Index: srtp/srtp/srtp.c |
diff --git a/srtp/srtp/srtp.c b/srtp/srtp/srtp.c |
index d12881a9a2418cd168b1b3d62c4600687c3990a2..1b3c001d1ba6bc3928681f6ab56c65f659bdae9c 100644 |
--- a/srtp/srtp/srtp.c |
+++ b/srtp/srtp/srtp.c |
@@ -43,9 +43,12 @@ |
*/ |
-#include "srtp.h" |
+#include "srtp_priv.h" |
#include "ekt.h" /* for SRTP Encrypted Key Transport */ |
#include "alloc.h" /* for crypto_alloc() */ |
+#ifdef OPENSSL |
+#include "aes_gcm_ossl.h" /* for AES GCM mode */ |
+#endif |
#ifndef SRTP_KERNEL |
# include <limits.h> |
@@ -95,6 +98,45 @@ srtp_validate_rtp_header(void *rtp_hdr, int *pkt_octet_len) { |
return err_status_ok; |
} |
+const char *srtp_get_version_string () |
+{ |
+ /* |
+ * Simply return the autotools generated string |
+ */ |
+ return SRTP_VER_STRING; |
+} |
+ |
+unsigned int srtp_get_version () |
+{ |
+ unsigned int major = 0, minor = 0, micro = 0; |
+ unsigned int rv = 0; |
+ int parse_rv; |
+ |
+ /* |
+ * Parse the autotools generated version |
+ */ |
+ parse_rv = sscanf(SRTP_VERSION, "%u.%u.%u", &major, &minor, µ); |
+ if (parse_rv != 3) { |
+ /* |
+ * We're expected to parse all 3 version levels. |
+ * If not, then this must not be an official release. |
+ * Return all zeros on the version |
+ */ |
+ return (0); |
+ } |
+ |
+ /* |
+ * We allow 8 bits for the major and minor, while |
+ * allowing 16 bits for the micro. 16 bits for the micro |
+ * may be beneficial for a continuous delivery model |
+ * in the future. |
+ */ |
+ rv |= (major & 0xFF) << 24; |
+ rv |= (minor & 0xFF) << 16; |
+ rv |= micro & 0xFF; |
+ return rv; |
+} |
+ |
err_status_t |
srtp_stream_alloc(srtp_stream_ctx_t **str_ptr, |
const srtp_policy_t *p) { |
@@ -118,7 +160,8 @@ srtp_stream_alloc(srtp_stream_ctx_t **str_ptr, |
/* allocate cipher */ |
stat = crypto_kernel_alloc_cipher(p->rtp.cipher_type, |
&str->rtp_cipher, |
- p->rtp.cipher_key_len); |
+ p->rtp.cipher_key_len, |
+ p->rtp.auth_tag_len); |
if (stat) { |
crypto_free(str); |
return stat; |
@@ -150,7 +193,8 @@ srtp_stream_alloc(srtp_stream_ctx_t **str_ptr, |
*/ |
stat = crypto_kernel_alloc_cipher(p->rtcp.cipher_type, |
&str->rtcp_cipher, |
- p->rtcp.cipher_key_len); |
+ p->rtcp.cipher_key_len, |
+ p->rtcp.auth_tag_len); |
if (stat) { |
auth_dealloc(str->rtp_auth); |
cipher_dealloc(str->rtp_cipher); |
@@ -257,6 +301,13 @@ srtp_stream_dealloc(srtp_t session, srtp_stream_ctx_t *stream) { |
return status; |
/* DAM - need to deallocate EKT here */ |
+ |
+ /* |
+ * zeroize the salt value |
+ */ |
+ memset(stream->salt, 0, SRTP_AEAD_SALT_LEN); |
+ memset(stream->c_salt, 0, SRTP_AEAD_SALT_LEN); |
+ |
/* deallocate srtp stream context */ |
crypto_free(stream); |
@@ -296,14 +347,20 @@ srtp_stream_clone(const srtp_stream_ctx_t *stream_template, |
/* set key limit to point to that of the template */ |
status = key_limit_clone(stream_template->limit, &str->limit); |
- if (status) |
+ if (status) { |
+ crypto_free(*str_ptr); |
+ *str_ptr = NULL; |
return status; |
+ } |
/* initialize replay databases */ |
status = rdbx_init(&str->rtp_rdbx, |
rdbx_get_window_size(&stream_template->rtp_rdbx)); |
- if (status) |
+ if (status) { |
+ crypto_free(*str_ptr); |
+ *str_ptr = NULL; |
return status; |
+ } |
rdb_init(&str->rtcp_rdb); |
str->allow_repeat_tx = stream_template->allow_repeat_tx; |
@@ -318,6 +375,10 @@ srtp_stream_clone(const srtp_stream_ctx_t *stream_template, |
/* set pointer to EKT data associated with stream */ |
str->ekt = stream_template->ekt; |
+ /* Copy the salt values */ |
+ memcpy(str->salt, stream_template->salt, SRTP_AEAD_SALT_LEN); |
+ memcpy(str->c_salt, stream_template->c_salt, SRTP_AEAD_SALT_LEN); |
+ |
/* defensive coding */ |
str->next = NULL; |
@@ -364,11 +425,11 @@ err_status_t |
srtp_kdf_init(srtp_kdf_t *kdf, cipher_type_id_t cipher_id, const uint8_t *key, int length) { |
err_status_t stat; |
- stat = crypto_kernel_alloc_cipher(cipher_id, &kdf->cipher, length); |
+ stat = crypto_kernel_alloc_cipher(cipher_id, &kdf->cipher, length, 0); |
if (stat) |
return stat; |
- stat = cipher_init(kdf->cipher, key, direction_encrypt); |
+ stat = cipher_init(kdf->cipher, key); |
if (stat) { |
cipher_dealloc(kdf->cipher); |
return stat; |
@@ -379,7 +440,7 @@ srtp_kdf_init(srtp_kdf_t *kdf, cipher_type_id_t cipher_id, const uint8_t *key, i |
err_status_t |
srtp_kdf_generate(srtp_kdf_t *kdf, srtp_prf_label label, |
- uint8_t *key, unsigned length) { |
+ uint8_t *key, unsigned int length) { |
v128_t nonce; |
err_status_t status; |
@@ -388,7 +449,7 @@ srtp_kdf_generate(srtp_kdf_t *kdf, srtp_prf_label label, |
v128_set_to_zero(&nonce); |
nonce.v8[7] = label; |
- status = cipher_set_iv(kdf->cipher, &nonce); |
+ status = cipher_set_iv(kdf->cipher, &nonce, direction_encrypt); |
if (status) |
return status; |
@@ -424,13 +485,26 @@ srtp_kdf_clear(srtp_kdf_t *kdf) { |
* Assumption is that for AES-ICM a key length < 30 is Ismacryp using |
* AES-128 and short salts; everything else uses a salt length of 14. |
* TODO: key and salt lengths should be separate fields in the policy. */ |
-static INLINE int base_key_length(const cipher_type_t *cipher, int key_length) |
+static inline int base_key_length(const cipher_type_t *cipher, int key_length) |
{ |
- if (cipher->id != AES_ICM) |
- return key_length; |
- else if (key_length > 16 && key_length < 30) |
+ switch (cipher->id) { |
+ case AES_128_ICM: |
+ case AES_192_ICM: |
+ case AES_256_ICM: |
+ /* The legacy modes are derived from |
+ * the configured key length on the policy */ |
+ return key_length - 14; |
+ break; |
+ case AES_128_GCM: |
return 16; |
- return key_length - 14; |
+ break; |
+ case AES_256_GCM: |
+ return 32; |
+ break; |
+ default: |
+ return key_length; |
+ break; |
+ } |
} |
err_status_t |
@@ -446,21 +520,37 @@ srtp_stream_init_keys(srtp_stream_ctx_t *srtp, const void *key) { |
/* TODO: kdf algorithm, master key length, and master salt length should |
* be part of srtp_policy_t. */ |
rtp_keylen = cipher_get_key_length(srtp->rtp_cipher); |
- if (rtp_keylen > kdf_keylen) |
- kdf_keylen = rtp_keylen; |
- |
rtcp_keylen = cipher_get_key_length(srtp->rtcp_cipher); |
- if (rtcp_keylen > kdf_keylen) |
- kdf_keylen = rtcp_keylen; |
+ rtp_base_key_len = base_key_length(srtp->rtp_cipher->type, rtp_keylen); |
+ rtp_salt_len = rtp_keylen - rtp_base_key_len; |
+ |
+ if (rtp_keylen > kdf_keylen) { |
+ kdf_keylen = 46; /* AES-CTR mode is always used for KDF */ |
+ } |
+ |
+ if (rtcp_keylen > kdf_keylen) { |
