OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "chrome/browser/history/scored_history_match.h" | |
6 | |
7 #include <algorithm> | |
8 #include <functional> | |
9 #include <iterator> | |
10 #include <numeric> | |
11 #include <set> | |
12 | |
13 #include <math.h> | |
14 | |
15 #include "base/logging.h" | |
16 #include "base/metrics/histogram.h" | |
17 #include "base/strings/string_util.h" | |
18 #include "base/strings/utf_string_conversions.h" | |
19 #include "chrome/browser/autocomplete/history_url_provider.h" | |
20 #include "components/bookmarks/browser/bookmark_utils.h" | |
21 #include "components/history/core/browser/history_client.h" | |
22 #include "components/omnibox/omnibox_field_trial.h" | |
23 #include "components/omnibox/url_prefix.h" | |
24 #include "content/public/browser/browser_thread.h" | |
25 | |
26 namespace history { | |
27 | |
28 // ScoredHistoryMatch ---------------------------------------------------------- | |
29 | |
30 // static | |
31 const size_t ScoredHistoryMatch::kMaxVisitsToScore = 10; | |
32 const int ScoredHistoryMatch::kDaysToPrecomputeRecencyScoresFor = 366; | |
33 const int ScoredHistoryMatch::kMaxRawTermScore = 30; | |
34 float* ScoredHistoryMatch::raw_term_score_to_topicality_score_ = NULL; | |
35 float* ScoredHistoryMatch::days_ago_to_recency_score_ = NULL; | |
36 bool ScoredHistoryMatch::initialized_ = false; | |
37 int ScoredHistoryMatch::bookmark_value_ = 1; | |
38 bool ScoredHistoryMatch::allow_tld_matches_ = false; | |
39 bool ScoredHistoryMatch::allow_scheme_matches_ = false; | |
40 bool ScoredHistoryMatch::also_do_hup_like_scoring_ = false; | |
41 int ScoredHistoryMatch::max_assigned_score_for_non_inlineable_matches_ = -1; | |
42 | |
43 ScoredHistoryMatch::ScoredHistoryMatch() | |
44 : raw_score_(0), | |
45 can_inline_(false) { | |
46 Init(); | |
47 } | |
48 | |
49 ScoredHistoryMatch::ScoredHistoryMatch( | |
50 const URLRow& row, | |
51 const VisitInfoVector& visits, | |
52 const std::string& languages, | |
53 const base::string16& lower_string, | |
54 const String16Vector& terms, | |
55 const WordStarts& terms_to_word_starts_offsets, | |
56 const RowWordStarts& word_starts, | |
57 const base::Time now, | |
58 HistoryClient* history_client) | |
59 : HistoryMatch(row, 0, false, false), | |
60 raw_score_(0), | |
61 can_inline_(false) { | |
62 Init(); | |
63 | |
64 GURL gurl = row.url(); | |
65 if (!gurl.is_valid()) | |
66 return; | |
67 | |
68 // Figure out where each search term appears in the URL and/or page title | |
69 // so that we can score as well as provide autocomplete highlighting. | |
70 base::OffsetAdjuster::Adjustments adjustments; | |
71 base::string16 url = | |
72 bookmarks::CleanUpUrlForMatching(gurl, languages, &adjustments); | |
73 base::string16 title = bookmarks::CleanUpTitleForMatching(row.title()); | |
74 int term_num = 0; | |
75 for (String16Vector::const_iterator iter = terms.begin(); iter != terms.end(); | |
76 ++iter, ++term_num) { | |
77 base::string16 term = *iter; | |
78 TermMatches url_term_matches = MatchTermInString(term, url, term_num); | |
79 TermMatches title_term_matches = MatchTermInString(term, title, term_num); | |
80 if (url_term_matches.empty() && title_term_matches.empty()) | |
81 return; // A term was not found in either URL or title - reject. | |
82 url_matches_.insert(url_matches_.end(), url_term_matches.begin(), | |
83 url_term_matches.end()); | |
84 title_matches_.insert(title_matches_.end(), title_term_matches.begin(), | |
85 title_term_matches.end()); | |
86 } | |
87 | |
88 // Sort matches by offset and eliminate any which overlap. | |
89 // TODO(mpearson): Investigate whether this has any meaningful | |
90 // effect on scoring. (It's necessary at some point: removing | |
91 // overlaps and sorting is needed to decide what to highlight in the | |
92 // suggestion string. But this sort and de-overlap doesn't have to | |
