Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(436)

Side by Side Diff: chrome/browser/autocomplete/scored_history_match_builder.cc

Issue 896983003: Componentize ScoredHistoryMatch (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Fix presubmit warnings Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "chrome/browser/history/scored_history_match.h" 5 #include "chrome/browser/autocomplete/scored_history_match_builder.h"
6
7 #include <math.h>
6 8
7 #include <algorithm> 9 #include <algorithm>
8 #include <functional>
9 #include <iterator>
10 #include <numeric>
11 #include <set>
12
13 #include <math.h>
14 10
15 #include "base/logging.h" 11 #include "base/logging.h"
16 #include "base/metrics/histogram.h" 12 #include "base/metrics/histogram.h"
17 #include "base/strings/string_util.h" 13 #include "base/strings/string_util.h"
18 #include "base/strings/utf_string_conversions.h" 14 #include "base/strings/utf_string_conversions.h"
19 #include "chrome/browser/autocomplete/history_url_provider.h" 15 #include "chrome/browser/autocomplete/history_url_provider.h"
16 #include "components/bookmarks/browser/bookmark_model.h"
20 #include "components/bookmarks/browser/bookmark_utils.h" 17 #include "components/bookmarks/browser/bookmark_utils.h"
21 #include "components/history/core/browser/history_client.h" 18 #include "components/history/core/browser/history_client.h"
22 #include "components/omnibox/omnibox_field_trial.h" 19 #include "components/omnibox/omnibox_field_trial.h"
23 #include "components/omnibox/url_prefix.h" 20 #include "components/omnibox/url_prefix.h"
24 #include "content/public/browser/browser_thread.h" 21 #include "content/public/browser/browser_thread.h"
25 22
26 namespace history { 23 namespace {
27 24
28 // ScoredHistoryMatch ---------------------------------------------------------- 25 // The number of days of recency scores to precompute.
26 const int kDaysToPrecomputeRecencyScoresFor = 366;
27
28 // The number of raw term score buckets use; raw term scores
29 // greater this are capped at the score of the largest bucket.
30 const int kMaxRawTermScore = 30;
31
32 // If true, assign raw scores to be max(whatever it normally would be,
33 // a score that's similar to the score HistoryURL provider would assign).
34 // This variable is set in the constructor by examining the field trial
35 // state.
36 const bool kAlsoDoHupLikeScoring = false;
37
38 // Pre-computed information to speed up calculating recency scores.
39 // |days_ago_to_recency_score_| is a simple array mapping how long
40 // ago a page was visited (in days) to the recency score we should
41 // assign it. This allows easy lookups of scores without requiring
42 // math. This is initialized upon first use of GetRecencyScore(),
43 // which calls FillInDaysAgoToRecencyScoreArray(),
44 const float* days_ago_to_recency_score = nullptr;
45
46 // Pre-computed information to speed up calculating topicality
47 // scores. |raw_term_score_to_topicality_score_| is a simple array
48 // mapping how raw terms scores (a weighted sum of the number of
49 // hits for the term, weighted by how important the hit is:
50 // hostname, path, etc.) to the topicality score we should assign
51 // it. This allows easy lookups of scores without requiring math.
52 // This is initialized upon first use of GetTopicalityScore(),
53 // which calls FillInTermScoreToTopicalityScoreArray().
54 const float* raw_term_score_to_topicality_score = nullptr;
55
56 // The maximum score that can be assigned to non-inlineable matches.
57 // This is useful because often we want inlineable matches to come
58 // first (even if they don't sometimes score as well as non-inlineable
59 // matches) because if a non-inlineable match comes first than all matches
60 // will get demoted later in HistoryQuickProvider to non-inlineable scores.
61 // Set to -1 to indicate no maximum score.
62 int max_assigned_score_for_non_inlineable_matches = -1;
63
64 // Precalculates raw_term_score_to_topicality_score, used in
65 // GetTopicalityScore().
66 void InitRawTermScoreToTopicalityScoreArray() {
67 DCHECK(!raw_term_score_to_topicality_score);
68 float* new_raw_term_score_to_topicality_score = new float[kMaxRawTermScore];
69 for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) {
70 float topicality_score;
71 if (term_score < 10) {
72 // If the term scores less than 10 points (no full-credit hit, or
73 // no combination of hits that score that well), then the topicality
74 // score is linear in the term score.
75 topicality_score = 0.1 * term_score;
76 } else {
77 // For term scores of at least ten points, pass them through a log
78 // function so a score of 10 points gets a 1.0 (to meet up exactly
79 // with the linear component) and increases logarithmically until
80 // maxing out at 30 points, with computes to a score around 2.1.
81 topicality_score = (1.0 + 2.25 * log10(0.1 * term_score));
82 }
83 new_raw_term_score_to_topicality_score[term_score] = topicality_score;
84 }
85 raw_term_score_to_topicality_score = new_raw_term_score_to_topicality_score;
86 }
87
88 // Pre-calculates days_ago_to_recency_score, used in GetRecencyScore().
89 void InitDaysAgoToRecencyScoreArray() {
90 DCHECK(!days_ago_to_recency_score);
91 float* new_days_ago_to_recency_score =
92 new float[kDaysToPrecomputeRecencyScoresFor];
93 for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor;
94 days_ago++) {
95 int unnormalized_recency_score;
96 if (days_ago <= 4) {
97 unnormalized_recency_score = 100;
98 } else if (days_ago <= 14) {
99 // Linearly extrapolate between 4 and 14 days so 14 days has a score
100 // of 70.
101 unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4);
102 } else if (days_ago <= 31) {
103 // Linearly extrapolate between 14 and 31 days so 31 days has a score
104 // of 50.
105 unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14);
106 } else if (days_ago <= 90) {
107 // Linearly extrapolate between 30 and 90 days so 90 days has a score
108 // of 30.
109 unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30);
110 } else {
111 // Linearly extrapolate between 90 and 365 days so 365 days has a score
112 // of 10.