+ kdf_keylen = 46; /* AES-CTR mode is always used for KDF */ |
+ } |
+ |
+ debug_print(mod_srtp, "srtp key len: %d", rtp_keylen); |
+ debug_print(mod_srtp, "srtcp key len: %d", rtcp_keylen); |
+ debug_print(mod_srtp, "base key len: %d", rtp_base_key_len); |
+ debug_print(mod_srtp, "kdf key len: %d", kdf_keylen); |
+ debug_print(mod_srtp, "rtp salt len: %d", rtp_salt_len); |
+ |
+ /* |
+ * Make sure the key given to us is 'zero' appended. GCM |
+ * mode uses a shorter master SALT (96 bits), but still relies on |
+ * the legacy CTR mode KDF, which uses a 112 bit master SALT. |
+ */ |
+ memset(tmp_key, 0x0, MAX_SRTP_KEY_LEN); |
+ memcpy(tmp_key, key, (rtp_base_key_len + rtp_salt_len)); |
/* initialize KDF state */ |
- stat = srtp_kdf_init(&kdf, AES_ICM, (const uint8_t *)key, kdf_keylen); |
+ stat = srtp_kdf_init(&kdf, AES_ICM, (const uint8_t *)tmp_key, kdf_keylen); |
if (stat) { |
return err_status_init_fail; |
} |
- |
- rtp_base_key_len = base_key_length(srtp->rtp_cipher->type, rtp_keylen); |
- rtp_salt_len = rtp_keylen - rtp_base_key_len; |
/* generate encryption key */ |
stat = srtp_kdf_generate(&kdf, label_rtp_encryption, |
@@ -470,6 +560,8 @@ srtp_stream_init_keys(srtp_stream_ctx_t *srtp, const void *key) { |
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); |
return err_status_init_fail; |
} |
+ debug_print(mod_srtp, "cipher key: %s", |
+ octet_string_hex_string(tmp_key, rtp_base_key_len)); |
/* |
* if the cipher in the srtp context uses a salt, then we need |
@@ -486,16 +578,15 @@ srtp_stream_init_keys(srtp_stream_ctx_t *srtp, const void *key) { |
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); |
return err_status_init_fail; |
} |
+ memcpy(srtp->salt, tmp_key + rtp_base_key_len, SRTP_AEAD_SALT_LEN); |
} |
- debug_print(mod_srtp, "cipher key: %s", |
- octet_string_hex_string(tmp_key, rtp_base_key_len)); |
if (rtp_salt_len > 0) { |
debug_print(mod_srtp, "cipher salt: %s", |
octet_string_hex_string(tmp_key + rtp_base_key_len, rtp_salt_len)); |
} |
/* initialize cipher */ |
- stat = cipher_init(srtp->rtp_cipher, tmp_key, direction_any); |
+ stat = cipher_init(srtp->rtp_cipher, tmp_key); |
if (stat) { |
/* zeroize temp buffer */ |
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); |
@@ -528,6 +619,7 @@ srtp_stream_init_keys(srtp_stream_ctx_t *srtp, const void *key) { |
rtcp_base_key_len = base_key_length(srtp->rtcp_cipher->type, rtcp_keylen); |
rtcp_salt_len = rtcp_keylen - rtcp_base_key_len; |
+ debug_print(mod_srtp, "rtcp salt len: %d", rtcp_salt_len); |
/* generate encryption key */ |
stat = srtp_kdf_generate(&kdf, label_rtcp_encryption, |
@@ -554,6 +646,7 @@ srtp_stream_init_keys(srtp_stream_ctx_t *srtp, const void *key) { |
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); |
return err_status_init_fail; |
} |
+ memcpy(srtp->c_salt, tmp_key + rtcp_base_key_len, SRTP_AEAD_SALT_LEN); |
} |
debug_print(mod_srtp, "rtcp cipher key: %s", |
octet_string_hex_string(tmp_key, rtcp_base_key_len)); |
@@ -563,7 +656,7 @@ srtp_stream_init_keys(srtp_stream_ctx_t *srtp, const void *key) { |
} |
/* initialize cipher */ |
- stat = cipher_init(srtp->rtcp_cipher, tmp_key, direction_any); |
+ stat = cipher_init(srtp->rtcp_cipher, tmp_key); |
if (stat) { |
/* zeroize temp buffer */ |
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); |
@@ -736,12 +829,373 @@ srtp_stream_init(srtp_stream_ctx_t *srtp, |
return err_status_ok; |
} |
+/* |
+ * AEAD uses a new IV formation method. This function implements |
+ * section 9.1 from draft-ietf-avtcore-srtp-aes-gcm-07.txt. The |
+ * calculation is defined as, where (+) is the xor operation: |
+ * |
+ * |
+ * 0 0 0 0 0 0 0 0 0 0 1 1 |
+ * 0 1 2 3 4 5 6 7 8 9 0 1 |
+ * +--+--+--+--+--+--+--+--+--+--+--+--+ |
+ * |00|00| SSRC | ROC | SEQ |---+ |
+ * +--+--+--+--+--+--+--+--+--+--+--+--+ | |
+ * | |
+ * +--+--+--+--+--+--+--+--+--+--+--+--+ | |
+ * | Encryption Salt |->(+) |
+ * +--+--+--+--+--+--+--+--+--+--+--+--+ | |
+ * | |
+ * +--+--+--+--+--+--+--+--+--+--+--+--+ | |
+ * | Initialization Vector |<--+ |
+ * +--+--+--+--+--+--+--+--+--+--+--+--+* |
+ * |
+ * Input: *stream - pointer to SRTP stream context, used to retrieve |
+ * the SALT |
+ * *iv - Pointer to receive the calculated IV |
+ * *seq - The ROC and SEQ value to use for the |
+ * IV calculation. |
+ * *hdr - The RTP header, used to get the SSRC value |
+ * |
+ */ |
+static void srtp_calc_aead_iv(srtp_stream_ctx_t *stream, v128_t *iv, |
+ xtd_seq_num_t *seq, srtp_hdr_t *hdr) |
+{ |
+ v128_t in; |
+ v128_t salt; |
+ |
+#ifdef NO_64BIT_MATH |
+ uint32_t local_roc = ((high32(*seq) << 16) | |
+ (low32(*seq) >> 16)); |
+ uint16_t local_seq = (uint16_t) (low32(*seq)); |
+#else |
+ uint32_t local_roc = (uint32_t)(*seq >> 16); |
+ uint16_t local_seq = (uint16_t) *seq; |
+#endif |
+ |
+ memset(&in, 0, sizeof(v128_t)); |
+ memset(&salt, 0, sizeof(v128_t)); |
+ |
+ in.v16[5] = htons(local_seq); |
+ local_roc = htonl(local_roc); |
+ memcpy(&in.v16[3], &local_roc, sizeof(local_roc)); |
+ |
+ /* |
+ * Copy in the RTP SSRC value |
+ */ |
+ memcpy(&in.v8[2], &hdr->ssrc, 4); |
+ debug_print(mod_srtp, "Pre-salted RTP IV = %s\n", v128_hex_string(&in)); |
+ |
+ /* |
+ * Get the SALT value from the context |
+ */ |
+ memcpy(salt.v8, stream->salt, SRTP_AEAD_SALT_LEN); |
+ debug_print(mod_srtp, "RTP SALT = %s\n", v128_hex_string(&salt)); |
+ |
+ /* |
+ * Finally, apply tyhe SALT to the input |
+ */ |
+ v128_xor(iv, &in, &salt); |
+} |
+ |
+ |
+/* |
+ * This function handles outgoing SRTP packets while in AEAD mode, |
+ * which currently supports AES-GCM encryption. All packets are |
+ * encrypted and authenticated. |
+ */ |
+static err_status_t |
+srtp_protect_aead (srtp_ctx_t *ctx, srtp_stream_ctx_t *stream, |
+ void *rtp_hdr, unsigned int *pkt_octet_len) |
+{ |
+ srtp_hdr_t *hdr = (srtp_hdr_t*)rtp_hdr; |
+ uint32_t *enc_start; /* pointer to start of encrypted portion */ |
+ unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */ |
+ xtd_seq_num_t est; /* estimated xtd_seq_num_t of *hdr */ |
+ int delta; /* delta of local pkt idx and that in hdr */ |
+ err_status_t status; |
+ int tag_len; |
+ v128_t iv; |
+ unsigned int aad_len; |
+ |
+ debug_print(mod_srtp, "function srtp_protect_aead", NULL); |
+ |
+ /* |
+ * update the key usage limit, and check it to make sure that we |
+ * didn't just hit either the soft limit or the hard limit, and call |
