 1696 ** and then a linear search of an R-Tree node. This should be |
1380 ** considered almost as quick as a direct rowid lookup (for which | 1697 ** considered almost as quick as a direct rowid lookup (for which |
1381 ** sqlite uses an internal cost of 0.0). | 1698 ** sqlite uses an internal cost of 0.0). It is expected to return |
| 1699 ** a single row. |
1382 */ | 1700 */ |
1383 pIdxInfo->estimatedCost = 10.0; | 1701 pIdxInfo->estimatedCost = 30.0; |
| 1702 setEstimatedRows(pIdxInfo, 1); |
1384 return SQLITE_OK; | 1703 return SQLITE_OK; |
1385 } | 1704 } |
1386 | 1705 |
1387 if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ | 1706 if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ |
1388 u8 op; | 1707 u8 op; |
1389 switch( p->op ){ | 1708 switch( p->op ){ |
1390 case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; | 1709 case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; |
1391 case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; | 1710 case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; |
1392 case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; | 1711 case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; |
1393 case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; | 1712 case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; |
1394 case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; | 1713 case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; |
1395 default: | 1714 default: |
1396 assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH ); | 1715 assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH ); |
1397 op = RTREE_MATCH; | 1716 op = RTREE_MATCH; |
1398 break; | 1717 break; |
1399 } | 1718 } |
1400 zIdxStr[iIdx++] = op; | 1719 zIdxStr[iIdx++] = op; |
1401 zIdxStr[iIdx++] = p->iColumn - 1 + 'a'; | 1720 zIdxStr[iIdx++] = p->iColumn - 1 + '0'; |
1402 pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); | 1721 pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); |
1403 pIdxInfo->aConstraintUsage[ii].omit = 1; | 1722 pIdxInfo->aConstraintUsage[ii].omit = 1; |
1404 } | 1723 } |
1405 } | 1724 } |
1406 | 1725 |
1407 pIdxInfo->idxNum = 2; | 1726 pIdxInfo->idxNum = 2; |
1408 pIdxInfo->needToFreeIdxStr = 1; | 1727 pIdxInfo->needToFreeIdxStr = 1; |
1409 if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ | 1728 if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ |
1410 return SQLITE_NOMEM; | 1729 return SQLITE_NOMEM; |
1411 } | 1730 } |
1412 assert( iIdx>=0 ); | 1731 |
1413 pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1)); | 1732 nRow = pRtree->nRowEst / (iIdx + 1); |
| 1733 pIdxInfo->estimatedCost = (double)6.0 * (double)nRow; |
| 1734 setEstimatedRows(pIdxInfo, nRow); |
| 1735 |
1414 return rc; | 1736 return rc; |
1415 } | 1737 } |
1416 | 1738 |
1417 /* | 1739 /* |
1418 ** Return the N-dimensional volumn of the cell stored in *p. | 1740 ** Return the N-dimensional volumn of the cell stored in *p. |
1419 */ | 1741 */ |
1420 static float cellArea(Rtree *pRtree, RtreeCell *p){ | 1742 static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){ |
1421 float area = 1.0; | 1743 RtreeDValue area = (RtreeDValue)1; |
1422 int ii; | 1744 int ii; |
1423 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ | 1745 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
1424 area = area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); | 1746 area = (area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]))); |
1425 } | 1747 } |
1426 return area; | 1748 return area; |
1427 } | 1749 } |
1428 | 1750 |
1429 /* | 1751 /* |
1430 ** Return the margin length of cell p. The margin length is the sum | 1752 ** Return the margin length of cell p. The margin length is the sum |
1431 ** of the objects size in each dimension. | 1753 ** of the objects size in each dimension. |
1432 */ | 1754 */ |
1433 static float cellMargin(Rtree *pRtree, RtreeCell *p){ | 1755 static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){ |
1434 float margin = 0.0; | 1756 RtreeDValue margin = (RtreeDValue)0; |
1435 int ii; | 1757 int ii; |
1436 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ | 1758 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
1437 margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); | 1759 margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); |
1438 } | 1760 } |
1439 return margin; | 1761 return margin; |
1440 } | 1762 } |
1441 | 1763 |
1442 /* | 1764 /* |
1443 ** Store the union of cells p1 and p2 in p1. | 1765 ** Store the union of cells p1 and p2 in p1. |
1444 */ | 1766 */ |
(...skipping 27 matching lines...) Expand all Loading... |
1472 ){ | 1794 ){ |
1473 return 0; | 1795 return 0; |
1474 } | 1796 } |
1475 } | 1797 } |
1476 return 1; | 1798 return 1; |
1477 } | 1799 } |
1478 | 1800 |
1479 /* | 1801 /* |
1480 ** Return the amount cell p would grow by if it were unioned with pCell. | 1802 ** Return the amount cell p would grow by if it were unioned with pCell. |
1481 */ | 1803 */ |
1482 static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ | 1804 static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ |
1483 float area; | 1805 RtreeDValue area; |
1484 RtreeCell cell; | 1806 RtreeCell cell; |
1485 memcpy(&cell, p, sizeof(RtreeCell)); | 1807 memcpy(&cell, p, sizeof(RtreeCell)); |
1486 area = cellArea(pRtree, &cell); | 1808 area = cellArea(pRtree, &cell); |
1487 cellUnion(pRtree, &cell, pCell); | 1809 cellUnion(pRtree, &cell, pCell); |
1488 return (cellArea(pRtree, &cell)-area); | 1810 return (cellArea(pRtree, &cell)-area); |
1489 } | 1811 } |
1490 | 1812 |
1491 #if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT | 1813 static RtreeDValue cellOverlap( |
1492 static float cellOverlap( | |
1493 Rtree *pRtree, | 1814 Rtree *pRtree, |
1494 RtreeCell *p, | 1815 RtreeCell *p, |
1495 RtreeCell *aCell, | 1816 RtreeCell *aCell, |
1496 int nCell, | 1817 int nCell |
1497 int iExclude | |
1498 ){ | 1818 ){ |
1499 int ii; | 1819 int ii; |
1500 float overlap = 0.0; | 1820 RtreeDValue overlap = RTREE_ZERO; |
1501 for(ii=0; ii<nCell; ii++){ | 1821 for(ii=0; ii<nCell; ii++){ |
1502 #if VARIANT_RSTARTREE_CHOOSESUBTREE | 1822 int jj; |
1503 if( ii!=iExclude ) | 1823 RtreeDValue o = (RtreeDValue)1; |
1504 #else | 1824 for(jj=0; jj<(pRtree->nDim*2); jj+=2){ |
1505 assert( iExclude==-1 ); | 1825 RtreeDValue x1, x2; |
1506 UNUSED_PARAMETER(iExclude); | 1826 x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); |
1507 #endif | 1827 x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); |
1508 { | 1828 if( x2<x1 ){ |
1509 int jj; | 1829 o = (RtreeDValue)0; |
1510 float o = 1.0; | 1830 break; |
1511 for(jj=0; jj<(pRtree->nDim*2); jj+=2){ | 1831 }else{ |
1512 double x1; | 1832 o = o * (x2-x1); |
1513 double x2; | |
1514 | |
1515 x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); | |
1516 x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); | |
1517 | |
1518 if( x2<x1 ){ | |
1519 o = 0.0; | |
1520 break; | |
1521 }else{ | |
1522 o = o * (x2-x1); | |
1523 } | |
1524 } | 1833 } |
1525 overlap += o; | |
1526 } | 1834 } |
| 1835 overlap += o; |
1527 } | 1836 } |
1528 return overlap; | 1837 return overlap; |
1529 } | 1838 } |
1530 #endif | |
1531 | |
1532 #if VARIANT_RSTARTREE_CHOOSESUBTREE | |
1533 static float cellOverlapEnlargement( | |
1534 Rtree *pRtree, | |
1535 RtreeCell *p, | |
1536 RtreeCell *pInsert, | |
1537 RtreeCell *aCell, | |
1538 int nCell, | |
1539 int iExclude | |
1540 ){ | |
1541 float before; | |
1542 float after; | |
1543 before = cellOverlap(pRtree, p, aCell, nCell, iExclude); | |
1544 cellUnion(pRtree, p, pInsert); | |
1545 after = cellOverlap(pRtree, p, aCell, nCell, iExclude); | |
1546 return after-before; | |
1547 } | |
1548 #endif | |
1549 | 1839 |
1550 | 1840 |
1551 /* | 1841 /* |
1552 ** This function implements the ChooseLeaf algorithm from Gutman[84]. | 1842 ** This function implements the ChooseLeaf algorithm from Gutman[84]. |
1553 ** ChooseSubTree in r*tree terminology. | 1843 ** ChooseSubTree in r*tree terminology. |
1554 */ | 1844 */ |
1555 static int ChooseLeaf( | 1845 static int ChooseLeaf( |
1556 Rtree *pRtree, /* Rtree table */ | 1846 Rtree *pRtree, /* Rtree table */ |
1557 RtreeCell *pCell, /* Cell to insert into rtree */ | 1847 RtreeCell *pCell, /* Cell to insert into rtree */ |
1558 int iHeight, /* Height of sub-tree rooted at pCell */ | 1848 int iHeight, /* Height of sub-tree rooted at pCell */ |
1559 RtreeNode **ppLeaf /* OUT: Selected leaf page */ | 1849 RtreeNode **ppLeaf /* OUT: Selected leaf page */ |
1560 ){ | 1850 ){ |
1561 int rc; | 1851 int rc; |
1562 int ii; | 1852 int ii; |
1563 RtreeNode *pNode; | 1853 RtreeNode *pNode; |
1564 rc = nodeAcquire(pRtree, 1, 0, &pNode); | 1854 rc = nodeAcquire(pRtree, 1, 0, &pNode); |
1565 | 1855 |
1566 for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ | 1856 for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ |
1567 int iCell; | 1857 int iCell; |
1568 sqlite3_int64 iBest; | 1858 sqlite3_int64 iBest = 0; |
1569 | 1859 |
1570 float fMinGrowth; | 1860 RtreeDValue fMinGrowth = RTREE_ZERO; |
1571 float fMinArea; | 1861 RtreeDValue fMinArea = RTREE_ZERO; |
1572 float fMinOverlap; | |
1573 | 1862 |
1574 int nCell = NCELL(pNode); | 1863 int nCell = NCELL(pNode); |
1575 RtreeCell cell; | 1864 RtreeCell cell; |
1576 RtreeNode *pChild; | 1865 RtreeNode *pChild; |
1577 | 1866 |
1578 RtreeCell *aCell = 0; | 1867 RtreeCell *aCell = 0; |
1579 | 1868 |
1580 #if VARIANT_RSTARTREE_CHOOSESUBTREE | |
1581 if( ii==(pRtree->iDepth-1) ){ | |
1582 int jj; | |
1583 aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell); | |
1584 if( !aCell ){ | |
1585 rc = SQLITE_NOMEM; | |
1586 nodeRelease(pRtree, pNode); | |
1587 pNode = 0; | |
1588 continue; | |
1589 } | |
1590 for(jj=0; jj<nCell; jj++){ | |
1591 nodeGetCell(pRtree, pNode, jj, &aCell[jj]); | |
1592 } | |
1593 } | |
1594 #endif | |
1595 | |
1596 /* Select the child node which will be enlarged the least if pCell | 1869 /* Select the child node which will be enlarged the least if pCell |
1597 ** is inserted into it. Resolve ties by choosing the entry with | 1870 ** is inserted into it. Resolve ties by choosing the entry with |
1598 ** the smallest area. | 1871 ** the smallest area. |
1599 */ | 1872 */ |
1600 for(iCell=0; iCell<nCell; iCell++){ | 1873 for(iCell=0; iCell<nCell; iCell++){ |
1601 int bBest = 0; | 1874 int bBest = 0; |
1602 float growth; | 1875 RtreeDValue growth; |
1603 float area; | 1876 RtreeDValue area; |
1604 float overlap = 0.0; | |
1605 nodeGetCell(pRtree, pNode, iCell, &cell); | 1877 nodeGetCell(pRtree, pNode, iCell, &cell); |
1606 growth = cellGrowth(pRtree, &cell, pCell); | 1878 growth = cellGrowth(pRtree, &cell, pCell); |
1607 area = cellArea(pRtree, &cell); | 1879 area = cellArea(pRtree, &cell); |
1608 | |
1609 #if VARIANT_RSTARTREE_CHOOSESUBTREE | |
1610 if( ii==(pRtree->iDepth-1) ){ | |
1611 overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell); | |
1612 } | |
1613 if( (iCell==0) | |
1614 || (overlap<fMinOverlap) | |
