Chromium Code Reviews| Index: chrome/browser/autocomplete/scored_history_match_builder_impl.cc |
| diff --git a/chrome/browser/history/scored_history_match.cc b/chrome/browser/autocomplete/scored_history_match_builder_impl.cc |
| similarity index 53% |
| rename from chrome/browser/history/scored_history_match.cc |
| rename to chrome/browser/autocomplete/scored_history_match_builder_impl.cc |
| index 1f1184c859273b31a94a901238661ce72bd018d8..68c4ba462f38443da364ea3ed2935badfc658ac5 100644 |
| --- a/chrome/browser/history/scored_history_match.cc |
| +++ b/chrome/browser/autocomplete/scored_history_match_builder_impl.cc |
| @@ -2,313 +2,222 @@ |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| -#include "chrome/browser/history/scored_history_match.h" |
| - |
| -#include <algorithm> |
| -#include <functional> |
| -#include <iterator> |
| -#include <numeric> |
| -#include <set> |
| +#include "chrome/browser/autocomplete/scored_history_match_builder_impl.h" |
| #include <math.h> |
| +#include <algorithm> |
|
Mark P
2015/02/07 07:00:12
include vector
(because I think we dropped it from
sdefresne
2015/02/09 10:01:13
Ack.
|
| + |
| #include "base/logging.h" |
| #include "base/metrics/histogram.h" |
| #include "base/strings/string_util.h" |
| #include "base/strings/utf_string_conversions.h" |
| #include "chrome/browser/autocomplete/history_url_provider.h" |
| +#include "components/bookmarks/browser/bookmark_model.h" |
| #include "components/bookmarks/browser/bookmark_utils.h" |
| #include "components/history/core/browser/history_client.h" |
| #include "components/omnibox/omnibox_field_trial.h" |
| #include "components/omnibox/url_prefix.h" |
| #include "content/public/browser/browser_thread.h" |
| -namespace history { |
| - |
| -// ScoredHistoryMatch ---------------------------------------------------------- |
| - |
| -// static |
| -const size_t ScoredHistoryMatch::kMaxVisitsToScore = 10; |
| -const int ScoredHistoryMatch::kDaysToPrecomputeRecencyScoresFor = 366; |
| -const int ScoredHistoryMatch::kMaxRawTermScore = 30; |
| -float* ScoredHistoryMatch::raw_term_score_to_topicality_score_ = NULL; |
| -float* ScoredHistoryMatch::days_ago_to_recency_score_ = NULL; |
| -bool ScoredHistoryMatch::initialized_ = false; |
| -int ScoredHistoryMatch::bookmark_value_ = 1; |
| -bool ScoredHistoryMatch::allow_tld_matches_ = false; |
| -bool ScoredHistoryMatch::allow_scheme_matches_ = false; |
| -bool ScoredHistoryMatch::also_do_hup_like_scoring_ = false; |
| -int ScoredHistoryMatch::max_assigned_score_for_non_inlineable_matches_ = -1; |
| - |
| -ScoredHistoryMatch::ScoredHistoryMatch() |
| - : raw_score_(0), |
| - can_inline_(false) { |
| - Init(); |
| -} |
| - |
| -ScoredHistoryMatch::ScoredHistoryMatch( |
| - const URLRow& row, |
| - const VisitInfoVector& visits, |
| - const std::string& languages, |
| - const base::string16& lower_string, |
| - const String16Vector& terms, |
| - const WordStarts& terms_to_word_starts_offsets, |
| - const RowWordStarts& word_starts, |
| - const base::Time now, |
| - HistoryClient* history_client) |
| - : HistoryMatch(row, 0, false, false), |
| - raw_score_(0), |
| - can_inline_(false) { |
| - Init(); |
| - |
| - GURL gurl = row.url(); |
| - if (!gurl.is_valid()) |
| - return; |
| - |
| - // Figure out where each search term appears in the URL and/or page title |
| - // so that we can score as well as provide autocomplete highlighting. |
| - base::OffsetAdjuster::Adjustments adjustments; |
| - base::string16 url = |
| - bookmarks::CleanUpUrlForMatching(gurl, languages, &adjustments); |
| - base::string16 title = bookmarks::CleanUpTitleForMatching(row.title()); |
| - int term_num = 0; |
| - for (String16Vector::const_iterator iter = terms.begin(); iter != terms.end(); |
| - ++iter, ++term_num) { |
| - base::string16 term = *iter; |
| - TermMatches url_term_matches = MatchTermInString(term, url, term_num); |
| - TermMatches title_term_matches = MatchTermInString(term, title, term_num); |
| - if (url_term_matches.empty() && title_term_matches.empty()) |
| - return; // A term was not found in either URL or title - reject. |
| - url_matches_.insert(url_matches_.end(), url_term_matches.begin(), |
| - url_term_matches.end()); |
| - title_matches_.insert(title_matches_.end(), title_term_matches.begin(), |
| - title_term_matches.end()); |
| +namespace { |
| + |
| +// The number of days of recency scores to precompute. |
| +const int kDaysToPrecomputeRecencyScoresFor = 366; |
| + |
| +// The number of raw term score buckets use; raw term scores |
| +// greater this are capped at the score of the largest bucket. |
| +const int kMaxRawTermScore = 30; |
| + |
| +// If true, assign raw scores to be max(whatever it normally would be, |
| +// a score that's similar to the score HistoryURL provider would assign). |
| +// This variable is set in the constructor by examining the field trial |
| +// state. |
| +const bool kAlsoDoHupLikeScoring = false; |
| + |
| +// Pre-computed information to speed up calculating recency scores. |
| +// |days_ago_to_recency_score_| is a simple array mapping how long |
|
Mark P
2015/02/07 07:00:12
extra underscore
sdefresne
2015/02/09 10:01:13
Done.
|
| +// ago a page was visited (in days) to the recency score we should |
| +// assign it. This allows easy lookups of scores without requiring |
| +// math. This is initialized upon first use of GetRecencyScore(), |
|
Mark P
2015/02/07 07:00:12
This last sentence is wrong now.
sdefresne
2015/02/09 10:01:13
Fixed.
|
| +// which calls FillInDaysAgoToRecencyScoreArray(), |
| +const float* days_ago_to_recency_score = nullptr; |
| + |
| +// Pre-computed information to speed up calculating topicality |
| +// scores. |raw_term_score_to_topicality_score_| is a simple array |
|
Mark P
2015/02/07 07:00:12
extra underscore
sdefresne
2015/02/09 10:01:13
Ack.