93 // be done before scoring.) | |
94 url_matches_ = SortAndDeoverlapMatches(url_matches_); | |
95 title_matches_ = SortAndDeoverlapMatches(title_matches_); | |
96 | |
97 // We can inline autocomplete a match if: | |
98 // 1) there is only one search term | |
99 // 2) AND the match begins immediately after one of the prefixes in | |
100 // URLPrefix such as http://www and https:// (note that one of these | |
101 // is the empty prefix, for cases where the user has typed the scheme) | |
102 // 3) AND the search string does not end in whitespace (making it look to | |
103 // the IMUI as though there is a single search term when actually there | |
104 // is a second, empty term). | |
105 // |best_inlineable_prefix| stores the inlineable prefix computed in | |
106 // clause (2) or NULL if no such prefix exists. (The URL is not inlineable.) | |
107 // Note that using the best prefix here means that when multiple | |
108 // prefixes match, we'll choose to inline following the longest one. | |
109 // For a URL like "http://www.washingtonmutual.com", this means | |
110 // typing "w" will inline "ashington..." instead of "ww.washington...". | |
111 const URLPrefix* best_inlineable_prefix = | |
112 (!url_matches_.empty() && (terms.size() == 1)) ? | |
113 URLPrefix::BestURLPrefix(base::UTF8ToUTF16(gurl.spec()), terms[0]) : | |
114 NULL; | |
115 can_inline_ = (best_inlineable_prefix != NULL) && | |
116 !IsWhitespace(*(lower_string.rbegin())); | |
117 if (can_inline_) { | |
118 // Initialize innermost_match. | |
119 // The idea here is that matches that occur in the scheme or | |
120 // "www." are worse than matches which don't. For the URLs | |
121 // "http://www.google.com" and "http://wellsfargo.com", we want | |
122 // the omnibox input "w" to cause the latter URL to rank higher | |
123 // than the former. Note that this is not the same as checking | |
124 // whether one match's inlinable prefix has more components than | |
125 // the other match's, since in this example, both matches would | |
126 // have an inlinable prefix of "http://", which is one component. | |
127 // | |
128 // Instead, we look for the overall best (i.e., most components) | |
129 // prefix of the current URL, and then check whether the inlinable | |
130 // prefix has that many components. If it does, this is an | |
131 // "innermost" match, and should be boosted. In the example | |
132 // above, the best prefixes for the two URLs have two and one | |
133 // components respectively, while the inlinable prefixes each | |
134 // have one component; this means the first match is not innermost | |
135 // and the second match is innermost, resulting in us boosting the | |
136 // second match. | |
137 // | |
138 // Now, the code that implements this. | |
139 // The deepest prefix for this URL regardless of where the match is. | |
140 const URLPrefix* best_prefix = URLPrefix::BestURLPrefix( | |
141 base::UTF8ToUTF16(gurl.spec()), base::string16()); | |
142 DCHECK(best_prefix != NULL); | |
143 const int num_components_in_best_prefix = best_prefix->num_components; | |
144 // If the URL is inlineable, we must have a match. Note the prefix that | |
145 // makes it inlineable may be empty. | |
146 DCHECK(best_inlineable_prefix != NULL); | |
147 const int num_components_in_best_inlineable_prefix = | |
148 best_inlineable_prefix->num_components; | |
149 innermost_match = (num_components_in_best_inlineable_prefix == | |
150 num_components_in_best_prefix); | |
151 } | |
152 | |
153 const float topicality_score = GetTopicalityScore( | |
154 terms.size(), url, terms_to_word_starts_offsets, word_starts); | |
155 const float frequency_score = GetFrequency( | |
156 now, (history_client && history_client->IsBookmarked(gurl)), visits); | |
157 raw_score_ = GetFinalRelevancyScore(topicality_score, frequency_score); | |
