| Index: third_party/numerics/safe_math_impl.h
|
| diff --git a/third_party/numerics/safe_math_impl.h b/third_party/numerics/safe_math_impl.h
|
| deleted file mode 100644
|
| index 4bf59e64e07c6ce6edde7deee2e2014bc623749c..0000000000000000000000000000000000000000
|
| --- a/third_party/numerics/safe_math_impl.h
|
| +++ /dev/null
|
| @@ -1,502 +0,0 @@
|
| -// Copyright 2014 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#ifndef SAFE_MATH_IMPL_H_
|
| -#define SAFE_MATH_IMPL_H_
|
| -
|
| -#include <stdint.h>
|
| -
|
| -#include <cmath>
|
| -#include <cstdlib>
|
| -#include <limits>
|
| -
|
| -#include "../macros.h"
|
| -#include "../template_util.h"
|
| -#include "safe_conversions.h"
|
| -
|
| -namespace base {
|
| -namespace internal {
|
| -
|
| -// Everything from here up to the floating point operations is portable C++,
|
| -// but it may not be fast. This code could be split based on
|
| -// platform/architecture and replaced with potentially faster implementations.
|
| -
|
| -// Integer promotion templates used by the portable checked integer arithmetic.
|
| -template <size_t Size, bool IsSigned>
|
| -struct IntegerForSizeAndSign;
|
| -template <>
|
| -struct IntegerForSizeAndSign<1, true> {
|
| - typedef int8_t type;
|
| -};
|
| -template <>
|
| -struct IntegerForSizeAndSign<1, false> {
|
| - typedef uint8_t type;
|
| -};
|
| -template <>
|
| -struct IntegerForSizeAndSign<2, true> {
|
| - typedef int16_t type;
|
| -};
|
| -template <>
|
| -struct IntegerForSizeAndSign<2, false> {
|
| - typedef uint16_t type;
|
| -};
|
| -template <>
|
| -struct IntegerForSizeAndSign<4, true> {
|
| - typedef int32_t type;
|
| -};
|
| -template <>
|
| -struct IntegerForSizeAndSign<4, false> {
|
| - typedef uint32_t type;
|
| -};
|
| -template <>
|
| -struct IntegerForSizeAndSign<8, true> {
|
| - typedef int64_t type;
|
| -};
|
| -template <>
|
| -struct IntegerForSizeAndSign<8, false> {
|
| - typedef uint64_t type;
|
| -};
|
| -
|
| -// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
|
| -// support 128-bit math, then the ArithmeticPromotion template below will need
|
| -// to be updated (or more likely replaced with a decltype expression).
|
| -
|
| -template <typename Integer>
|
| -struct UnsignedIntegerForSize {
|
| - typedef typename enable_if<
|
| - std::numeric_limits<Integer>::is_integer,
|
| - typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type;
|
| -};
|
| -
|
| -template <typename Integer>
|
| -struct SignedIntegerForSize {
|
| - typedef typename enable_if<
|
| - std::numeric_limits<Integer>::is_integer,
|
| - typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type;
|
| -};
|
| -
|
| -template <typename Integer>
|
| -struct TwiceWiderInteger {
|
| - typedef typename enable_if<
|
| - std::numeric_limits<Integer>::is_integer,
|
| - typename IntegerForSizeAndSign<
|
| - sizeof(Integer) * 2,
|
| - std::numeric_limits<Integer>::is_signed>::type>::type type;
|
| -};
|
| -
|
| -template <typename Integer>
|
| -struct PositionOfSignBit {
|
| - static const typename enable_if<std::numeric_limits<Integer>::is_integer,
|
| - size_t>::type value = 8 * sizeof(Integer) - 1;
|
| -};
|
| -
|
| -// Helper templates for integer manipulations.
|
| -
|
| -template <typename T>
|
| -bool HasSignBit(T x) {
|
| - // Cast to unsigned since right shift on signed is undefined.