|
| +// mapping how raw terms scores (a weighted sum of the number of |
| +// hits for the term, weighted by how important the hit is: |
| +// hostname, path, etc.) to the topicality score we should assign |
| +// it. This allows easy lookups of scores without requiring math. |
| +// This is initialized upon first use of GetTopicalityScore(), |
|
Mark P
2015/02/07 07:00:13
This last sentence is wrong now.
sdefresne
2015/02/09 10:01:13
Reworded.
|
| +// which calls FillInTermScoreToTopicalityScoreArray(). |
| +const float* raw_term_score_to_topicality_score = nullptr; |
| + |
| +// The maximum score that can be assigned to non-inlineable matches. |
| +// This is useful because often we want inlineable matches to come |
| +// first (even if they don't sometimes score as well as non-inlineable |
| +// matches) because if a non-inlineable match comes first than all matches |
| +// will get demoted later in HistoryQuickProvider to non-inlineable scores. |
| +// Set to -1 to indicate no maximum score. |
| +int max_assigned_score_for_non_inlineable_matches = -1; |
| + |
| +// Precalculates raw_term_score_to_topicality_score, used in |
| +// GetTopicalityScore(). |
| +void InitRawTermScoreToTopicalityScoreArray() { |
| + DCHECK(!raw_term_score_to_topicality_score); |
| + float* new_raw_term_score_to_topicality_score = new float[kMaxRawTermScore]; |
| + for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) { |
| + float topicality_score; |
| + if (term_score < 10) { |
| + // If the term scores less than 10 points (no full-credit hit, or |
| + // no combination of hits that score that well), then the topicality |
| + // score is linear in the term score. |
| + topicality_score = 0.1 * term_score; |
| + } else { |
| + // For term scores of at least ten points, pass them through a log |
| + // function so a score of 10 points gets a 1.0 (to meet up exactly |
| + // with the linear component) and increases logarithmically until |
| + // maxing out at 30 points, with computes to a score around 2.1. |
| + topicality_score = (1.0 + 2.25 * log10(0.1 * term_score)); |
| + } |
| + new_raw_term_score_to_topicality_score[term_score] = topicality_score; |
| } |
| + raw_term_score_to_topicality_score = new_raw_term_score_to_topicality_score; |
| +} |
| - // Sort matches by offset and eliminate any which overlap. |
| - // TODO(mpearson): Investigate whether this has any meaningful |
| - // effect on scoring. (It's necessary at some point: removing |
| - // overlaps and sorting is needed to decide what to highlight in the |
| - // suggestion string. But this sort and de-overlap doesn't have to |
| - // be done before scoring.) |
| - url_matches_ = SortAndDeoverlapMatches(url_matches_); |
| - title_matches_ = SortAndDeoverlapMatches(title_matches_); |
| - |
| - // We can inline autocomplete a match if: |
| - // 1) there is only one search term |
| - // 2) AND the match begins immediately after one of the prefixes in |
| - // URLPrefix such as http://www and https:// (note that one of these |
| - // is the empty prefix, for cases where the user has typed the scheme) |
| - // 3) AND the search string does not end in whitespace (making it look to |
| - // the IMUI as though there is a single search term when actually there |
| - // is a second, empty term). |
| - // |best_inlineable_prefix| stores the inlineable prefix computed in |
| - // clause (2) or NULL if no such prefix exists. (The URL is not inlineable.) |
| - // Note that using the best prefix here means that when multiple |
| - // prefixes match, we'll choose to inline following the longest one. |
| - // For a URL like "http://www.washingtonmutual.com", this means |
| - // typing "w" will inline "ashington..." instead of "ww.washington...". |
| - const URLPrefix* best_inlineable_prefix = |
| - (!url_matches_.empty() && (terms.size() == 1)) ? |
| - URLPrefix::BestURLPrefix(base::UTF8ToUTF16(gurl.spec()), terms[0]) : |
| - NULL; |
| - can_inline_ = (best_inlineable_prefix != NULL) && |
| - !IsWhitespace(*(lower_string.rbegin())); |
| - if (can_inline_) { |
| - // Initialize innermost_match. |
| - // The idea here is that matches that occur in the scheme or |
| - // "www." are worse than matches which don't. For the URLs |
| - // "http://www.google.com" and "http://wellsfargo.com", we want |
| - // the omnibox input "w" to cause the latter URL to rank higher |
| - // than the former. Note that this is not the same as checking |
| - // whether one match's inlinable prefix has more components than |
| - // the other match's, since in this example, both matches would |
| - // have an inlinable prefix of "http://", which is one component. |
| - // |
| - // Instead, we look for the overall best (i.e., most components) |
| - // prefix of the current URL, and then check whether the inlinable |
| - // prefix has that many components. If it does, this is an |
| - // "innermost" match, and should be boosted. In the example |
| - // above, the best prefixes for the two URLs have two and one |
| - // components respectively, while the inlinable prefixes each |
| - // have one component; this means the first match is not innermost |
| - // and the second match is innermost, resulting in us boosting the |
| - // second match. |
| - // |
| - // Now, the code that implements this. |
| - // The deepest prefix for this URL regardless of where the match is. |
| - const URLPrefix* best_prefix = URLPrefix::BestURLPrefix( |
| - base::UTF8ToUTF16(gurl.spec()), base::string16()); |
| - DCHECK(best_prefix != NULL); |
| - const int num_components_in_best_prefix = best_prefix->num_components; |
| - // If the URL is inlineable, we must have a match. Note the prefix that |
| - // makes it inlineable may be empty. |
| - DCHECK(best_inlineable_prefix != NULL); |
| - const int num_components_in_best_inlineable_prefix = |
| - best_inlineable_prefix->num_components; |
| - innermost_match = (num_components_in_best_inlineable_prefix == |
| - num_components_in_best_prefix); |
| +// Pre-calculates days_ago_to_recency_score, used in GetRecencyScore(). |
| +void InitDaysAgoToRecencyScoreArray() { |
| + DCHECK(!days_ago_to_recency_score); |
| + float* new_days_ago_to_recency_score = |
| + new float[kDaysToPrecomputeRecencyScoresFor]; |
| + for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor; |