113 unnormalized_recency_score =
114 10 + (365 - days_ago) * (20 - 10) / (365 - 90);
115 }
116 new_days_ago_to_recency_score[days_ago] =
117 unnormalized_recency_score / 100.0;
118 if (days_ago > 0) {
119 DCHECK_LE(new_days_ago_to_recency_score[days_ago],
120 new_days_ago_to_recency_score[days_ago - 1]);
121 }
122 }
123 days_ago_to_recency_score = new_days_ago_to_recency_score;
124 }
125
126 } // namespace
29 127
30 // static 128 // static
31 const size_t ScoredHistoryMatch::kMaxVisitsToScore = 10; 129 int ScoredHistoryMatchBuilder::bookmark_value_ = 1;
32 const int ScoredHistoryMatch::kDaysToPrecomputeRecencyScoresFor = 366; 130 bool ScoredHistoryMatchBuilder::allow_tld_matches_ = false;
33 const int ScoredHistoryMatch::kMaxRawTermScore = 30; 131 bool ScoredHistoryMatchBuilder::allow_scheme_matches_ = false;
34 float* ScoredHistoryMatch::raw_term_score_to_topicality_score_ = NULL; 132
35 float* ScoredHistoryMatch::days_ago_to_recency_score_ = NULL; 133 ScoredHistoryMatchBuilder::ScoredHistoryMatchBuilder(
36 bool ScoredHistoryMatch::initialized_ = false; 134 const IsBookmarkedCallback& is_bookmarked)
37 int ScoredHistoryMatch::bookmark_value_ = 1; 135 : is_bookmarked_(is_bookmarked) {
38 bool ScoredHistoryMatch::allow_tld_matches_ = false;
39 bool ScoredHistoryMatch::allow_scheme_matches_ = false;
40 bool ScoredHistoryMatch::also_do_hup_like_scoring_ = false;
41 int ScoredHistoryMatch::max_assigned_score_for_non_inlineable_matches_ = -1;
42
43 ScoredHistoryMatch::ScoredHistoryMatch()
44 : raw_score_(0),
45 can_inline_(false) {
46 Init(); 136 Init();
47 } 137 }
48 138
49 ScoredHistoryMatch::ScoredHistoryMatch( 139 ScoredHistoryMatchBuilder::~ScoredHistoryMatchBuilder() {
50 const URLRow& row,
51 const VisitInfoVector& visits,
52 const std::string& languages,
53 const base::string16& lower_string,
54 const String16Vector& terms,
55 const WordStarts& terms_to_word_starts_offsets,
56 const RowWordStarts& word_starts,
57 const base::Time now,
58 HistoryClient* history_client)
59 : HistoryMatch(row, 0, false, false),
60 raw_score_(0),
61 can_inline_(false) {
62 Init();
63
64 GURL gurl = row.url();
65 if (!gurl.is_valid())
66 return;
67
68 // Figure out where each search term appears in the URL and/or page title
69 // so that we can score as well as provide autocomplete highlighting.
70 base::OffsetAdjuster::Adjustments adjustments;
71 base::string16 url =
72 bookmarks::CleanUpUrlForMatching(gurl, languages, &adjustments);
73 base::string16 title = bookmarks::CleanUpTitleForMatching(row.title());
74 int term_num = 0;
75 for (String16Vector::const_iterator iter = terms.begin(); iter != terms.end();
76 ++iter, ++term_num) {
77 base::string16 term = *iter;
78 TermMatches url_term_matches = MatchTermInString(term, url, term_num);
79 TermMatches title_term_matches = MatchTermInString(term, title, term_num);
80 if (url_term_matches.empty() && title_term_matches.empty())
81 return; // A term was not found in either URL or title - reject.
82 url_matches_.insert(url_matches_.end(), url_term_matches.begin(),
83 url_term_matches.end());
84 title_matches_.insert(title_matches_.end(), title_term_matches.begin(),
85 title_term_matches.end());
86 }
87
88 // Sort matches by offset and eliminate any which overlap.
89 // TODO(mpearson): Investigate whether this has any meaningful
90 // effect on scoring. (It's necessary at some point: removing
91 // overlaps and sorting is needed to decide what to highlight in the
92 // suggestion string. But this sort and de-overlap doesn't have to
93 // be done before scoring.)
94 url_matches_ = SortAndDeoverlapMatches(url_matches_);
95 title_matches_ = SortAndDeoverlapMatches(title_matches_);
96
97 // We can inline autocomplete a match if:
98 // 1) there is only one search term
99 // 2) AND the match begins immediately after one of the prefixes in
100 // URLPrefix such as http://www and https:// (note that one of these
101 // is the empty prefix, for cases where the user has typed the scheme)
102 // 3) AND the search string does not end in whitespace (making it look to
103 // the IMUI as though there is a single search term when actually there
104 // is a second, empty term).
105 // |best_inlineable_prefix| stores the inlineable prefix computed in
106 // clause (2) or NULL if no such prefix exists. (The URL is not inlineable.)
107 // Note that using the best prefix here means that when multiple
108 // prefixes match, we'll choose to inline following the longest one.
109 // For a URL like "http://www.washingtonmutual.com", this means
110 // typing "w" will inline "ashington..." instead of "ww.washington...".
111 const URLPrefix* best_inlineable_prefix =
112 (!url_matches_.empty() && (terms.size() == 1)) ?
113 URLPrefix::BestURLPrefix(base::UTF8ToUTF16(gurl.spec()), terms[0]) :
114 NULL;
115 can_inline_ = (best_inlineable_prefix != NULL) &&
116 !IsWhitespace(*(lower_string.rbegin()));
117 if (can_inline_) {
118 // Initialize innermost_match.
119 // The idea here is that matches that occur in the scheme or
120 // "www." are worse than matches which don't. For the URLs
121 // "http://www.google.com" and "http://wellsfargo.com", we want
122 // the omnibox input "w" to cause the latter URL to rank higher
123 // than the former. Note that this is not the same as checking
124 // whether one match's inlinable prefix has more components than
125 // the other match's, since in this example, both matches would
126 // have an inlinable prefix of "http://", which is one component.
127 //
128 // Instead, we look for the overall best (i.e., most components)
129 // prefix of the current URL, and then check whether the inlinable
130 // prefix has that many components. If it does, this is an
131 // "innermost" match, and should be boosted. In the example
132 // above, the best prefixes for the two URLs have two and one
133 // components respectively, while the inlinable prefixes each
134 // have one component; this means the first match is not innermost
135 // and the second match is innermost, resulting in us boosting the
136 // second match.
137 //
138 // Now, the code that implements this.
139 // The deepest prefix for this URL regardless of where the match is.
140 const URLPrefix* best_prefix = URLPrefix::BestURLPrefix(
141 base::UTF8ToUTF16(gurl.spec()), base::string16());
142 DCHECK(best_prefix != NULL);
143 const int num_components_in_best_prefix = best_prefix->num_components;
144 // If the URL is inlineable, we must have a match. Note the prefix that
145 // makes it inlineable may be empty.
146 DCHECK(best_inlineable_prefix != NULL);
147 const int num_components_in_best_inlineable_prefix =
148 best_inlineable_prefix->num_components;
149 innermost_match = (num_components_in_best_inlineable_prefix ==
150 num_components_in_best_prefix);
151 }
152
153 const float topicality_score = GetTopicalityScore(
154 terms.size(), url, terms_to_word_starts_offsets, word_starts);
155 const float frequency_score = GetFrequency(
156 now, (history_client && history_client->IsBookmarked(gurl)), visits);
157 raw_score_ = GetFinalRelevancyScore(topicality_score, frequency_score);
158 raw_score_ =
159 (raw_score_ <= kint32max) ? static_cast<int>(raw_score_) : kint32max;
160
161 if (also_do_hup_like_scoring_ && can_inline_) {
162 // HistoryURL-provider-like scoring gives any match that is
163 // capable of being inlined a certain minimum score. Some of these
164 // are given a higher score that lets them be shown in inline.