1615 || (overlap==fMinOverlap && growth<fMinGrowth) | |
1616 || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea) | |
1617 ){ | |
1618 bBest = 1; | |
1619 } | |
1620 #else | |
1621 if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){ | 1880 if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){ |
1622 bBest = 1; | 1881 bBest = 1; |
1623 } | 1882 } |
1624 #endif | |
1625 if( bBest ){ | 1883 if( bBest ){ |
1626 fMinOverlap = overlap; | |
1627 fMinGrowth = growth; | 1884 fMinGrowth = growth; |
1628 fMinArea = area; | 1885 fMinArea = area; |
1629 iBest = cell.iRowid; | 1886 iBest = cell.iRowid; |
1630 } | 1887 } |
1631 } | 1888 } |
1632 | 1889 |
1633 sqlite3_free(aCell); | 1890 sqlite3_free(aCell); |
1634 rc = nodeAcquire(pRtree, iBest, pNode, &pChild); | 1891 rc = nodeAcquire(pRtree, iBest, pNode, &pChild); |
1635 nodeRelease(pRtree, pNode); | 1892 nodeRelease(pRtree, pNode); |
1636 pNode = pChild; | 1893 pNode = pChild; |
(...skipping 13 matching lines...) Expand all Loading... |
1650 RtreeNode *pNode, /* Adjust ancestry of this node. */ | 1907 RtreeNode *pNode, /* Adjust ancestry of this node. */ |
1651 RtreeCell *pCell /* This cell was just inserted */ | 1908 RtreeCell *pCell /* This cell was just inserted */ |
1652 ){ | 1909 ){ |
1653 RtreeNode *p = pNode; | 1910 RtreeNode *p = pNode; |
1654 while( p->pParent ){ | 1911 while( p->pParent ){ |
1655 RtreeNode *pParent = p->pParent; | 1912 RtreeNode *pParent = p->pParent; |
1656 RtreeCell cell; | 1913 RtreeCell cell; |
1657 int iCell; | 1914 int iCell; |
1658 | 1915 |
1659 if( nodeParentIndex(pRtree, p, &iCell) ){ | 1916 if( nodeParentIndex(pRtree, p, &iCell) ){ |
1660 return SQLITE_CORRUPT; | 1917 return SQLITE_CORRUPT_VTAB; |
1661 } | 1918 } |
1662 | 1919 |
1663 nodeGetCell(pRtree, pParent, iCell, &cell); | 1920 nodeGetCell(pRtree, pParent, iCell, &cell); |
1664 if( !cellContains(pRtree, &cell, pCell) ){ | 1921 if( !cellContains(pRtree, &cell, pCell) ){ |
1665 cellUnion(pRtree, &cell, pCell); | 1922 cellUnion(pRtree, &cell, pCell); |
1666 nodeOverwriteCell(pRtree, pParent, &cell, iCell); | 1923 nodeOverwriteCell(pRtree, pParent, &cell, iCell); |
1667 } | 1924 } |
1668 | 1925 |
1669 p = pParent; | 1926 p = pParent; |
1670 } | 1927 } |
(...skipping 15 matching lines...) Expand all Loading... |
1686 */ | 1943 */ |
1687 static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ | 1944 static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ |
1688 sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); | 1945 sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); |
1689 sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); | 1946 sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); |
1690 sqlite3_step(pRtree->pWriteParent); | 1947 sqlite3_step(pRtree->pWriteParent); |
1691 return sqlite3_reset(pRtree->pWriteParent); | 1948 return sqlite3_reset(pRtree->pWriteParent); |
1692 } | 1949 } |
1693 | 1950 |
1694 static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); | 1951 static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); |
1695 | 1952 |
1696 #if VARIANT_GUTTMAN_LINEAR_SPLIT | |
1697 /* | |
1698 ** Implementation of the linear variant of the PickNext() function from | |
1699 ** Guttman[84]. | |
1700 */ | |
1701 static RtreeCell *LinearPickNext( | |
1702 Rtree *pRtree, | |
1703 RtreeCell *aCell, | |
1704 int nCell, | |
1705 RtreeCell *pLeftBox, | |
1706 RtreeCell *pRightBox, | |
1707 int *aiUsed | |
1708 ){ | |
1709 int ii; | |
1710 for(ii=0; aiUsed[ii]; ii++); | |
1711 aiUsed[ii] = 1; | |
1712 return &aCell[ii]; | |
1713 } | |
1714 | |
1715 /* | |
1716 ** Implementation of the linear variant of the PickSeeds() function from | |
1717 ** Guttman[84]. | |
1718 */ | |
1719 static void LinearPickSeeds( | |
1720 Rtree *pRtree, | |
1721 RtreeCell *aCell, | |
1722 int nCell, | |
1723 int *piLeftSeed, | |
1724 int *piRightSeed | |
1725 ){ | |
1726 int i; | |
1727 int iLeftSeed = 0; | |
1728 int iRightSeed = 1; | |
1729 float maxNormalInnerWidth = 0.0; | |
1730 | |
1731 /* Pick two "seed" cells from the array of cells. The algorithm used | |
1732 ** here is the LinearPickSeeds algorithm from Gutman[1984]. The | |
1733 ** indices of the two seed cells in the array are stored in local | |
1734 ** variables iLeftSeek and iRightSeed. | |
1735 */ | |
1736 for(i=0; i<pRtree->nDim; i++){ | |
1737 float x1 = DCOORD(aCell[0].aCoord[i*2]); | |
1738 float x2 = DCOORD(aCell[0].aCoord[i*2+1]); | |
1739 float x3 = x1; | |
1740 float x4 = x2; | |
1741 int jj; | |
1742 | |
1743 int iCellLeft = 0; | |
1744 int iCellRight = 0; | |
1745 | |
1746 for(jj=1; jj<nCell; jj++){ | |
1747 float left = DCOORD(aCell[jj].aCoord[i*2]); | |
1748 float right = DCOORD(aCell[jj].aCoord[i*2+1]); | |
1749 | |
1750 if( left<x1 ) x1 = left; | |
1751 if( right>x4 ) x4 = right; | |
1752 if( left>x3 ){ | |
1753 x3 = left; | |
1754 iCellRight = jj; | |
1755 } | |
1756 if( right<x2 ){ | |
1757 x2 = right; | |
1758 iCellLeft = jj; | |
1759 } | |
1760 } | |
1761 | |
1762 if( x4!=x1 ){ | |
1763 float normalwidth = (x3 - x2) / (x4 - x1); | |
1764 if( normalwidth>maxNormalInnerWidth ){ | |
1765 iLeftSeed = iCellLeft; | |
1766 iRightSeed = iCellRight; | |
1767 } | |
1768 } | |
1769 } | |
1770 | |
1771 *piLeftSeed = iLeftSeed; | |
1772 *piRightSeed = iRightSeed; | |
1773 } | |
1774 #endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */ | |
1775 | |
1776 #if VARIANT_GUTTMAN_QUADRATIC_SPLIT | |
1777 /* | |
1778 ** Implementation of the quadratic variant of the PickNext() function from | |
1779 ** Guttman[84]. | |
1780 */ | |
1781 static RtreeCell *QuadraticPickNext( | |
1782 Rtree *pRtree, | |
1783 RtreeCell *aCell, | |
1784 int nCell, | |
1785 RtreeCell *pLeftBox, | |
1786 RtreeCell *pRightBox, | |
1787 int *aiUsed | |
1788 ){ | |
1789 #define FABS(a) ((a)<0.0?-1.0*(a):(a)) | |
1790 | |
1791 int iSelect = -1; | |
1792 float fDiff; | |
1793 int ii; | |
1794 for(ii=0; ii<nCell; ii++){ | |
1795 if( aiUsed[ii]==0 ){ | |
1796 float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]); | |
1797 float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]); | |
1798 float diff = FABS(right-left); | |
1799 if( iSelect<0 || diff>fDiff ){ | |
1800 fDiff = diff; | |
1801 iSelect = ii; | |
1802 } | |
1803 } | |
1804 } | |
1805 aiUsed[iSelect] = 1; | |
1806 return &aCell[iSelect]; | |
1807 } | |
1808 | |
1809 /* | |
1810 ** Implementation of the quadratic variant of the PickSeeds() function from | |
1811 ** Guttman[84]. | |
1812 */ | |
1813 static void QuadraticPickSeeds( | |
1814 Rtree *pRtree, | |
1815 RtreeCell *aCell, | |
1816 int nCell, | |
1817 int *piLeftSeed, | |
1818 int *piRightSeed | |
1819 ){ | |
1820 int ii; | |
1821 int jj; | |
1822 | |
1823 int iLeftSeed = 0; | |
1824 int iRightSeed = 1; | |
1825 float fWaste = 0.0; | |
1826 | |
1827 for(ii=0; ii<nCell; ii++){ | |
1828 for(jj=ii+1; jj<nCell; jj++){ | |
1829 float right = cellArea(pRtree, &aCell[jj]); | |
1830 float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]); | |
1831 float waste = growth - right; | |
1832 | |
1833 if( waste>fWaste ){ | |
1834 iLeftSeed = ii; | |
1835 iRightSeed = jj; | |
1836 fWaste = waste; | |
1837 } | |
1838 } | |
1839 } | |
1840 | |
1841 *piLeftSeed = iLeftSeed; | |
1842 *piRightSeed = iRightSeed; | |
1843 } | |
1844 #endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */ | |
1845 | 1953 |
1846 /* | 1954 /* |
1847 ** Arguments aIdx, aDistance and aSpare all point to arrays of size | 1955 ** Arguments aIdx, aDistance and aSpare all point to arrays of size |
1848 ** nIdx. The aIdx array contains the set of integers from 0 to | 1956 ** nIdx. The aIdx array contains the set of integers from 0 to |
1849 ** (nIdx-1) in no particular order. This function sorts the values | 1957 ** (nIdx-1) in no particular order. This function sorts the values |
1850 ** in aIdx according to the indexed values in aDistance. For | 1958 ** in aIdx according to the indexed values in aDistance. For |
1851 ** example, assuming the inputs: | 1959 ** example, assuming the inputs: |
1852 ** | 1960 ** |
1853 ** aIdx = { 0, 1, 2, 3 } | 1961 ** aIdx = { 0, 1, 2, 3 } |
1854 ** aDistance = { 5.0, 2.0, 7.0, 6.0 } | 1962 ** aDistance = { 5.0, 2.0, 7.0, 6.0 } |
1855 ** | 1963 ** |
1856 ** this function sets the aIdx array to contain: | 1964 ** this function sets the aIdx array to contain: |
1857 ** | 1965 ** |
1858 ** aIdx = { 0, 1, 2, 3 } | 1966 ** aIdx = { 0, 1, 2, 3 } |
1859 ** | 1967 ** |
1860 ** The aSpare array is used as temporary working space by the | 1968 ** The aSpare array is used as temporary working space by the |
1861 ** sorting algorithm. | 1969 ** sorting algorithm. |
1862 */ | 1970 */ |
1863 static void SortByDistance( | 1971 static void SortByDistance( |
1864 int *aIdx, | 1972 int *aIdx, |
1865 int nIdx, | 1973 int nIdx, |
1866 float *aDistance, | 1974 RtreeDValue *aDistance, |
1867 int *aSpare | 1975 int *aSpare |
1868 ){ | 1976 ){ |
1869 if( nIdx>1 ){ | 1977 if( nIdx>1 ){ |
1870 int iLeft = 0; | 1978 int iLeft = 0; |
1871 int iRight = 0; | 1979 int iRight = 0; |
1872 | 1980 |
1873 int nLeft = nIdx/2; | 1981 int nLeft = nIdx/2; |
1874 int nRight = nIdx-nLeft; | 1982 int nRight = nIdx-nLeft; |
1875 int *aLeft = aIdx; | 1983 int *aLeft = aIdx; |
1876 int *aRight = &aIdx[nLeft]; | 1984 int *aRight = &aIdx[nLeft]; |
1877 | 1985 |
1878 SortByDistance(aLeft, nLeft, aDistance, aSpare); | 1986 SortByDistance(aLeft, nLeft, aDistance, aSpare); |
1879 SortByDistance(aRight, nRight, aDistance, aSpare); | 1987 SortByDistance(aRight, nRight, aDistance, aSpare); |
1880 | 1988 |
1881 memcpy(aSpare, aLeft, sizeof(int)*nLeft); | 1989 memcpy(aSpare, aLeft, sizeof(int)*nLeft); |
1882 aLeft = aSpare; | 1990 aLeft = aSpare; |
1883 | 1991 |
1884 while( iLeft<nLeft || iRight<nRight ){ | 1992 while( iLeft<nLeft || iRight<nRight ){ |
1885 if( iLeft==nLeft ){ | 1993 if( iLeft==nLeft ){ |
1886 aIdx[iLeft+iRight] = aRight[iRight]; | 1994 aIdx[iLeft+iRight] = aRight[iRight]; |
1887 iRight++; | 1995 iRight++; |
1888 }else if( iRight==nRight ){ | 1996 }else if( iRight==nRight ){ |
1889 aIdx[iLeft+iRight] = aLeft[iLeft]; | 1997 aIdx[iLeft+iRight] = aLeft[iLeft]; |
1890 iLeft++; | 1998 iLeft++; |
1891 }else{ | 1999 }else{ |
1892 float fLeft = aDistance[aLeft[iLeft]]; | 2000 RtreeDValue fLeft = aDistance[aLeft[iLeft]]; |
1893 float fRight = aDistance[aRight[iRight]]; | 2001 RtreeDValue fRight = aDistance[aRight[iRight]]; |
1894 if( fLeft<fRight ){ | 2002 if( fLeft<fRight ){ |
1895 aIdx[iLeft+iRight] = aLeft[iLeft]; | 2003 aIdx[iLeft+iRight] = aLeft[iLeft]; |
1896 iLeft++; | 2004 iLeft++; |
1897 }else{ | 2005 }else{ |
1898 aIdx[iLeft+iRight] = aRight[iRight]; | 2006 aIdx[iLeft+iRight] = aRight[iRight]; |
1899 iRight++; | 2007 iRight++; |
1900 } | 2008 } |
1901 } | 2009 } |
1902 } | 2010 } |
1903 | 2011 |
1904 #if 0 | 2012 #if 0 |
1905 /* Check that the sort worked */ | 2013 /* Check that the sort worked */ |
1906 { | 2014 { |
1907 int jj; | 2015 int jj; |
1908 for(jj=1; jj<nIdx; jj++){ | 2016 for(jj=1; jj<nIdx; jj++){ |