| + days_ago++) { |
| + int unnormalized_recency_score; |
| + if (days_ago <= 4) { |
| + unnormalized_recency_score = 100; |
| + } else if (days_ago <= 14) { |
| + // Linearly extrapolate between 4 and 14 days so 14 days has a score |
| + // of 70. |
| + unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4); |
| + } else if (days_ago <= 31) { |
| + // Linearly extrapolate between 14 and 31 days so 31 days has a score |
| + // of 50. |
| + unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14); |
| + } else if (days_ago <= 90) { |
| + // Linearly extrapolate between 30 and 90 days so 90 days has a score |
| + // of 30. |
| + unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30); |
| + } else { |
| + // Linearly extrapolate between 90 and 365 days so 365 days has a score |
| + // of 10. |
| + unnormalized_recency_score = |
| + 10 + (365 - days_ago) * (20 - 10) / (365 - 90); |
| + } |
| + new_days_ago_to_recency_score[days_ago] = |
| + unnormalized_recency_score / 100.0; |
| + if (days_ago > 0) { |
| + DCHECK_LE(new_days_ago_to_recency_score[days_ago], |
| + new_days_ago_to_recency_score[days_ago - 1]); |
| + } |
| } |
| + days_ago_to_recency_score = new_days_ago_to_recency_score; |
| +} |
| - const float topicality_score = GetTopicalityScore( |
| - terms.size(), url, terms_to_word_starts_offsets, word_starts); |
| - const float frequency_score = GetFrequency( |
| - now, (history_client && history_client->IsBookmarked(gurl)), visits); |
| - raw_score_ = GetFinalRelevancyScore(topicality_score, frequency_score); |
| - raw_score_ = |
| - (raw_score_ <= kint32max) ? static_cast<int>(raw_score_) : kint32max; |
| - |
| - if (also_do_hup_like_scoring_ && can_inline_) { |
| - // HistoryURL-provider-like scoring gives any match that is |
| - // capable of being inlined a certain minimum score. Some of these |
| - // are given a higher score that lets them be shown in inline. |
| - // This test here derives from the test in |
| - // HistoryURLProvider::PromoteMatchForInlineAutocomplete(). |
| - const bool promote_to_inline = (row.typed_count() > 1) || |
| - (IsHostOnly() && (row.typed_count() == 1)); |
| - int hup_like_score = promote_to_inline ? |
| - HistoryURLProvider::kScoreForBestInlineableResult : |
| - HistoryURLProvider::kBaseScoreForNonInlineableResult; |
| - |
| - // Also, if the user types the hostname of a host with a typed |
| - // visit, then everything from that host get given inlineable scores |
| - // (because the URL-that-you-typed will go first and everything |
| - // else will be assigned one minus the previous score, as coded |
| - // at the end of HistoryURLProvider::DoAutocomplete(). |
| - if (base::UTF8ToUTF16(gurl.host()) == terms[0]) |
| - hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult; |
| - |
| - // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion() |
| - // that's meant to promote prefixes of the best match (if they've |
| - // been visited enough related to the best match) or |
| - // create/promote host-only suggestions (even if they've never |
| - // been typed). The code is complicated and we don't try to |
| - // duplicate the logic here. Instead, we handle a simple case: in |
| - // low-typed-count ranges, give host-only matches (i.e., |
| - // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so |
| - // that the host-only match outscores all the other matches that |
| - // would normally have the same base score. This behavior is not |
| - // identical to what happens in HistoryURLProvider even in these |
| - // low typed count ranges--sometimes it will create/promote when |
| - // this test does not (indeed, we cannot create matches like HUP |
| - // can) and vice versa--but the underlying philosophy is similar. |
| - if (!promote_to_inline && IsHostOnly()) |
| - hup_like_score++; |
| - |
| - // All the other logic to goes into hup-like-scoring happens in |
| - // the tie-breaker case of MatchScoreGreater(). |
| - |
| - // Incorporate hup_like_score into raw_score. |
| - raw_score_ = std::max(raw_score_, hup_like_score); |
| - } |
| +} // namespace |
| - // If this match is not inlineable and there's a cap on the maximum |
| - // score that can be given to non-inlineable matches, apply the cap. |
| - if (!can_inline_ && (max_assigned_score_for_non_inlineable_matches_ != -1)) { |
| - raw_score_ = std::min(max_assigned_score_for_non_inlineable_matches_, |
| - raw_score_); |
| - } |
| +// static |
| +int ScoredHistoryMatchBuilderImpl::bookmark_value_ = 1; |
| +bool ScoredHistoryMatchBuilderImpl::allow_tld_matches_ = false; |
| +bool ScoredHistoryMatchBuilderImpl::allow_scheme_matches_ = false; |
| - // Now that we're done processing this entry, correct the offsets of the |
| - // matches in |url_matches_| so they point to offsets in the original URL |
| - // spec, not the cleaned-up URL string that we used for matching. |
| - std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches_); |
| - base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets); |
| - url_matches_ = ReplaceOffsetsInTermMatches(url_matches_, offsets); |
| +ScoredHistoryMatchBuilderImpl::ScoredHistoryMatchBuilderImpl( |
| + const IsBookmarkedCallback& is_bookmarked) |
| + : is_bookmarked_(is_bookmarked) { |
| + Init(); |
| } |
| -ScoredHistoryMatch::~ScoredHistoryMatch() {} |
| - |
| -// Comparison function for sorting ScoredMatches by their scores with |
| -// intelligent tie-breaking. |
| -bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1, |
| - const ScoredHistoryMatch& m2) { |
| - if (m1.raw_score_ != m2.raw_score_) |
| - return m1.raw_score_ > m2.raw_score_; |
| - |
| - // This tie-breaking logic is inspired by / largely copied from the |
| - // ordering logic in history_url_provider.cc CompareHistoryMatch(). |
| - |
| - // A URL that has been typed at all is better than one that has never been |
| - // typed. (Note "!"s on each side.) |
| - if (!m1.url_info.typed_count() != !m2.url_info.typed_count()) |
| - return m1.url_info.typed_count() > m2.url_info.typed_count(); |
| - |
| - // Innermost matches (matches after any scheme or "www.") are better than |
| - // non-innermost matches. |
| - if (m1.innermost_match != m2.innermost_match) |
| - return m1.innermost_match; |
| - |
| - // URLs that have been typed more often are better. |
| - if (m1.url_info.typed_count() != m2.url_info.typed_count()) |