+ * the event handler if we hit either. |
+ */ |
+ switch (key_limit_update(stream->limit)) { |
+ case key_event_normal: |
+ break; |
+ case key_event_hard_limit: |
+ srtp_handle_event(ctx, stream, event_key_hard_limit); |
+ return err_status_key_expired; |
+ case key_event_soft_limit: |
+ default: |
+ srtp_handle_event(ctx, stream, event_key_soft_limit); |
+ break; |
+ } |
+ |
+ /* get tag length from stream */ |
+ tag_len = auth_get_tag_length(stream->rtp_auth); |
+ |
+ /* |
+ * find starting point for encryption and length of data to be |
+ * encrypted - the encrypted portion starts after the rtp header |
+ * extension, if present; otherwise, it starts after the last csrc, |
+ * if any are present |
+ */ |
+ enc_start = (uint32_t*)hdr + uint32s_in_rtp_header + hdr->cc; |
+ if (hdr->x == 1) { |
+ srtp_hdr_xtnd_t *xtn_hdr = (srtp_hdr_xtnd_t*)enc_start; |
+ enc_start += (ntohs(xtn_hdr->length) + 1); |
+ } |
+ if (!((uint8_t*)enc_start < (uint8_t*)hdr + *pkt_octet_len)) |
+ return err_status_parse_err; |
+ enc_octet_len = (unsigned int)(*pkt_octet_len - |
+ ((uint8_t*)enc_start - (uint8_t*)hdr)); |
+ |
+ /* |
+ * estimate the packet index using the start of the replay window |
+ * and the sequence number from the header |
+ */ |
+ delta = rdbx_estimate_index(&stream->rtp_rdbx, &est, ntohs(hdr->seq)); |
+ status = rdbx_check(&stream->rtp_rdbx, delta); |
+ if (status) { |
+ if (status != err_status_replay_fail || !stream->allow_repeat_tx) { |
+ return status; /* we've been asked to reuse an index */ |
+ } |
+ } else { |
+ rdbx_add_index(&stream->rtp_rdbx, delta); |
+ } |
+ |
+#ifdef NO_64BIT_MATH |
+ debug_print2(mod_srtp, "estimated packet index: %08x%08x", |
+ high32(est), low32(est)); |
+#else |
+ debug_print(mod_srtp, "estimated packet index: %016llx", est); |
+#endif |
+ |
+ /* |
+ * AEAD uses a new IV formation method |
+ */ |
+ srtp_calc_aead_iv(stream, &iv, &est, hdr); |
+ status = cipher_set_iv(stream->rtp_cipher, &iv, direction_encrypt); |
+ if (status) { |
+ return err_status_cipher_fail; |
+ } |
+ |
+ /* shift est, put into network byte order */ |
+#ifdef NO_64BIT_MATH |
+ est = be64_to_cpu(make64((high32(est) << 16) | |
+ (low32(est) >> 16), |
+ low32(est) << 16)); |
+#else |
+ est = be64_to_cpu(est << 16); |
+#endif |
+ |
+ /* |
+ * Set the AAD over the RTP header |
+ */ |
+ aad_len = (uint8_t *)enc_start - (uint8_t *)hdr; |
+ status = cipher_set_aad(stream->rtp_cipher, (uint8_t*)hdr, aad_len); |
+ if (status) { |
+ return ( err_status_cipher_fail); |
+ } |
+ |
+ /* Encrypt the payload */ |
+ status = cipher_encrypt(stream->rtp_cipher, |
+ (uint8_t*)enc_start, &enc_octet_len); |
+ if (status) { |
+ return err_status_cipher_fail; |
+ } |
+ /* |
+ * If we're doing GCM, we need to get the tag |
+ * and append that to the output |
+ */ |
+ status = cipher_get_tag(stream->rtp_cipher, |
+ (uint8_t*)enc_start+enc_octet_len, &tag_len); |
+ if (status) { |
+ return ( err_status_cipher_fail); |
+ } |
+ enc_octet_len += tag_len; |
+ |
+ /* increase the packet length by the length of the auth tag */ |
+ *pkt_octet_len += tag_len; |
+ |
+ return err_status_ok; |
+} |
+ |
+ |
+/* |
+ * This function handles incoming SRTP packets while in AEAD mode, |
+ * which currently supports AES-GCM encryption. All packets are |
+ * encrypted and authenticated. Note, the auth tag is at the end |
+ * of the packet stream and is automatically checked by GCM |
+ * when decrypting the payload. |
+ */ |
+static err_status_t |
+srtp_unprotect_aead (srtp_ctx_t *ctx, srtp_stream_ctx_t *stream, int delta, |
+ xtd_seq_num_t est, void *srtp_hdr, unsigned int *pkt_octet_len) |
+{ |
+ srtp_hdr_t *hdr = (srtp_hdr_t*)srtp_hdr; |
+ uint32_t *enc_start; /* pointer to start of encrypted portion */ |
+ unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */ |
+ v128_t iv; |
+ err_status_t status; |
+ int tag_len; |
+ unsigned int aad_len; |
+ |
+ debug_print(mod_srtp, "function srtp_unprotect_aead", NULL); |
+ |
+#ifdef NO_64BIT_MATH |
+ debug_print2(mod_srtp, "estimated u_packet index: %08x%08x", high32(est), low32(est)); |
+#else |
+ debug_print(mod_srtp, "estimated u_packet index: %016llx", est); |
+#endif |
+ |
+ /* get tag length from stream */ |
+ tag_len = auth_get_tag_length(stream->rtp_auth); |
+ |
+ /* |
+ * AEAD uses a new IV formation method |
+ */ |
+ srtp_calc_aead_iv(stream, &iv, &est, hdr); |
+ status = cipher_set_iv(stream->rtp_cipher, &iv, direction_decrypt); |
+ if (status) { |
+ return err_status_cipher_fail; |
+ } |
+ |
+ /* |
+ * find starting point for decryption and length of data to be |
+ * decrypted - the encrypted portion starts after the rtp header |
+ * extension, if present; otherwise, it starts after the last csrc, |
+ * if any are present |
+ */ |
+ enc_start = (uint32_t*)hdr + uint32s_in_rtp_header + hdr->cc; |
+ if (hdr->x == 1) { |
+ srtp_hdr_xtnd_t *xtn_hdr = (srtp_hdr_xtnd_t*)enc_start; |
+ enc_start += (ntohs(xtn_hdr->length) + 1); |
+ } |
+ if (!((uint8_t*)enc_start < (uint8_t*)hdr + *pkt_octet_len)) |
+ return err_status_parse_err; |
+ /* |
+ * We pass the tag down to the cipher when doing GCM mode |
+ */ |
+ enc_octet_len = (unsigned int)(*pkt_octet_len - |
+ ((uint8_t*)enc_start - (uint8_t*)hdr)); |
+ |
+ /* |
+ * Sanity check the encrypted payload length against |
+ * the tag size. It must always be at least as large |
+ * as the tag length. |
+ */ |
+ if (enc_octet_len < tag_len) { |
+ return err_status_cipher_fail; |
+ } |
+ |
+ /* |
+ * update the key usage limit, and check it to make sure that we |
+ * didn't just hit either the soft limit or the hard limit, and call |
+ * the event handler if we hit either. |
+ */ |
+ switch (key_limit_update(stream->limit)) { |
+ case key_event_normal: |
+ break; |
+ case key_event_soft_limit: |
+ srtp_handle_event(ctx, stream, event_key_soft_limit); |
+ break; |
+ case key_event_hard_limit: |
+ srtp_handle_event(ctx, stream, event_key_hard_limit); |
+ return err_status_key_expired; |
+ default: |
+ break; |
+ } |
+ |
+ /* |
+ * Set the AAD for AES-GCM, which is the RTP header |
+ */ |
+ aad_len = (uint8_t *)enc_start - (uint8_t *)hdr; |
+ status = cipher_set_aad(stream->rtp_cipher, (uint8_t*)hdr, aad_len); |
+ if (status) { |
+ return ( err_status_cipher_fail); |
+ } |
+ |
+ /* Decrypt the ciphertext. This also checks the auth tag based |
+ * on the AAD we just specified above */ |
+ status = cipher_decrypt(stream->rtp_cipher, |