158 raw_score_ = | |
159 (raw_score_ <= kint32max) ? static_cast<int>(raw_score_) : kint32max; | |
160 | |
161 if (also_do_hup_like_scoring_ && can_inline_) { | |
162 // HistoryURL-provider-like scoring gives any match that is | |
163 // capable of being inlined a certain minimum score. Some of these | |
164 // are given a higher score that lets them be shown in inline. | |
165 // This test here derives from the test in | |
166 // HistoryURLProvider::PromoteMatchForInlineAutocomplete(). | |
167 const bool promote_to_inline = (row.typed_count() > 1) || | |
168 (IsHostOnly() && (row.typed_count() == 1)); | |
169 int hup_like_score = promote_to_inline ? | |
170 HistoryURLProvider::kScoreForBestInlineableResult : | |
171 HistoryURLProvider::kBaseScoreForNonInlineableResult; | |
172 | |
173 // Also, if the user types the hostname of a host with a typed | |
174 // visit, then everything from that host get given inlineable scores | |
175 // (because the URL-that-you-typed will go first and everything | |
176 // else will be assigned one minus the previous score, as coded | |
177 // at the end of HistoryURLProvider::DoAutocomplete(). | |
178 if (base::UTF8ToUTF16(gurl.host()) == terms[0]) | |
179 hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult; | |
180 | |
181 // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion() | |
182 // that's meant to promote prefixes of the best match (if they've | |
183 // been visited enough related to the best match) or | |
184 // create/promote host-only suggestions (even if they've never | |
185 // been typed). The code is complicated and we don't try to | |
186 // duplicate the logic here. Instead, we handle a simple case: in | |
187 // low-typed-count ranges, give host-only matches (i.e., | |
188 // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so | |
189 // that the host-only match outscores all the other matches that | |
190 // would normally have the same base score. This behavior is not | |
191 // identical to what happens in HistoryURLProvider even in these | |
192 // low typed count ranges--sometimes it will create/promote when | |
193 // this test does not (indeed, we cannot create matches like HUP | |
194 // can) and vice versa--but the underlying philosophy is similar. | |
195 if (!promote_to_inline && IsHostOnly()) | |
196 hup_like_score++; | |
197 | |
198 // All the other logic to goes into hup-like-scoring happens in | |
199 // the tie-breaker case of MatchScoreGreater(). | |
200 | |
201 // Incorporate hup_like_score into raw_score. | |
202 raw_score_ = std::max(raw_score_, hup_like_score); | |
203 } | |
204 | |
205 // If this match is not inlineable and there's a cap on the maximum | |
206 // score that can be given to non-inlineable matches, apply the cap. | |
207 if (!can_inline_ && (max_assigned_score_for_non_inlineable_matches_ != -1)) { | |
208 raw_score_ = std::min(max_assigned_score_for_non_inlineable_matches_, | |
209 raw_score_); | |
210 } | |
211 | |
212 // Now that we're done processing this entry, correct the offsets of the | |
213 // matches in |url_matches_| so they point to offsets in the original URL | |
214 // spec, not the cleaned-up URL string that we used for matching. | |
215 std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches_); | |
216 base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets); | |
217 url_matches_ = ReplaceOffsetsInTermMatches(url_matches_, offsets); | |
218 } | |
219 | |
220 ScoredHistoryMatch::~ScoredHistoryMatch() {} | |
221 | |
222 // Comparison function for sorting ScoredMatches by their scores with | |
223 // intelligent tie-breaking. | |
224 bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1, | |
225 const ScoredHistoryMatch& m2) { | |
226 if (m1.raw_score_ != m2.raw_score_) | |
227 return m1.raw_score_ > m2.raw_score_; | |
228 | |