165 // This test here derives from the test in
166 // HistoryURLProvider::PromoteMatchForInlineAutocomplete().
167 const bool promote_to_inline = (row.typed_count() > 1) ||
168 (IsHostOnly() && (row.typed_count() == 1));
169 int hup_like_score = promote_to_inline ?
170 HistoryURLProvider::kScoreForBestInlineableResult :
171 HistoryURLProvider::kBaseScoreForNonInlineableResult;
172
173 // Also, if the user types the hostname of a host with a typed
174 // visit, then everything from that host get given inlineable scores
175 // (because the URL-that-you-typed will go first and everything
176 // else will be assigned one minus the previous score, as coded
177 // at the end of HistoryURLProvider::DoAutocomplete().
178 if (base::UTF8ToUTF16(gurl.host()) == terms[0])
179 hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult;
180
181 // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion()
182 // that's meant to promote prefixes of the best match (if they've
183 // been visited enough related to the best match) or
184 // create/promote host-only suggestions (even if they've never
185 // been typed). The code is complicated and we don't try to
186 // duplicate the logic here. Instead, we handle a simple case: in
187 // low-typed-count ranges, give host-only matches (i.e.,
188 // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so
189 // that the host-only match outscores all the other matches that
190 // would normally have the same base score. This behavior is not
191 // identical to what happens in HistoryURLProvider even in these
192 // low typed count ranges--sometimes it will create/promote when
193 // this test does not (indeed, we cannot create matches like HUP
194 // can) and vice versa--but the underlying philosophy is similar.
195 if (!promote_to_inline && IsHostOnly())
196 hup_like_score++;
197
198 // All the other logic to goes into hup-like-scoring happens in
199 // the tie-breaker case of MatchScoreGreater().
200
201 // Incorporate hup_like_score into raw_score.
202 raw_score_ = std::max(raw_score_, hup_like_score);
203 }
204
205 // If this match is not inlineable and there's a cap on the maximum
206 // score that can be given to non-inlineable matches, apply the cap.
207 if (!can_inline_ && (max_assigned_score_for_non_inlineable_matches_ != -1)) {
208 raw_score_ = std::min(max_assigned_score_for_non_inlineable_matches_,
209 raw_score_);
210 }
211
212 // Now that we're done processing this entry, correct the offsets of the
213 // matches in |url_matches_| so they point to offsets in the original URL
214 // spec, not the cleaned-up URL string that we used for matching.
215 std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches_);
216 base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets);
217 url_matches_ = ReplaceOffsetsInTermMatches(url_matches_, offsets);
218 }
219
220 ScoredHistoryMatch::~ScoredHistoryMatch() {}
221
222 // Comparison function for sorting ScoredMatches by their scores with
223 // intelligent tie-breaking.
224 bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1,
225 const ScoredHistoryMatch& m2) {
226 if (m1.raw_score_ != m2.raw_score_)
227 return m1.raw_score_ > m2.raw_score_;
228
229 // This tie-breaking logic is inspired by / largely copied from the
230 // ordering logic in history_url_provider.cc CompareHistoryMatch().
231
232 // A URL that has been typed at all is better than one that has never been
233 // typed. (Note "!"s on each side.)
234 if (!m1.url_info.typed_count() != !m2.url_info.typed_count())
235 return m1.url_info.typed_count() > m2.url_info.typed_count();
236
237 // Innermost matches (matches after any scheme or "www.") are better than
238 // non-innermost matches.
239 if (m1.innermost_match != m2.innermost_match)
240 return m1.innermost_match;
241
242 // URLs that have been typed more often are better.
243 if (m1.url_info.typed_count() != m2.url_info.typed_count())
244 return m1.url_info.typed_count() > m2.url_info.typed_count();
245
246 // For URLs that have each been typed once, a host (alone) is better
247 // than a page inside.
248 if (m1.url_info.typed_count() == 1) {
249 if (m1.IsHostOnly() != m2.IsHostOnly())
250 return m1.IsHostOnly();
251 }
252
253 // URLs that have been visited more often are better.
254 if (m1.url_info.visit_count() != m2.url_info.visit_count())
255 return m1.url_info.visit_count() > m2.url_info.visit_count();
256
257 // URLs that have been visited more recently are better.
258 return m1.url_info.last_visit() > m2.url_info.last_visit();
259 } 140 }
260 141
261 // static 142 // static
262 TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts( 143 history::TermMatches ScoredHistoryMatchBuilder::FilterTermMatchesByWordStarts(
263 const TermMatches& term_matches, 144 const history::TermMatches& term_matches,
264 const WordStarts& terms_to_word_starts_offsets, 145 const history::WordStarts& terms_to_word_starts_offsets,
265 const WordStarts& word_starts, 146 const history::WordStarts& word_starts,
266 size_t start_pos, 147 size_t start_pos,
267 size_t end_pos) { 148 size_t end_pos) {
268 // Return early if no filtering is needed. 149 // Return early if no filtering is needed.
269 if (start_pos == std::string::npos) 150 if (start_pos == std::string::npos)
270 return term_matches; 151 return term_matches;
271 TermMatches filtered_matches; 152 history::TermMatches filtered_matches;
272 WordStarts::const_iterator next_word_starts = word_starts.begin(); 153 history::WordStarts::const_iterator next_word_starts = word_starts.begin();
273 WordStarts::const_iterator end_word_starts = word_starts.end(); 154 history::WordStarts::const_iterator end_word_starts = word_starts.end();
274 for (TermMatches::const_iterator iter = term_matches.begin(); 155 for (const auto& term_match : term_matches) {
275 iter != term_matches.end(); ++iter) { 156 const size_t term_offset =
276 const size_t term_offset = terms_to_word_starts_offsets[iter->term_num]; 157 terms_to_word_starts_offsets[term_match.term_num];
277 // Advance next_word_starts until it's >= the position of the term we're 158 // Advance next_word_starts until it's >= the position of the term we're
278 // considering (adjusted for where the word begins within the term). 159 // considering (adjusted for where the word begins within the term).
279 while ((next_word_starts != end_word_starts) && 160 while ((next_word_starts != end_word_starts) &&
280 (*next_word_starts < (iter->offset + term_offset))) 161 (*next_word_starts < (term_match.offset + term_offset)))
281 ++next_word_starts; 162 ++next_word_starts;
282 // Add the match if it's before the position we start filtering at or 163 // Add the match if it's before the position we start filtering at or
283 // after the position we stop filtering at (assuming we have a position 164 // after the position we stop filtering at (assuming we have a position
284 // to stop filtering at) or if it's at a word boundary. 165 // to stop filtering at) or if it's at a word boundary.