+ (uint8_t*)enc_start, &enc_octet_len); |
+ if (status) { |
+ return status; |
+ } |
+ |
+ /* |
+ * verify that stream is for received traffic - this check will |
+ * detect SSRC collisions, since a stream that appears in both |
+ * srtp_protect() and srtp_unprotect() will fail this test in one of |
+ * those functions. |
+ * |
+ * we do this check *after* the authentication check, so that the |
+ * latter check will catch any attempts to fool us into thinking |
+ * that we've got a collision |
+ */ |
+ if (stream->direction != dir_srtp_receiver) { |
+ if (stream->direction == dir_unknown) { |
+ stream->direction = dir_srtp_receiver; |
+ } else { |
+ srtp_handle_event(ctx, stream, event_ssrc_collision); |
+ } |
+ } |
+ |
+ /* |
+ * if the stream is a 'provisional' one, in which the template context |
+ * is used, then we need to allocate a new stream at this point, since |
+ * the authentication passed |
+ */ |
+ if (stream == ctx->stream_template) { |
+ srtp_stream_ctx_t *new_stream; |
+ |
+ /* |
+ * allocate and initialize a new stream |
+ * |
+ * note that we indicate failure if we can't allocate the new |
+ * stream, and some implementations will want to not return |
+ * failure here |
+ */ |
+ status = srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream); |
+ if (status) { |
+ return status; |
+ } |
+ |
+ /* add new stream to the head of the stream_list */ |
+ new_stream->next = ctx->stream_list; |
+ ctx->stream_list = new_stream; |
+ |
+ /* set stream (the pointer used in this function) */ |
+ stream = new_stream; |
+ } |
+ |
+ /* |
+ * the message authentication function passed, so add the packet |
+ * index into the replay database |
+ */ |
+ rdbx_add_index(&stream->rtp_rdbx, delta); |
+ |
+ /* decrease the packet length by the length of the auth tag */ |
+ *pkt_octet_len -= tag_len; |
+ |
+ return err_status_ok; |
+} |
+ |
+ |
+ |
+ |
err_status_t |
srtp_protect(srtp_ctx_t *ctx, void *rtp_hdr, int *pkt_octet_len) { |
srtp_hdr_t *hdr = (srtp_hdr_t *)rtp_hdr; |
uint32_t *enc_start; /* pointer to start of encrypted portion */ |
uint32_t *auth_start; /* pointer to start of auth. portion */ |
- unsigned enc_octet_len = 0; /* number of octets in encrypted portion */ |
+ unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */ |
xtd_seq_num_t est; /* estimated xtd_seq_num_t of *hdr */ |
int delta; /* delta of local pkt idx and that in hdr */ |
uint8_t *auth_tag = NULL; /* location of auth_tag within packet */ |
@@ -759,6 +1213,10 @@ srtp_stream_init(srtp_stream_ctx_t *srtp, |
if (status) |
return status; |
+ /* check the packet length - it must at least contain a full header */ |
+ if (*pkt_octet_len < octets_in_rtp_header) |
+ return err_status_bad_param; |
+ |
/* |
* look up ssrc in srtp_stream list, and process the packet with |
* the appropriate stream. if we haven't seen this stream before, |
@@ -798,13 +1256,22 @@ srtp_stream_init(srtp_stream_ctx_t *srtp, |
* srtp_protect() and srtp_unprotect() will fail this test in one of |
* those functions. |
*/ |
- if (stream->direction != dir_srtp_sender) { |
+ if (stream->direction != dir_srtp_sender) { |
if (stream->direction == dir_unknown) { |
stream->direction = dir_srtp_sender; |
} else { |
srtp_handle_event(ctx, stream, event_ssrc_collision); |
} |
- } |
+ } |
+ |
+ /* |
+ * Check if this is an AEAD stream (GCM mode). If so, then dispatch |
+ * the request to our AEAD handler. |
+ */ |
+ if (stream->rtp_cipher->algorithm == AES_128_GCM || |
+ stream->rtp_cipher->algorithm == AES_256_GCM) { |
+ return srtp_protect_aead(ctx, stream, rtp_hdr, (unsigned int*)pkt_octet_len); |
+ } |
/* |
* update the key usage limit, and check it to make sure that we |
@@ -840,9 +1307,11 @@ srtp_stream_init(srtp_stream_ctx_t *srtp, |
if (hdr->x == 1) { |
srtp_hdr_xtnd_t *xtn_hdr = (srtp_hdr_xtnd_t *)enc_start; |
enc_start += (ntohs(xtn_hdr->length) + 1); |
+ if (!((uint8_t*)enc_start < (uint8_t*)hdr + *pkt_octet_len)) |
+ return err_status_parse_err; |
} |
- enc_octet_len = (unsigned int)(*pkt_octet_len |
- - ((enc_start - (uint32_t *)hdr) << 2)); |
+ enc_octet_len = (unsigned int)(*pkt_octet_len - |
+ ((uint8_t*)enc_start - (uint8_t*)hdr)); |
} else { |
enc_start = NULL; |
} |
@@ -883,7 +1352,8 @@ srtp_stream_init(srtp_stream_ctx_t *srtp, |
/* |
* if we're using rindael counter mode, set nonce and seq |
*/ |
- if (stream->rtp_cipher->type->id == AES_ICM) { |
+ if (stream->rtp_cipher->type->id == AES_ICM || |
+ stream->rtp_cipher->type->id == AES_256_ICM) { |
v128_t iv; |
iv.v32[0] = 0; |
@@ -894,7 +1364,7 @@ srtp_stream_init(srtp_stream_ctx_t *srtp, |
#else |
iv.v64[1] = be64_to_cpu(est << 16); |
#endif |
- status = cipher_set_iv(stream->rtp_cipher, &iv); |
+ status = cipher_set_iv(stream->rtp_cipher, &iv, direction_encrypt); |
} else { |
v128_t iv; |
@@ -907,7 +1377,7 @@ srtp_stream_init(srtp_stream_ctx_t *srtp, |
iv.v64[0] = 0; |
#endif |
iv.v64[1] = be64_to_cpu(est); |
- status = cipher_set_iv(stream->rtp_cipher, &iv); |
+ status = cipher_set_iv(stream->rtp_cipher, &iv, direction_encrypt); |
} |
if (status) |
return err_status_cipher_fail; |
@@ -985,7 +1455,7 @@ srtp_unprotect(srtp_ctx_t *ctx, void *srtp_hdr, int *pkt_octet_len) { |
srtp_hdr_t *hdr = (srtp_hdr_t *)srtp_hdr; |
uint32_t *enc_start; /* pointer to start of encrypted portion */ |
uint32_t *auth_start; /* pointer to start of auth. portion */ |
- unsigned enc_octet_len = 0;/* number of octets in encrypted portion */ |
+ unsigned int enc_octet_len = 0;/* number of octets in encrypted portion */ |
uint8_t *auth_tag = NULL; /* location of auth_tag within packet */ |
xtd_seq_num_t est; /* estimated xtd_seq_num_t of *hdr */ |
int delta; /* delta of local pkt idx and that in hdr */ |
@@ -1004,6 +1474,10 @@ srtp_unprotect(srtp_ctx_t *ctx, void *srtp_hdr, int *pkt_octet_len) { |
if (status) |
return status; |
+ /* check the packet length - it must at least contain a full header */ |
+ if (*pkt_octet_len < octets_in_rtp_header) |
+ return err_status_bad_param; |
+ |
/* |
* look up ssrc in srtp_stream list, and process the packet with |
* the appropriate stream. if we haven't seen this stream before, |
@@ -1054,6 +1528,15 @@ srtp_unprotect(srtp_ctx_t *ctx, void *srtp_hdr, int *pkt_octet_len) { |
debug_print(mod_srtp, "estimated u_packet index: %016llx", est); |
#endif |
+ /* |
+ * Check if this is an AEAD stream (GCM mode). If so, then dispatch |
+ * the request to our AEAD handler. |