1909 float left = aDistance[aIdx[jj-1]]; | 2017 RtreeDValue left = aDistance[aIdx[jj-1]]; |
1910 float right = aDistance[aIdx[jj]]; | 2018 RtreeDValue right = aDistance[aIdx[jj]]; |
1911 assert( left<=right ); | 2019 assert( left<=right ); |
1912 } | 2020 } |
1913 } | 2021 } |
1914 #endif | 2022 #endif |
1915 } | 2023 } |
1916 } | 2024 } |
1917 | 2025 |
1918 /* | 2026 /* |
1919 ** Arguments aIdx, aCell and aSpare all point to arrays of size | 2027 ** Arguments aIdx, aCell and aSpare all point to arrays of size |
1920 ** nIdx. The aIdx array contains the set of integers from 0 to | 2028 ** nIdx. The aIdx array contains the set of integers from 0 to |
(...skipping 22 matching lines...) Expand all Loading... |
1943 int nRight = nIdx-nLeft; | 2051 int nRight = nIdx-nLeft; |
1944 int *aLeft = aIdx; | 2052 int *aLeft = aIdx; |
1945 int *aRight = &aIdx[nLeft]; | 2053 int *aRight = &aIdx[nLeft]; |
1946 | 2054 |
1947 SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); | 2055 SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); |
1948 SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); | 2056 SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); |
1949 | 2057 |
1950 memcpy(aSpare, aLeft, sizeof(int)*nLeft); | 2058 memcpy(aSpare, aLeft, sizeof(int)*nLeft); |
1951 aLeft = aSpare; | 2059 aLeft = aSpare; |
1952 while( iLeft<nLeft || iRight<nRight ){ | 2060 while( iLeft<nLeft || iRight<nRight ){ |
1953 double xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]); | 2061 RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]); |
1954 double xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]); | 2062 RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]); |
1955 double xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]); | 2063 RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]); |
1956 double xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]); | 2064 RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]); |
1957 if( (iLeft!=nLeft) && ((iRight==nRight) | 2065 if( (iLeft!=nLeft) && ((iRight==nRight) |
1958 || (xleft1<xright1) | 2066 || (xleft1<xright1) |
1959 || (xleft1==xright1 && xleft2<xright2) | 2067 || (xleft1==xright1 && xleft2<xright2) |
1960 )){ | 2068 )){ |
1961 aIdx[iLeft+iRight] = aLeft[iLeft]; | 2069 aIdx[iLeft+iRight] = aLeft[iLeft]; |
1962 iLeft++; | 2070 iLeft++; |
1963 }else{ | 2071 }else{ |
1964 aIdx[iLeft+iRight] = aRight[iRight]; | 2072 aIdx[iLeft+iRight] = aRight[iRight]; |
1965 iRight++; | 2073 iRight++; |
1966 } | 2074 } |
1967 } | 2075 } |
1968 | 2076 |
1969 #if 0 | 2077 #if 0 |
1970 /* Check that the sort worked */ | 2078 /* Check that the sort worked */ |
1971 { | 2079 { |
1972 int jj; | 2080 int jj; |
1973 for(jj=1; jj<nIdx; jj++){ | 2081 for(jj=1; jj<nIdx; jj++){ |
1974 float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; | 2082 RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; |
1975 float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; | 2083 RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; |
1976 float xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; | 2084 RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; |
1977 float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; | 2085 RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; |
1978 assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); | 2086 assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); |
1979 } | 2087 } |
1980 } | 2088 } |
1981 #endif | 2089 #endif |
1982 } | 2090 } |
1983 } | 2091 } |
1984 | 2092 |
1985 #if VARIANT_RSTARTREE_SPLIT | |
1986 /* | 2093 /* |
1987 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. | 2094 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. |
1988 */ | 2095 */ |
1989 static int splitNodeStartree( | 2096 static int splitNodeStartree( |
1990 Rtree *pRtree, | 2097 Rtree *pRtree, |
1991 RtreeCell *aCell, | 2098 RtreeCell *aCell, |
1992 int nCell, | 2099 int nCell, |
1993 RtreeNode *pLeft, | 2100 RtreeNode *pLeft, |
1994 RtreeNode *pRight, | 2101 RtreeNode *pRight, |
1995 RtreeCell *pBboxLeft, | 2102 RtreeCell *pBboxLeft, |
1996 RtreeCell *pBboxRight | 2103 RtreeCell *pBboxRight |
1997 ){ | 2104 ){ |
1998 int **aaSorted; | 2105 int **aaSorted; |
1999 int *aSpare; | 2106 int *aSpare; |
2000 int ii; | 2107 int ii; |
2001 | 2108 |
2002 int iBestDim; | 2109 int iBestDim = 0; |
2003 int iBestSplit; | 2110 int iBestSplit = 0; |
2004 float fBestMargin; | 2111 RtreeDValue fBestMargin = RTREE_ZERO; |
2005 | 2112 |
2006 int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); | 2113 int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); |
2007 | 2114 |
2008 aaSorted = (int **)sqlite3_malloc(nByte); | 2115 aaSorted = (int **)sqlite3_malloc(nByte); |
2009 if( !aaSorted ){ | 2116 if( !aaSorted ){ |
2010 return SQLITE_NOMEM; | 2117 return SQLITE_NOMEM; |
2011 } | 2118 } |
2012 | 2119 |
2013 aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; | 2120 aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; |
2014 memset(aaSorted, 0, nByte); | 2121 memset(aaSorted, 0, nByte); |
2015 for(ii=0; ii<pRtree->nDim; ii++){ | 2122 for(ii=0; ii<pRtree->nDim; ii++){ |
2016 int jj; | 2123 int jj; |
2017 aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; | 2124 aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; |
2018 for(jj=0; jj<nCell; jj++){ | 2125 for(jj=0; jj<nCell; jj++){ |
2019 aaSorted[ii][jj] = jj; | 2126 aaSorted[ii][jj] = jj; |
2020 } | 2127 } |
2021 SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare); | 2128 SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare); |
2022 } | 2129 } |
2023 | 2130 |
2024 for(ii=0; ii<pRtree->nDim; ii++){ | 2131 for(ii=0; ii<pRtree->nDim; ii++){ |
2025 float margin = 0.0; | 2132 RtreeDValue margin = RTREE_ZERO; |
2026 float fBestOverlap; | 2133 RtreeDValue fBestOverlap = RTREE_ZERO; |
2027 float fBestArea; | 2134 RtreeDValue fBestArea = RTREE_ZERO; |
2028 int iBestLeft; | 2135 int iBestLeft = 0; |
2029 int nLeft; | 2136 int nLeft; |
2030 | 2137 |
2031 for( | 2138 for( |
2032 nLeft=RTREE_MINCELLS(pRtree); | 2139 nLeft=RTREE_MINCELLS(pRtree); |
2033 nLeft<=(nCell-RTREE_MINCELLS(pRtree)); | 2140 nLeft<=(nCell-RTREE_MINCELLS(pRtree)); |
2034 nLeft++ | 2141 nLeft++ |
2035 ){ | 2142 ){ |
2036 RtreeCell left; | 2143 RtreeCell left; |
2037 RtreeCell right; | 2144 RtreeCell right; |
2038 int kk; | 2145 int kk; |
2039 float overlap; | 2146 RtreeDValue overlap; |
2040 float area; | 2147 RtreeDValue area; |
2041 | 2148 |
2042 memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); | 2149 memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); |
2043 memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); | 2150 memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); |
2044 for(kk=1; kk<(nCell-1); kk++){ | 2151 for(kk=1; kk<(nCell-1); kk++){ |
2045 if( kk<nLeft ){ | 2152 if( kk<nLeft ){ |
2046 cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); | 2153 cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); |
2047 }else{ | 2154 }else{ |
2048 cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); | 2155 cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); |
2049 } | 2156 } |
2050 } | 2157 } |
2051 margin += cellMargin(pRtree, &left); | 2158 margin += cellMargin(pRtree, &left); |
2052 margin += cellMargin(pRtree, &right); | 2159 margin += cellMargin(pRtree, &right); |
2053 overlap = cellOverlap(pRtree, &left, &right, 1, -1); | 2160 overlap = cellOverlap(pRtree, &left, &right, 1); |
2054 area = cellArea(pRtree, &left) + cellArea(pRtree, &right); | 2161 area = cellArea(pRtree, &left) + cellArea(pRtree, &right); |
2055 if( (nLeft==RTREE_MINCELLS(pRtree)) | 2162 if( (nLeft==RTREE_MINCELLS(pRtree)) |
2056 || (overlap<fBestOverlap) | 2163 || (overlap<fBestOverlap) |
2057 || (overlap==fBestOverlap && area<fBestArea) | 2164 || (overlap==fBestOverlap && area<fBestArea) |
2058 ){ | 2165 ){ |
2059 iBestLeft = nLeft; | 2166 iBestLeft = nLeft; |
2060 fBestOverlap = overlap; | 2167 fBestOverlap = overlap; |
2061 fBestArea = area; | 2168 fBestArea = area; |
2062 } | 2169 } |
2063 } | 2170 } |
(...skipping 11 matching lines...) Expand all Loading... |
2075 RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; | 2182 RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; |
2076 RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; | 2183 RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; |
2077 RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; | 2184 RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; |
2078 nodeInsertCell(pRtree, pTarget, pCell); | 2185 nodeInsertCell(pRtree, pTarget, pCell); |
2079 cellUnion(pRtree, pBbox, pCell); | 2186 cellUnion(pRtree, pBbox, pCell); |
2080 } | 2187 } |
2081 | 2188 |
2082 sqlite3_free(aaSorted); | 2189 sqlite3_free(aaSorted); |
2083 return SQLITE_OK; | 2190 return SQLITE_OK; |
2084 } | 2191 } |
2085 #endif | |
2086 | 2192 |
2087 #if VARIANT_GUTTMAN_SPLIT | |
2088 /* | |
2089 ** Implementation of the regular R-tree SplitNode from Guttman[1984]. | |
2090 */ | |
2091 static int splitNodeGuttman( | |
2092 Rtree *pRtree, | |
2093 RtreeCell *aCell, | |
2094 int nCell, | |
2095 RtreeNode *pLeft, | |
2096 RtreeNode *pRight, | |
2097 RtreeCell *pBboxLeft, | |
2098 RtreeCell *pBboxRight | |
2099 ){ | |
2100 int iLeftSeed = 0; | |
2101 int iRightSeed = 1; | |
2102 int *aiUsed; | |
2103 int i; | |
2104 | |
2105 aiUsed = sqlite3_malloc(sizeof(int)*nCell); | |
2106 if( !aiUsed ){ | |
2107 return SQLITE_NOMEM; | |
2108 } | |
2109 memset(aiUsed, 0, sizeof(int)*nCell); | |
2110 | |
2111 PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed); | |
2112 | |
2113 memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell)); | |
2114 memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell)); | |
2115 nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]); | |
2116 nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]); | |
2117 aiUsed[iLeftSeed] = 1; | |
2118 aiUsed[iRightSeed] = 1; | |
2119 | |
2120 for(i=nCell-2; i>0; i--){ | |
2121 RtreeCell *pNext; | |
2122 pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed); | |
2123 float diff = | |
2124 cellGrowth(pRtree, pBboxLeft, pNext) - | |
2125 cellGrowth(pRtree, pBboxRight, pNext) | |
2126 ; | |
2127 if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i) | |
2128 || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i)) | |
2129 ){ | |
2130 nodeInsertCell(pRtree, pRight, pNext); | |
2131 cellUnion(pRtree, pBboxRight, pNext); | |
2132 }else{ | |
2133 nodeInsertCell(pRtree, pLeft, pNext); | |
2134 cellUnion(pRtree, pBboxLeft, pNext); | |
2135 } | |
2136 } | |
2137 | |
2138 sqlite3_free(aiUsed); | |
2139 return SQLITE_OK; | |
2140 } | |
2141 #endif | |
2142 | 2193 |
2143 static int updateMapping( | 2194 static int updateMapping( |
2144 Rtree *pRtree, | 2195 Rtree *pRtree, |
2145 i64 iRowid, | 2196 i64 iRowid, |
2146 RtreeNode *pNode, | 2197 RtreeNode *pNode, |
2147 int iHeight | 2198 int iHeight |
2148 ){ | 2199 ){ |