285 if ((iter->offset < start_pos) || 166 if ((term_match.offset < start_pos) ||
286 ((end_pos != std::string::npos) && (iter->offset >= end_pos)) || 167 ((end_pos != std::string::npos) && (term_match.offset >= end_pos)) ||
287 ((next_word_starts != end_word_starts) && 168 ((next_word_starts != end_word_starts) &&
288 (*next_word_starts == iter->offset + term_offset))) 169 (*next_word_starts == term_match.offset + term_offset)))
289 filtered_matches.push_back(*iter); 170 filtered_matches.push_back(term_match);
290 } 171 }
291 return filtered_matches; 172 return filtered_matches;
292 } 173 }
293 174
294 float ScoredHistoryMatch::GetTopicalityScore( 175 void ScoredHistoryMatchBuilder::Init() {
176 // Because the code below is not thread safe, we check that we're only calling
177 // it from one thread: the UI thread. Specifically, we check "if we've heard
178 // of the UI thread then we'd better be on it." The first part is necessary
179 // so unit tests pass. (Many unit tests don't set up the threading naming
180 // system; hence CurrentlyOn(UI thread) will fail.)
181 using content::BrowserThread;
182 DCHECK(!BrowserThread::IsThreadInitialized(BrowserThread::UI) ||
183 BrowserThread::CurrentlyOn(BrowserThread::UI));
184
185 static bool initialized = false;
186 if (initialized)
187 return;
188
189 initialized = true;
190
191 // When doing HUP-like scoring, don't allow a non-inlineable match
192 // to beat the score of good inlineable matches. This is a problem
193 // because if a non-inlineable match ends up with the highest score
194 // from HistoryQuick provider, all HistoryQuick matches get demoted
195 // to non-inlineable scores (scores less than 1200). Without
196 // HUP-like-scoring, these results would actually come from the HUP
197 // and not be demoted, thus outscoring the demoted HQP results.
198 // When the HQP provides these, we need to clamp the non-inlineable
199 // results to preserve this behavior.
200 if (kAlsoDoHupLikeScoring) {
201 max_assigned_score_for_non_inlineable_matches =
202 HistoryURLProvider::kScoreForBestInlineableResult - 1;
203 }
204 bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue();
205 allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue();
206 allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue();
207
208 InitRawTermScoreToTopicalityScoreArray();
209 InitDaysAgoToRecencyScoreArray();
210 }
211
212 // static
213 float ScoredHistoryMatchBuilder::GetTopicalityScore(
295 const int num_terms, 214 const int num_terms,
296 const base::string16& url, 215 const base::string16& url,
297 const WordStarts& terms_to_word_starts_offsets, 216 const history::WordStarts& terms_to_word_starts_offsets,
298 const RowWordStarts& word_starts) { 217 const history::RowWordStarts& word_starts,
299 // Because the below thread is not thread safe, we check that we're 218 history::ScoredHistoryMatch* scored_history_match) {
300 // only calling it from one thread: the UI thread. Specifically, 219 DCHECK(raw_term_score_to_topicality_score);
301 // we check "if we've heard of the UI thread then we'd better
302 // be on it." The first part is necessary so unit tests pass. (Many
303 // unit tests don't set up the threading naming system; hence
304 // CurrentlyOn(UI thread) will fail.)
305 DCHECK(!content::BrowserThread::IsThreadInitialized(
306 content::BrowserThread::UI) ||
307 content::BrowserThread::CurrentlyOn(content::BrowserThread::UI));
308 if (raw_term_score_to_topicality_score_ == NULL) {
309 raw_term_score_to_topicality_score_ = new float[kMaxRawTermScore];
310 FillInTermScoreToTopicalityScoreArray();
311 }
312 // A vector that accumulates per-term scores. The strongest match--a 220 // A vector that accumulates per-term scores. The strongest match--a
313 // match in the hostname at a word boundary--is worth 10 points. 221 // match in the hostname at a word boundary--is worth 10 points.
314 // Everything else is less. In general, a match that's not at a word 222 // Everything else is less. In general, a match that's not at a word
315 // boundary is worth about 1/4th or 1/5th of a match at the word boundary 223 // boundary is worth about 1/4th or 1/5th of a match at the word boundary
316 // in the same part of the URL/title. 224 // in the same part of the URL/title.
317 DCHECK_GT(num_terms, 0); 225 DCHECK_GT(num_terms, 0);
318 std::vector<int> term_scores(num_terms, 0); 226 std::vector<int> term_scores(num_terms, 0);
319 WordStarts::const_iterator next_word_starts = 227 history::WordStarts::const_iterator next_word_starts =
320 word_starts.url_word_starts_.begin(); 228 word_starts.url_word_starts_.begin();
321 WordStarts::const_iterator end_word_starts = 229 history::WordStarts::const_iterator end_word_starts =
322 word_starts.url_word_starts_.end(); 230 word_starts.url_word_starts_.end();
323 const size_t question_mark_pos = url.find('?'); 231 const size_t question_mark_pos = url.find('?');
324 const size_t colon_pos = url.find(':'); 232 const size_t colon_pos = url.find(':');
325 // The + 3 skips the // that probably appears in the protocol 233 // The + 3 skips the // that probably appears in the protocol
326 // after the colon. If the protocol doesn't have two slashes after 234 // after the colon. If the protocol doesn't have two slashes after
327 // the colon, that's okay--all this ends up doing is starting our 235 // the colon, that's okay--all this ends up doing is starting our
328 // search for the next / a few characters into the hostname. The 236 // search for the next / a few characters into the hostname. The
329 // only times this can cause problems is if we have a protocol without 237 // only times this can cause problems is if we have a protocol without
330 // a // after the colon and the hostname is only one or two characters. 238 // a // after the colon and the hostname is only one or two characters.
331 // This isn't worth worrying about. 239 // This isn't worth worrying about.
332 const size_t end_of_hostname_pos = (colon_pos != std::string::npos) ? 240 const size_t end_of_hostname_pos = (colon_pos != std::string::npos)
333 url.find('/', colon_pos + 3) : url.find('/'); 241 ? url.find('/', colon_pos + 3)
334 size_t last_part_of_hostname_pos = 242 : url.find('/');
335 (end_of_hostname_pos != std::string::npos) ? 243 size_t last_part_of_hostname_pos = (end_of_hostname_pos != std::string::npos)
336 url.rfind('.', end_of_hostname_pos) : url.rfind('.'); 244 ? url.rfind('.', end_of_hostname_pos)
245 : url.rfind('.');
337 // Loop through all URL matches and score them appropriately. 246 // Loop through all URL matches and score them appropriately.
338 // First, filter all matches not at a word boundary and in the path (or 247 // First, filter all matches not at a word boundary and in the path (or
339 // later). 248 // later).
340 url_matches_ = FilterTermMatchesByWordStarts( 249 scored_history_match->url_matches = FilterTermMatchesByWordStarts(
341 url_matches_, terms_to_word_starts_offsets, word_starts.url_word_starts_, 250 scored_history_match->url_matches, terms_to_word_starts_offsets,
342 end_of_hostname_pos, 251 word_starts.url_word_starts_, end_of_hostname_pos, std::string::npos);
343 std::string::npos);
344 if (colon_pos != std::string::npos) { 252 if (colon_pos != std::string::npos) {
345 // Also filter matches not at a word boundary and in the scheme. 253 // Also filter matches not at a word boundary and in the scheme.