+ */ |
+ if (stream->rtp_cipher->algorithm == AES_128_GCM || |
+ stream->rtp_cipher->algorithm == AES_256_GCM) { |
+ return srtp_unprotect_aead(ctx, stream, delta, est, srtp_hdr, (unsigned int*)pkt_octet_len); |
+ } |
+ |
/* get tag length from stream */ |
tag_len = auth_get_tag_length(stream->rtp_auth); |
@@ -1061,7 +1544,8 @@ srtp_unprotect(srtp_ctx_t *ctx, void *srtp_hdr, int *pkt_octet_len) { |
* set the cipher's IV properly, depending on whatever cipher we |
* happen to be using |
*/ |
- if (stream->rtp_cipher->type->id == AES_ICM) { |
+ if (stream->rtp_cipher->type->id == AES_ICM || |
+ stream->rtp_cipher->type->id == AES_256_ICM) { |
/* aes counter mode */ |
iv.v32[0] = 0; |
@@ -1072,7 +1556,7 @@ srtp_unprotect(srtp_ctx_t *ctx, void *srtp_hdr, int *pkt_octet_len) { |
#else |
iv.v64[1] = be64_to_cpu(est << 16); |
#endif |
- status = cipher_set_iv(stream->rtp_cipher, &iv); |
+ status = cipher_set_iv(stream->rtp_cipher, &iv, direction_decrypt); |
} else { |
/* no particular format - set the iv to the pakcet index */ |
@@ -1083,7 +1567,7 @@ srtp_unprotect(srtp_ctx_t *ctx, void *srtp_hdr, int *pkt_octet_len) { |
iv.v64[0] = 0; |
#endif |
iv.v64[1] = be64_to_cpu(est); |
- status = cipher_set_iv(stream->rtp_cipher, &iv); |
+ status = cipher_set_iv(stream->rtp_cipher, &iv, direction_decrypt); |
} |
if (status) |
return err_status_cipher_fail; |
@@ -1111,8 +1595,10 @@ srtp_unprotect(srtp_ctx_t *ctx, void *srtp_hdr, int *pkt_octet_len) { |
srtp_hdr_xtnd_t *xtn_hdr = (srtp_hdr_xtnd_t *)enc_start; |
enc_start += (ntohs(xtn_hdr->length) + 1); |
} |
- enc_octet_len = (uint32_t)(*pkt_octet_len - tag_len |
- - ((enc_start - (uint32_t *)hdr) << 2)); |
+ if (!((uint8_t*)enc_start < (uint8_t*)hdr + *pkt_octet_len)) |
+ return err_status_parse_err; |
+ enc_octet_len = (uint32_t)(*pkt_octet_len - tag_len - |
+ ((uint8_t*)enc_start - (uint8_t*)hdr)); |
} else { |
enc_start = NULL; |
} |
@@ -1463,6 +1949,7 @@ srtp_create(srtp_t *session, /* handle for session */ |
*/ |
ctx->stream_template = NULL; |
ctx->stream_list = NULL; |
+ ctx->user_data = NULL; |
while (policy != NULL) { |
stat = srtp_add_stream(ctx, policy); |
@@ -1640,18 +2127,498 @@ crypto_policy_set_aes_cm_256_hmac_sha1_32(crypto_policy_t *p) { |
p->sec_serv = sec_serv_conf_and_auth; |
} |
+/* |
+ * AES-256 with no authentication. |
+ */ |
+void |
+crypto_policy_set_aes_cm_256_null_auth (crypto_policy_t *p) |
+{ |
+ p->cipher_type = AES_ICM; |
+ p->cipher_key_len = 46; |
+ p->auth_type = NULL_AUTH; |
+ p->auth_key_len = 0; |
+ p->auth_tag_len = 0; |
+ p->sec_serv = sec_serv_conf; |
+} |
+ |
+#ifdef OPENSSL |
+/* |
+ * AES-128 GCM mode with 8 octet auth tag. |
+ */ |
+void |
+crypto_policy_set_aes_gcm_128_8_auth(crypto_policy_t *p) { |
+ p->cipher_type = AES_128_GCM; |
+ p->cipher_key_len = AES_128_GCM_KEYSIZE_WSALT; |
+ p->auth_type = NULL_AUTH; /* GCM handles the auth for us */ |
+ p->auth_key_len = 0; |
+ p->auth_tag_len = 8; /* 8 octet tag length */ |
+ p->sec_serv = sec_serv_conf_and_auth; |
+} |
+ |
+/* |
+ * AES-256 GCM mode with 8 octet auth tag. |
+ */ |
+void |
+crypto_policy_set_aes_gcm_256_8_auth(crypto_policy_t *p) { |
+ p->cipher_type = AES_256_GCM; |
+ p->cipher_key_len = AES_256_GCM_KEYSIZE_WSALT; |
+ p->auth_type = NULL_AUTH; /* GCM handles the auth for us */ |
+ p->auth_key_len = 0; |
+ p->auth_tag_len = 8; /* 8 octet tag length */ |
+ p->sec_serv = sec_serv_conf_and_auth; |
+} |
+ |
+/* |
+ * AES-128 GCM mode with 8 octet auth tag, no RTCP encryption. |
+ */ |
+void |
+crypto_policy_set_aes_gcm_128_8_only_auth(crypto_policy_t *p) { |
+ p->cipher_type = AES_128_GCM; |
+ p->cipher_key_len = AES_128_GCM_KEYSIZE_WSALT; |
+ p->auth_type = NULL_AUTH; /* GCM handles the auth for us */ |
+ p->auth_key_len = 0; |
+ p->auth_tag_len = 8; /* 8 octet tag length */ |
+ p->sec_serv = sec_serv_auth; /* This only applies to RTCP */ |
+} |
+ |
+/* |
+ * AES-256 GCM mode with 8 octet auth tag, no RTCP encryption. |
+ */ |
+void |
+crypto_policy_set_aes_gcm_256_8_only_auth(crypto_policy_t *p) { |
+ p->cipher_type = AES_256_GCM; |
+ p->cipher_key_len = AES_256_GCM_KEYSIZE_WSALT; |
+ p->auth_type = NULL_AUTH; /* GCM handles the auth for us */ |
+ p->auth_key_len = 0; |
+ p->auth_tag_len = 8; /* 8 octet tag length */ |
+ p->sec_serv = sec_serv_auth; /* This only applies to RTCP */ |
+} |
+ |
+/* |
+ * AES-128 GCM mode with 16 octet auth tag. |
+ */ |
+void |
+crypto_policy_set_aes_gcm_128_16_auth(crypto_policy_t *p) { |
+ p->cipher_type = AES_128_GCM; |
+ p->cipher_key_len = AES_128_GCM_KEYSIZE_WSALT; |
+ p->auth_type = NULL_AUTH; /* GCM handles the auth for us */ |
+ p->auth_key_len = 0; |
+ p->auth_tag_len = 16; /* 16 octet tag length */ |
+ p->sec_serv = sec_serv_conf_and_auth; |
+} |
+ |
+/* |
+ * AES-256 GCM mode with 16 octet auth tag. |
+ */ |
+void |
+crypto_policy_set_aes_gcm_256_16_auth(crypto_policy_t *p) { |
+ p->cipher_type = AES_256_GCM; |
+ p->cipher_key_len = AES_256_GCM_KEYSIZE_WSALT; |
+ p->auth_type = NULL_AUTH; /* GCM handles the auth for us */ |
+ p->auth_key_len = 0; |
+ p->auth_tag_len = 16; /* 16 octet tag length */ |
+ p->sec_serv = sec_serv_conf_and_auth; |
+} |
+ |
+#endif |
/* |
* secure rtcp functions |
*/ |
+/* |
+ * AEAD uses a new IV formation method. This function implements |
+ * section 10.1 from draft-ietf-avtcore-srtp-aes-gcm-07.txt. The |
+ * calculation is defined as, where (+) is the xor operation: |
+ * |
+ * 0 1 2 3 4 5 6 7 8 9 10 11 |
+ * +--+--+--+--+--+--+--+--+--+--+--+--+ |
+ * |00|00| SSRC |00|00|0+SRTCP Idx|---+ |
+ * +--+--+--+--+--+--+--+--+--+--+--+--+ | |
+ * | |
+ * +--+--+--+--+--+--+--+--+--+--+--+--+ | |
+ * | Encryption Salt |->(+) |
+ * +--+--+--+--+--+--+--+--+--+--+--+--+ | |
+ * | |
+ * +--+--+--+--+--+--+--+--+--+--+--+--+ | |
+ * | Initialization Vector |<--+ |
+ * +--+--+--+--+--+--+--+--+--+--+--+--+* |
+ * |
+ * Input: *stream - pointer to SRTP stream context, used to retrieve |
+ * the SALT |
+ * *iv - Pointer to recieve the calculated IV |
+ * seq_num - The SEQ value to use for the IV calculation. |
+ * *hdr - The RTP header, used to get the SSRC value |
+ * |
+ */ |
+static void srtp_calc_aead_iv_srtcp(srtp_stream_ctx_t *stream, v128_t *iv, |
+ uint32_t seq_num, srtcp_hdr_t *hdr) |
+{ |
+ v128_t in; |
+ v128_t salt; |
+ |
+ memset(&in, 0, sizeof(v128_t)); |
+ memset(&salt, 0, sizeof(v128_t)); |
+ |
+ in.v16[0] = 0; |