2149 int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); | 2200 int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); |
2150 xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); | 2201 xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); |
2151 if( iHeight>0 ){ | 2202 if( iHeight>0 ){ |
(...skipping 57 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2209 } | 2260 } |
2210 | 2261 |
2211 if( !pLeft || !pRight ){ | 2262 if( !pLeft || !pRight ){ |
2212 rc = SQLITE_NOMEM; | 2263 rc = SQLITE_NOMEM; |
2213 goto splitnode_out; | 2264 goto splitnode_out; |
2214 } | 2265 } |
2215 | 2266 |
2216 memset(pLeft->zData, 0, pRtree->iNodeSize); | 2267 memset(pLeft->zData, 0, pRtree->iNodeSize); |
2217 memset(pRight->zData, 0, pRtree->iNodeSize); | 2268 memset(pRight->zData, 0, pRtree->iNodeSize); |
2218 | 2269 |
2219 rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox); | 2270 rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight, |
| 2271 &leftbbox, &rightbbox); |
2220 if( rc!=SQLITE_OK ){ | 2272 if( rc!=SQLITE_OK ){ |
2221 goto splitnode_out; | 2273 goto splitnode_out; |
2222 } | 2274 } |
2223 | 2275 |
2224 /* Ensure both child nodes have node numbers assigned to them by calling | 2276 /* Ensure both child nodes have node numbers assigned to them by calling |
2225 ** nodeWrite(). Node pRight always needs a node number, as it was created | 2277 ** nodeWrite(). Node pRight always needs a node number, as it was created |
2226 ** by nodeNew() above. But node pLeft sometimes already has a node number. | 2278 ** by nodeNew() above. But node pLeft sometimes already has a node number. |
2227 ** In this case avoid the all to nodeWrite(). | 2279 ** In this case avoid the all to nodeWrite(). |
2228 */ | 2280 */ |
2229 if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) | 2281 if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) |
(...skipping 92 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2322 ** the referenced counted node structures. | 2374 ** the referenced counted node structures. |
2323 */ | 2375 */ |
2324 iNode = sqlite3_column_int64(pRtree->pReadParent, 0); | 2376 iNode = sqlite3_column_int64(pRtree->pReadParent, 0); |
2325 for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); | 2377 for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); |
2326 if( !pTest ){ | 2378 if( !pTest ){ |
2327 rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); | 2379 rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); |
2328 } | 2380 } |
2329 } | 2381 } |
2330 rc = sqlite3_reset(pRtree->pReadParent); | 2382 rc = sqlite3_reset(pRtree->pReadParent); |
2331 if( rc==SQLITE_OK ) rc = rc2; | 2383 if( rc==SQLITE_OK ) rc = rc2; |
2332 if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT; | 2384 if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT_VTAB; |
2333 pChild = pChild->pParent; | 2385 pChild = pChild->pParent; |
2334 } | 2386 } |
2335 return rc; | 2387 return rc; |
2336 } | 2388 } |
2337 | 2389 |
2338 static int deleteCell(Rtree *, RtreeNode *, int, int); | 2390 static int deleteCell(Rtree *, RtreeNode *, int, int); |
2339 | 2391 |
2340 static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ | 2392 static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ |
2341 int rc; | 2393 int rc; |
2342 int rc2; | 2394 int rc2; |
2343 RtreeNode *pParent; | 2395 RtreeNode *pParent = 0; |
2344 int iCell; | 2396 int iCell; |
2345 | 2397 |
2346 assert( pNode->nRef==1 ); | 2398 assert( pNode->nRef==1 ); |
2347 | 2399 |
2348 /* Remove the entry in the parent cell. */ | 2400 /* Remove the entry in the parent cell. */ |
2349 rc = nodeParentIndex(pRtree, pNode, &iCell); | 2401 rc = nodeParentIndex(pRtree, pNode, &iCell); |
2350 if( rc==SQLITE_OK ){ | 2402 if( rc==SQLITE_OK ){ |
2351 pParent = pNode->pParent; | 2403 pParent = pNode->pParent; |
2352 pNode->pParent = 0; | 2404 pNode->pParent = 0; |
2353 rc = deleteCell(pRtree, pParent, iCell, iHeight+1); | 2405 rc = deleteCell(pRtree, pParent, iCell, iHeight+1); |
(...skipping 92 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2446 | 2498 |
2447 static int Reinsert( | 2499 static int Reinsert( |
2448 Rtree *pRtree, | 2500 Rtree *pRtree, |
2449 RtreeNode *pNode, | 2501 RtreeNode *pNode, |
2450 RtreeCell *pCell, | 2502 RtreeCell *pCell, |
2451 int iHeight | 2503 int iHeight |
2452 ){ | 2504 ){ |
2453 int *aOrder; | 2505 int *aOrder; |
2454 int *aSpare; | 2506 int *aSpare; |
2455 RtreeCell *aCell; | 2507 RtreeCell *aCell; |
2456 float *aDistance; | 2508 RtreeDValue *aDistance; |
2457 int nCell; | 2509 int nCell; |
2458 float aCenterCoord[RTREE_MAX_DIMENSIONS]; | 2510 RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS]; |
2459 int iDim; | 2511 int iDim; |
2460 int ii; | 2512 int ii; |
2461 int rc = SQLITE_OK; | 2513 int rc = SQLITE_OK; |
| 2514 int n; |
2462 | 2515 |
2463 memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS); | 2516 memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS); |
2464 | 2517 |
2465 nCell = NCELL(pNode)+1; | 2518 nCell = NCELL(pNode)+1; |
| 2519 n = (nCell+1)&(~1); |
2466 | 2520 |
2467 /* Allocate the buffers used by this operation. The allocation is | 2521 /* Allocate the buffers used by this operation. The allocation is |
2468 ** relinquished before this function returns. | 2522 ** relinquished before this function returns. |
2469 */ | 2523 */ |
2470 aCell = (RtreeCell *)sqlite3_malloc(nCell * ( | 2524 aCell = (RtreeCell *)sqlite3_malloc(n * ( |
2471 sizeof(RtreeCell) + /* aCell array */ | 2525 sizeof(RtreeCell) + /* aCell array */ |
2472 sizeof(int) + /* aOrder array */ | 2526 sizeof(int) + /* aOrder array */ |
2473 sizeof(int) + /* aSpare array */ | 2527 sizeof(int) + /* aSpare array */ |
2474 sizeof(float) /* aDistance array */ | 2528 sizeof(RtreeDValue) /* aDistance array */ |
2475 )); | 2529 )); |
2476 if( !aCell ){ | 2530 if( !aCell ){ |
2477 return SQLITE_NOMEM; | 2531 return SQLITE_NOMEM; |
2478 } | 2532 } |
2479 aOrder = (int *)&aCell[nCell]; | 2533 aOrder = (int *)&aCell[n]; |
2480 aSpare = (int *)&aOrder[nCell]; | 2534 aSpare = (int *)&aOrder[n]; |
2481 aDistance = (float *)&aSpare[nCell]; | 2535 aDistance = (RtreeDValue *)&aSpare[n]; |
2482 | 2536 |
2483 for(ii=0; ii<nCell; ii++){ | 2537 for(ii=0; ii<nCell; ii++){ |
2484 if( ii==(nCell-1) ){ | 2538 if( ii==(nCell-1) ){ |
2485 memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); | 2539 memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); |
2486 }else{ | 2540 }else{ |
2487 nodeGetCell(pRtree, pNode, ii, &aCell[ii]); | 2541 nodeGetCell(pRtree, pNode, ii, &aCell[ii]); |
2488 } | 2542 } |
2489 aOrder[ii] = ii; | 2543 aOrder[ii] = ii; |
2490 for(iDim=0; iDim<pRtree->nDim; iDim++){ | 2544 for(iDim=0; iDim<pRtree->nDim; iDim++){ |
2491 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]); | 2545 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]); |
2492 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]); | 2546 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]); |
2493 } | 2547 } |
2494 } | 2548 } |
2495 for(iDim=0; iDim<pRtree->nDim; iDim++){ | 2549 for(iDim=0; iDim<pRtree->nDim; iDim++){ |
2496 aCenterCoord[iDim] = aCenterCoord[iDim]/((float)nCell*2.0); | 2550 aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2)); |
2497 } | 2551 } |
2498 | 2552 |
2499 for(ii=0; ii<nCell; ii++){ | 2553 for(ii=0; ii<nCell; ii++){ |
2500 aDistance[ii] = 0.0; | 2554 aDistance[ii] = RTREE_ZERO; |
2501 for(iDim=0; iDim<pRtree->nDim; iDim++){ | 2555 for(iDim=0; iDim<pRtree->nDim; iDim++){ |
2502 float coord = DCOORD(aCell[ii].aCoord[iDim*2+1]) - | 2556 RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - |
2503 DCOORD(aCell[ii].aCoord[iDim*2]); | 2557 DCOORD(aCell[ii].aCoord[iDim*2])); |
2504 aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); | 2558 aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); |
2505 } | 2559 } |
2506 } | 2560 } |
2507 | 2561 |
2508 SortByDistance(aOrder, nCell, aDistance, aSpare); | 2562 SortByDistance(aOrder, nCell, aDistance, aSpare); |
2509 nodeZero(pRtree, pNode); | 2563 nodeZero(pRtree, pNode); |
2510 | 2564 |
2511 for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ | 2565 for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ |
2512 RtreeCell *p = &aCell[aOrder[ii]]; | 2566 RtreeCell *p = &aCell[aOrder[ii]]; |
2513 nodeInsertCell(pRtree, pNode, p); | 2567 nodeInsertCell(pRtree, pNode, p); |
(...skipping 42 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2556 int rc = SQLITE_OK; | 2610 int rc = SQLITE_OK; |
2557 if( iHeight>0 ){ | 2611 if( iHeight>0 ){ |
2558 RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); | 2612 RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); |
2559 if( pChild ){ | 2613 if( pChild ){ |
2560 nodeRelease(pRtree, pChild->pParent); | 2614 nodeRelease(pRtree, pChild->pParent); |
2561 nodeReference(pNode); | 2615 nodeReference(pNode); |
2562 pChild->pParent = pNode; | 2616 pChild->pParent = pNode; |
2563 } | 2617 } |
2564 } | 2618 } |
2565 if( nodeInsertCell(pRtree, pNode, pCell) ){ | 2619 if( nodeInsertCell(pRtree, pNode, pCell) ){ |
2566 #if VARIANT_RSTARTREE_REINSERT | |
2567 if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ | 2620 if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ |
2568 rc = SplitNode(pRtree, pNode, pCell, iHeight); | 2621 rc = SplitNode(pRtree, pNode, pCell, iHeight); |
2569 }else{ | 2622 }else{ |
2570 pRtree->iReinsertHeight = iHeight; | 2623 pRtree->iReinsertHeight = iHeight; |
2571 rc = Reinsert(pRtree, pNode, pCell, iHeight); | 2624 rc = Reinsert(pRtree, pNode, pCell, iHeight); |
2572 } | 2625 } |
2573 #else | |
2574 rc = SplitNode(pRtree, pNode, pCell, iHeight); | |
2575 #endif | |
2576 }else{ | 2626 }else{ |
2577 rc = AdjustTree(pRtree, pNode, pCell); | 2627 rc = AdjustTree(pRtree, pNode, pCell); |
2578 if( rc==SQLITE_OK ){ | 2628 if( rc==SQLITE_OK ){ |
2579 if( iHeight==0 ){ | 2629 if( iHeight==0 ){ |
2580 rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); | 2630 rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); |
2581 }else{ | 2631 }else{ |
2582 rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); | 2632 rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); |
2583 } | 2633 } |
2584 } | 2634 } |
2585 } | 2635 } |
2586 return rc; | 2636 return rc; |
2587 } | 2637 } |
2588 | 2638 |
2589 static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ | 2639 static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ |
2590 int ii; | 2640 int ii; |
2591 int rc = SQLITE_OK; | 2641 int rc = SQLITE_OK; |
2592 int nCell = NCELL(pNode); | 2642 int nCell = NCELL(pNode); |
2593 | 2643 |
2594 for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ | 2644 for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ |
2595 RtreeNode *pInsert; | 2645 RtreeNode *pInsert; |
2596 RtreeCell cell; | 2646 RtreeCell cell; |
2597 nodeGetCell(pRtree, pNode, ii, &cell); | 2647 nodeGetCell(pRtree, pNode, ii, &cell); |
2598 | 2648 |
2599 /* Find a node to store this cell in. pNode->iNode currently contains | 2649 /* Find a node to store this cell in. pNode->iNode currently contains |