346 url_matches_ = FilterTermMatchesByWordStarts( 254 scored_history_match->url_matches = FilterTermMatchesByWordStarts(
347 url_matches_, terms_to_word_starts_offsets, 255 scored_history_match->url_matches, terms_to_word_starts_offsets,
348 word_starts.url_word_starts_, 0, colon_pos); 256 word_starts.url_word_starts_, 0, colon_pos);
349 } 257 }
350 for (TermMatches::const_iterator iter = url_matches_.begin(); 258 for (const auto& url_match : scored_history_match->url_matches) {
351 iter != url_matches_.end(); ++iter) { 259 const size_t term_offset = terms_to_word_starts_offsets[url_match.term_num];
352 const size_t term_offset = terms_to_word_starts_offsets[iter->term_num];
353 // Advance next_word_starts until it's >= the position of the term we're 260 // Advance next_word_starts until it's >= the position of the term we're
354 // considering (adjusted for where the word begins within the term). 261 // considering (adjusted for where the word begins within the term).
355 while ((next_word_starts != end_word_starts) && 262 while ((next_word_starts != end_word_starts) &&
356 (*next_word_starts < (iter->offset + term_offset))) { 263 (*next_word_starts < (url_match.offset + term_offset))) {
357 ++next_word_starts; 264 ++next_word_starts;
358 } 265 }
359 const bool at_word_boundary = (next_word_starts != end_word_starts) && 266 const bool at_word_boundary =
360 (*next_word_starts == iter->offset + term_offset); 267 (next_word_starts != end_word_starts) &&
268 (*next_word_starts == url_match.offset + term_offset);
361 if ((question_mark_pos != std::string::npos) && 269 if ((question_mark_pos != std::string::npos) &&
362 (iter->offset > question_mark_pos)) { 270 (url_match.offset > question_mark_pos)) {
363 // The match is in a CGI ?... fragment. 271 // The match is in a CGI ?... fragment.
364 DCHECK(at_word_boundary); 272 DCHECK(at_word_boundary);
365 term_scores[iter->term_num] += 5; 273 term_scores[url_match.term_num] += 5;
366 } else if ((end_of_hostname_pos != std::string::npos) && 274 } else if ((end_of_hostname_pos != std::string::npos) &&
367 (iter->offset > end_of_hostname_pos)) { 275 (url_match.offset > end_of_hostname_pos)) {
368 // The match is in the path. 276 // The match is in the path.
369 DCHECK(at_word_boundary); 277 DCHECK(at_word_boundary);
370 term_scores[iter->term_num] += 8; 278 term_scores[url_match.term_num] += 8;
371 } else if ((colon_pos == std::string::npos) || 279 } else if ((colon_pos == std::string::npos) ||
372 (iter->offset > colon_pos)) { 280 (url_match.offset > colon_pos)) {
373 // The match is in the hostname. 281 // The match is in the hostname.
374 if ((last_part_of_hostname_pos == std::string::npos) || 282 if ((last_part_of_hostname_pos == std::string::npos) ||
375 (iter->offset < last_part_of_hostname_pos)) { 283 (url_match.offset < last_part_of_hostname_pos)) {
376 // Either there are no dots in the hostname or this match isn't 284 // Either there are no dots in the hostname or this match isn't
377 // the last dotted component. 285 // the last dotted component.
378 term_scores[iter->term_num] += at_word_boundary ? 10 : 2; 286 term_scores[url_match.term_num] += at_word_boundary ? 10 : 2;
379 } else { 287 } else {
380 // The match is in the last part of a dotted hostname (usually this 288 // The match is in the last part of a dotted hostname (usually this
381 // is the top-level domain .com, .net, etc.). 289 // is the top-level domain .com, .net, etc.).
382 if (allow_tld_matches_) 290 if (allow_tld_matches_)
383 term_scores[iter->term_num] += at_word_boundary ? 10 : 0; 291 term_scores[url_match.term_num] += at_word_boundary ? 10 : 0;
384 } 292 }
385 } else { 293 } else {
386 // The match is in the protocol (a.k.a. scheme). 294 // The match is in the protocol (a.k.a. scheme).
387 // Matches not at a word boundary should have been filtered already. 295 // Matches not at a word boundary should have been filtered already.
388 DCHECK(at_word_boundary); 296 DCHECK(at_word_boundary);
389 match_in_scheme = true; 297 scored_history_match->match_in_scheme = true;
390 if (allow_scheme_matches_) 298 if (allow_scheme_matches_)
391 term_scores[iter->term_num] += 10; 299 term_scores[url_match.term_num] += 10;
392 } 300 }
393 } 301 }
394 // Now do the analogous loop over all matches in the title. 302 // Now do the analogous loop over all matches in the title.
395 next_word_starts = word_starts.title_word_starts_.begin(); 303 next_word_starts = word_starts.title_word_starts_.begin();
396 end_word_starts = word_starts.title_word_starts_.end(); 304 end_word_starts = word_starts.title_word_starts_.end();
397 int word_num = 0; 305 int word_num = 0;
398 title_matches_ = FilterTermMatchesByWordStarts( 306 scored_history_match->title_matches = FilterTermMatchesByWordStarts(
399 title_matches_, terms_to_word_starts_offsets, 307 scored_history_match->title_matches, terms_to_word_starts_offsets,
400 word_starts.title_word_starts_, 0, std::string::npos); 308 word_starts.title_word_starts_, 0, std::string::npos);
401 for (TermMatches::const_iterator iter = title_matches_.begin(); 309 for (const auto& title_match : scored_history_match->title_matches) {
402 iter != title_matches_.end(); ++iter) { 310 const size_t term_offset =
403 const size_t term_offset = terms_to_word_starts_offsets[iter->term_num]; 311 terms_to_word_starts_offsets[title_match.term_num];
404 // Advance next_word_starts until it's >= the position of the term we're 312 // Advance next_word_starts until it's >= the position of the term we're
405 // considering (adjusted for where the word begins within the term). 313 // considering (adjusted for where the word begins within the term).
406 while ((next_word_starts != end_word_starts) && 314 while ((next_word_starts != end_word_starts) &&
407 (*next_word_starts < (iter->offset + term_offset))) { 315 (*next_word_starts < (title_match.offset + term_offset))) {
408 ++next_word_starts; 316 ++next_word_starts;
409 ++word_num; 317 ++word_num;
410 } 318 }
411 if (word_num >= 10) break; // only count the first ten words 319 if (word_num >= 10)
320 break; // only count the first ten words
412 DCHECK(next_word_starts != end_word_starts); 321 DCHECK(next_word_starts != end_word_starts);
413 DCHECK_EQ(*next_word_starts, iter->offset + term_offset) 322 DCHECK_EQ(*next_word_starts, title_match.offset + term_offset)
414 << "not at word boundary"; 323 << "not at word boundary";
415 term_scores[iter->term_num] += 8; 324 term_scores[title_match.term_num] += 8;
416 } 325 }
417 // TODO(mpearson): Restore logic for penalizing out-of-order matches. 326 // TODO(mpearson): Restore logic for penalizing out-of-order matches.