+ memcpy(&in.v16[1], &hdr->ssrc, 4); /* still in network order! */ |
+ in.v16[3] = 0; |
+ in.v32[2] = 0x7FFFFFFF & htonl(seq_num); /* bit 32 is suppose to be zero */ |
+ |
+ debug_print(mod_srtp, "Pre-salted RTCP IV = %s\n", v128_hex_string(&in)); |
+ |
+ /* |
+ * Get the SALT value from the context |
+ */ |
+ memcpy(salt.v8, stream->c_salt, 12); |
+ debug_print(mod_srtp, "RTCP SALT = %s\n", v128_hex_string(&salt)); |
+ |
+ /* |
+ * Finally, apply the SALT to the input |
+ */ |
+ v128_xor(iv, &in, &salt); |
+} |
+ |
+/* |
+ * This code handles AEAD ciphers for outgoing RTCP. We currently support |
+ * AES-GCM mode with 128 or 256 bit keys. |
+ */ |
+static err_status_t |
+srtp_protect_rtcp_aead (srtp_t ctx, srtp_stream_ctx_t *stream, |
+ void *rtcp_hdr, unsigned int *pkt_octet_len) |
+{ |
+ srtcp_hdr_t *hdr = (srtcp_hdr_t*)rtcp_hdr; |
+ uint32_t *enc_start; /* pointer to start of encrypted portion */ |
+ uint32_t *trailer; /* pointer to start of trailer */ |
+ unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */ |
+ uint8_t *auth_tag = NULL; /* location of auth_tag within packet */ |
+ err_status_t status; |
+ int tag_len; |
+ uint32_t seq_num; |
+ v128_t iv; |
+ uint32_t tseq; |
+ |
+ /* get tag length from stream context */ |
+ tag_len = auth_get_tag_length(stream->rtcp_auth); |
+ |
+ /* |
+ * set encryption start and encryption length - if we're not |
+ * providing confidentiality, set enc_start to NULL |
+ */ |
+ enc_start = (uint32_t*)hdr + uint32s_in_rtcp_header; |
+ enc_octet_len = *pkt_octet_len - octets_in_rtcp_header; |
+ |
+ /* NOTE: hdr->length is not usable - it refers to only the first |
+ RTCP report in the compound packet! */ |
+ /* NOTE: trailer is 32-bit aligned because RTCP 'packets' are always |
+ multiples of 32-bits (RFC 3550 6.1) */ |
+ trailer = (uint32_t*)((char*)enc_start + enc_octet_len + tag_len); |
+ |
+ if (stream->rtcp_services & sec_serv_conf) { |
+ *trailer = htonl(SRTCP_E_BIT); /* set encrypt bit */ |
+ } else { |
+ enc_start = NULL; |
+ enc_octet_len = 0; |
+ /* 0 is network-order independant */ |
+ *trailer = 0x00000000; /* set encrypt bit */ |
+ } |
+ |
+ /* |
+ * set the auth_tag pointer to the proper location, which is after |
+ * the payload, but before the trailer |
+ * (note that srtpc *always* provides authentication, unlike srtp) |
+ */ |
+ /* Note: This would need to change for optional mikey data */ |
+ auth_tag = (uint8_t*)hdr + *pkt_octet_len; |
+ |
+ /* |
+ * check sequence number for overruns, and copy it into the packet |
+ * if its value isn't too big |
+ */ |
+ status = rdb_increment(&stream->rtcp_rdb); |
+ if (status) { |
+ return status; |
+ } |
+ seq_num = rdb_get_value(&stream->rtcp_rdb); |
+ *trailer |= htonl(seq_num); |
+ debug_print(mod_srtp, "srtcp index: %x", seq_num); |
+ |
+ /* |
+ * Calculating the IV and pass it down to the cipher |
+ */ |
+ srtp_calc_aead_iv_srtcp(stream, &iv, seq_num, hdr); |
+ status = cipher_set_iv(stream->rtcp_cipher, &iv, direction_encrypt); |
+ if (status) { |
+ return err_status_cipher_fail; |
+ } |
+ |
+ /* |
+ * Set the AAD for GCM mode |
+ */ |
+ if (enc_start) { |
+ /* |
+ * If payload encryption is enabled, then the AAD consist of |
+ * the RTCP header and the seq# at the end of the packet |
+ */ |
+ status = cipher_set_aad(stream->rtcp_cipher, (uint8_t*)hdr, |
+ octets_in_rtcp_header); |
+ if (status) { |
+ return ( err_status_cipher_fail); |
+ } |
+ } else { |
+ /* |
+ * Since payload encryption is not enabled, we must authenticate |
+ * the entire packet as described in section 10.3 in revision 07 |
+ * of the draft. |
+ */ |
+ status = cipher_set_aad(stream->rtcp_cipher, (uint8_t*)hdr, |
+ *pkt_octet_len); |
+ if (status) { |
+ return ( err_status_cipher_fail); |
+ } |
+ } |
+ /* |
+ * put the idx# into network byte order and process it as AAD |
+ */ |
+ tseq = htonl(*trailer); |
+ status = cipher_set_aad(stream->rtcp_cipher, (uint8_t*)&tseq, |
+ sizeof(srtcp_trailer_t)); |
+ if (status) { |
+ return ( err_status_cipher_fail); |
+ } |
+ |
+ /* if we're encrypting, exor keystream into the message */ |
+ if (enc_start) { |
+ status = cipher_encrypt(stream->rtcp_cipher, |
+ (uint8_t*)enc_start, &enc_octet_len); |
+ if (status) { |
+ return err_status_cipher_fail; |
+ } |
+ /* |
+ * Get the tag and append that to the output |
+ */ |
+ status = cipher_get_tag(stream->rtcp_cipher, (uint8_t*)auth_tag, |
+ &tag_len); |
+ if (status) { |
+ return ( err_status_cipher_fail); |
+ } |
+ enc_octet_len += tag_len; |
+ } else { |
+ /* |
+ * Even though we're not encrypting the payload, we need |
+ * to run the cipher to get the auth tag. |
+ */ |
+ unsigned int nolen = 0; |
+ status = cipher_encrypt(stream->rtcp_cipher, NULL, &nolen); |
+ if (status) { |
+ return err_status_cipher_fail; |
+ } |
+ /* |
+ * Get the tag and append that to the output |
+ */ |
+ status = cipher_get_tag(stream->rtcp_cipher, (uint8_t*)auth_tag, |
+ &tag_len); |
+ if (status) { |
+ return ( err_status_cipher_fail); |
+ } |
+ enc_octet_len += tag_len; |
+ } |
+ |
+ /* increase the packet length by the length of the auth tag and seq_num*/ |
+ *pkt_octet_len += (tag_len + sizeof(srtcp_trailer_t)); |
+ |
+ return err_status_ok; |
+} |
+ |
+/* |
+ * This function handles incoming SRTCP packets while in AEAD mode, |
+ * which currently supports AES-GCM encryption. Note, the auth tag is |
+ * at the end of the packet stream and is automatically checked by GCM |
+ * when decrypting the payload. |
+ */ |
+static err_status_t |
+srtp_unprotect_rtcp_aead (srtp_t ctx, srtp_stream_ctx_t *stream, |
+ void *srtcp_hdr, unsigned int *pkt_octet_len) |
+{ |
+ srtcp_hdr_t *hdr = (srtcp_hdr_t*)srtcp_hdr; |
+ uint32_t *enc_start; /* pointer to start of encrypted portion */ |
+ uint32_t *trailer; /* pointer to start of trailer */ |
+ unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */ |
+ uint8_t *auth_tag = NULL; /* location of auth_tag within packet */ |
+ err_status_t status; |
+ int tag_len; |
+ unsigned int tmp_len; |
+ uint32_t seq_num; |
+ v128_t iv; |
+ uint32_t tseq; |
+ |
+ /* get tag length from stream context */ |
+ tag_len = auth_get_tag_length(stream->rtcp_auth); |
+ |
+ /* |
+ * set encryption start, encryption length, and trailer |
+ */ |
+ /* index & E (encryption) bit follow normal data. hdr->len |
+ is the number of words (32-bit) in the normal packet minus 1 */ |
+ /* This should point trailer to the word past the end of the |