2600 ** the height of the sub-tree headed by the cell. | 2650 ** the height of the sub-tree headed by the cell. |
2601 */ | 2651 */ |
2602 rc = ChooseLeaf(pRtree, &cell, pNode->iNode, &pInsert); | 2652 rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert); |
2603 if( rc==SQLITE_OK ){ | 2653 if( rc==SQLITE_OK ){ |
2604 int rc2; | 2654 int rc2; |
2605 rc = rtreeInsertCell(pRtree, pInsert, &cell, pNode->iNode); | 2655 rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode); |
2606 rc2 = nodeRelease(pRtree, pInsert); | 2656 rc2 = nodeRelease(pRtree, pInsert); |
2607 if( rc==SQLITE_OK ){ | 2657 if( rc==SQLITE_OK ){ |
2608 rc = rc2; | 2658 rc = rc2; |
2609 } | 2659 } |
2610 } | 2660 } |
2611 } | 2661 } |
2612 return rc; | 2662 return rc; |
2613 } | 2663 } |
2614 | 2664 |
2615 /* | 2665 /* |
2616 ** Select a currently unused rowid for a new r-tree record. | 2666 ** Select a currently unused rowid for a new r-tree record. |
2617 */ | 2667 */ |
2618 static int newRowid(Rtree *pRtree, i64 *piRowid){ | 2668 static int newRowid(Rtree *pRtree, i64 *piRowid){ |
2619 int rc; | 2669 int rc; |
2620 sqlite3_bind_null(pRtree->pWriteRowid, 1); | 2670 sqlite3_bind_null(pRtree->pWriteRowid, 1); |
2621 sqlite3_bind_null(pRtree->pWriteRowid, 2); | 2671 sqlite3_bind_null(pRtree->pWriteRowid, 2); |
2622 sqlite3_step(pRtree->pWriteRowid); | 2672 sqlite3_step(pRtree->pWriteRowid); |
2623 rc = sqlite3_reset(pRtree->pWriteRowid); | 2673 rc = sqlite3_reset(pRtree->pWriteRowid); |
2624 *piRowid = sqlite3_last_insert_rowid(pRtree->db); | 2674 *piRowid = sqlite3_last_insert_rowid(pRtree->db); |
2625 return rc; | 2675 return rc; |
2626 } | 2676 } |
2627 | 2677 |
2628 /* | 2678 /* |
| 2679 ** Remove the entry with rowid=iDelete from the r-tree structure. |
| 2680 */ |
| 2681 static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){ |
| 2682 int rc; /* Return code */ |
| 2683 RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */ |
| 2684 int iCell; /* Index of iDelete cell in pLeaf */ |
| 2685 RtreeNode *pRoot; /* Root node of rtree structure */ |
| 2686 |
| 2687 |
| 2688 /* Obtain a reference to the root node to initialize Rtree.iDepth */ |
| 2689 rc = nodeAcquire(pRtree, 1, 0, &pRoot); |
| 2690 |
| 2691 /* Obtain a reference to the leaf node that contains the entry |
| 2692 ** about to be deleted. |
| 2693 */ |
| 2694 if( rc==SQLITE_OK ){ |
| 2695 rc = findLeafNode(pRtree, iDelete, &pLeaf, 0); |
| 2696 } |
| 2697 |
| 2698 /* Delete the cell in question from the leaf node. */ |
| 2699 if( rc==SQLITE_OK ){ |
| 2700 int rc2; |
| 2701 rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); |
| 2702 if( rc==SQLITE_OK ){ |
| 2703 rc = deleteCell(pRtree, pLeaf, iCell, 0); |
| 2704 } |
| 2705 rc2 = nodeRelease(pRtree, pLeaf); |
| 2706 if( rc==SQLITE_OK ){ |
| 2707 rc = rc2; |
| 2708 } |
| 2709 } |
| 2710 |
| 2711 /* Delete the corresponding entry in the <rtree>_rowid table. */ |
| 2712 if( rc==SQLITE_OK ){ |
| 2713 sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); |
| 2714 sqlite3_step(pRtree->pDeleteRowid); |
| 2715 rc = sqlite3_reset(pRtree->pDeleteRowid); |
| 2716 } |
| 2717 |
| 2718 /* Check if the root node now has exactly one child. If so, remove |
| 2719 ** it, schedule the contents of the child for reinsertion and |
| 2720 ** reduce the tree height by one. |
| 2721 ** |
| 2722 ** This is equivalent to copying the contents of the child into |
| 2723 ** the root node (the operation that Gutman's paper says to perform |
| 2724 ** in this scenario). |
| 2725 */ |
| 2726 if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ |
| 2727 int rc2; |
| 2728 RtreeNode *pChild; |
| 2729 i64 iChild = nodeGetRowid(pRtree, pRoot, 0); |
| 2730 rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); |
| 2731 if( rc==SQLITE_OK ){ |
| 2732 rc = removeNode(pRtree, pChild, pRtree->iDepth-1); |
| 2733 } |
| 2734 rc2 = nodeRelease(pRtree, pChild); |
| 2735 if( rc==SQLITE_OK ) rc = rc2; |
| 2736 if( rc==SQLITE_OK ){ |
| 2737 pRtree->iDepth--; |
| 2738 writeInt16(pRoot->zData, pRtree->iDepth); |
| 2739 pRoot->isDirty = 1; |
| 2740 } |
| 2741 } |
| 2742 |
| 2743 /* Re-insert the contents of any underfull nodes removed from the tree. */ |
| 2744 for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ |
| 2745 if( rc==SQLITE_OK ){ |
| 2746 rc = reinsertNodeContent(pRtree, pLeaf); |
| 2747 } |
| 2748 pRtree->pDeleted = pLeaf->pNext; |
| 2749 sqlite3_free(pLeaf); |
| 2750 } |
| 2751 |
| 2752 /* Release the reference to the root node. */ |
| 2753 if( rc==SQLITE_OK ){ |
| 2754 rc = nodeRelease(pRtree, pRoot); |
| 2755 }else{ |
| 2756 nodeRelease(pRtree, pRoot); |
| 2757 } |
| 2758 |
| 2759 return rc; |
| 2760 } |
| 2761 |
| 2762 /* |
| 2763 ** Rounding constants for float->double conversion. |
| 2764 */ |
| 2765 #define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */ |
| 2766 #define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */ |
| 2767 |
| 2768 #if !defined(SQLITE_RTREE_INT_ONLY) |
| 2769 /* |
| 2770 ** Convert an sqlite3_value into an RtreeValue (presumably a float) |
| 2771 ** while taking care to round toward negative or positive, respectively. |
| 2772 */ |
| 2773 static RtreeValue rtreeValueDown(sqlite3_value *v){ |
| 2774 double d = sqlite3_value_double(v); |
| 2775 float f = (float)d; |
| 2776 if( f>d ){ |
| 2777 f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS)); |
| 2778 } |
| 2779 return f; |
| 2780 } |
| 2781 static RtreeValue rtreeValueUp(sqlite3_value *v){ |
| 2782 double d = sqlite3_value_double(v); |
| 2783 float f = (float)d; |
| 2784 if( f<d ){ |
| 2785 f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY)); |
| 2786 } |
| 2787 return f; |
| 2788 } |
| 2789 #endif /* !defined(SQLITE_RTREE_INT_ONLY) */ |
| 2790 |
| 2791 |
| 2792 /* |
2629 ** The xUpdate method for rtree module virtual tables. | 2793 ** The xUpdate method for rtree module virtual tables. |
2630 */ | 2794 */ |
2631 static int rtreeUpdate( | 2795 static int rtreeUpdate( |
2632 sqlite3_vtab *pVtab, | 2796 sqlite3_vtab *pVtab, |
2633 int nData, | 2797 int nData, |
2634 sqlite3_value **azData, | 2798 sqlite3_value **azData, |
2635 sqlite_int64 *pRowid | 2799 sqlite_int64 *pRowid |
2636 ){ | 2800 ){ |
2637 Rtree *pRtree = (Rtree *)pVtab; | 2801 Rtree *pRtree = (Rtree *)pVtab; |
2638 int rc = SQLITE_OK; | 2802 int rc = SQLITE_OK; |
| 2803 RtreeCell cell; /* New cell to insert if nData>1 */ |
| 2804 int bHaveRowid = 0; /* Set to 1 after new rowid is determined */ |
2639 | 2805 |
2640 rtreeReference(pRtree); | 2806 rtreeReference(pRtree); |
2641 | |
2642 assert(nData>=1); | 2807 assert(nData>=1); |
2643 | 2808 |
2644 /* If azData[0] is not an SQL NULL value, it is the rowid of a | 2809 /* Constraint handling. A write operation on an r-tree table may return |
2645 ** record to delete from the r-tree table. The following block does | 2810 ** SQLITE_CONSTRAINT for two reasons: |
2646 ** just that. | 2811 ** |
| 2812 ** 1. A duplicate rowid value, or |
| 2813 ** 2. The supplied data violates the "x2>=x1" constraint. |
| 2814 ** |
| 2815 ** In the first case, if the conflict-handling mode is REPLACE, then |
| 2816 ** the conflicting row can be removed before proceeding. In the second |
| 2817 ** case, SQLITE_CONSTRAINT must be returned regardless of the |
| 2818 ** conflict-handling mode specified by the user. |
2647 */ | 2819 */ |
2648 if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){ | 2820 if( nData>1 ){ |
2649 i64 iDelete; /* The rowid to delete */ | |
2650 RtreeNode *pLeaf; /* Leaf node containing record iDelete */ | |
2651 int iCell; /* Index of iDelete cell in pLeaf */ | |
2652 RtreeNode *pRoot; | |
2653 | |
2654 /* Obtain a reference to the root node to initialise Rtree.iDepth */ | |
2655 rc = nodeAcquire(pRtree, 1, 0, &pRoot); | |
2656 | |
2657 /* Obtain a reference to the leaf node that contains the entry | |
2658 ** about to be deleted. | |
2659 */ | |
2660 if( rc==SQLITE_OK ){ | |
2661 iDelete = sqlite3_value_int64(azData[0]); | |
2662 rc = findLeafNode(pRtree, iDelete, &pLeaf); | |
2663 } | |
2664 | |
2665 /* Delete the cell in question from the leaf node. */ | |
2666 if( rc==SQLITE_OK ){ | |
2667 int rc2; | |
2668 rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); | |
2669 if( rc==SQLITE_OK ){ | |
2670 rc = deleteCell(pRtree, pLeaf, iCell, 0); | |
2671 } | |
2672 rc2 = nodeRelease(pRtree, pLeaf); | |
2673 if( rc==SQLITE_OK ){ | |
2674 rc = rc2; | |
2675 } | |
2676 } | |
2677 | |
2678 /* Delete the corresponding entry in the <rtree>_rowid table. */ | |
2679 if( rc==SQLITE_OK ){ | |
2680 sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); | |
2681 sqlite3_step(pRtree->pDeleteRowid); | |
2682 rc = sqlite3_reset(pRtree->pDeleteRowid); | |
2683 } | |
2684 | |
2685 /* Check if the root node now has exactly one child. If so, remove | |
2686 ** it, schedule the contents of the child for reinsertion and | |
2687 ** reduce the tree height by one. | |
2688 ** | |
2689 ** This is equivalent to copying the contents of the child into | |
2690 ** the root node (the operation that Gutman's paper says to perform | |
2691 ** in this scenario). | |
2692 */ | |
2693 if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ | |
2694 int rc2; | |
2695 RtreeNode *pChild; | |
2696 i64 iChild = nodeGetRowid(pRtree, pRoot, 0); | |
2697 rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); | |
2698 if( rc==SQLITE_OK ){ | |
2699 rc = removeNode(pRtree, pChild, pRtree->iDepth-1); | |
2700 } | |
2701 rc2 = nodeRelease(pRtree, pChild); | |
2702 if( rc==SQLITE_OK ) rc = rc2; | |
2703 if( rc==SQLITE_OK ){ | |
2704 pRtree->iDepth--; | |
2705 writeInt16(pRoot->zData, pRtree->iDepth); | |
2706 pRoot->isDirty = 1; | |
2707 } | |
2708 } | |
2709 | |
2710 /* Re-insert the contents of any underfull nodes removed from the tree. */ | |
2711 for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ | |
2712 if( rc==SQLITE_OK ){ | |
2713 rc = reinsertNodeContent(pRtree, pLeaf); | |
2714 } | |
2715 pRtree->pDeleted = pLeaf->pNext; | |
2716 sqlite3_free(pLeaf); | |
2717 } | |
2718 | |
2719 /* Release the reference to the root node. */ | |
2720 if( rc==SQLITE_OK ){ | |
2721 rc = nodeRelease(pRtree, pRoot); | |
2722 }else{ | |
2723 nodeRelease(pRtree, pRoot); | |
2724 } | |
2725 } | |
2726 | |
2727 /* If the azData[] array contains more than one element, elements | |
2728 ** (azData[2]..azData[argc-1]) contain a new record to insert into | |
2729 ** the r-tree structure. | |
2730 */ | |
2731 if( rc==SQLITE_OK && nData>1 ){ | |
2732 /* Insert a new record into the r-tree */ | |
2733 RtreeCell cell; | |
2734 int ii; | 2821 int ii; |
2735 RtreeNode *pLeaf; | |
2736 | 2822 |
2737 /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */ | 2823 /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */ |
2738 assert( nData==(pRtree->nDim*2 + 3) ); | 2824 assert( nData==(pRtree->nDim*2 + 3) ); |
| 2825 #ifndef SQLITE_RTREE_INT_ONLY |