| - return m1.url_info.typed_count() > m2.url_info.typed_count(); |
| - |
| - // For URLs that have each been typed once, a host (alone) is better |
| - // than a page inside. |
| - if (m1.url_info.typed_count() == 1) { |
| - if (m1.IsHostOnly() != m2.IsHostOnly()) |
| - return m1.IsHostOnly(); |
| - } |
| - |
| - // URLs that have been visited more often are better. |
| - if (m1.url_info.visit_count() != m2.url_info.visit_count()) |
| - return m1.url_info.visit_count() > m2.url_info.visit_count(); |
| - |
| - // URLs that have been visited more recently are better. |
| - return m1.url_info.last_visit() > m2.url_info.last_visit(); |
| +ScoredHistoryMatchBuilderImpl::~ScoredHistoryMatchBuilderImpl() { |
| } |
| // static |
| -TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts( |
| - const TermMatches& term_matches, |
| - const WordStarts& terms_to_word_starts_offsets, |
| - const WordStarts& word_starts, |
| +history::TermMatches |
| +ScoredHistoryMatchBuilderImpl::FilterTermMatchesByWordStarts( |
| + const history::TermMatches& term_matches, |
| + const history::WordStarts& terms_to_word_starts_offsets, |
| + const history::WordStarts& word_starts, |
| size_t start_pos, |
| size_t end_pos) { |
| // Return early if no filtering is needed. |
| if (start_pos == std::string::npos) |
| return term_matches; |
| - TermMatches filtered_matches; |
| - WordStarts::const_iterator next_word_starts = word_starts.begin(); |
| - WordStarts::const_iterator end_word_starts = word_starts.end(); |
| - for (TermMatches::const_iterator iter = term_matches.begin(); |
| - iter != term_matches.end(); ++iter) { |
| - const size_t term_offset = terms_to_word_starts_offsets[iter->term_num]; |
| + history::TermMatches filtered_matches; |
| + history::WordStarts::const_iterator next_word_starts = word_starts.begin(); |
| + history::WordStarts::const_iterator end_word_starts = word_starts.end(); |
| + for (const auto& term_match : term_matches) { |
| + const size_t term_offset = |
| + terms_to_word_starts_offsets[term_match.term_num]; |
| // Advance next_word_starts until it's >= the position of the term we're |
| // considering (adjusted for where the word begins within the term). |
| while ((next_word_starts != end_word_starts) && |
| - (*next_word_starts < (iter->offset + term_offset))) |
| + (*next_word_starts < (term_match.offset + term_offset))) |
| ++next_word_starts; |
| // Add the match if it's before the position we start filtering at or |
| // after the position we stop filtering at (assuming we have a position |
| // to stop filtering at) or if it's at a word boundary. |
| - if ((iter->offset < start_pos) || |
| - ((end_pos != std::string::npos) && (iter->offset >= end_pos)) || |
| + if ((term_match.offset < start_pos) || |
| + ((end_pos != std::string::npos) && (term_match.offset >= end_pos)) || |
| ((next_word_starts != end_word_starts) && |
| - (*next_word_starts == iter->offset + term_offset))) |
| - filtered_matches.push_back(*iter); |
| + (*next_word_starts == term_match.offset + term_offset))) |
| + filtered_matches.push_back(term_match); |
| } |
| return filtered_matches; |
| } |
| -float ScoredHistoryMatch::GetTopicalityScore( |
| +void ScoredHistoryMatchBuilderImpl::Init() { |
| + // Because the code below is not thread safe, we check that we're only calling |
| + // it from one thread: the UI thread. Specifically, we check "if we've heard |
| + // of the UI thread then we'd better be on it." The first part is necessary |
| + // so unit tests pass. (Many unit tests don't set up the threading naming |
| + // system; hence CurrentlyOn(UI thread) will fail.) |
| + using content::BrowserThread; |
| + DCHECK(!BrowserThread::IsThreadInitialized(BrowserThread::UI) || |
| + BrowserThread::CurrentlyOn(BrowserThread::UI)); |
| + |
| + static bool initialized = false; |
| + if (initialized) |
| + return; |
| + |
| + initialized = true; |
| + |
| + // When doing HUP-like scoring, don't allow a non-inlineable match |
| + // to beat the score of good inlineable matches. This is a problem |
| + // because if a non-inlineable match ends up with the highest score |
| + // from HistoryQuick provider, all HistoryQuick matches get demoted |
| + // to non-inlineable scores (scores less than 1200). Without |
| + // HUP-like-scoring, these results would actually come from the HUP |
| + // and not be demoted, thus outscoring the demoted HQP results. |
| + // When the HQP provides these, we need to clamp the non-inlineable |
| + // results to preserve this behavior. |
| + if (kAlsoDoHupLikeScoring) { |
| + max_assigned_score_for_non_inlineable_matches = |
| + HistoryURLProvider::kScoreForBestInlineableResult - 1; |
| + } |
| + bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue(); |
| + allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue(); |
| + allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue(); |
| + |
| + InitRawTermScoreToTopicalityScoreArray(); |
| + InitDaysAgoToRecencyScoreArray(); |
| +} |
| + |
| +// static |
| +float ScoredHistoryMatchBuilderImpl::GetTopicalityScore( |
| const int num_terms, |
| const base::string16& url, |
| - const WordStarts& terms_to_word_starts_offsets, |
| - const RowWordStarts& word_starts) { |
| - // Because the below thread is not thread safe, we check that we're |
| - // only calling it from one thread: the UI thread. Specifically, |
| - // we check "if we've heard of the UI thread then we'd better |
| - // be on it." The first part is necessary so unit tests pass. (Many |
| - // unit tests don't set up the threading naming system; hence |
| - // CurrentlyOn(UI thread) will fail.) |
| - DCHECK(!content::BrowserThread::IsThreadInitialized( |
| - content::BrowserThread::UI) || |
| - content::BrowserThread::CurrentlyOn(content::BrowserThread::UI)); |
| - if (raw_term_score_to_topicality_score_ == NULL) { |
| - raw_term_score_to_topicality_score_ = new float[kMaxRawTermScore]; |
| - FillInTermScoreToTopicalityScoreArray(); |
| - } |
| + const history::WordStarts& terms_to_word_starts_offsets, |
| + const history::RowWordStarts& word_starts, |
| + history::ScoredHistoryMatch* scored_history_match) { |
| + DCHECK(raw_term_score_to_topicality_score); |
| // A vector that accumulates per-term scores. The strongest match--a |
