Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(5)

Side by Side Diff: src/zone.cc

Issue 885813002: Minor refactoring for Zone class and friends. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/zone.h ('k') | src/zone-inl.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2012 the V8 project authors. All rights reserved. 1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include <string.h> 5 #include "src/zone.h"
6 6
7 #include "src/v8.h" 7 #include <cstring>
8 #include "src/zone-inl.h" 8
9 #ifdef V8_USE_ADDRESS_SANITIZER
10 #include <sanitizer/asan_interface.h>
11 #endif // V8_USE_ADDRESS_SANITIZER
9 12
10 namespace v8 { 13 namespace v8 {
11 namespace internal { 14 namespace internal {
12 15
16 namespace {
17
18 #if V8_USE_ADDRESS_SANITIZER
19
20 const int kASanRedzoneBytes = 24; // Must be a multiple of 8.
21
22 #else
23
24 #define ASAN_POISON_MEMORY_REGION(start, size) \
25 do { \
26 USE(start); \
27 USE(size); \
28 } while (false)
29
30 #define ASAN_UNPOISON_MEMORY_REGION(start, size) \
31 do { \
32 USE(start); \
33 USE(size); \
34 } while (false)
35
36 const int kASanRedzoneBytes = 0;
37
38 #endif // V8_USE_ADDRESS_SANITIZER
39
40 } // namespace
41
13 42
14 // Segments represent chunks of memory: They have starting address 43 // Segments represent chunks of memory: They have starting address
15 // (encoded in the this pointer) and a size in bytes. Segments are 44 // (encoded in the this pointer) and a size in bytes. Segments are
16 // chained together forming a LIFO structure with the newest segment 45 // chained together forming a LIFO structure with the newest segment
17 // available as segment_head_. Segments are allocated using malloc() 46 // available as segment_head_. Segments are allocated using malloc()
18 // and de-allocated using free(). 47 // and de-allocated using free().
19 48
20 class Segment { 49 class Segment {
21 public: 50 public:
22 void Initialize(Segment* next, int size) { 51 void Initialize(Segment* next, int size) {
23 next_ = next; 52 next_ = next;
24 size_ = size; 53 size_ = size;
25 } 54 }
26 55
27 Segment* next() const { return next_; } 56 Segment* next() const { return next_; }
28 void clear_next() { next_ = NULL; } 57 void clear_next() { next_ = nullptr; }
29 58
30 int size() const { return size_; } 59 int size() const { return size_; }
31 int capacity() const { return size_ - sizeof(Segment); } 60 int capacity() const { return size_ - sizeof(Segment); }
32 61
33 Address start() const { return address(sizeof(Segment)); } 62 Address start() const { return address(sizeof(Segment)); }
34 Address end() const { return address(size_); } 63 Address end() const { return address(size_); }
35 64
36 private: 65 private:
37 // Computes the address of the nth byte in this segment. 66 // Computes the address of the nth byte in this segment.
38 Address address(int n) const { 67 Address address(int n) const {
39 return Address(this) + n; 68 return Address(this) + n;
40 } 69 }
41 70
42 Segment* next_; 71 Segment* next_;
43 int size_; 72 int size_;
44 }; 73 };
45 74
46 75
47 Zone::Zone() 76 Zone::Zone()
48 : allocation_size_(0), 77 : allocation_size_(0),
49 segment_bytes_allocated_(0), 78 segment_bytes_allocated_(0),
50 position_(0), 79 position_(0),
51 limit_(0), 80 limit_(0),
52 segment_head_(NULL) {} 81 segment_head_(nullptr) {}
53 82
54 83
55 Zone::~Zone() { 84 Zone::~Zone() {
56 DeleteAll(); 85 DeleteAll();
57 DeleteKeptSegment(); 86 DeleteKeptSegment();
58 87
59 DCHECK(segment_bytes_allocated_ == 0); 88 DCHECK(segment_bytes_allocated_ == 0);
60 } 89 }
61 90
62 91
63 void* Zone::New(int size) { 92 void* Zone::New(int size) {
64 // Round up the requested size to fit the alignment. 93 // Round up the requested size to fit the alignment.
65 size = RoundUp(size, kAlignment); 94 size = RoundUp(size, kAlignment);
66 95
67 // If the allocation size is divisible by 8 then we return an 8-byte aligned 96 // If the allocation size is divisible by 8 then we return an 8-byte aligned
68 // address. 97 // address.
69 if (kPointerSize == 4 && kAlignment == 4) { 98 if (kPointerSize == 4 && kAlignment == 4) {
70 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4); 99 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4);
71 } else { 100 } else {
72 DCHECK(kAlignment >= kPointerSize); 101 DCHECK(kAlignment >= kPointerSize);
73 } 102 }
74 103
75 // Check if the requested size is available without expanding. 104 // Check if the requested size is available without expanding.