229 // This tie-breaking logic is inspired by / largely copied from the | |
230 // ordering logic in history_url_provider.cc CompareHistoryMatch(). | |
231 | |
232 // A URL that has been typed at all is better than one that has never been | |
233 // typed. (Note "!"s on each side.) | |
234 if (!m1.url_info.typed_count() != !m2.url_info.typed_count()) | |
235 return m1.url_info.typed_count() > m2.url_info.typed_count(); | |
236 | |
237 // Innermost matches (matches after any scheme or "www.") are better than | |
238 // non-innermost matches. | |
239 if (m1.innermost_match != m2.innermost_match) | |
240 return m1.innermost_match; | |
241 | |
242 // URLs that have been typed more often are better. | |
243 if (m1.url_info.typed_count() != m2.url_info.typed_count()) | |
244 return m1.url_info.typed_count() > m2.url_info.typed_count(); | |
245 | |
246 // For URLs that have each been typed once, a host (alone) is better | |
247 // than a page inside. | |
248 if (m1.url_info.typed_count() == 1) { | |
249 if (m1.IsHostOnly() != m2.IsHostOnly()) | |
250 return m1.IsHostOnly(); | |
251 } | |
252 | |
253 // URLs that have been visited more often are better. | |
254 if (m1.url_info.visit_count() != m2.url_info.visit_count()) | |
255 return m1.url_info.visit_count() > m2.url_info.visit_count(); | |
256 | |
257 // URLs that have been visited more recently are better. | |
258 return m1.url_info.last_visit() > m2.url_info.last_visit(); | |
259 } | |
260 | |
261 // static | |
262 TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts( | |
263 const TermMatches& term_matches, | |
264 const WordStarts& terms_to_word_starts_offsets, | |
265 const WordStarts& word_starts, | |
266 size_t start_pos, | |
267 size_t end_pos) { | |
268 // Return early if no filtering is needed. | |
269 if (start_pos == std::string::npos) | |
270 return term_matches; | |
271 TermMatches filtered_matches; | |
272 WordStarts::const_iterator next_word_starts = word_starts.begin(); | |
273 WordStarts::const_iterator end_word_starts = word_starts.end(); | |
274 for (TermMatches::const_iterator iter = term_matches.begin(); | |
275 iter != term_matches.end(); ++iter) { | |
276 const size_t term_offset = terms_to_word_starts_offsets[iter->term_num]; | |
277 // Advance next_word_starts until it's >= the position of the term we're | |
278 // considering (adjusted for where the word begins within the term). | |
279 while ((next_word_starts != end_word_starts) && | |
280 (*next_word_starts < (iter->offset + term_offset))) | |
281 ++next_word_starts; | |
282 // Add the match if it's before the position we start filtering at or | |
283 // after the position we stop filtering at (assuming we have a position | |
284 // to stop filtering at) or if it's at a word boundary. | |
285 if ((iter->offset < start_pos) || | |
286 ((end_pos != std::string::npos) && (iter->offset >= end_pos)) || | |
287 ((next_word_starts != end_word_starts) && | |
288 (*next_word_starts == iter->offset + term_offset))) | |
289 filtered_matches.push_back(*iter); | |
290 } | |
291 return filtered_matches; | |
292 } | |
293 | |
294 float ScoredHistoryMatch::GetTopicalityScore( | |
295 const int num_terms, | |
296 const base::string16& url, | |
297 const WordStarts& terms_to_word_starts_offsets, | |
298 const RowWordStarts& word_starts) { | |
299 // Because the below thread is not thread safe, we check that we're | |
300 // only calling it from one thread: the UI thread. Specifically, | |
301 // we check "if we've heard of the UI thread then we'd better | |
302 // be on it." The first part is necessary so unit tests pass. (Many | |
303 // unit tests don't set up the threading naming system; hence | |
304 // CurrentlyOn(UI thread) will fail.) | |
305 DCHECK(!content::BrowserThread::IsThreadInitialized( | |
306 content::BrowserThread::UI) || | |
307 content::BrowserThread::CurrentlyOn(content::BrowserThread::UI)); | |