+ normal data. */ |
+ /* This would need to be modified for optional mikey data */ |
+ /* |
+ * NOTE: trailer is 32-bit aligned because RTCP 'packets' are always |
+ * multiples of 32-bits (RFC 3550 6.1) |
+ */ |
+ trailer = (uint32_t*)((char*)hdr + *pkt_octet_len - sizeof(srtcp_trailer_t)); |
+ /* |
+ * We pass the tag down to the cipher when doing GCM mode |
+ */ |
+ enc_octet_len = *pkt_octet_len - (octets_in_rtcp_header + |
+ sizeof(srtcp_trailer_t)); |
+ auth_tag = (uint8_t*)hdr + *pkt_octet_len - tag_len - sizeof(srtcp_trailer_t); |
+ |
+ if (*((unsigned char*)trailer) & SRTCP_E_BYTE_BIT) { |
+ enc_start = (uint32_t*)hdr + uint32s_in_rtcp_header; |
+ } else { |
+ enc_octet_len = 0; |
+ enc_start = NULL; /* this indicates that there's no encryption */ |
+ } |
+ |
+ /* |
+ * check the sequence number for replays |
+ */ |
+ /* this is easier than dealing with bitfield access */ |
+ seq_num = ntohl(*trailer) & SRTCP_INDEX_MASK; |
+ debug_print(mod_srtp, "srtcp index: %x", seq_num); |
+ status = rdb_check(&stream->rtcp_rdb, seq_num); |
+ if (status) { |
+ return status; |
+ } |
+ |
+ /* |
+ * Calculate and set the IV |
+ */ |
+ srtp_calc_aead_iv_srtcp(stream, &iv, seq_num, hdr); |
+ status = cipher_set_iv(stream->rtcp_cipher, &iv, direction_decrypt); |
+ if (status) { |
+ return err_status_cipher_fail; |
+ } |
+ |
+ /* |
+ * Set the AAD for GCM mode |
+ */ |
+ if (enc_start) { |
+ /* |
+ * If payload encryption is enabled, then the AAD consist of |
+ * the RTCP header and the seq# at the end of the packet |
+ */ |
+ status = cipher_set_aad(stream->rtcp_cipher, (uint8_t*)hdr, |
+ octets_in_rtcp_header); |
+ if (status) { |
+ return ( err_status_cipher_fail); |
+ } |
+ } else { |
+ /* |
+ * Since payload encryption is not enabled, we must authenticate |
+ * the entire packet as described in section 10.3 in revision 07 |
+ * of the draft. |
+ */ |
+ status = cipher_set_aad(stream->rtcp_cipher, (uint8_t*)hdr, |
+ (*pkt_octet_len - tag_len - sizeof(srtcp_trailer_t))); |
+ if (status) { |
+ return ( err_status_cipher_fail); |
+ } |
+ } |
+ |
+ /* |
+ * put the idx# into network byte order, and process it as AAD |
+ */ |
+ tseq = htonl(*trailer); |
+ status = cipher_set_aad(stream->rtcp_cipher, (uint8_t*)&tseq, |
+ sizeof(srtcp_trailer_t)); |
+ if (status) { |
+ return ( err_status_cipher_fail); |
+ } |
+ |
+ /* if we're decrypting, exor keystream into the message */ |
+ if (enc_start) { |
+ status = cipher_decrypt(stream->rtcp_cipher, |
+ (uint8_t*)enc_start, &enc_octet_len); |
+ if (status) { |
+ return status; |
+ } |
+ } else { |
+ /* |
+ * Still need to run the cipher to check the tag |
+ */ |
+ tmp_len = tag_len; |
+ status = cipher_decrypt(stream->rtcp_cipher, (uint8_t*)auth_tag, |
+ &tmp_len); |
+ if (status) { |
+ return status; |
+ } |
+ } |
+ |
+ /* decrease the packet length by the length of the auth tag and seq_num*/ |
+ *pkt_octet_len -= (tag_len + sizeof(srtcp_trailer_t)); |
+ |
+ /* |
+ * verify that stream is for received traffic - this check will |
+ * detect SSRC collisions, since a stream that appears in both |
+ * srtp_protect() and srtp_unprotect() will fail this test in one of |
+ * those functions. |
+ * |
+ * we do this check *after* the authentication check, so that the |
+ * latter check will catch any attempts to fool us into thinking |
+ * that we've got a collision |
+ */ |
+ if (stream->direction != dir_srtp_receiver) { |
+ if (stream->direction == dir_unknown) { |
+ stream->direction = dir_srtp_receiver; |
+ } else { |
+ srtp_handle_event(ctx, stream, event_ssrc_collision); |
+ } |
+ } |
+ |
+ /* |
+ * if the stream is a 'provisional' one, in which the template context |
+ * is used, then we need to allocate a new stream at this point, since |
+ * the authentication passed |
+ */ |
+ if (stream == ctx->stream_template) { |
+ srtp_stream_ctx_t *new_stream; |
+ |
+ /* |
+ * allocate and initialize a new stream |
+ * |
+ * note that we indicate failure if we can't allocate the new |
+ * stream, and some implementations will want to not return |
+ * failure here |
+ */ |
+ status = srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream); |
+ if (status) { |
+ return status; |
+ } |
+ |
+ /* add new stream to the head of the stream_list */ |
+ new_stream->next = ctx->stream_list; |
+ ctx->stream_list = new_stream; |
+ |
+ /* set stream (the pointer used in this function) */ |
+ stream = new_stream; |
+ } |
+ |
+ /* we've passed the authentication check, so add seq_num to the rdb */ |
+ rdb_add_index(&stream->rtcp_rdb, seq_num); |
+ |
+ return err_status_ok; |
+} |
+ |
err_status_t |
srtp_protect_rtcp(srtp_t ctx, void *rtcp_hdr, int *pkt_octet_len) { |
srtcp_hdr_t *hdr = (srtcp_hdr_t *)rtcp_hdr; |
uint32_t *enc_start; /* pointer to start of encrypted portion */ |
uint32_t *auth_start; /* pointer to start of auth. portion */ |
uint32_t *trailer; /* pointer to start of trailer */ |
- unsigned enc_octet_len = 0;/* number of octets in encrypted portion */ |
+ unsigned int enc_octet_len = 0;/* number of octets in encrypted portion */ |
uint8_t *auth_tag = NULL; /* location of auth_tag within packet */ |
err_status_t status; |
int tag_len; |
@@ -1660,6 +2627,11 @@ srtp_protect_rtcp(srtp_t ctx, void *rtcp_hdr, int *pkt_octet_len) { |
uint32_t seq_num; |
/* we assume the hdr is 32-bit aligned to start */ |
+ |
+ /* check the packet length - it must at least contain a full header */ |
+ if (*pkt_octet_len < octets_in_rtcp_header) |
+ return err_status_bad_param; |
+ |
/* |
* look up ssrc in srtp_stream list, and process the packet with |
* the appropriate stream. if we haven't seen this stream before, |
@@ -1704,6 +2676,15 @@ srtp_protect_rtcp(srtp_t ctx, void *rtcp_hdr, int *pkt_octet_len) { |
} |
} |
+ /* |
+ * Check if this is an AEAD stream (GCM mode). If so, then dispatch |
+ * the request to our AEAD handler. |
+ */ |
+ if (stream->rtp_cipher->algorithm == AES_128_GCM || |
+ stream->rtp_cipher->algorithm == AES_256_GCM) { |
+ return srtp_protect_rtcp_aead(ctx, stream, rtcp_hdr, (unsigned int*)pkt_octet_len); |
+ } |
+ |
/* get tag length from stream context */ |
tag_len = auth_get_tag_length(stream->rtcp_auth); |
@@ -1763,7 +2744,7 @@ srtp_protect_rtcp(srtp_t ctx, void *rtcp_hdr, int *pkt_octet_len) { |
iv.v32[1] = hdr->ssrc; /* still in network order! */ |
iv.v32[2] = htonl(seq_num >> 16); |
iv.v32[3] = htonl(seq_num << 16); |