2739 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ | 2826 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
2740 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ | 2827 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
2741 cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]); | 2828 cell.aCoord[ii].f = rtreeValueDown(azData[ii+3]); |
2742 cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]); | 2829 cell.aCoord[ii+1].f = rtreeValueUp(azData[ii+4]); |
2743 if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){ | 2830 if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){ |
2744 rc = SQLITE_CONSTRAINT; | 2831 rc = SQLITE_CONSTRAINT; |
2745 goto constraint; | 2832 goto constraint; |
2746 } | 2833 } |
2747 } | 2834 } |
2748 }else{ | 2835 }else |
| 2836 #endif |
| 2837 { |
2749 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ | 2838 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
2750 cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]); | 2839 cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]); |
2751 cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]); | 2840 cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]); |
2752 if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ | 2841 if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ |
2753 rc = SQLITE_CONSTRAINT; | 2842 rc = SQLITE_CONSTRAINT; |
2754 goto constraint; | 2843 goto constraint; |
2755 } | 2844 } |
2756 } | 2845 } |
2757 } | 2846 } |
2758 | 2847 |
| 2848 /* If a rowid value was supplied, check if it is already present in |
| 2849 ** the table. If so, the constraint has failed. */ |
| 2850 if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){ |
| 2851 cell.iRowid = sqlite3_value_int64(azData[2]); |
| 2852 if( sqlite3_value_type(azData[0])==SQLITE_NULL |
| 2853 || sqlite3_value_int64(azData[0])!=cell.iRowid |
| 2854 ){ |
| 2855 int steprc; |
| 2856 sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); |
| 2857 steprc = sqlite3_step(pRtree->pReadRowid); |
| 2858 rc = sqlite3_reset(pRtree->pReadRowid); |
| 2859 if( SQLITE_ROW==steprc ){ |
| 2860 if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ |
| 2861 rc = rtreeDeleteRowid(pRtree, cell.iRowid); |
| 2862 }else{ |
| 2863 rc = SQLITE_CONSTRAINT; |
| 2864 goto constraint; |
| 2865 } |
| 2866 } |
| 2867 } |
| 2868 bHaveRowid = 1; |
| 2869 } |
| 2870 } |
| 2871 |
| 2872 /* If azData[0] is not an SQL NULL value, it is the rowid of a |
| 2873 ** record to delete from the r-tree table. The following block does |
| 2874 ** just that. |
| 2875 */ |
| 2876 if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){ |
| 2877 rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0])); |
| 2878 } |
| 2879 |
| 2880 /* If the azData[] array contains more than one element, elements |
| 2881 ** (azData[2]..azData[argc-1]) contain a new record to insert into |
| 2882 ** the r-tree structure. |
| 2883 */ |
| 2884 if( rc==SQLITE_OK && nData>1 ){ |
| 2885 /* Insert the new record into the r-tree */ |
| 2886 RtreeNode *pLeaf = 0; |
| 2887 |
2759 /* Figure out the rowid of the new row. */ | 2888 /* Figure out the rowid of the new row. */ |
2760 if( sqlite3_value_type(azData[2])==SQLITE_NULL ){ | 2889 if( bHaveRowid==0 ){ |
2761 rc = newRowid(pRtree, &cell.iRowid); | 2890 rc = newRowid(pRtree, &cell.iRowid); |
2762 }else{ | |
2763 cell.iRowid = sqlite3_value_int64(azData[2]); | |
2764 sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); | |
2765 if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){ | |
2766 sqlite3_reset(pRtree->pReadRowid); | |
2767 rc = SQLITE_CONSTRAINT; | |
2768 goto constraint; | |
2769 } | |
2770 rc = sqlite3_reset(pRtree->pReadRowid); | |
2771 } | 2891 } |
2772 *pRowid = cell.iRowid; | 2892 *pRowid = cell.iRowid; |
2773 | 2893 |
2774 if( rc==SQLITE_OK ){ | 2894 if( rc==SQLITE_OK ){ |
2775 rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); | 2895 rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); |
2776 } | 2896 } |
2777 if( rc==SQLITE_OK ){ | 2897 if( rc==SQLITE_OK ){ |
2778 int rc2; | 2898 int rc2; |
2779 pRtree->iReinsertHeight = -1; | 2899 pRtree->iReinsertHeight = -1; |
2780 rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); | 2900 rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); |
(...skipping 23 matching lines...) Expand all Loading... |
2804 , pRtree->zDb, pRtree->zName, zNewName | 2924 , pRtree->zDb, pRtree->zName, zNewName |
2805 , pRtree->zDb, pRtree->zName, zNewName | 2925 , pRtree->zDb, pRtree->zName, zNewName |
2806 ); | 2926 ); |
2807 if( zSql ){ | 2927 if( zSql ){ |
2808 rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); | 2928 rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); |
2809 sqlite3_free(zSql); | 2929 sqlite3_free(zSql); |
2810 } | 2930 } |
2811 return rc; | 2931 return rc; |
2812 } | 2932 } |
2813 | 2933 |
| 2934 /* |
| 2935 ** This function populates the pRtree->nRowEst variable with an estimate |
| 2936 ** of the number of rows in the virtual table. If possible, this is based |
| 2937 ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST. |
| 2938 */ |
| 2939 static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){ |
| 2940 const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'"; |
| 2941 char *zSql; |
| 2942 sqlite3_stmt *p; |
| 2943 int rc; |
| 2944 i64 nRow = 0; |
| 2945 |
| 2946 zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName); |
| 2947 if( zSql==0 ){ |
| 2948 rc = SQLITE_NOMEM; |
| 2949 }else{ |
| 2950 rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0); |
| 2951 if( rc==SQLITE_OK ){ |
| 2952 if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0); |
| 2953 rc = sqlite3_finalize(p); |
| 2954 }else if( rc!=SQLITE_NOMEM ){ |
| 2955 rc = SQLITE_OK; |
| 2956 } |
| 2957 |
| 2958 if( rc==SQLITE_OK ){ |
| 2959 if( nRow==0 ){ |
| 2960 pRtree->nRowEst = RTREE_DEFAULT_ROWEST; |
| 2961 }else{ |
| 2962 pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST); |
| 2963 } |
| 2964 } |
| 2965 sqlite3_free(zSql); |
| 2966 } |
| 2967 |
| 2968 return rc; |
| 2969 } |
| 2970 |
2814 static sqlite3_module rtreeModule = { | 2971 static sqlite3_module rtreeModule = { |
2815 0, /* iVersion */ | 2972 0, /* iVersion */ |
2816 rtreeCreate, /* xCreate - create a table */ | 2973 rtreeCreate, /* xCreate - create a table */ |
2817 rtreeConnect, /* xConnect - connect to an existing table */ | 2974 rtreeConnect, /* xConnect - connect to an existing table */ |
2818 rtreeBestIndex, /* xBestIndex - Determine search strategy */ | 2975 rtreeBestIndex, /* xBestIndex - Determine search strategy */ |
2819 rtreeDisconnect, /* xDisconnect - Disconnect from a table */ | 2976 rtreeDisconnect, /* xDisconnect - Disconnect from a table */ |
2820 rtreeDestroy, /* xDestroy - Drop a table */ | 2977 rtreeDestroy, /* xDestroy - Drop a table */ |
2821 rtreeOpen, /* xOpen - open a cursor */ | 2978 rtreeOpen, /* xOpen - open a cursor */ |
2822 rtreeClose, /* xClose - close a cursor */ | 2979 rtreeClose, /* xClose - close a cursor */ |
2823 rtreeFilter, /* xFilter - configure scan constraints */ | 2980 rtreeFilter, /* xFilter - configure scan constraints */ |
2824 rtreeNext, /* xNext - advance a cursor */ | 2981 rtreeNext, /* xNext - advance a cursor */ |
2825 rtreeEof, /* xEof */ | 2982 rtreeEof, /* xEof */ |
2826 rtreeColumn, /* xColumn - read data */ | 2983 rtreeColumn, /* xColumn - read data */ |
2827 rtreeRowid, /* xRowid - read data */ | 2984 rtreeRowid, /* xRowid - read data */ |
2828 rtreeUpdate, /* xUpdate - write data */ | 2985 rtreeUpdate, /* xUpdate - write data */ |
2829 0, /* xBegin - begin transaction */ | 2986 0, /* xBegin - begin transaction */ |
2830 0, /* xSync - sync transaction */ | 2987 0, /* xSync - sync transaction */ |
2831 0, /* xCommit - commit transaction */ | 2988 0, /* xCommit - commit transaction */ |
2832 0, /* xRollback - rollback transaction */ | 2989 0, /* xRollback - rollback transaction */ |
2833 0, /* xFindFunction - function overloading */ | 2990 0, /* xFindFunction - function overloading */ |
2834 rtreeRename /* xRename - rename the table */ | 2991 rtreeRename, /* xRename - rename the table */ |
| 2992 0, /* xSavepoint */ |
| 2993 0, /* xRelease */ |
| 2994 0 /* xRollbackTo */ |
2835 }; | 2995 }; |
2836 | 2996 |
2837 static int rtreeSqlInit( | 2997 static int rtreeSqlInit( |
2838 Rtree *pRtree, | 2998 Rtree *pRtree, |
2839 sqlite3 *db, | 2999 sqlite3 *db, |
2840 const char *zDb, | 3000 const char *zDb, |
2841 const char *zPrefix, | 3001 const char *zPrefix, |
2842 int isCreate | 3002 int isCreate |
2843 ){ | 3003 ){ |
2844 int rc = SQLITE_OK; | 3004 int rc = SQLITE_OK; |
(...skipping 17 matching lines...) Expand all Loading... |
2862 }; | 3022 }; |
2863 sqlite3_stmt **appStmt[N_STATEMENT]; | 3023 sqlite3_stmt **appStmt[N_STATEMENT]; |
2864 int i; | 3024 int i; |
2865 | 3025 |
2866 pRtree->db = db; | 3026 pRtree->db = db; |
2867 | 3027 |
2868 if( isCreate ){ | 3028 if( isCreate ){ |
2869 char *zCreate = sqlite3_mprintf( | 3029 char *zCreate = sqlite3_mprintf( |
2870 "CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);" | 3030 "CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);" |
2871 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);" | 3031 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);" |
2872 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY, parentnode INTEGE
R);" | 3032 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY," |
| 3033 " parentnode INTEGER);" |
2873 "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))", | 3034 "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))", |
2874 zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize | 3035 zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize |
2875 ); | 3036 ); |
2876 if( !zCreate ){ | 3037 if( !zCreate ){ |
2877 return SQLITE_NOMEM; | 3038 return SQLITE_NOMEM; |
2878 } | 3039 } |
2879 rc = sqlite3_exec(db, zCreate, 0, 0, 0); | 3040 rc = sqlite3_exec(db, zCreate, 0, 0, 0); |
2880 sqlite3_free(zCreate); | 3041 sqlite3_free(zCreate); |
2881 if( rc!=SQLITE_OK ){ | 3042 if( rc!=SQLITE_OK ){ |
2882 return rc; | 3043 return rc; |
2883 } | 3044 } |
2884 } | 3045 } |
2885 | 3046 |
2886 appStmt[0] = &pRtree->pReadNode; | 3047 appStmt[0] = &pRtree->pReadNode; |
2887 appStmt[1] = &pRtree->pWriteNode; | 3048 appStmt[1] = &pRtree->pWriteNode; |
2888 appStmt[2] = &pRtree->pDeleteNode; | 3049 appStmt[2] = &pRtree->pDeleteNode; |
2889 appStmt[3] = &pRtree->pReadRowid; | 3050 appStmt[3] = &pRtree->pReadRowid; |
2890 appStmt[4] = &pRtree->pWriteRowid; | 3051 appStmt[4] = &pRtree->pWriteRowid; |
2891 appStmt[5] = &pRtree->pDeleteRowid; | 3052 appStmt[5] = &pRtree->pDeleteRowid; |
2892 appStmt[6] = &pRtree->pReadParent; | 3053 appStmt[6] = &pRtree->pReadParent; |
2893 appStmt[7] = &pRtree->pWriteParent; | 3054 appStmt[7] = &pRtree->pWriteParent; |
2894 appStmt[8] = &pRtree->pDeleteParent; | 3055 appStmt[8] = &pRtree->pDeleteParent; |
2895 | 3056 |
| 3057 rc = rtreeQueryStat1(db, pRtree); |
2896 for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ | 3058 for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ |
2897 char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix); | 3059 char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix); |
2898 if( zSql ){ | 3060 if( zSql ){ |
2899 rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); | 3061 rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); |
2900 }else{ | 3062 }else{ |
2901 rc = SQLITE_NOMEM; | 3063 rc = SQLITE_NOMEM; |
2902 } | 3064 } |
2903 sqlite3_free(zSql); | 3065 sqlite3_free(zSql); |
2904 } | 3066 } |
2905 | 3067 |
(...skipping 33 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2939 ** the root node of the tree. | 3101 ** the root node of the tree. |
2940 ** | 3102 ** |
2941 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. | 3103 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. |
2942 ** This ensures that each node is stored on a single database page. If the | 3104 ** This ensures that each node is stored on a single database page. If the |
2943 ** database page-size is so large that more than RTREE_MAXCELLS entries | 3105 ** database page-size is so large that more than RTREE_MAXCELLS entries |
2944 ** would fit in a single node, use a smaller node-size. | 3106 ** would fit in a single node, use a smaller node-size. |
2945 */ | 3107 */ |
2946 static int getNodeSize( | 3108 static int getNodeSize( |
2947 sqlite3 *db, /* Database handle */ | 3109 sqlite3 *db, /* Database handle */ |
2948 Rtree *pRtree, /* Rtree handle */ | 3110 Rtree *pRtree, /* Rtree handle */ |
2949 int isCreate /* True for xCreate, false for xConnect */ | 3111 int isCreate, /* True for xCreate, false for xConnect */ |
| 3112 char **pzErr /* OUT: Error message, if any */ |
2950 ){ | 3113 ){ |
2951 int rc; | 3114 int rc; |
2952 char *zSql; | 3115 char *zSql; |
2953 if( isCreate ){ | 3116 if( isCreate ){ |
2954 int iPageSize; | 3117 int iPageSize = 0; |
2955 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); | 3118 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); |
2956 rc = getIntFromStmt(db, zSql, &iPageSize); | 3119 rc = getIntFromStmt(db, zSql, &iPageSize); |
2957 if( rc==SQLITE_OK ){ | 3120 if( rc==SQLITE_OK ){ |
2958 pRtree->iNodeSize = iPageSize-64; | 3121 pRtree->iNodeSize = iPageSize-64; |
2959 if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ | 3122 if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ |
2960 pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; | 3123 pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; |
2961 } | 3124 } |
| 3125 }else{ |
| 3126 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
2962 } | 3127 } |
2963 }else{ | 3128 }else{ |
2964 zSql = sqlite3_mprintf( | 3129 zSql = sqlite3_mprintf( |
2965 "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", | 3130 "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", |
2966 pRtree->zDb, pRtree->zName | 3131 pRtree->zDb, pRtree->zName |
2967 ); | 3132 ); |
2968 rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); | 3133 rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); |
| 3134 if( rc!=SQLITE_OK ){ |
| 3135 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
| 3136 } |
2969 } | 3137 } |
2970 | 3138 |
2971 sqlite3_free(zSql); | 3139 sqlite3_free(zSql); |
2972 return rc; | 3140 return rc; |
2973 } | 3141 } |
2974 | 3142 |
2975 /* | 3143 /* |
2976 ** This function is the implementation of both the xConnect and xCreate | 3144 ** This function is the implementation of both the xConnect and xCreate |
2977 ** methods of the r-tree virtual table. | 3145 ** methods of the r-tree virtual table. |
2978 ** | 3146 ** |
(...skipping 22 matching lines...) Expand all Loading... |
3001 "Too few columns for an rtree table", /* 2 */ | 3169 "Too few columns for an rtree table", /* 2 */ |
3002 "Too many columns for an rtree table" /* 3 */ | 3170 "Too many columns for an rtree table" /* 3 */ |
3003 }; | 3171 }; |
3004 | 3172 |
3005 int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2; | 3173 int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2; |
3006 if( aErrMsg[iErr] ){ | 3174 if( aErrMsg[iErr] ){ |
3007 *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); | 3175 *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); |
3008 return SQLITE_ERROR; | 3176 return SQLITE_ERROR; |
3009 } | 3177 } |
3010 | 3178 |
| 3179 sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); |
| 3180 |
3011 /* Allocate the sqlite3_vtab structure */ | 3181 /* Allocate the sqlite3_vtab structure */ |
3012 nDb = strlen(argv[1]); | 3182 nDb = (int)strlen(argv[1]); |
3013 nName = strlen(argv[2]); | 3183 nName = (int)strlen(argv[2]); |
3014 pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); | 3184 pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); |
3015 if( !pRtree ){ | 3185 if( !pRtree ){ |
3016 return SQLITE_NOMEM; | 3186 return SQLITE_NOMEM; |
3017 } | 3187 } |
3018 memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); | 3188 memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); |
3019 pRtree->nBusy = 1; | 3189 pRtree->nBusy = 1; |
3020 pRtree->base.pModule = &rtreeModule; | 3190 pRtree->base.pModule = &rtreeModule; |
3021 pRtree->zDb = (char *)&pRtree[1]; | 3191 pRtree->zDb = (char *)&pRtree[1]; |
3022 pRtree->zName = &pRtree->zDb[nDb+1]; | 3192 pRtree->zName = &pRtree->zDb[nDb+1]; |
3023 pRtree->nDim = (argc-4)/2; | 3193 pRtree->nDim = (argc-4)/2; |
3024 pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2; | 3194 pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2; |
3025 pRtree->eCoordType = eCoordType; | 3195 pRtree->eCoordType = eCoordType; |
3026 memcpy(pRtree->zDb, argv[1], nDb); | 3196 memcpy(pRtree->zDb, argv[1], nDb); |
3027 memcpy(pRtree->zName, argv[2], nName); | 3197 memcpy(pRtree->zName, argv[2], nName); |
3028 | 3198 |
3029 /* Figure out the node size to use. */ | 3199 /* Figure out the node size to use. */ |
3030 rc = getNodeSize(db, pRtree, isCreate); | 3200 rc = getNodeSize(db, pRtree, isCreate, pzErr); |
3031 | 3201 |
3032 /* Create/Connect to the underlying relational database schema. If | 3202 /* Create/Connect to the underlying relational database schema. If |
3033 ** that is successful, call sqlite3_declare_vtab() to configure | 3203 ** that is successful, call sqlite3_declare_vtab() to configure |
3034 ** the r-tree table schema. | 3204 ** the r-tree table schema. |
3035 */ | 3205 */ |
3036 if( rc==SQLITE_OK ){ | 3206 if( rc==SQLITE_OK ){ |
3037 if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ | 3207 if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ |
3038 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); | 3208 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
3039 }else{ | 3209 }else{ |
3040 char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]); | 3210 char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]); |
(...skipping 14 matching lines...) Expand all Loading... |
3055 }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ | 3225 }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ |
3056 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); | 3226 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
3057 } | 3227 } |
3058 sqlite3_free(zSql); | 3228 sqlite3_free(zSql); |
3059 } | 3229 } |
3060 } | 3230 } |
3061 | 3231 |
3062 if( rc==SQLITE_OK ){ | 3232 if( rc==SQLITE_OK ){ |
3063 *ppVtab = (sqlite3_vtab *)pRtree; | 3233 *ppVtab = (sqlite3_vtab *)pRtree; |
3064 }else{ | 3234 }else{ |
| 3235 assert( *ppVtab==0 ); |
| 3236 assert( pRtree->nBusy==1 ); |
3065 rtreeRelease(pRtree); | 3237 rtreeRelease(pRtree); |
3066 } | 3238 } |
3067 return rc; | 3239 return rc; |
3068 } | 3240 } |
3069 | 3241 |
3070 | 3242 |
3071 /* | 3243 /* |
3072 ** Implementation of a scalar function that decodes r-tree nodes to | 3244 ** Implementation of a scalar function that decodes r-tree nodes to |
3073 ** human readable strings. This can be used for debugging and analysis. | 3245 ** human readable strings. This can be used for debugging and analysis. |
3074 ** | 3246 ** |
3075 ** The scalar function takes two arguments, a blob of data containing | 3247 ** The scalar function takes two arguments: (1) the number of dimensions |
3076 ** an r-tree node, and the number of dimensions the r-tree indexes. | 3248 ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing |
3077 ** For a two-dimensional r-tree structure called "rt", to deserialize | 3249 ** an r-tree node. For a two-dimensional r-tree structure called "rt", to |
3078 ** all nodes, a statement like: | 3250 ** deserialize all nodes, a statement like: |
3079 ** | 3251 ** |
3080 ** SELECT rtreenode(2, data) FROM rt_node; | 3252 ** SELECT rtreenode(2, data) FROM rt_node; |
3081 ** | 3253 ** |
3082 ** The human readable string takes the form of a Tcl list with one | 3254 ** The human readable string takes the form of a Tcl list with one |
3083 ** entry for each cell in the r-tree node. Each entry is itself a | 3255 ** entry for each cell in the r-tree node. Each entry is itself a |
3084 ** list, containing the 8-byte rowid/pageno followed by the | 3256 ** list, containing the 8-byte rowid/pageno followed by the |
3085 ** <num-dimension>*2 coordinates. | 3257 ** <num-dimension>*2 coordinates. |
3086 */ | 3258 */ |
3087 static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ | 3259 static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
3088 char *zText = 0; | 3260 char *zText = 0; |
3089 RtreeNode node; | 3261 RtreeNode node; |
3090 Rtree tree; | 3262 Rtree tree; |
3091 int ii; | 3263 int ii; |
3092 | 3264 |
3093 UNUSED_PARAMETER(nArg); | 3265 UNUSED_PARAMETER(nArg); |
3094 memset(&node, 0, sizeof(RtreeNode)); | 3266 memset(&node, 0, sizeof(RtreeNode)); |
3095 memset(&tree, 0, sizeof(Rtree)); | 3267 memset(&tree, 0, sizeof(Rtree)); |
3096 tree.nDim = sqlite3_value_int(apArg[0]); | 3268 tree.nDim = sqlite3_value_int(apArg[0]); |
3097 tree.nBytesPerCell = 8 + 8 * tree.nDim; | 3269 tree.nBytesPerCell = 8 + 8 * tree.nDim; |
3098 node.zData = (u8 *)sqlite3_value_blob(apArg[1]); | 3270 node.zData = (u8 *)sqlite3_value_blob(apArg[1]); |
3099 | 3271 |
3100 for(ii=0; ii<NCELL(&node); ii++){ | 3272 for(ii=0; ii<NCELL(&node); ii++){ |
3101 char zCell[512]; | 3273 char zCell[512]; |
3102 int nCell = 0; | 3274 int nCell = 0; |
3103 RtreeCell cell; | 3275 RtreeCell cell; |
3104 int jj; | 3276 int jj; |
3105 | 3277 |
3106 nodeGetCell(&tree, &node, ii, &cell); | 3278 nodeGetCell(&tree, &node, ii, &cell); |
3107 sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid); | 3279 sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid); |
3108 nCell = strlen(zCell); | 3280 nCell = (int)strlen(zCell); |
3109 for(jj=0; jj<tree.nDim*2; jj++){ | 3281 for(jj=0; jj<tree.nDim*2; jj++){ |
3110 sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f); | 3282 #ifndef SQLITE_RTREE_INT_ONLY |
3111 nCell = strlen(zCell); | 3283 sqlite3_snprintf(512-nCell,&zCell[nCell], " %g", |
| 3284 (double)cell.aCoord[jj].f); |
| 3285 #else |
| 3286 sqlite3_snprintf(512-nCell,&zCell[nCell], " %d", |
| 3287 cell.aCoord[jj].i); |