|
| - return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >>
|
| - PositionOfSignBit<T>::value);
|
| -}
|
| -
|
| -// This wrapper undoes the standard integer promotions.
|
| -template <typename T>
|
| -T BinaryComplement(T x) {
|
| - return ~x;
|
| -}
|
| -
|
| -// Here are the actual portable checked integer math implementations.
|
| -// TODO(jschuh): Break this code out from the enable_if pattern and find a clean
|
| -// way to coalesce things into the CheckedNumericState specializations below.
|
| -
|
| -template <typename T>
|
| -typename enable_if<std::numeric_limits<T>::is_integer, T>::type
|
| -CheckedAdd(T x, T y, RangeConstraint* validity) {
|
| - // Since the value of x+y is undefined if we have a signed type, we compute
|
| - // it using the unsigned type of the same size.
|
| - typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
|
| - UnsignedDst ux = static_cast<UnsignedDst>(x);
|
| - UnsignedDst uy = static_cast<UnsignedDst>(y);
|
| - UnsignedDst uresult = ux + uy;
|
| - // Addition is valid if the sign of (x + y) is equal to either that of x or
|
| - // that of y.
|
| - if (std::numeric_limits<T>::is_signed) {
|
| - if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy))))
|
| - *validity = RANGE_VALID;
|
| - else // Direction of wrap is inverse of result sign.
|
| - *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
|
| -
|
| - } else { // Unsigned is either valid or overflow.
|
| - *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW;
|
| - }
|
| - return static_cast<T>(uresult);
|
| -}
|
| -
|
| -template <typename T>
|
| -typename enable_if<std::numeric_limits<T>::is_integer, T>::type
|
| -CheckedSub(T x, T y, RangeConstraint* validity) {
|
| - // Since the value of x+y is undefined if we have a signed type, we compute
|
| - // it using the unsigned type of the same size.
|
| - typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
|
| - UnsignedDst ux = static_cast<UnsignedDst>(x);
|
| - UnsignedDst uy = static_cast<UnsignedDst>(y);
|
| - UnsignedDst uresult = ux - uy;
|
| - // Subtraction is valid if either x and y have same sign, or (x-y) and x have
|
| - // the same sign.
|
| - if (std::numeric_limits<T>::is_signed) {
|
| - if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy))))
|
| - *validity = RANGE_VALID;
|
| - else // Direction of wrap is inverse of result sign.
|
| - *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
|
| -
|
| - } else { // Unsigned is either valid or underflow.
|
| - *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW;
|
| - }
|
| - return static_cast<T>(uresult);
|
| -}
|
| -
|
| -// Integer multiplication is a bit complicated. In the fast case we just
|
| -// we just promote to a twice wider type, and range check the result. In the
|
| -// slow case we need to manually check that the result won't be truncated by
|
| -// checking with division against the appropriate bound.
|
| -template <typename T>
|
| -typename enable_if<
|
| - std::numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t),
|
| - T>::type
|
| -CheckedMul(T x, T y, RangeConstraint* validity) {
|
| - typedef typename TwiceWiderInteger<T>::type IntermediateType;
|
| - IntermediateType tmp =
|
| - static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y);
|
| - *validity = DstRangeRelationToSrcRange<T>(tmp);
|
| - return static_cast<T>(tmp);
|
| -}
|
| -
|
| -template <typename T>
|
| -typename enable_if<std::numeric_limits<T>::is_integer&& std::numeric_limits<
|
| - T>::is_signed&&(sizeof(T) * 2 > sizeof(uintmax_t)),
|
| - T>::type
|
| -CheckedMul(T x, T y, RangeConstraint* validity) {
|
| - // if either side is zero then the result will be zero.