- status = cipher_set_iv(stream->rtcp_cipher, &iv); |
+ status = cipher_set_iv(stream->rtcp_cipher, &iv, direction_encrypt); |
} else { |
v128_t iv; |
@@ -1773,7 +2754,7 @@ srtp_protect_rtcp(srtp_t ctx, void *rtcp_hdr, int *pkt_octet_len) { |
iv.v32[1] = 0; |
iv.v32[2] = 0; |
iv.v32[3] = htonl(seq_num); |
- status = cipher_set_iv(stream->rtcp_cipher, &iv); |
+ status = cipher_set_iv(stream->rtcp_cipher, &iv, direction_encrypt); |
} |
if (status) |
return err_status_cipher_fail; |
@@ -1834,18 +2815,27 @@ srtp_unprotect_rtcp(srtp_t ctx, void *srtcp_hdr, int *pkt_octet_len) { |
uint32_t *enc_start; /* pointer to start of encrypted portion */ |
uint32_t *auth_start; /* pointer to start of auth. portion */ |
uint32_t *trailer; /* pointer to start of trailer */ |
- unsigned enc_octet_len = 0;/* number of octets in encrypted portion */ |
+ unsigned int enc_octet_len = 0;/* number of octets in encrypted portion */ |
uint8_t *auth_tag = NULL; /* location of auth_tag within packet */ |
uint8_t tmp_tag[SRTP_MAX_TAG_LEN]; |
uint8_t tag_copy[SRTP_MAX_TAG_LEN]; |
err_status_t status; |
- unsigned auth_len; |
+ unsigned int auth_len; |
int tag_len; |
srtp_stream_ctx_t *stream; |
int prefix_len; |
uint32_t seq_num; |
+ int e_bit_in_packet; /* whether the E-bit was found in the packet */ |
+ int sec_serv_confidentiality; /* whether confidentiality was requested */ |
/* we assume the hdr is 32-bit aligned to start */ |
+ |
+ /* check that the length value is sane; we'll check again once we |
+ know the tag length, but we at least want to know that it is |
+ a positive value */ |
+ if (*pkt_octet_len < octets_in_rtcp_header + sizeof(srtcp_trailer_t)) |
+ return err_status_bad_param; |
+ |
/* |
* look up ssrc in srtp_stream list, and process the packet with |
* the appropriate stream. if we haven't seen this stream before, |
@@ -1883,7 +2873,26 @@ srtp_unprotect_rtcp(srtp_t ctx, void *srtcp_hdr, int *pkt_octet_len) { |
} |
/* get tag length from stream context */ |
- tag_len = auth_get_tag_length(stream->rtcp_auth); |
+ tag_len = auth_get_tag_length(stream->rtcp_auth); |
+ |
+ /* check the packet length - it must contain at least a full RTCP |
+ header, an auth tag (if applicable), and the SRTCP encrypted flag |
+ and 31-bit index value */ |
+ if (*pkt_octet_len < (octets_in_rtcp_header + tag_len + sizeof(srtcp_trailer_t))) { |
+ return err_status_bad_param; |
+ } |
+ |
+ /* |
+ * Check if this is an AEAD stream (GCM mode). If so, then dispatch |
+ * the request to our AEAD handler. |
+ */ |
+ if (stream->rtp_cipher->algorithm == AES_128_GCM || |
+ stream->rtp_cipher->algorithm == AES_256_GCM) { |
+ return srtp_unprotect_rtcp_aead(ctx, stream, srtcp_hdr, (unsigned int*)pkt_octet_len); |
+ } |
+ |
+ sec_serv_confidentiality = stream->rtcp_services == sec_serv_conf || |
+ stream->rtcp_services == sec_serv_conf_and_auth; |
/* |
* set encryption start, encryption length, and trailer |
@@ -1900,8 +2909,13 @@ srtp_unprotect_rtcp(srtp_t ctx, void *srtcp_hdr, int *pkt_octet_len) { |
* multiples of 32-bits (RFC 3550 6.1) |
*/ |
trailer = (uint32_t *) ((char *) hdr + |
- *pkt_octet_len -(tag_len + sizeof(srtcp_trailer_t))); |
- if (*((unsigned char *) trailer) & SRTCP_E_BYTE_BIT) { |
+ *pkt_octet_len -(tag_len + sizeof(srtcp_trailer_t))); |
+ e_bit_in_packet = |
+ (*((unsigned char *) trailer) & SRTCP_E_BYTE_BIT) == SRTCP_E_BYTE_BIT; |
+ if (e_bit_in_packet != sec_serv_confidentiality) { |
+ return err_status_cant_check; |
+ } |
+ if (sec_serv_confidentiality) { |
enc_start = (uint32_t *)hdr + uint32s_in_rtcp_header; |
} else { |
enc_octet_len = 0; |
@@ -1951,7 +2965,7 @@ srtp_unprotect_rtcp(srtp_t ctx, void *srtcp_hdr, int *pkt_octet_len) { |
iv.v32[1] = hdr->ssrc; /* still in network order! */ |
iv.v32[2] = htonl(seq_num >> 16); |
iv.v32[3] = htonl(seq_num << 16); |
- status = cipher_set_iv(stream->rtcp_cipher, &iv); |
+ status = cipher_set_iv(stream->rtcp_cipher, &iv, direction_decrypt); |
} else { |
v128_t iv; |
@@ -1961,7 +2975,7 @@ srtp_unprotect_rtcp(srtp_t ctx, void *srtcp_hdr, int *pkt_octet_len) { |
iv.v32[1] = 0; |
iv.v32[2] = 0; |
iv.v32[3] = htonl(seq_num); |
- status = cipher_set_iv(stream->rtcp_cipher, &iv); |
+ status = cipher_set_iv(stream->rtcp_cipher, &iv, direction_decrypt); |
} |
if (status) |
@@ -2067,6 +3081,20 @@ srtp_unprotect_rtcp(srtp_t ctx, void *srtcp_hdr, int *pkt_octet_len) { |
} |
+/* |
+ * user data within srtp_t context |
+ */ |
+ |
+void |
+srtp_set_user_data(srtp_t ctx, void *data) { |
+ ctx->user_data = data; |
+} |
+ |
+void* |
+srtp_get_user_data(srtp_t ctx) { |
+ return ctx->user_data; |
+} |
+ |
/* |
* dtls keying for srtp |
@@ -2080,23 +3108,18 @@ crypto_policy_set_from_profile_for_rtp(crypto_policy_t *policy, |
switch(profile) { |
case srtp_profile_aes128_cm_sha1_80: |
crypto_policy_set_aes_cm_128_hmac_sha1_80(policy); |
- crypto_policy_set_aes_cm_128_hmac_sha1_80(policy); |
break; |
case srtp_profile_aes128_cm_sha1_32: |
crypto_policy_set_aes_cm_128_hmac_sha1_32(policy); |
- crypto_policy_set_aes_cm_128_hmac_sha1_80(policy); |
break; |
case srtp_profile_null_sha1_80: |
crypto_policy_set_null_cipher_hmac_sha1_80(policy); |
- crypto_policy_set_null_cipher_hmac_sha1_80(policy); |
break; |
case srtp_profile_aes256_cm_sha1_80: |
crypto_policy_set_aes_cm_256_hmac_sha1_80(policy); |
- crypto_policy_set_aes_cm_256_hmac_sha1_80(policy); |
break; |
case srtp_profile_aes256_cm_sha1_32: |
crypto_policy_set_aes_cm_256_hmac_sha1_32(policy); |
- crypto_policy_set_aes_cm_256_hmac_sha1_80(policy); |
break; |
/* the following profiles are not (yet) supported */ |
case srtp_profile_null_sha1_32: |
@@ -2117,6 +3140,8 @@ crypto_policy_set_from_profile_for_rtcp(crypto_policy_t *policy, |
crypto_policy_set_aes_cm_128_hmac_sha1_80(policy); |
break; |
case srtp_profile_aes128_cm_sha1_32: |
+ /* We do not honor the 32-bit auth tag request since |
+ * this is not compliant with RFC 3711 */ |
crypto_policy_set_aes_cm_128_hmac_sha1_80(policy); |
break; |
case srtp_profile_null_sha1_80: |
@@ -2126,6 +3151,8 @@ crypto_policy_set_from_profile_for_rtcp(crypto_policy_t *policy, |
crypto_policy_set_aes_cm_256_hmac_sha1_80(policy); |
break; |
case srtp_profile_aes256_cm_sha1_32: |
+ /* We do not honor the 32-bit auth tag request since |
+ * this is not compliant with RFC 3711 */ |
crypto_policy_set_aes_cm_256_hmac_sha1_80(policy); |
break; |
/* the following profiles are not (yet) supported */ |