| 3288 #endif |
| 3289 nCell = (int)strlen(zCell); |
3112 } | 3290 } |
3113 | 3291 |
3114 if( zText ){ | 3292 if( zText ){ |
3115 char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell); | 3293 char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell); |
3116 sqlite3_free(zText); | 3294 sqlite3_free(zText); |
3117 zText = zTextNew; | 3295 zText = zTextNew; |
3118 }else{ | 3296 }else{ |
3119 zText = sqlite3_mprintf("{%s}", zCell); | 3297 zText = sqlite3_mprintf("{%s}", zCell); |
3120 } | 3298 } |
3121 } | 3299 } |
3122 | 3300 |
3123 sqlite3_result_text(ctx, zText, -1, sqlite3_free); | 3301 sqlite3_result_text(ctx, zText, -1, sqlite3_free); |
3124 } | 3302 } |
3125 | 3303 |
| 3304 /* This routine implements an SQL function that returns the "depth" parameter |
| 3305 ** from the front of a blob that is an r-tree node. For example: |
| 3306 ** |
| 3307 ** SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1; |
| 3308 ** |
| 3309 ** The depth value is 0 for all nodes other than the root node, and the root |
| 3310 ** node always has nodeno=1, so the example above is the primary use for this |
| 3311 ** routine. This routine is intended for testing and analysis only. |
| 3312 */ |
3126 static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ | 3313 static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
3127 UNUSED_PARAMETER(nArg); | 3314 UNUSED_PARAMETER(nArg); |
3128 if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB | 3315 if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB |
3129 || sqlite3_value_bytes(apArg[0])<2 | 3316 || sqlite3_value_bytes(apArg[0])<2 |
3130 ){ | 3317 ){ |
3131 sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); | 3318 sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); |
3132 }else{ | 3319 }else{ |
3133 u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]); | 3320 u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]); |
3134 sqlite3_result_int(ctx, readInt16(zBlob)); | 3321 sqlite3_result_int(ctx, readInt16(zBlob)); |
3135 } | 3322 } |
3136 } | 3323 } |
3137 | 3324 |
3138 /* | 3325 /* |
3139 ** Register the r-tree module with database handle db. This creates the | 3326 ** Register the r-tree module with database handle db. This creates the |
3140 ** virtual table module "rtree" and the debugging/analysis scalar | 3327 ** virtual table module "rtree" and the debugging/analysis scalar |
3141 ** function "rtreenode". | 3328 ** function "rtreenode". |
3142 */ | 3329 */ |
3143 int sqlite3RtreeInit(sqlite3 *db){ | 3330 int sqlite3RtreeInit(sqlite3 *db){ |
3144 const int utf8 = SQLITE_UTF8; | 3331 const int utf8 = SQLITE_UTF8; |
3145 int rc; | 3332 int rc; |
3146 | 3333 |
3147 rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); | 3334 rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); |
3148 if( rc==SQLITE_OK ){ | 3335 if( rc==SQLITE_OK ){ |
3149 rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); | 3336 rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); |
3150 } | 3337 } |
3151 if( rc==SQLITE_OK ){ | 3338 if( rc==SQLITE_OK ){ |
| 3339 #ifdef SQLITE_RTREE_INT_ONLY |
| 3340 void *c = (void *)RTREE_COORD_INT32; |
| 3341 #else |
3152 void *c = (void *)RTREE_COORD_REAL32; | 3342 void *c = (void *)RTREE_COORD_REAL32; |
| 3343 #endif |
3153 rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0); | 3344 rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0); |
3154 } | 3345 } |
3155 if( rc==SQLITE_OK ){ | 3346 if( rc==SQLITE_OK ){ |
3156 void *c = (void *)RTREE_COORD_INT32; | 3347 void *c = (void *)RTREE_COORD_INT32; |
3157 rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0); | 3348 rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0); |
3158 } | 3349 } |
3159 | 3350 |
3160 return rc; | 3351 return rc; |
3161 } | 3352 } |
3162 | 3353 |
3163 /* | 3354 /* |
3164 ** A version of sqlite3_free() that can be used as a callback. This is used | 3355 ** This routine deletes the RtreeGeomCallback object that was attached |
3165 ** in two places - as the destructor for the blob value returned by the | 3356 ** one of the SQL functions create by sqlite3_rtree_geometry_callback() |
3166 ** invocation of a geometry function, and as the destructor for the geometry | 3357 ** or sqlite3_rtree_query_callback(). In other words, this routine is the |
3167 ** functions themselves. | 3358 ** destructor for an RtreeGeomCallback objecct. This routine is called when |
| 3359 ** the corresponding SQL function is deleted. |
3168 */ | 3360 */ |
3169 static void doSqlite3Free(void *p){ | 3361 static void rtreeFreeCallback(void *p){ |
| 3362 RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p; |
| 3363 if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext); |
3170 sqlite3_free(p); | 3364 sqlite3_free(p); |
3171 } | 3365 } |
3172 | 3366 |
3173 /* | 3367 /* |
3174 ** Each call to sqlite3_rtree_geometry_callback() creates an ordinary SQLite | 3368 ** Each call to sqlite3_rtree_geometry_callback() or |
3175 ** scalar user function. This C function is the callback used for all such | 3369 ** sqlite3_rtree_query_callback() creates an ordinary SQLite |
3176 ** registered SQL functions. | 3370 ** scalar function that is implemented by this routine. |
3177 ** | 3371 ** |
3178 ** The scalar user functions return a blob that is interpreted by r-tree | 3372 ** All this function does is construct an RtreeMatchArg object that |
3179 ** table MATCH operators. | 3373 ** contains the geometry-checking callback routines and a list of |
| 3374 ** parameters to this function, then return that RtreeMatchArg object |
| 3375 ** as a BLOB. |
| 3376 ** |
| 3377 ** The R-Tree MATCH operator will read the returned BLOB, deserialize |
| 3378 ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure |
| 3379 ** out which elements of the R-Tree should be returned by the query. |
3180 */ | 3380 */ |
3181 static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ | 3381 static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ |
3182 RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); | 3382 RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); |
3183 RtreeMatchArg *pBlob; | 3383 RtreeMatchArg *pBlob; |
3184 int nBlob; | 3384 int nBlob; |
3185 | 3385 |
3186 nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(double); | 3386 nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue); |
3187 pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob); | 3387 pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob); |
3188 if( !pBlob ){ | 3388 if( !pBlob ){ |
3189 sqlite3_result_error_nomem(ctx); | 3389 sqlite3_result_error_nomem(ctx); |
3190 }else{ | 3390 }else{ |
3191 int i; | 3391 int i; |
3192 pBlob->magic = RTREE_GEOMETRY_MAGIC; | 3392 pBlob->magic = RTREE_GEOMETRY_MAGIC; |
3193 pBlob->xGeom = pGeomCtx->xGeom; | 3393 pBlob->cb = pGeomCtx[0]; |
3194 pBlob->pContext = pGeomCtx->pContext; | |
3195 pBlob->nParam = nArg; | 3394 pBlob->nParam = nArg; |
3196 for(i=0; i<nArg; i++){ | 3395 for(i=0; i<nArg; i++){ |
| 3396 #ifdef SQLITE_RTREE_INT_ONLY |
| 3397 pBlob->aParam[i] = sqlite3_value_int64(aArg[i]); |
| 3398 #else |
3197 pBlob->aParam[i] = sqlite3_value_double(aArg[i]); | 3399 pBlob->aParam[i] = sqlite3_value_double(aArg[i]); |
| 3400 #endif |
3198 } | 3401 } |
3199 sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free); | 3402 sqlite3_result_blob(ctx, pBlob, nBlob, sqlite3_free); |
3200 } | 3403 } |
3201 } | 3404 } |
3202 | 3405 |
3203 /* | 3406 /* |
3204 ** Register a new geometry function for use with the r-tree MATCH operator. | 3407 ** Register a new geometry function for use with the r-tree MATCH operator. |
3205 */ | 3408 */ |
3206 int sqlite3_rtree_geometry_callback( | 3409 int sqlite3_rtree_geometry_callback( |
3207 sqlite3 *db, | 3410 sqlite3 *db, /* Register SQL function on this connection */ |
3208 const char *zGeom, | 3411 const char *zGeom, /* Name of the new SQL function */ |
3209 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *), | 3412 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */ |
3210 void *pContext | 3413 void *pContext /* Extra data associated with the callback */ |
3211 ){ | 3414 ){ |
3212 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ | 3415 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ |
3213 | 3416 |
3214 /* Allocate and populate the context object. */ | 3417 /* Allocate and populate the context object. */ |
3215 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); | 3418 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); |
3216 if( !pGeomCtx ) return SQLITE_NOMEM; | 3419 if( !pGeomCtx ) return SQLITE_NOMEM; |
3217 pGeomCtx->xGeom = xGeom; | 3420 pGeomCtx->xGeom = xGeom; |
| 3421 pGeomCtx->xQueryFunc = 0; |
| 3422 pGeomCtx->xDestructor = 0; |
3218 pGeomCtx->pContext = pContext; | 3423 pGeomCtx->pContext = pContext; |
| 3424 return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, |
| 3425 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback |
| 3426 ); |
| 3427 } |
3219 | 3428 |
3220 /* Create the new user-function. Register a destructor function to delete | 3429 /* |
3221 ** the context object when it is no longer required. */ | 3430 ** Register a new 2nd-generation geometry function for use with the |
3222 return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, | 3431 ** r-tree MATCH operator. |
3223 (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free | 3432 */ |
| 3433 int sqlite3_rtree_query_callback( |
| 3434 sqlite3 *db, /* Register SQL function on this connection */ |
| 3435 const char *zQueryFunc, /* Name of new SQL function */ |
| 3436 int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */ |
| 3437 void *pContext, /* Extra data passed into the callback */ |
| 3438 void (*xDestructor)(void*) /* Destructor for the extra data */ |
| 3439 ){ |
| 3440 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ |
| 3441 |
| 3442 /* Allocate and populate the context object. */ |
| 3443 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); |
| 3444 if( !pGeomCtx ) return SQLITE_NOMEM; |
| 3445 pGeomCtx->xGeom = 0; |
| 3446 pGeomCtx->xQueryFunc = xQueryFunc; |
| 3447 pGeomCtx->xDestructor = xDestructor; |
| 3448 pGeomCtx->pContext = pContext; |
| 3449 return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY, |
| 3450 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback |
3224 ); | 3451 ); |
3225 } | 3452 } |
3226 | 3453 |
3227 #if !SQLITE_CORE | 3454 #if !SQLITE_CORE |
3228 int sqlite3_extension_init( | 3455 #ifdef _WIN32 |
| 3456 __declspec(dllexport) |
| 3457 #endif |
| 3458 int sqlite3_rtree_init( |
3229 sqlite3 *db, | 3459 sqlite3 *db, |
3230 char **pzErrMsg, | 3460 char **pzErrMsg, |
3231 const sqlite3_api_routines *pApi | 3461 const sqlite3_api_routines *pApi |
3232 ){ | 3462 ){ |
3233 SQLITE_EXTENSION_INIT2(pApi) | 3463 SQLITE_EXTENSION_INIT2(pApi) |
3234 return sqlite3RtreeInit(db); | 3464 return sqlite3RtreeInit(db); |
3235 } | 3465 } |
3236 #endif | 3466 #endif |
3237 | 3467 |
3238 #endif | 3468 #endif |
OLD | NEW |