| // match in the hostname at a word boundary--is worth 10 points. |
| // Everything else is less. In general, a match that's not at a word |
| @@ -316,9 +225,9 @@ float ScoredHistoryMatch::GetTopicalityScore( |
| // in the same part of the URL/title. |
| DCHECK_GT(num_terms, 0); |
| std::vector<int> term_scores(num_terms, 0); |
| - WordStarts::const_iterator next_word_starts = |
| + history::WordStarts::const_iterator next_word_starts = |
| word_starts.url_word_starts_.begin(); |
| - WordStarts::const_iterator end_word_starts = |
| + history::WordStarts::const_iterator end_word_starts = |
| word_starts.url_word_starts_.end(); |
| const size_t question_mark_pos = url.find('?'); |
| const size_t colon_pos = url.find(':'); |
| @@ -329,90 +238,91 @@ float ScoredHistoryMatch::GetTopicalityScore( |
| // only times this can cause problems is if we have a protocol without |
| // a // after the colon and the hostname is only one or two characters. |
| // This isn't worth worrying about. |
| - const size_t end_of_hostname_pos = (colon_pos != std::string::npos) ? |
| - url.find('/', colon_pos + 3) : url.find('/'); |
| - size_t last_part_of_hostname_pos = |
| - (end_of_hostname_pos != std::string::npos) ? |
| - url.rfind('.', end_of_hostname_pos) : url.rfind('.'); |
| + const size_t end_of_hostname_pos = (colon_pos != std::string::npos) |
| + ? url.find('/', colon_pos + 3) |
| + : url.find('/'); |
| + size_t last_part_of_hostname_pos = (end_of_hostname_pos != std::string::npos) |
| + ? url.rfind('.', end_of_hostname_pos) |
| + : url.rfind('.'); |
| // Loop through all URL matches and score them appropriately. |
| // First, filter all matches not at a word boundary and in the path (or |
| // later). |
| - url_matches_ = FilterTermMatchesByWordStarts( |
| - url_matches_, terms_to_word_starts_offsets, word_starts.url_word_starts_, |
| - end_of_hostname_pos, |
| - std::string::npos); |
| + scored_history_match->url_matches = FilterTermMatchesByWordStarts( |
| + scored_history_match->url_matches, terms_to_word_starts_offsets, |
| + word_starts.url_word_starts_, end_of_hostname_pos, std::string::npos); |
| if (colon_pos != std::string::npos) { |
| // Also filter matches not at a word boundary and in the scheme. |
| - url_matches_ = FilterTermMatchesByWordStarts( |
| - url_matches_, terms_to_word_starts_offsets, |
| + scored_history_match->url_matches = FilterTermMatchesByWordStarts( |
| + scored_history_match->url_matches, terms_to_word_starts_offsets, |
| word_starts.url_word_starts_, 0, colon_pos); |
| } |
| - for (TermMatches::const_iterator iter = url_matches_.begin(); |
| - iter != url_matches_.end(); ++iter) { |
| - const size_t term_offset = terms_to_word_starts_offsets[iter->term_num]; |
| + for (const auto& url_match : scored_history_match->url_matches) { |
| + const size_t term_offset = terms_to_word_starts_offsets[url_match.term_num]; |
| // Advance next_word_starts until it's >= the position of the term we're |
| // considering (adjusted for where the word begins within the term). |
| while ((next_word_starts != end_word_starts) && |
| - (*next_word_starts < (iter->offset + term_offset))) { |
| + (*next_word_starts < (url_match.offset + term_offset))) { |
| ++next_word_starts; |
| } |
| - const bool at_word_boundary = (next_word_starts != end_word_starts) && |
| - (*next_word_starts == iter->offset + term_offset); |
| + const bool at_word_boundary = |
| + (next_word_starts != end_word_starts) && |
| + (*next_word_starts == url_match.offset + term_offset); |
| if ((question_mark_pos != std::string::npos) && |
| - (iter->offset > question_mark_pos)) { |
| + (url_match.offset > question_mark_pos)) { |
| // The match is in a CGI ?... fragment. |
| DCHECK(at_word_boundary); |
| - term_scores[iter->term_num] += 5; |
| + term_scores[url_match.term_num] += 5; |
| } else if ((end_of_hostname_pos != std::string::npos) && |
| - (iter->offset > end_of_hostname_pos)) { |
| + (url_match.offset > end_of_hostname_pos)) { |
| // The match is in the path. |
| DCHECK(at_word_boundary); |
| - term_scores[iter->term_num] += 8; |
| + term_scores[url_match.term_num] += 8; |
| } else if ((colon_pos == std::string::npos) || |
| - (iter->offset > colon_pos)) { |
| + (url_match.offset > colon_pos)) { |
| // The match is in the hostname. |
| if ((last_part_of_hostname_pos == std::string::npos) || |
| - (iter->offset < last_part_of_hostname_pos)) { |
| + (url_match.offset < last_part_of_hostname_pos)) { |
| // Either there are no dots in the hostname or this match isn't |
| // the last dotted component. |
| - term_scores[iter->term_num] += at_word_boundary ? 10 : 2; |
| + term_scores[url_match.term_num] += at_word_boundary ? 10 : 2; |
| } else { |
| // The match is in the last part of a dotted hostname (usually this |
| // is the top-level domain .com, .net, etc.). |
| if (allow_tld_matches_) |
| - term_scores[iter->term_num] += at_word_boundary ? 10 : 0; |
| + term_scores[url_match.term_num] += at_word_boundary ? 10 : 0; |
| } |
| } else { |
| // The match is in the protocol (a.k.a. scheme). |
| // Matches not at a word boundary should have been filtered already. |
| DCHECK(at_word_boundary); |
| - match_in_scheme = true; |
| + scored_history_match->match_in_scheme = true; |
| if (allow_scheme_matches_) |
| - term_scores[iter->term_num] += 10; |
| + term_scores[url_match.term_num] += 10; |
| } |
| } |
| // Now do the analogous loop over all matches in the title. |
| next_word_starts = word_starts.title_word_starts_.begin(); |
| end_word_starts = word_starts.title_word_starts_.end(); |
| int word_num = 0; |
| - title_matches_ = FilterTermMatchesByWordStarts( |
| - title_matches_, terms_to_word_starts_offsets, |
| + scored_history_match->title_matches = FilterTermMatchesByWordStarts( |
| + scored_history_match->title_matches, terms_to_word_starts_offsets, |
| word_starts.title_word_starts_, 0, std::string::npos); |
| - for (TermMatches::const_iterator iter = title_matches_.begin(); |
| - iter != title_matches_.end(); ++iter) { |
| - const size_t term_offset = terms_to_word_starts_offsets[iter->term_num]; |
| + for (const auto& title_match : scored_history_match->title_matches) { |
| + const size_t term_offset = |
| + terms_to_word_starts_offsets[title_match.term_num]; |
| // Advance next_word_starts until it's >= the position of the term we're |