|
| - if (!(x || y)) {
|
| - return RANGE_VALID;
|
| -
|
| - } else if (x > 0) {
|
| - if (y > 0)
|
| - *validity =
|
| - x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW;
|
| - else
|
| - *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID
|
| - : RANGE_UNDERFLOW;
|
| -
|
| - } else {
|
| - if (y > 0)
|
| - *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID
|
| - : RANGE_UNDERFLOW;
|
| - else
|
| - *validity =
|
| - y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW;
|
| - }
|
| -
|
| - return x * y;
|
| -}
|
| -
|
| -template <typename T>
|
| -typename enable_if<std::numeric_limits<T>::is_integer &&
|
| - !std::numeric_limits<T>::is_signed &&
|
| - (sizeof(T) * 2 > sizeof(uintmax_t)),
|
| - T>::type
|
| -CheckedMul(T x, T y, RangeConstraint* validity) {
|
| - *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y)
|
| - ? RANGE_VALID
|
| - : RANGE_OVERFLOW;
|
| - return x * y;
|
| -}
|
| -
|
| -// Division just requires a check for an invalid negation on signed min/-1.
|
| -template <typename T>
|
| -T CheckedDiv(
|
| - T x,
|
| - T y,
|
| - RangeConstraint* validity,
|
| - typename enable_if<std::numeric_limits<T>::is_integer, int>::type = 0) {
|
| - if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() &&
|
| - y == static_cast<T>(-1)) {
|
| - *validity = RANGE_OVERFLOW;
|
| - return std::numeric_limits<T>::min();
|
| - }
|
| -
|
| - *validity = RANGE_VALID;
|
| - return x / y;
|
| -}
|
| -
|
| -template <typename T>
|
| -typename enable_if<
|
| - std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed,
|
| - T>::type
|
| -CheckedMod(T x, T y, RangeConstraint* validity) {
|
| - *validity = y > 0 ? RANGE_VALID : RANGE_INVALID;
|
| - return x % y;
|
| -}
|
| -
|
| -template <typename T>
|
| -typename enable_if<
|
| - std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
|
| - T>::type
|
| -CheckedMod(T x, T y, RangeConstraint* validity) {
|
| - *validity = RANGE_VALID;
|
| - return x % y;
|
| -}
|
| -
|
| -template <typename T>
|
| -typename enable_if<
|
| - std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed,
|
| - T>::type
|
| -CheckedNeg(T value, RangeConstraint* validity) {
|
| - *validity =
|
| - value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
|
| - // The negation of signed min is min, so catch that one.
|
| - return -value;
|
| -}
|
| -
|
| -template <typename T>
|
| -typename enable_if<
|
| - std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
|
| - T>::type
|
| -CheckedNeg(T value, RangeConstraint* validity) {
|
| - // The only legal unsigned negation is zero.
|
| - *validity = value ? RANGE_UNDERFLOW : RANGE_VALID;
|
| - return static_cast<T>(
|
| - -static_cast<typename SignedIntegerForSize<T>::type>(value));
|
| -}
|
| -
|
| -template <typename T>
|
| -typename enable_if<
|
| - std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed,
|
| - T>::type
|
| -CheckedAbs(T value, RangeConstraint* validity) {
|
| - *validity =
|
| - value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
|
| - return std::abs(value);
|
| -}
|
| -
|
| -template <typename T>
|
| -typename enable_if<
|
| - std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
|
| - T>::type
|
| -CheckedAbs(T value, RangeConstraint* validity) {
|
| - // Absolute value of a positive is just its identiy.
|
| - *validity = RANGE_VALID;
|
| - return value;
|
| -}
|
| -
|
| -// These are the floating point stubs that the compiler needs to see. Only the
|
| -// negation operation is ever called.