418 // (Perhaps discount them by 0.8?) 327 // (Perhaps discount them by 0.8?)
419 // TODO(mpearson): Consider: if the earliest match occurs late in the string, 328 // TODO(mpearson): Consider: if the earliest match occurs late in the string,
420 // should we discount it? 329 // should we discount it?
421 // TODO(mpearson): Consider: do we want to score based on how much of the 330 // TODO(mpearson): Consider: do we want to score based on how much of the
422 // input string the input covers? (I'm leaning toward no.) 331 // input string the input covers? (I'm leaning toward no.)
423 332
424 // Compute the topicality_score as the sum of transformed term_scores. 333 // Compute the topicality_score as the sum of transformed term_scores.
425 float topicality_score = 0; 334 float topicality_score = 0;
426 for (size_t i = 0; i < term_scores.size(); ++i) { 335 for (size_t i = 0; i < term_scores.size(); ++i) {
427 // Drop this URL if it seems like a term didn't appear or, more precisely, 336 // Drop this URL if it seems like a term didn't appear or, more precisely,
428 // didn't appear in a part of the URL or title that we trust enough 337 // didn't appear in a part of the URL or title that we trust enough
429 // to give it credit for. For instance, terms that appear in the middle 338 // to give it credit for. For instance, terms that appear in the middle
430 // of a CGI parameter get no credit. Almost all the matches dropped 339 // of a CGI parameter get no credit. Almost all the matches dropped
431 // due to this test would look stupid if shown to the user. 340 // due to this test would look stupid if shown to the user.
432 if (term_scores[i] == 0) 341 if (term_scores[i] == 0)
433 return 0; 342 return 0;
434 topicality_score += raw_term_score_to_topicality_score_[ 343 topicality_score +=
435 (term_scores[i] >= kMaxRawTermScore) ? (kMaxRawTermScore - 1) : 344 raw_term_score_to_topicality_score[(term_scores[i] >= kMaxRawTermScore)
436 term_scores[i]]; 345 ? (kMaxRawTermScore - 1)
346 : term_scores[i]];
437 } 347 }
438 // TODO(mpearson): If there are multiple terms, consider taking the 348 // TODO(mpearson): If there are multiple terms, consider taking the
439 // geometric mean of per-term scores rather than the arithmetic mean. 349 // geometric mean of per-term scores rather than the arithmetic mean.
440 350
441 return topicality_score / num_terms; 351 return topicality_score / num_terms;
442 } 352 }
443 353
444 // static 354 // static
445 void ScoredHistoryMatch::FillInTermScoreToTopicalityScoreArray() { 355 float ScoredHistoryMatchBuilder::GetRecencyScore(int last_visit_days_ago) {
446 for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) { 356 DCHECK(days_ago_to_recency_score);
447 float topicality_score;
448 if (term_score < 10) {
449 // If the term scores less than 10 points (no full-credit hit, or
450 // no combination of hits that score that well), then the topicality
451 // score is linear in the term score.
452 topicality_score = 0.1 * term_score;
453 } else {
454 // For term scores of at least ten points, pass them through a log
455 // function so a score of 10 points gets a 1.0 (to meet up exactly
456 // with the linear component) and increases logarithmically until
457 // maxing out at 30 points, with computes to a score around 2.1.
458 topicality_score = (1.0 + 2.25 * log10(0.1 * term_score));
459 }
460 raw_term_score_to_topicality_score_[term_score] = topicality_score;
461 }
462 }
463
464 // static
465 float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago) {
466 // Because the below thread is not thread safe, we check that we're
467 // only calling it from one thread: the UI thread. Specifically,
468 // we check "if we've heard of the UI thread then we'd better
469 // be on it." The first part is necessary so unit tests pass. (Many
470 // unit tests don't set up the threading naming system; hence
471 // CurrentlyOn(UI thread) will fail.)
472 DCHECK(!content::BrowserThread::IsThreadInitialized(
473 content::BrowserThread::UI) ||
474 content::BrowserThread::CurrentlyOn(content::BrowserThread::UI));
475 if (days_ago_to_recency_score_ == NULL) {
476 days_ago_to_recency_score_ = new float[kDaysToPrecomputeRecencyScoresFor];
477 FillInDaysAgoToRecencyScoreArray();
478 }
479 // Lookup the score in days_ago_to_recency_score, treating 357 // Lookup the score in days_ago_to_recency_score, treating
480 // everything older than what we've precomputed as the oldest thing 358 // everything older than what we've precomputed as the oldest thing
481 // we've precomputed. The std::max is to protect against corruption 359 // we've precomputed. The std::max is to protect against corruption
482 // in the database (in case last_visit_days_ago is negative). 360 // in the database (in case last_visit_days_ago is negative).
483 return days_ago_to_recency_score_[ 361 return days_ago_to_recency_score[std::max(
484 std::max( 362 std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1), 0)];
485 std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1),
486 0)];
487 }
488
489 void ScoredHistoryMatch::FillInDaysAgoToRecencyScoreArray() {
490 for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor;
491 days_ago++) {
492 int unnormalized_recency_score;
493 if (days_ago <= 4) {
494 unnormalized_recency_score = 100;
495 } else if (days_ago <= 14) {
496 // Linearly extrapolate between 4 and 14 days so 14 days has a score
497 // of 70.
498 unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4);
499 } else if (days_ago <= 31) {
500 // Linearly extrapolate between 14 and 31 days so 31 days has a score
501 // of 50.
502 unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14);
503 } else if (days_ago <= 90) {
504 // Linearly extrapolate between 30 and 90 days so 90 days has a score
505 // of 30.
506 unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30);
507 } else {
508 // Linearly extrapolate between 90 and 365 days so 365 days has a score
509 // of 10.
510 unnormalized_recency_score =
511 10 + (365 - days_ago) * (20 - 10) / (365 - 90);
512 }
513 days_ago_to_recency_score_[days_ago] = unnormalized_recency_score / 100.0;
514 if (days_ago > 0) {
515 DCHECK_LE(days_ago_to_recency_score_[days_ago],
516 days_ago_to_recency_score_[days_ago - 1]);
517 }
518 }
519 } 363 }
520 364
521 // static 365 // static
522 float ScoredHistoryMatch::GetFrequency(const base::Time& now, 366 float ScoredHistoryMatchBuilder::GetFrequency(
523 const bool bookmarked, 367 const base::Time& now,
524 const VisitInfoVector& visits) { 368 const bool bookmarked,
369 const history::VisitInfoVector& visits) {
525 // Compute the weighted average |value_of_transition| over the last at 370 // Compute the weighted average |value_of_transition| over the last at
526 // most kMaxVisitsToScore visits, where each visit is weighted using 371 // most kMaxVisitsToScore visits, where each visit is weighted using
527 // GetRecencyScore() based on how many days ago it happened. Use 372 // GetRecencyScore() based on how many days ago it happened. Use
528 // kMaxVisitsToScore as the denominator for the average regardless of 373 // kMaxVisitsToScore as the denominator for the average regardless of
529 // how many visits there were in order to penalize a match that has 374 // how many visits there were in order to penalize a match that has
530 // fewer visits than kMaxVisitsToScore. 375 // fewer visits than kMaxVisitsToScore.