308 if (raw_term_score_to_topicality_score_ == NULL) { | |
309 raw_term_score_to_topicality_score_ = new float[kMaxRawTermScore]; | |
310 FillInTermScoreToTopicalityScoreArray(); | |
311 } | |
312 // A vector that accumulates per-term scores. The strongest match--a | |
313 // match in the hostname at a word boundary--is worth 10 points. | |
314 // Everything else is less. In general, a match that's not at a word | |
315 // boundary is worth about 1/4th or 1/5th of a match at the word boundary | |
316 // in the same part of the URL/title. | |
317 DCHECK_GT(num_terms, 0); | |
318 std::vector<int> term_scores(num_terms, 0); | |
319 WordStarts::const_iterator next_word_starts = | |
320 word_starts.url_word_starts_.begin(); | |
321 WordStarts::const_iterator end_word_starts = | |
322 word_starts.url_word_starts_.end(); | |
323 const size_t question_mark_pos = url.find('?'); | |
324 const size_t colon_pos = url.find(':'); | |
325 // The + 3 skips the // that probably appears in the protocol | |
326 // after the colon. If the protocol doesn't have two slashes after | |
327 // the colon, that's okay--all this ends up doing is starting our | |
328 // search for the next / a few characters into the hostname. The | |
329 // only times this can cause problems is if we have a protocol without | |
330 // a // after the colon and the hostname is only one or two characters. | |
331 // This isn't worth worrying about. | |
332 const size_t end_of_hostname_pos = (colon_pos != std::string::npos) ? | |
333 url.find('/', colon_pos + 3) : url.find('/'); | |
334 size_t last_part_of_hostname_pos = | |
335 (end_of_hostname_pos != std::string::npos) ? | |
336 url.rfind('.', end_of_hostname_pos) : url.rfind('.'); | |
337 // Loop through all URL matches and score them appropriately. | |
338 // First, filter all matches not at a word boundary and in the path (or | |
339 // later). | |
340 url_matches_ = FilterTermMatchesByWordStarts( | |
341 url_matches_, terms_to_word_starts_offsets, word_starts.url_word_starts_, | |
342 end_of_hostname_pos, | |
343 std::string::npos); | |
344 if (colon_pos != std::string::npos) { | |
345 // Also filter matches not at a word boundary and in the scheme. | |
346 url_matches_ = FilterTermMatchesByWordStarts( | |
347 url_matches_, terms_to_word_starts_offsets, | |
348 word_starts.url_word_starts_, 0, colon_pos); | |
349 } | |
350 for (TermMatches::const_iterator iter = url_matches_.begin(); | |
351 iter != url_matches_.end(); ++iter) { | |
352 const size_t term_offset = terms_to_word_starts_offsets[iter->term_num]; | |
353 // Advance next_word_starts until it's >= the position of the term we're | |
354 // considering (adjusted for where the word begins within the term). | |
355 while ((next_word_starts != end_word_starts) && | |
356 (*next_word_starts < (iter->offset + term_offset))) { | |
357 ++next_word_starts; | |
358 } | |
359 const bool at_word_boundary = (next_word_starts != end_word_starts) && | |
360 (*next_word_starts == iter->offset + term_offset); | |
361 if ((question_mark_pos != std::string::npos) && | |
362 (iter->offset > question_mark_pos)) { | |
363 // The match is in a CGI ?... fragment. | |
364 DCHECK(at_word_boundary); | |
365 term_scores[iter->term_num] += 5; | |
366 } else if ((end_of_hostname_pos != std::string::npos) && | |
367 (iter->offset > end_of_hostname_pos)) { | |
368 // The match is in the path. | |
369 DCHECK(at_word_boundary); | |
370 term_scores[iter->term_num] += 8; | |
371 } else if ((colon_pos == std::string::npos) || | |
372 (iter->offset > colon_pos)) { | |
373 // The match is in the hostname. | |
374 if ((last_part_of_hostname_pos == std::string::npos) || | |
375 (iter->offset < last_part_of_hostname_pos)) { | |
376 // Either there are no dots in the hostname or this match isn't | |
377 // the last dotted component. | |