| // considering (adjusted for where the word begins within the term). |
| while ((next_word_starts != end_word_starts) && |
| - (*next_word_starts < (iter->offset + term_offset))) { |
| + (*next_word_starts < (title_match.offset + term_offset))) { |
| ++next_word_starts; |
| ++word_num; |
| } |
| - if (word_num >= 10) break; // only count the first ten words |
| + if (word_num >= 10) |
| + break; // only count the first ten words |
| DCHECK(next_word_starts != end_word_starts); |
| - DCHECK_EQ(*next_word_starts, iter->offset + term_offset) |
| + DCHECK_EQ(*next_word_starts, title_match.offset + term_offset) |
| << "not at word boundary"; |
| - term_scores[iter->term_num] += 8; |
| + term_scores[title_match.term_num] += 8; |
| } |
| // TODO(mpearson): Restore logic for penalizing out-of-order matches. |
| // (Perhaps discount them by 0.8?) |
| @@ -431,9 +341,10 @@ float ScoredHistoryMatch::GetTopicalityScore( |
| // due to this test would look stupid if shown to the user. |
| if (term_scores[i] == 0) |
| return 0; |
| - topicality_score += raw_term_score_to_topicality_score_[ |
| - (term_scores[i] >= kMaxRawTermScore) ? (kMaxRawTermScore - 1) : |
| - term_scores[i]]; |
| + topicality_score += |
| + raw_term_score_to_topicality_score[(term_scores[i] >= kMaxRawTermScore) |
| + ? (kMaxRawTermScore - 1) |
|
Mark P
2015/02/07 07:00:12
optional nit: I thought operators were supposed to
sdefresne
2015/02/09 10:01:13
Done.
|
| + : term_scores[i]]; |
| } |
| // TODO(mpearson): If there are multiple terms, consider taking the |
| // geometric mean of per-term scores rather than the arithmetic mean. |
| @@ -442,86 +353,21 @@ float ScoredHistoryMatch::GetTopicalityScore( |
| } |
| // static |
| -void ScoredHistoryMatch::FillInTermScoreToTopicalityScoreArray() { |
| - for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) { |
| - float topicality_score; |
| - if (term_score < 10) { |
| - // If the term scores less than 10 points (no full-credit hit, or |
| - // no combination of hits that score that well), then the topicality |
| - // score is linear in the term score. |
| - topicality_score = 0.1 * term_score; |
| - } else { |
| - // For term scores of at least ten points, pass them through a log |
| - // function so a score of 10 points gets a 1.0 (to meet up exactly |
| - // with the linear component) and increases logarithmically until |
| - // maxing out at 30 points, with computes to a score around 2.1. |
| - topicality_score = (1.0 + 2.25 * log10(0.1 * term_score)); |
| - } |
| - raw_term_score_to_topicality_score_[term_score] = topicality_score; |
| - } |
| -} |
| - |
| -// static |
| -float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago) { |
| - // Because the below thread is not thread safe, we check that we're |
| - // only calling it from one thread: the UI thread. Specifically, |
| - // we check "if we've heard of the UI thread then we'd better |
| - // be on it." The first part is necessary so unit tests pass. (Many |
| - // unit tests don't set up the threading naming system; hence |
| - // CurrentlyOn(UI thread) will fail.) |
| - DCHECK(!content::BrowserThread::IsThreadInitialized( |
| - content::BrowserThread::UI) || |
| - content::BrowserThread::CurrentlyOn(content::BrowserThread::UI)); |
| - if (days_ago_to_recency_score_ == NULL) { |
| - days_ago_to_recency_score_ = new float[kDaysToPrecomputeRecencyScoresFor]; |
| - FillInDaysAgoToRecencyScoreArray(); |
| - } |
| +float ScoredHistoryMatchBuilderImpl::GetRecencyScore(int last_visit_days_ago) { |
| + DCHECK(days_ago_to_recency_score); |
| // Lookup the score in days_ago_to_recency_score, treating |
| // everything older than what we've precomputed as the oldest thing |
| // we've precomputed. The std::max is to protect against corruption |
| // in the database (in case last_visit_days_ago is negative). |
| - return days_ago_to_recency_score_[ |
| - std::max( |
| - std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1), |
| - 0)]; |
| -} |
| - |
| -void ScoredHistoryMatch::FillInDaysAgoToRecencyScoreArray() { |
| - for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor; |
| - days_ago++) { |
| - int unnormalized_recency_score; |
| - if (days_ago <= 4) { |
| - unnormalized_recency_score = 100; |
| - } else if (days_ago <= 14) { |
| - // Linearly extrapolate between 4 and 14 days so 14 days has a score |
| - // of 70. |
| - unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4); |
| - } else if (days_ago <= 31) { |
| - // Linearly extrapolate between 14 and 31 days so 31 days has a score |
| - // of 50. |
| - unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14); |
| - } else if (days_ago <= 90) { |
| - // Linearly extrapolate between 30 and 90 days so 90 days has a score |
| - // of 30. |
| - unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30); |
| - } else { |
| - // Linearly extrapolate between 90 and 365 days so 365 days has a score |
| - // of 10. |
| - unnormalized_recency_score = |
| - 10 + (365 - days_ago) * (20 - 10) / (365 - 90); |
| - } |
| - days_ago_to_recency_score_[days_ago] = unnormalized_recency_score / 100.0; |
| - if (days_ago > 0) { |
| - DCHECK_LE(days_ago_to_recency_score_[days_ago], |
| - days_ago_to_recency_score_[days_ago - 1]); |
| - } |
| - } |
| + return days_ago_to_recency_score[std::max( |
| + std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1), 0)]; |
| } |
| // static |
| -float ScoredHistoryMatch::GetFrequency(const base::Time& now, |
| - const bool bookmarked, |
| - const VisitInfoVector& visits) { |
| +float ScoredHistoryMatchBuilderImpl::GetFrequency( |
| + const base::Time& now, |
| + const bool bookmarked, |
| + const history::VisitInfoVector& visits) { |
| // Compute the weighted average |value_of_transition| over the last at |
| // most kMaxVisitsToScore visits, where each visit is weighted using |
| // GetRecencyScore() based on how many days ago it happened. Use |
| @@ -529,7 +375,9 @@ float ScoredHistoryMatch::GetFrequency(const base::Time& now, |
| // how many visits there were in order to penalize a match that has |
| // fewer visits than kMaxVisitsToScore. |
| float summed_visit_points = 0; |
| - for (size_t i = 0; i < std::min(visits.size(), kMaxVisitsToScore); ++i) { |
| + size_t max_visit_to_score = |
|
Mark P
2015/02/07 07:00:13
nit: const
sdefresne
2015/02/09 10:01:13
Done.