531 float summed_visit_points = 0; 376 float summed_visit_points = 0;
532 for (size_t i = 0; i < std::min(visits.size(), kMaxVisitsToScore); ++i) { 377 size_t max_visit_to_score =
378 std::min(visits.size(), history::ScoredHistoryMatch::kMaxVisitsToScore);
379 for (size_t i = 0; i < max_visit_to_score; ++i) {
533 int value_of_transition = 380 int value_of_transition =
534 (visits[i].second == ui::PAGE_TRANSITION_TYPED) ? 20 : 1; 381 (visits[i].second == ui::PAGE_TRANSITION_TYPED) ? 20 : 1;
535 if (bookmarked) 382 if (bookmarked)
536 value_of_transition = std::max(value_of_transition, bookmark_value_); 383 value_of_transition = std::max(value_of_transition, bookmark_value_);
537 const float bucket_weight = 384 const float bucket_weight =
538 GetRecencyScore((now - visits[i].first).InDays()); 385 GetRecencyScore((now - visits[i].first).InDays());
539 summed_visit_points += (value_of_transition * bucket_weight); 386 summed_visit_points += (value_of_transition * bucket_weight);
540 } 387 }
541 return visits.size() * summed_visit_points / kMaxVisitsToScore; 388 return visits.size() * summed_visit_points /
389 history::ScoredHistoryMatch::kMaxVisitsToScore;
542 } 390 }
543 391
544 // static 392 // static
545 float ScoredHistoryMatch::GetFinalRelevancyScore(float topicality_score, 393 float ScoredHistoryMatchBuilder::GetFinalRelevancyScore(float topicality_score,
546 float frequency_score) { 394 float frequency_score) {
547 if (topicality_score == 0) 395 if (topicality_score == 0)
548 return 0; 396 return 0;
549 // Here's how to interpret intermediate_score: Suppose the omnibox 397 // Here's how to interpret intermediate_score: Suppose the omnibox
550 // has one input term. Suppose we have a URL for which the omnibox 398 // has one input term. Suppose we have a URL for which the omnibox
551 // input term has a single URL hostname hit at a word boundary. (This 399 // input term has a single URL hostname hit at a word boundary. (This
552 // implies topicality_score = 1.0.). Then the intermediate_score for 400 // implies topicality_score = 1.0.). Then the intermediate_score for
553 // this URL will depend entirely on the frequency_score with 401 // this URL will depend entirely on the frequency_score with
554 // this interpretation: 402 // this interpretation:
555 // - a single typed visit more than three months ago, no other visits -> 0.2 403 // - a single typed visit more than three months ago, no other visits -> 0.2
556 // - a visit every three days, no typed visits -> 0.706 404 // - a visit every three days, no typed visits -> 0.706
(...skipping 18 matching lines...) Expand all
575 } 423 }
576 // Linearly extrapolate so a score of 20 (or more) has a score of 1399. 424 // Linearly extrapolate so a score of 20 (or more) has a score of 1399.
577 // (Scores above 20 are possible for URLs that have multiple term hits 425 // (Scores above 20 are possible for URLs that have multiple term hits
578 // in the URL and/or title and that are visited practically all 426 // in the URL and/or title and that are visited practically all
579 // the time using typed visits. We don't attempt to distinguish 427 // the time using typed visits. We don't attempt to distinguish
580 // between these very good results.) 428 // between these very good results.)
581 const float slope = (1399 - 1300) / (20.0f - 12.0f); 429 const float slope = (1399 - 1300) / (20.0f - 12.0f);
582 return std::min(1399.0, 1300 + slope * (intermediate_score - 12.0)); 430 return std::min(1399.0, 1300 + slope * (intermediate_score - 12.0));
583 } 431 }
584 432
585 void ScoredHistoryMatch::Init() { 433 history::ScoredHistoryMatch ScoredHistoryMatchBuilder::Build(
586 if (initialized_) 434 const history::URLRow& row,
587 return; 435 const history::VisitInfoVector& visits,
588 also_do_hup_like_scoring_ = false; 436 const std::string& languages,
589 // When doing HUP-like scoring, don't allow a non-inlineable match 437 const base::string16& lower_string,
590 // to beat the score of good inlineable matches. This is a problem 438 const history::String16Vector& terms,
591 // because if a non-inlineable match ends up with the highest score 439 const history::WordStarts& terms_to_word_starts_offsets,
592 // from HistoryQuick provider, all HistoryQuick matches get demoted 440 const history::RowWordStarts& word_starts,
593 // to non-inlineable scores (scores less than 1200). Without 441 const base::Time now) const {
594 // HUP-like-scoring, these results would actually come from the HUP 442 history::ScoredHistoryMatch scored_history_match =
595 // and not be demoted, thus outscoring the demoted HQP results. 443 history::ScoredHistoryMatch(row, 0, false, false, 0,
596 // When the HQP provides these, we need to clamp the non-inlineable 444 history::TermMatches(),
597 // results to preserve this behavior. 445 history::TermMatches(), false);
598 if (also_do_hup_like_scoring_) { 446
599 max_assigned_score_for_non_inlineable_matches_ = 447 GURL gurl = row.url();
600 HistoryURLProvider::kScoreForBestInlineableResult - 1; 448 if (!gurl.is_valid())
449 return scored_history_match;
450
451 // Figure out where each search term appears in the URL and/or page title
452 // so that we can score as well as provide autocomplete highlighting.
453 base::OffsetAdjuster::Adjustments adjustments;
454 base::string16 url =
455 bookmarks::CleanUpUrlForMatching(gurl, languages, &adjustments);
456 base::string16 title = bookmarks::CleanUpTitleForMatching(row.title());
457 int term_num = 0;
458 for (const auto& term : terms) {
459 history::TermMatches url_term_matches =
460 history::MatchTermInString(term, url, term_num);
461 history::TermMatches title_term_matches =
462 history::MatchTermInString(term, title, term_num);
463 if (url_term_matches.empty() && title_term_matches.empty()) {
464 // A term was not found in either URL or title - reject.
465 return scored_history_match;
466 }
467 scored_history_match.url_matches.insert(
468 scored_history_match.url_matches.end(), url_term_matches.begin(),
469 url_term_matches.end());
470 scored_history_match.title_matches.insert(
471 scored_history_match.title_matches.end(), title_term_matches.begin(),
472 title_term_matches.end());
473 ++term_num;
601 } 474 }
602 bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue(); 475
603 allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue(); 476 // Sort matches by offset and eliminate any which overlap.