378 term_scores[iter->term_num] += at_word_boundary ? 10 : 2; | |
379 } else { | |
380 // The match is in the last part of a dotted hostname (usually this | |
381 // is the top-level domain .com, .net, etc.). | |
382 if (allow_tld_matches_) | |
383 term_scores[iter->term_num] += at_word_boundary ? 10 : 0; | |
384 } | |
385 } else { | |
386 // The match is in the protocol (a.k.a. scheme). | |
387 // Matches not at a word boundary should have been filtered already. | |
388 DCHECK(at_word_boundary); | |
389 match_in_scheme = true; | |
390 if (allow_scheme_matches_) | |
391 term_scores[iter->term_num] += 10; | |
392 } | |
393 } | |
394 // Now do the analogous loop over all matches in the title. | |
395 next_word_starts = word_starts.title_word_starts_.begin(); | |
396 end_word_starts = word_starts.title_word_starts_.end(); | |
397 int word_num = 0; | |
398 title_matches_ = FilterTermMatchesByWordStarts( | |
399 title_matches_, terms_to_word_starts_offsets, | |
400 word_starts.title_word_starts_, 0, std::string::npos); | |
401 for (TermMatches::const_iterator iter = title_matches_.begin(); | |
402 iter != title_matches_.end(); ++iter) { | |
403 const size_t term_offset = terms_to_word_starts_offsets[iter->term_num]; | |
404 // Advance next_word_starts until it's >= the position of the term we're | |
405 // considering (adjusted for where the word begins within the term). | |
406 while ((next_word_starts != end_word_starts) && | |
407 (*next_word_starts < (iter->offset + term_offset))) { | |
408 ++next_word_starts; | |
409 ++word_num; | |
410 } | |
411 if (word_num >= 10) break; // only count the first ten words | |
412 DCHECK(next_word_starts != end_word_starts); | |
413 DCHECK_EQ(*next_word_starts, iter->offset + term_offset) | |
414 << "not at word boundary"; | |
415 term_scores[iter->term_num] += 8; | |
416 } | |
417 // TODO(mpearson): Restore logic for penalizing out-of-order matches. | |
418 // (Perhaps discount them by 0.8?) | |
419 // TODO(mpearson): Consider: if the earliest match occurs late in the string, | |
420 // should we discount it? | |
421 // TODO(mpearson): Consider: do we want to score based on how much of the | |
422 // input string the input covers? (I'm leaning toward no.) | |
423 | |
424 // Compute the topicality_score as the sum of transformed term_scores. | |
425 float topicality_score = 0; | |
426 for (size_t i = 0; i < term_scores.size(); ++i) { | |
427 // Drop this URL if it seems like a term didn't appear or, more precisely, | |
428 // didn't appear in a part of the URL or title that we trust enough | |
429 // to give it credit for. For instance, terms that appear in the middle | |
430 // of a CGI parameter get no credit. Almost all the matches dropped | |
431 // due to this test would look stupid if shown to the user. | |
432 if (term_scores[i] == 0) | |
433 return 0; | |
434 topicality_score += raw_term_score_to_topicality_score_[ | |
435 (term_scores[i] >= kMaxRawTermScore) ? (kMaxRawTermScore - 1) : | |
436 term_scores[i]]; | |
437 } | |
438 // TODO(mpearson): If there are multiple terms, consider taking the | |
439 // geometric mean of per-term scores rather than the arithmetic mean. | |
440 | |
441 return topicality_score / num_terms; | |
442 } | |
443 | |
444 // static | |
445 void ScoredHistoryMatch::FillInTermScoreToTopicalityScoreArray() { | |
446 for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) { | |
447 float topicality_score; | |
448 if (term_score < 10) { | |
449 // If the term scores less than 10 points (no full-credit hit, or | |
450 // no combination of hits that score that well), then the topicality | |
451 // score is linear in the term score. | |
452 topicality_score = 0.1 * term_score; | |
453 } else { | |
454 // For term scores of at least ten points, pass them through a log | |
455 // function so a score of 10 points gets a 1.0 (to meet up exactly | |