|
| + std::min(visits.size(), history::ScoredHistoryMatch::kMaxVisitsToScore); |
| + for (size_t i = 0; i < max_visit_to_score; ++i) { |
| int value_of_transition = |
| (visits[i].second == ui::PAGE_TRANSITION_TYPED) ? 20 : 1; |
| if (bookmarked) |
| @@ -538,12 +386,14 @@ float ScoredHistoryMatch::GetFrequency(const base::Time& now, |
| GetRecencyScore((now - visits[i].first).InDays()); |
| summed_visit_points += (value_of_transition * bucket_weight); |
| } |
| - return visits.size() * summed_visit_points / kMaxVisitsToScore; |
| + return visits.size() * summed_visit_points / |
| + history::ScoredHistoryMatch::kMaxVisitsToScore; |
| } |
| // static |
| -float ScoredHistoryMatch::GetFinalRelevancyScore(float topicality_score, |
| - float frequency_score) { |
| +float ScoredHistoryMatchBuilderImpl::GetFinalRelevancyScore( |
| + float topicality_score, |
| + float frequency_score) { |
| if (topicality_score == 0) |
| return 0; |
| // Here's how to interpret intermediate_score: Suppose the omnibox |
| @@ -582,27 +432,185 @@ float ScoredHistoryMatch::GetFinalRelevancyScore(float topicality_score, |
| return std::min(1399.0, 1300 + slope * (intermediate_score - 12.0)); |
| } |
| -void ScoredHistoryMatch::Init() { |
| - if (initialized_) |
| - return; |
| - also_do_hup_like_scoring_ = false; |
| - // When doing HUP-like scoring, don't allow a non-inlineable match |
| - // to beat the score of good inlineable matches. This is a problem |
| - // because if a non-inlineable match ends up with the highest score |
| - // from HistoryQuick provider, all HistoryQuick matches get demoted |
| - // to non-inlineable scores (scores less than 1200). Without |
| - // HUP-like-scoring, these results would actually come from the HUP |
| - // and not be demoted, thus outscoring the demoted HQP results. |
| - // When the HQP provides these, we need to clamp the non-inlineable |
| - // results to preserve this behavior. |
| - if (also_do_hup_like_scoring_) { |
| - max_assigned_score_for_non_inlineable_matches_ = |
| - HistoryURLProvider::kScoreForBestInlineableResult - 1; |
| +history::ScoredHistoryMatch ScoredHistoryMatchBuilderImpl::Build( |
| + const history::URLRow& row, |
| + const history::VisitInfoVector& visits, |
| + const std::string& languages, |
| + const base::string16& lower_string, |
| + const history::String16Vector& terms, |
| + const history::WordStarts& terms_to_word_starts_offsets, |
| + const history::RowWordStarts& word_starts, |
| + const base::Time now) const { |
| + history::ScoredHistoryMatch scored_history_match = |
| + history::ScoredHistoryMatch(row, 0, false, false, 0, |
| + history::TermMatches(), |
| + history::TermMatches(), false); |
| + |
| + GURL gurl = row.url(); |
| + if (!gurl.is_valid()) |
| + return scored_history_match; |
| + |
| + // Figure out where each search term appears in the URL and/or page title |
| + // so that we can score as well as provide autocomplete highlighting. |
| + base::OffsetAdjuster::Adjustments adjustments; |
| + base::string16 url = |
| + bookmarks::CleanUpUrlForMatching(gurl, languages, &adjustments); |
| + base::string16 title = bookmarks::CleanUpTitleForMatching(row.title()); |
| + int term_num = 0; |
| + for (const auto& term : terms) { |
| + history::TermMatches url_term_matches = |
| + history::MatchTermInString(term, url, term_num); |
| + history::TermMatches title_term_matches = |
| + history::MatchTermInString(term, title, term_num); |
| + if (url_term_matches.empty() && title_term_matches.empty()) { |
| + // A term was not found in either URL or title - reject. |
| + return scored_history_match; |
| + } |
| + scored_history_match.url_matches.insert( |
| + scored_history_match.url_matches.end(), url_term_matches.begin(), |
| + url_term_matches.end()); |
| + scored_history_match.title_matches.insert( |
| + scored_history_match.title_matches.end(), title_term_matches.begin(), |
| + title_term_matches.end()); |
| + ++term_num; |
| + } |
| + |
| + // Sort matches by offset and eliminate any which overlap. |
| + // TODO(mpearson): Investigate whether this has any meaningful |
| + // effect on scoring. (It's necessary at some point: removing |
| + // overlaps and sorting is needed to decide what to highlight in the |
| + // suggestion string. But this sort and de-overlap doesn't have to |
| + // be done before scoring.) |
| + scored_history_match.url_matches = |
| + SortAndDeoverlapMatches(scored_history_match.url_matches); |
| + scored_history_match.title_matches = |
| + SortAndDeoverlapMatches(scored_history_match.title_matches); |
| + |
| + // We can inline autocomplete a match if: |
| + // 1) there is only one search term |
| + // 2) AND the match begins immediately after one of the prefixes in |
| + // URLPrefix such as http://www and https:// (note that one of these |
| + // is the empty prefix, for cases where the user has typed the scheme) |
| + // 3) AND the search string does not end in whitespace (making it look to |
| + // the IMUI as though there is a single search term when actually there |
| + // is a second, empty term). |
| + // |best_inlineable_prefix| stores the inlineable prefix computed in |
| + // clause (2) or NULL if no such prefix exists. (The URL is not inlineable.) |
| + // Note that using the best prefix here means that when multiple |
| + // prefixes match, we'll choose to inline following the longest one. |
| + // For a URL like "http://www.washingtonmutual.com", this means |
| + // typing "w" will inline "ashington..." instead of "ww.washington...". |
| + if (!scored_history_match.url_matches.empty() && terms.size() == 1 && |
|
Mark P
2015/02/07 07:00:13
nit: restore parens around binary operator ==
dit
sdefresne
2015/02/09 10:01:13
Ooops, fixed.