76 Address result = position_; 105 Address result = position_;
77 106
78 int size_with_redzone = 107 const int size_with_redzone = size + kASanRedzoneBytes;
79 #ifdef V8_USE_ADDRESS_SANITIZER
80 size + kASanRedzoneBytes;
81 #else
82 size;
83 #endif
84
85 if (size_with_redzone > limit_ - position_) { 108 if (size_with_redzone > limit_ - position_) {
86 result = NewExpand(size_with_redzone); 109 result = NewExpand(size_with_redzone);
87 } else { 110 } else {
88 position_ += size_with_redzone; 111 position_ += size_with_redzone;
89 } 112 }
90 113
91 #ifdef V8_USE_ADDRESS_SANITIZER
92 Address redzone_position = result + size; 114 Address redzone_position = result + size;
93 DCHECK(redzone_position + kASanRedzoneBytes == position_); 115 DCHECK(redzone_position + kASanRedzoneBytes == position_);
94 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes); 116 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes);
95 #endif
96 117
97 // Check that the result has the proper alignment and return it. 118 // Check that the result has the proper alignment and return it.
98 DCHECK(IsAddressAligned(result, kAlignment, 0)); 119 DCHECK(IsAddressAligned(result, kAlignment, 0));
99 allocation_size_ += size; 120 allocation_size_ += size;
100 return reinterpret_cast<void*>(result); 121 return reinterpret_cast<void*>(result);
101 } 122 }
102 123
103 124
104 void Zone::DeleteAll() { 125 void Zone::DeleteAll() {
105 #ifdef DEBUG 126 #ifdef DEBUG
106 // Constant byte value used for zapping dead memory in debug mode. 127 // Constant byte value used for zapping dead memory in debug mode.
107 static const unsigned char kZapDeadByte = 0xcd; 128 static const unsigned char kZapDeadByte = 0xcd;
108 #endif 129 #endif
109 130
110 // Find a segment with a suitable size to keep around. 131 // Find a segment with a suitable size to keep around.
111 Segment* keep = NULL; 132 Segment* keep = nullptr;
112 // Traverse the chained list of segments, zapping (in debug mode) 133 // Traverse the chained list of segments, zapping (in debug mode)
113 // and freeing every segment except the one we wish to keep. 134 // and freeing every segment except the one we wish to keep.
114 for (Segment* current = segment_head_; current != NULL; ) { 135 for (Segment* current = segment_head_; current;) {
115 Segment* next = current->next(); 136 Segment* next = current->next();
116 if (keep == NULL && current->size() <= kMaximumKeptSegmentSize) { 137 if (!keep && current->size() <= kMaximumKeptSegmentSize) {
117 // Unlink the segment we wish to keep from the list. 138 // Unlink the segment we wish to keep from the list.
118 keep = current; 139 keep = current;
119 keep->clear_next(); 140 keep->clear_next();
120 } else { 141 } else {
121 int size = current->size(); 142 int size = current->size();
122 #ifdef DEBUG 143 #ifdef DEBUG
123 // Un-poison first so the zapping doesn't trigger ASan complaints. 144 // Un-poison first so the zapping doesn't trigger ASan complaints.
124 ASAN_UNPOISON_MEMORY_REGION(current, size); 145 ASAN_UNPOISON_MEMORY_REGION(current, size);
125 // Zap the entire current segment (including the header). 146 // Zap the entire current segment (including the header).
126 memset(current, kZapDeadByte, size); 147 memset(current, kZapDeadByte, size);
127 #endif 148 #endif
128 DeleteSegment(current, size); 149 DeleteSegment(current, size);
129 } 150 }
130 current = next; 151 current = next;
131 } 152 }
132 153
133 // If we have found a segment we want to keep, we must recompute the 154 // If we have found a segment we want to keep, we must recompute the
134 // variables 'position' and 'limit' to prepare for future allocate 155 // variables 'position' and 'limit' to prepare for future allocate
135 // attempts. Otherwise, we must clear the position and limit to 156 // attempts. Otherwise, we must clear the position and limit to
136 // force a new segment to be allocated on demand. 157 // force a new segment to be allocated on demand.
137 if (keep != NULL) { 158 if (keep) {
138 Address start = keep->start(); 159 Address start = keep->start();
139 position_ = RoundUp(start, kAlignment); 160 position_ = RoundUp(start, kAlignment);
140 limit_ = keep->end(); 161 limit_ = keep->end();
141 // Un-poison so we can re-use the segment later. 162 // Un-poison so we can re-use the segment later.