456 // with the linear component) and increases logarithmically until | |
457 // maxing out at 30 points, with computes to a score around 2.1. | |
458 topicality_score = (1.0 + 2.25 * log10(0.1 * term_score)); | |
459 } | |
460 raw_term_score_to_topicality_score_[term_score] = topicality_score; | |
461 } | |
462 } | |
463 | |
464 // static | |
465 float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago) { | |
466 // Because the below thread is not thread safe, we check that we're | |
467 // only calling it from one thread: the UI thread. Specifically, | |
468 // we check "if we've heard of the UI thread then we'd better | |
469 // be on it." The first part is necessary so unit tests pass. (Many | |
470 // unit tests don't set up the threading naming system; hence | |
471 // CurrentlyOn(UI thread) will fail.) | |
472 DCHECK(!content::BrowserThread::IsThreadInitialized( | |
473 content::BrowserThread::UI) || | |
474 content::BrowserThread::CurrentlyOn(content::BrowserThread::UI)); | |
475 if (days_ago_to_recency_score_ == NULL) { | |
476 days_ago_to_recency_score_ = new float[kDaysToPrecomputeRecencyScoresFor]; | |
477 FillInDaysAgoToRecencyScoreArray(); | |
478 } | |
479 // Lookup the score in days_ago_to_recency_score, treating | |
480 // everything older than what we've precomputed as the oldest thing | |
481 // we've precomputed. The std::max is to protect against corruption | |
482 // in the database (in case last_visit_days_ago is negative). | |
483 return days_ago_to_recency_score_[ | |
484 std::max( | |
485 std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1), | |
486 0)]; | |
487 } | |
488 | |
489 void ScoredHistoryMatch::FillInDaysAgoToRecencyScoreArray() { | |
490 for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor; | |
491 days_ago++) { | |
492 int unnormalized_recency_score; | |
493 if (days_ago <= 4) { | |
494 unnormalized_recency_score = 100; | |
495 } else if (days_ago <= 14) { | |
496 // Linearly extrapolate between 4 and 14 days so 14 days has a score | |
497 // of 70. | |
498 unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4); | |
499 } else if (days_ago <= 31) { | |
500 // Linearly extrapolate between 14 and 31 days so 31 days has a score | |
501 // of 50. | |
502 unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14); | |
503 } else if (days_ago <= 90) { | |
504 // Linearly extrapolate between 30 and 90 days so 90 days has a score | |
505 // of 30. | |
506 unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30); | |
507 } else { | |
508 // Linearly extrapolate between 90 and 365 days so 365 days has a score | |
509 // of 10. | |
510 unnormalized_recency_score = | |
511 10 + (365 - days_ago) * (20 - 10) / (365 - 90); | |
512 } | |
513 days_ago_to_recency_score_[days_ago] = unnormalized_recency_score / 100.0; | |
514 if (days_ago > 0) { | |
515 DCHECK_LE(days_ago_to_recency_score_[days_ago], | |
516 days_ago_to_recency_score_[days_ago - 1]); | |
517 } | |
518 } | |
519 } | |
520 | |
521 // static | |
522 float ScoredHistoryMatch::GetFrequency(const base::Time& now, | |
523 const bool bookmarked, | |
524 const VisitInfoVector& visits) { | |
525 // Compute the weighted average |value_of_transition| over the last at | |
526 // most kMaxVisitsToScore visits, where each visit is weighted using | |
527 // GetRecencyScore() based on how many days ago it happened. Use | |
528 // kMaxVisitsToScore as the denominator for the average regardless of | |
529 // how many visits there were in order to penalize a match that has | |
530 // fewer visits than kMaxVisitsToScore. | |
531 float summed_visit_points = 0; | |
532 for (size_t i = 0; i < std::min(visits.size(), kMaxVisitsToScore); ++i) { | |
533 int value_of_transition = | |
534 (visits[i].second == ui::PAGE_TRANSITION_TYPED) ? 20 : 1; | |
535 if (bookmarked) | |