|
| + !IsWhitespace(*lower_string.rbegin())) { |
| + const base::string16 gurl_spec = base::UTF8ToUTF16(gurl.spec()); |
| + const URLPrefix* best_inlineable_prefix = |
| + URLPrefix::BestURLPrefix(gurl_spec, terms[0]); |
| + if (best_inlineable_prefix) { |
| + // Initialize innermost_match. |
| + // The idea here is that matches that occur in the scheme or |
| + // "www." are worse than matches which don't. For the URLs |
| + // "http://www.google.com" and "http://wellsfargo.com", we want |
| + // the omnibox input "w" to cause the latter URL to rank higher |
| + // than the former. Note that this is not the same as checking |
| + // whether one match's inlinable prefix has more components than |
| + // the other match's, since in this example, both matches would |
| + // have an inlinable prefix of "http://", which is one component. |
| + // |
| + // Instead, we look for the overall best (i.e., most components) |
| + // prefix of the current URL, and then check whether the inlinable |
| + // prefix has that many components. If it does, this is an |
| + // "innermost" match, and should be boosted. In the example |
| + // above, the best prefixes for the two URLs have two and one |
| + // components respectively, while the inlinable prefixes each |
| + // have one component; this means the first match is not innermost |
| + // and the second match is innermost, resulting in us boosting the |
| + // second match. |
| + // |
| + // Now, the code that implements this. |
| + // The deepest prefix for this URL regardless of where the match is. |
| + const URLPrefix* best_prefix = |
| + URLPrefix::BestURLPrefix(gurl_spec, base::string16()); |
| + DCHECK(best_prefix); |
| + // If the URL is inlineable, we must have a match. Note the prefix that |
| + // makes it inlineable may be empty. |
| + scored_history_match.can_inline = true; |
| + scored_history_match.innermost_match = |
| + best_inlineable_prefix->num_components == best_prefix->num_components; |
| + } |
| + } |
| + |
| + const float topicality_score = |
| + GetTopicalityScore(terms.size(), url, terms_to_word_starts_offsets, |
| + word_starts, &scored_history_match); |
| + const float frequency_score = GetFrequency( |
| + now, !is_bookmarked_.is_null() && is_bookmarked_.Run(gurl), visits); |
| + scored_history_match.raw_score = std::min<int>( |
|
Mark P
2015/02/07 07:00:12
I don't think this does what you want. I think it
sdefresne
2015/02/09 10:01:13
Good catch. Changed back to old correct code.
|
| + GetFinalRelevancyScore(topicality_score, frequency_score), kint32max); |
| + |
| + if (kAlsoDoHupLikeScoring && scored_history_match.can_inline) { |
| + // HistoryURL-provider-like scoring gives any match that is |
| + // capable of being inlined a certain minimum score. Some of these |
| + // are given a higher score that lets them be shown in inline. |
| + // This test here derives from the test in |
| + // HistoryURLProvider::PromoteMatchForInlineAutocomplete(). |
| + const bool promote_to_inline = |
| + row.typed_count() > 1 || |
| + (scored_history_match.IsHostOnly() && row.typed_count() == 1); |
| + int hup_like_score = |
| + promote_to_inline |
| + ? HistoryURLProvider::kScoreForBestInlineableResult |
| + : HistoryURLProvider::kBaseScoreForNonInlineableResult; |
| + |
| + // Also, if the user types the hostname of a host with a typed |
| + // visit, then everything from that host get given inlineable scores |
| + // (because the URL-that-you-typed will go first and everything |
| + // else will be assigned one minus the previous score, as coded |
| + // at the end of HistoryURLProvider::DoAutocomplete(). |
| + if (base::UTF8ToUTF16(gurl.host()) == terms[0]) |
| + hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult; |
| + |
| + // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion() |
| + // that's meant to promote prefixes of the best match (if they've |
| + // been visited enough related to the best match) or |
| + // create/promote host-only suggestions (even if they've never |
| + // been typed). The code is complicated and we don't try to |
| + // duplicate the logic here. Instead, we handle a simple case: in |
| + // low-typed-count ranges, give host-only matches (i.e., |
| + // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so |
| + // that the host-only match outscores all the other matches that |
| + // would normally have the same base score. This behavior is not |
| + // identical to what happens in HistoryURLProvider even in these |
| + // low typed count ranges--sometimes it will create/promote when |
| + // this test does not (indeed, we cannot create matches like HUP |
| + // can) and vice versa--but the underlying philosophy is similar. |
| + if (!promote_to_inline && scored_history_match.IsHostOnly()) |
| + hup_like_score++; |
| + |
| + // All the other logic to goes into hup-like-scoring happens in |
| + // the tie-breaker case of MatchScoreGreater(). |
| + |
| + // Incorporate hup_like_score into raw_score. |
| + scored_history_match.raw_score = |
| + std::max(scored_history_match.raw_score, hup_like_score); |
| } |
| - bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue(); |
| - allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue(); |
| - allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue(); |
| - initialized_ = true; |
| -} |
| -} // namespace history |
| + // If this match is not inlineable and there's a cap on the maximum |
| + // score that can be given to non-inlineable matches, apply the cap. |
| + if (!scored_history_match.can_inline && |
| + max_assigned_score_for_non_inlineable_matches != -1) { |
| + scored_history_match.raw_score = |
| + std::min(scored_history_match.raw_score, |
| + max_assigned_score_for_non_inlineable_matches); |
| + } |
| + |
| + // Now that we're done processing this entry, correct the offsets of the |
| + // matches in |url_matches| so they point to offsets in the original URL |
| + // spec, not the cleaned-up URL string that we used for matching. |
| + std::vector<size_t> offsets = |
| + OffsetsFromTermMatches(scored_history_match.url_matches); |
| + base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets); |
| + scored_history_match.url_matches = |
| + ReplaceOffsetsInTermMatches(scored_history_match.url_matches, offsets); |
| + |
| + return scored_history_match; |
| +} |