|
| -#define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \
|
| - template <typename T> \
|
| - typename enable_if<std::numeric_limits<T>::is_iec559, T>::type \
|
| - Checked##NAME(T, T, RangeConstraint*) { \
|
| - NOTREACHED(); \
|
| - return 0; \
|
| - }
|
| -
|
| -BASE_FLOAT_ARITHMETIC_STUBS(Add)
|
| -BASE_FLOAT_ARITHMETIC_STUBS(Sub)
|
| -BASE_FLOAT_ARITHMETIC_STUBS(Mul)
|
| -BASE_FLOAT_ARITHMETIC_STUBS(Div)
|
| -BASE_FLOAT_ARITHMETIC_STUBS(Mod)
|
| -
|
| -#undef BASE_FLOAT_ARITHMETIC_STUBS
|
| -
|
| -template <typename T>
|
| -typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg(
|
| - T value,
|
| - RangeConstraint*) {
|
| - return -value;
|
| -}
|
| -
|
| -template <typename T>
|
| -typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs(
|
| - T value,
|
| - RangeConstraint*) {
|
| - return std::abs(value);
|
| -}
|
| -
|
| -// Floats carry around their validity state with them, but integers do not. So,
|
| -// we wrap the underlying value in a specialization in order to hide that detail
|
| -// and expose an interface via accessors.
|
| -enum NumericRepresentation {
|
| - NUMERIC_INTEGER,
|
| - NUMERIC_FLOATING,
|
| - NUMERIC_UNKNOWN
|
| -};
|
| -
|
| -template <typename NumericType>
|
| -struct GetNumericRepresentation {
|
| - static const NumericRepresentation value =
|
| - std::numeric_limits<NumericType>::is_integer
|
| - ? NUMERIC_INTEGER
|
| - : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING
|
| - : NUMERIC_UNKNOWN);
|
| -};
|
| -
|
| -template <typename T, NumericRepresentation type =
|
| - GetNumericRepresentation<T>::value>
|
| -class CheckedNumericState {};
|
| -
|
| -// Integrals require quite a bit of additional housekeeping to manage state.
|
| -template <typename T>
|
| -class CheckedNumericState<T, NUMERIC_INTEGER> {
|
| - private:
|
| - T value_;
|
| - RangeConstraint validity_;
|
| -
|
| - public:
|
| - template <typename Src, NumericRepresentation type>
|
| - friend class CheckedNumericState;
|
| -
|
| - CheckedNumericState() : value_(0), validity_(RANGE_VALID) {}
|
| -
|
| - template <typename Src>
|
| - CheckedNumericState(Src value, RangeConstraint validity)
|
| - : value_(value),
|
| - validity_(GetRangeConstraint(validity |
|
| - DstRangeRelationToSrcRange<T>(value))) {
|
| - COMPILE_ASSERT(std::numeric_limits<Src>::is_specialized,
|
| - argument_must_be_numeric);
|
| - }
|
| -
|
| - // Copy constructor.
|
| - template <typename Src>
|
| - CheckedNumericState(const CheckedNumericState<Src>& rhs)
|
| - : value_(static_cast<T>(rhs.value())),
|
| - validity_(GetRangeConstraint(
|
| - rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {}
|
| -
|
| - template <typename Src>
|
| - explicit CheckedNumericState(
|
| - Src value,
|
| - typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
|
| - 0)
|
| - : value_(static_cast<T>(value)),
|
| - validity_(DstRangeRelationToSrcRange<T>(value)) {}
|
| -
|
| - RangeConstraint validity() const { return validity_; }
|
| - T value() const { return value_; }
|
| -};
|
| -
|
| -// Floating points maintain their own validity, but need translation wrappers.