142 ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity()); 163 ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity());
143 #ifdef DEBUG 164 #ifdef DEBUG
144 // Zap the contents of the kept segment (but not the header). 165 // Zap the contents of the kept segment (but not the header).
145 memset(start, kZapDeadByte, keep->capacity()); 166 memset(start, kZapDeadByte, keep->capacity());
146 #endif 167 #endif
147 } else { 168 } else {
148 position_ = limit_ = 0; 169 position_ = limit_ = 0;
149 } 170 }
150 171
151 allocation_size_ = 0; 172 allocation_size_ = 0;
152 // Update the head segment to be the kept segment (if any). 173 // Update the head segment to be the kept segment (if any).
153 segment_head_ = keep; 174 segment_head_ = keep;
154 } 175 }
155 176
156 177
157 void Zone::DeleteKeptSegment() { 178 void Zone::DeleteKeptSegment() {
158 #ifdef DEBUG 179 #ifdef DEBUG
159 // Constant byte value used for zapping dead memory in debug mode. 180 // Constant byte value used for zapping dead memory in debug mode.
160 static const unsigned char kZapDeadByte = 0xcd; 181 static const unsigned char kZapDeadByte = 0xcd;
161 #endif 182 #endif
162 183
163 DCHECK(segment_head_ == NULL || segment_head_->next() == NULL); 184 DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr);
164 if (segment_head_ != NULL) { 185 if (segment_head_ != nullptr) {
165 int size = segment_head_->size(); 186 int size = segment_head_->size();
166 #ifdef DEBUG 187 #ifdef DEBUG
167 // Un-poison first so the zapping doesn't trigger ASan complaints. 188 // Un-poison first so the zapping doesn't trigger ASan complaints.
168 ASAN_UNPOISON_MEMORY_REGION(segment_head_, size); 189 ASAN_UNPOISON_MEMORY_REGION(segment_head_, size);
169 // Zap the entire kept segment (including the header). 190 // Zap the entire kept segment (including the header).
170 memset(segment_head_, kZapDeadByte, size); 191 memset(segment_head_, kZapDeadByte, size);
171 #endif 192 #endif
172 DeleteSegment(segment_head_, size); 193 DeleteSegment(segment_head_, size);
173 segment_head_ = NULL; 194 segment_head_ = nullptr;
174 } 195 }
175 196
176 DCHECK(segment_bytes_allocated_ == 0); 197 DCHECK(segment_bytes_allocated_ == 0);
177 } 198 }
178 199
179 200
180 // Creates a new segment, sets it size, and pushes it to the front 201 // Creates a new segment, sets it size, and pushes it to the front
181 // of the segment chain. Returns the new segment. 202 // of the segment chain. Returns the new segment.
182 Segment* Zone::NewSegment(int size) { 203 Segment* Zone::NewSegment(int size) {
183 Segment* result = reinterpret_cast<Segment*>(Malloced::New(size)); 204 Segment* result = reinterpret_cast<Segment*>(Malloced::New(size));
184 adjust_segment_bytes_allocated(size); 205 segment_bytes_allocated_ += size;
185 if (result != NULL) { 206 if (result != nullptr) {
186 result->Initialize(segment_head_, size); 207 result->Initialize(segment_head_, size);
187 segment_head_ = result; 208 segment_head_ = result;
188 } 209 }
189 return result; 210 return result;
190 } 211 }
191 212
192 213
193 // Deletes the given segment. Does not touch the segment chain. 214 // Deletes the given segment. Does not touch the segment chain.
194 void Zone::DeleteSegment(Segment* segment, int size) { 215 void Zone::DeleteSegment(Segment* segment, int size) {
195 adjust_segment_bytes_allocated(-size); 216 segment_bytes_allocated_ -= size;
196 Malloced::Delete(segment); 217 Malloced::Delete(segment);
197 } 218 }
198 219
199 220
200 Address Zone::NewExpand(int size) { 221 Address Zone::NewExpand(int size) {
201 // Make sure the requested size is already properly aligned and that 222 // Make sure the requested size is already properly aligned and that
202 // there isn't enough room in the Zone to satisfy the request. 223 // there isn't enough room in the Zone to satisfy the request.
203 DCHECK(size == RoundDown(size, kAlignment)); 224 DCHECK(size == RoundDown(size, kAlignment));
204 DCHECK(size > limit_ - position_); 225 DCHECK(size > limit_ - position_);
205 226
206 // Compute the new segment size. We use a 'high water mark' 227 // Compute the new segment size. We use a 'high water mark'
207 // strategy, where we increase the segment size every time we expand 228 // strategy, where we increase the segment size every time we expand
208 // except that we employ a maximum segment size when we delete. This 229 // except that we employ a maximum segment size when we delete. This
209 // is to avoid excessive malloc() and free() overhead. 230 // is to avoid excessive malloc() and free() overhead.