536 value_of_transition = std::max(value_of_transition, bookmark_value_); | |
537 const float bucket_weight = | |
538 GetRecencyScore((now - visits[i].first).InDays()); | |
539 summed_visit_points += (value_of_transition * bucket_weight); | |
540 } | |
541 return visits.size() * summed_visit_points / kMaxVisitsToScore; | |
542 } | |
543 | |
544 // static | |
545 float ScoredHistoryMatch::GetFinalRelevancyScore(float topicality_score, | |
546 float frequency_score) { | |
547 if (topicality_score == 0) | |
548 return 0; | |
549 // Here's how to interpret intermediate_score: Suppose the omnibox | |
550 // has one input term. Suppose we have a URL for which the omnibox | |
551 // input term has a single URL hostname hit at a word boundary. (This | |
552 // implies topicality_score = 1.0.). Then the intermediate_score for | |
553 // this URL will depend entirely on the frequency_score with | |
554 // this interpretation: | |
555 // - a single typed visit more than three months ago, no other visits -> 0.2 | |
556 // - a visit every three days, no typed visits -> 0.706 | |
557 // - a visit every day, no typed visits -> 0.916 | |
558 // - a single typed visit yesterday, no other visits -> 2.0 | |
559 // - a typed visit once a week -> 11.77 | |
560 // - a typed visit every three days -> 14.12 | |
561 // - at least ten typed visits today -> 20.0 (maximum score) | |
562 const float intermediate_score = topicality_score * frequency_score; | |
563 // The below code maps intermediate_score to the range [0, 1399]. | |
564 // The score maxes out at 1400 (i.e., cannot beat a good inline result). | |
565 if (intermediate_score <= 1) { | |
566 // Linearly extrapolate between 0 and 1.5 so 0 has a score of 400 | |
567 // and 1.5 has a score of 600. | |
568 const float slope = (600 - 400) / (1.5f - 0.0f); | |
569 return 400 + slope * intermediate_score; | |
570 } | |
571 if (intermediate_score <= 12.0) { | |
572 // Linearly extrapolate up to 12 so 12 has a score of 1300. | |
573 const float slope = (1300 - 600) / (12.0f - 1.5f); | |
574 return 600 + slope * (intermediate_score - 1.5); | |
575 } | |
576 // Linearly extrapolate so a score of 20 (or more) has a score of 1399. | |
577 // (Scores above 20 are possible for URLs that have multiple term hits | |
578 // in the URL and/or title and that are visited practically all | |
579 // the time using typed visits. We don't attempt to distinguish | |
580 // between these very good results.) | |
581 const float slope = (1399 - 1300) / (20.0f - 12.0f); | |
582 return std::min(1399.0, 1300 + slope * (intermediate_score - 12.0)); | |
583 } | |
584 | |
585 void ScoredHistoryMatch::Init() { | |
586 if (initialized_) | |
587 return; | |
588 also_do_hup_like_scoring_ = false; | |
589 // When doing HUP-like scoring, don't allow a non-inlineable match | |
590 // to beat the score of good inlineable matches. This is a problem | |
591 // because if a non-inlineable match ends up with the highest score | |
592 // from HistoryQuick provider, all HistoryQuick matches get demoted | |
593 // to non-inlineable scores (scores less than 1200). Without | |
594 // HUP-like-scoring, these results would actually come from the HUP | |
595 // and not be demoted, thus outscoring the demoted HQP results. | |
596 // When the HQP provides these, we need to clamp the non-inlineable | |
597 // results to preserve this behavior. | |
598 if (also_do_hup_like_scoring_) { | |
599 max_assigned_score_for_non_inlineable_matches_ = | |
600 HistoryURLProvider::kScoreForBestInlineableResult - 1; | |
601 } | |
602 bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue(); | |
603 allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue(); | |
604 allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue(); | |
605 initialized_ = true; | |
606 } | |
607 | |
608 } // namespace history | |
OLD | NEW |