|
| -template <typename T>
|
| -class CheckedNumericState<T, NUMERIC_FLOATING> {
|
| - private:
|
| - T value_;
|
| -
|
| - public:
|
| - template <typename Src, NumericRepresentation type>
|
| - friend class CheckedNumericState;
|
| -
|
| - CheckedNumericState() : value_(0.0) {}
|
| -
|
| - template <typename Src>
|
| - CheckedNumericState(
|
| - Src value,
|
| - RangeConstraint validity,
|
| - typename enable_if<std::numeric_limits<Src>::is_integer, int>::type = 0) {
|
| - switch (DstRangeRelationToSrcRange<T>(value)) {
|
| - case RANGE_VALID:
|
| - value_ = static_cast<T>(value);
|
| - break;
|
| -
|
| - case RANGE_UNDERFLOW:
|
| - value_ = -std::numeric_limits<T>::infinity();
|
| - break;
|
| -
|
| - case RANGE_OVERFLOW:
|
| - value_ = std::numeric_limits<T>::infinity();
|
| - break;
|
| -
|
| - case RANGE_INVALID:
|
| - value_ = std::numeric_limits<T>::quiet_NaN();
|
| - break;
|
| -
|
| - default:
|
| - NOTREACHED();
|
| - }
|
| - }
|
| -
|
| - template <typename Src>
|
| - explicit CheckedNumericState(
|
| - Src value,
|
| - typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
|
| - 0)
|
| - : value_(static_cast<T>(value)) {}
|
| -
|
| - // Copy constructor.
|
| - template <typename Src>
|
| - CheckedNumericState(const CheckedNumericState<Src>& rhs)
|
| - : value_(static_cast<T>(rhs.value())) {}
|
| -
|
| - RangeConstraint validity() const {
|
| - return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(),
|
| - value_ >= -std::numeric_limits<T>::max());
|
| - }
|
| - T value() const { return value_; }
|
| -};
|
| -
|
| -// For integers less than 128-bit and floats 32-bit or larger, we can distil
|
| -// C/C++ arithmetic promotions down to two simple rules:
|
| -// 1. The type with the larger maximum exponent always takes precedence.
|
| -// 2. The resulting type must be promoted to at least an int.
|
| -// The following template specializations implement that promotion logic.
|
| -enum ArithmeticPromotionCategory {
|
| - LEFT_PROMOTION,
|
| - RIGHT_PROMOTION,
|
| - DEFAULT_PROMOTION
|
| -};
|
| -
|
| -template <typename Lhs,
|
| - typename Rhs = Lhs,
|
| - ArithmeticPromotionCategory Promotion =
|
| - (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
|
| - ? (MaxExponent<Lhs>::value > MaxExponent<int>::value
|
| - ? LEFT_PROMOTION
|
| - : DEFAULT_PROMOTION)
|
| - : (MaxExponent<Rhs>::value > MaxExponent<int>::value
|
| - ? RIGHT_PROMOTION
|
| - : DEFAULT_PROMOTION) >
|
| -struct ArithmeticPromotion;
|
| -
|
| -template <typename Lhs, typename Rhs>
|
| -struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> {
|
| - typedef Lhs type;
|
| -};
|
| -
|
| -template <typename Lhs, typename Rhs>
|
| -struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
|
| - typedef Rhs type;
|
| -};
|
| -
|
| -template <typename Lhs, typename Rhs>
|
| -struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> {
|
| - typedef int type;
|
| -};
|
| -
|
| -// We can statically check if operations on the provided types can wrap, so we
|
| -// can skip the checked operations if they're not needed. So, for an integer we
|
| -// care if the destination type preserves the sign and is twice the width of
|
| -// the source.
|
| -template <typename T, typename Lhs, typename Rhs>
|
| -struct IsIntegerArithmeticSafe {
|
| - static const bool value = !std::numeric_limits<T>::is_iec559 &&
|
| - StaticDstRangeRelationToSrcRange<T, Lhs>::value ==
|
| - NUMERIC_RANGE_CONTAINED &&
|
| - sizeof(T) >= (2 * sizeof(Lhs)) &&
|
| - StaticDstRangeRelationToSrcRange<T, Rhs>::value !=
|
| - NUMERIC_RANGE_CONTAINED &&
|
| - sizeof(T) >= (2 * sizeof(Rhs));
|
| -};
|
| -
|
| -} // namespace internal
|
| -} // namespace base
|
| -
|
| -#endif // SAFE_MATH_IMPL_H_
|
|
|