210 Segment* head = segment_head_; 231 Segment* head = segment_head_;
211 const size_t old_size = (head == NULL) ? 0 : head->size(); 232 const size_t old_size = (head == nullptr) ? 0 : head->size();
212 static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment; 233 static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment;
213 const size_t new_size_no_overhead = size + (old_size << 1); 234 const size_t new_size_no_overhead = size + (old_size << 1);
214 size_t new_size = kSegmentOverhead + new_size_no_overhead; 235 size_t new_size = kSegmentOverhead + new_size_no_overhead;
215 const size_t min_new_size = kSegmentOverhead + static_cast<size_t>(size); 236 const size_t min_new_size = kSegmentOverhead + static_cast<size_t>(size);
216 // Guard against integer overflow. 237 // Guard against integer overflow.
217 if (new_size_no_overhead < static_cast<size_t>(size) || 238 if (new_size_no_overhead < static_cast<size_t>(size) ||
218 new_size < static_cast<size_t>(kSegmentOverhead)) { 239 new_size < static_cast<size_t>(kSegmentOverhead)) {
219 V8::FatalProcessOutOfMemory("Zone"); 240 FatalProcessOutOfMemory("Zone");
220 return NULL; 241 return nullptr;
221 } 242 }
222 if (new_size < static_cast<size_t>(kMinimumSegmentSize)) { 243 if (new_size < static_cast<size_t>(kMinimumSegmentSize)) {
223 new_size = kMinimumSegmentSize; 244 new_size = kMinimumSegmentSize;
224 } else if (new_size > static_cast<size_t>(kMaximumSegmentSize)) { 245 } else if (new_size > static_cast<size_t>(kMaximumSegmentSize)) {
225 // Limit the size of new segments to avoid growing the segment size 246 // Limit the size of new segments to avoid growing the segment size
226 // exponentially, thus putting pressure on contiguous virtual address space. 247 // exponentially, thus putting pressure on contiguous virtual address space.
227 // All the while making sure to allocate a segment large enough to hold the 248 // All the while making sure to allocate a segment large enough to hold the
228 // requested size. 249 // requested size.
229 new_size = Max(min_new_size, static_cast<size_t>(kMaximumSegmentSize)); 250 new_size = Max(min_new_size, static_cast<size_t>(kMaximumSegmentSize));
230 } 251 }
231 if (new_size > INT_MAX) { 252 if (new_size > INT_MAX) {
232 V8::FatalProcessOutOfMemory("Zone"); 253 FatalProcessOutOfMemory("Zone");
233 return NULL; 254 return nullptr;
234 } 255 }
235 Segment* segment = NewSegment(static_cast<int>(new_size)); 256 Segment* segment = NewSegment(static_cast<int>(new_size));
236 if (segment == NULL) { 257 if (segment == nullptr) {
237 V8::FatalProcessOutOfMemory("Zone"); 258 FatalProcessOutOfMemory("Zone");
238 return NULL; 259 return nullptr;
239 } 260 }
240 261
241 // Recompute 'top' and 'limit' based on the new segment. 262 // Recompute 'top' and 'limit' based on the new segment.
242 Address result = RoundUp(segment->start(), kAlignment); 263 Address result = RoundUp(segment->start(), kAlignment);
243 position_ = result + size; 264 position_ = result + size;
244 // Check for address overflow. 265 // Check for address overflow.
245 // (Should not happen since the segment is guaranteed to accomodate 266 // (Should not happen since the segment is guaranteed to accomodate
246 // size bytes + header and alignment padding) 267 // size bytes + header and alignment padding)
247 if (reinterpret_cast<uintptr_t>(position_) 268 DCHECK_GE(reinterpret_cast<uintptr_t>(position_),
248 < reinterpret_cast<uintptr_t>(result)) { 269 reinterpret_cast<uintptr_t>(result));
249 V8::FatalProcessOutOfMemory("Zone");
250 return NULL;
251 }
252 limit_ = segment->end(); 270 limit_ = segment->end();
253 DCHECK(position_ <= limit_); 271 DCHECK(position_ <= limit_);
254 return result; 272 return result;
255 } 273 }
256 274
257 275 } // namespace internal
258 } } // namespace v8::internal 276 } // namespace v8
OLDNEW
« no previous file with comments | « src/zone.h ('k') | src/zone-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698