604 allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue(); 477 // TODO(mpearson): Investigate whether this has any meaningful
605 initialized_ = true; 478 // effect on scoring. (It's necessary at some point: removing
479 // overlaps and sorting is needed to decide what to highlight in the
480 // suggestion string. But this sort and de-overlap doesn't have to
481 // be done before scoring.)
482 scored_history_match.url_matches =
483 SortAndDeoverlapMatches(scored_history_match.url_matches);
484 scored_history_match.title_matches =
485 SortAndDeoverlapMatches(scored_history_match.title_matches);
486
487 // We can inline autocomplete a match if:
488 // 1) there is only one search term
489 // 2) AND the match begins immediately after one of the prefixes in
490 // URLPrefix such as http://www and https:// (note that one of these
491 // is the empty prefix, for cases where the user has typed the scheme)
492 // 3) AND the search string does not end in whitespace (making it look to
493 // the IMUI as though there is a single search term when actually there
494 // is a second, empty term).
495 // |best_inlineable_prefix| stores the inlineable prefix computed in
496 // clause (2) or NULL if no such prefix exists. (The URL is not inlineable.)
497 // Note that using the best prefix here means that when multiple
498 // prefixes match, we'll choose to inline following the longest one.
499 // For a URL like "http://www.washingtonmutual.com", this means
500 // typing "w" will inline "ashington..." instead of "ww.washington...".
501 if (!scored_history_match.url_matches.empty() && terms.size() == 1 &&
502 !IsWhitespace(*lower_string.rbegin())) {
503 const base::string16 gurl_spec = base::UTF8ToUTF16(gurl.spec());
504 const URLPrefix* best_inlineable_prefix =
505 URLPrefix::BestURLPrefix(gurl_spec, terms[0]);
506 if (best_inlineable_prefix) {
507 // Initialize innermost_match.
508 // The idea here is that matches that occur in the scheme or
509 // "www." are worse than matches which don't. For the URLs
510 // "http://www.google.com" and "http://wellsfargo.com", we want
511 // the omnibox input "w" to cause the latter URL to rank higher
512 // than the former. Note that this is not the same as checking
513 // whether one match's inlinable prefix has more components than
514 // the other match's, since in this example, both matches would
515 // have an inlinable prefix of "http://", which is one component.
516 //
517 // Instead, we look for the overall best (i.e., most components)
518 // prefix of the current URL, and then check whether the inlinable
519 // prefix has that many components. If it does, this is an
520 // "innermost" match, and should be boosted. In the example
521 // above, the best prefixes for the two URLs have two and one
522 // components respectively, while the inlinable prefixes each
523 // have one component; this means the first match is not innermost
524 // and the second match is innermost, resulting in us boosting the
525 // second match.
526 //
527 // Now, the code that implements this.
528 // The deepest prefix for this URL regardless of where the match is.
529 const URLPrefix* best_prefix =
530 URLPrefix::BestURLPrefix(gurl_spec, base::string16());
531 DCHECK(best_prefix);
532 // If the URL is inlineable, we must have a match. Note the prefix that
533 // makes it inlineable may be empty.
534 scored_history_match.can_inline = true;
535 scored_history_match.innermost_match =
536 best_inlineable_prefix->num_components == best_prefix->num_components;
537 }
538 }
539
540 const float topicality_score =
541 GetTopicalityScore(terms.size(), url, terms_to_word_starts_offsets,
542 word_starts, &scored_history_match);
543 const float frequency_score = GetFrequency(
544 now, !is_bookmarked_.is_null() && is_bookmarked_.Run(gurl), visits);
545 scored_history_match.raw_score = std::min<int>(
546 GetFinalRelevancyScore(topicality_score, frequency_score), kint32max);
547
548 if (kAlsoDoHupLikeScoring && scored_history_match.can_inline) {
549 // HistoryURL-provider-like scoring gives any match that is
550 // capable of being inlined a certain minimum score. Some of these
551 // are given a higher score that lets them be shown in inline.
552 // This test here derives from the test in
553 // HistoryURLProvider::PromoteMatchForInlineAutocomplete().
554 const bool promote_to_inline =
555 row.typed_count() > 1 ||
556 (scored_history_match.IsHostOnly() && row.typed_count() == 1);
557 int hup_like_score =
558 promote_to_inline
559 ? HistoryURLProvider::kScoreForBestInlineableResult
560 : HistoryURLProvider::kBaseScoreForNonInlineableResult;
561
562 // Also, if the user types the hostname of a host with a typed
563 // visit, then everything from that host get given inlineable scores
564 // (because the URL-that-you-typed will go first and everything
565 // else will be assigned one minus the previous score, as coded
566 // at the end of HistoryURLProvider::DoAutocomplete().
567 if (base::UTF8ToUTF16(gurl.host()) == terms[0])
568 hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult;
569
570 // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion()
571 // that's meant to promote prefixes of the best match (if they've
572 // been visited enough related to the best match) or
573 // create/promote host-only suggestions (even if they've never
574 // been typed). The code is complicated and we don't try to
575 // duplicate the logic here. Instead, we handle a simple case: in
576 // low-typed-count ranges, give host-only matches (i.e.,
577 // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so
578 // that the host-only match outscores all the other matches that
579 // would normally have the same base score. This behavior is not
580 // identical to what happens in HistoryURLProvider even in these
581 // low typed count ranges--sometimes it will create/promote when
582 // this test does not (indeed, we cannot create matches like HUP
583 // can) and vice versa--but the underlying philosophy is similar.
584 if (!promote_to_inline && scored_history_match.IsHostOnly())
585 hup_like_score++;
586
587 // All the other logic to goes into hup-like-scoring happens in
588 // the tie-breaker case of MatchScoreGreater().
589
590 // Incorporate hup_like_score into raw_score.
591 scored_history_match.raw_score =
592 std::max(scored_history_match.raw_score, hup_like_score);
593 }
594
595 // If this match is not inlineable and there's a cap on the maximum
596 // score that can be given to non-inlineable matches, apply the cap.
597 if (!scored_history_match.can_inline &&
598 max_assigned_score_for_non_inlineable_matches != -1) {
599 scored_history_match.raw_score =
600 std::min(scored_history_match.raw_score,
601 max_assigned_score_for_non_inlineable_matches);
602 }
603
604 // Now that we're done processing this entry, correct the offsets of the
605 // matches in |url_matches| so they point to offsets in the original URL
606 // spec, not the cleaned-up URL string that we used for matching.
607 std::vector<size_t> offsets =
608 OffsetsFromTermMatches(scored_history_match.url_matches);
609 base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets);
610 scored_history_match.url_matches =
611 ReplaceOffsetsInTermMatches(scored_history_match.url_matches, offsets);
612
613 return scored_history_match;
606 } 614 }
607
608 } // namespace history
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698