Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(368)

Side by Side Diff: base/allocator/allocator_shim_win.cc

Issue 885443002: Roll Chrome into Mojo. (Closed) Base URL: https://github.com/domokit/mojo.git@master
Patch Set: Rebase to ToT mojo Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « base/allocator/allocator.gyp ('k') | base/allocator/generic_allocators.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include <malloc.h> 5 #include <malloc.h>
6 #include <new.h> 6 #include <new.h>
7 #include <windows.h> 7 #include <windows.h>
8 8
9 #include "base/basictypes.h" 9 #include "base/basictypes.h"
10 10
11 // This shim make it possible to perform additional checks on allocations 11 // This shim make it possible to perform additional checks on allocations
12 // before passing them to the Heap functions. 12 // before passing them to the Heap functions.
13 13
14 // new_mode behaves similarly to MSVC's _set_new_mode. 14 // Heap functions are stripped from libcmt.lib using the prep_libc.py
15 // If flag is 0 (default), calls to malloc will behave normally. 15 // for each object file stripped, we re-implement them here to allow us to
16 // If flag is 1, calls to malloc will behave like calls to new, 16 // perform additional checks:
17 // and the std_new_handler will be invoked on failure. 17 // 1. Enforcing the maximum size that can be allocated to 2Gb.
18 // Can be set by calling _set_new_mode(). 18 // 2. Calling new_handler if malloc fails.
19 static int new_mode = 0; 19
20 extern "C" {
21 // We set this to 1 because part of the CRT uses a check of _crtheap != 0
22 // to test whether the CRT has been initialized. Once we've ripped out
23 // the allocators from libcmt, we need to provide this definition so that
24 // the rest of the CRT is still usable.
25 // heapinit.c
26 void* _crtheap = reinterpret_cast<void*>(1);
27 }
20 28
21 namespace { 29 namespace {
22 30
23 // This is a simple allocator based on the windows heap.
24 const size_t kWindowsPageSize = 4096; 31 const size_t kWindowsPageSize = 4096;
25 const size_t kMaxWindowsAllocation = INT_MAX - kWindowsPageSize; 32 const size_t kMaxWindowsAllocation = INT_MAX - kWindowsPageSize;
26 static HANDLE win_heap; 33 int new_mode = 0;
27 34
28 // VS2013 crt uses the process heap as its heap, so we do the same here. 35 // VS2013 crt uses the process heap as its heap, so we do the same here.
29 // See heapinit.c in VS CRT sources. 36 // See heapinit.c in VS CRT sources.
30 bool win_heap_init() { 37 bool win_heap_init() {
31 win_heap = GetProcessHeap(); 38 // Set the _crtheap global here. THis allows us to offload most of the
32 if (win_heap == NULL) 39 // memory management to the CRT, except the functions we need to shim.
40 _crtheap = GetProcessHeap();
41 if (_crtheap == NULL)
33 return false; 42 return false;
34 43
35 ULONG enable_lfh = 2; 44 ULONG enable_lfh = 2;
36 // NOTE: Setting LFH may fail. Vista already has it enabled. 45 // NOTE: Setting LFH may fail. Vista already has it enabled.
37 // And under the debugger, it won't use LFH. So we 46 // And under the debugger, it won't use LFH. So we
38 // ignore any errors. 47 // ignore any errors.
39 HeapSetInformation(win_heap, HeapCompatibilityInformation, &enable_lfh, 48 HeapSetInformation(_crtheap, HeapCompatibilityInformation, &enable_lfh,
40 sizeof(enable_lfh)); 49 sizeof(enable_lfh));
41 50
42 return true; 51 return true;
43 } 52 }
44 53
45 void* win_heap_malloc(size_t size) { 54 void* win_heap_malloc(size_t size) {
46 if (size < kMaxWindowsAllocation) 55 if (size < kMaxWindowsAllocation)
47 return HeapAlloc(win_heap, 0, size); 56 return HeapAlloc(_crtheap, 0, size);
48 return NULL; 57 return NULL;
49 } 58 }
50 59
51 void win_heap_free(void* size) { 60 void win_heap_free(void* size) {
52 HeapFree(win_heap, 0, size); 61 HeapFree(_crtheap, 0, size);
53 } 62 }
54 63
55 void* win_heap_realloc(void* ptr, size_t size) { 64 void* win_heap_realloc(void* ptr, size_t size) {
56 if (!ptr) 65 if (!ptr)
57 return win_heap_malloc(size); 66 return win_heap_malloc(size);
58 if (!size) { 67 if (!size) {
59 win_heap_free(ptr); 68 win_heap_free(ptr);
60 return NULL; 69 return NULL;
61 } 70 }
62 if (size < kMaxWindowsAllocation) 71 if (size < kMaxWindowsAllocation)
63 return HeapReAlloc(win_heap, 0, ptr, size); 72 return HeapReAlloc(_crtheap, 0, ptr, size);
64 return NULL; 73 return NULL;
65 } 74 }
66 75
67 size_t win_heap_msize(void* ptr) { 76 void win_heap_term() {
68 return HeapSize(win_heap, 0, ptr); 77 _crtheap = NULL;
69 } 78 }
70 79
71 void* win_heap_memalign(size_t alignment, size_t size) {
72 // Reserve enough space to ensure we can align and set aligned_ptr[-1] to the
73 // original allocation for use with win_heap_memalign_free() later.
74 size_t allocation_size = size + (alignment - 1) + sizeof(void*);
75
76 // Check for overflow. Alignment and size are checked in allocator_shim.
77 if (size >= allocation_size || alignment >= allocation_size) {
78 return NULL;
79 }
80
81 // Since we're directly calling the allocator function, before OOM handling,
82 // we need to NULL check to ensure the allocation succeeded.
83 void* ptr = win_heap_malloc(allocation_size);
84 if (!ptr)
85 return ptr;
86
87 char* aligned_ptr = static_cast<char*>(ptr) + sizeof(void*);
88 aligned_ptr +=
89 alignment - reinterpret_cast<uintptr_t>(aligned_ptr) & (alignment - 1);
90
91 reinterpret_cast<void**>(aligned_ptr)[-1] = ptr;
92 return aligned_ptr;
93 }
94
95 void win_heap_memalign_free(void* ptr) {
96 if (ptr)
97 win_heap_free(static_cast<void**>(ptr)[-1]);
98 }
99
100 void win_heap_term() {
101 win_heap = NULL;
102 }
103
104 } // namespace
105
106 // Call the new handler, if one has been set. 80 // Call the new handler, if one has been set.
107 // Returns true on successfully calling the handler, false otherwise. 81 // Returns true on successfully calling the handler, false otherwise.
108 inline bool call_new_handler(bool nothrow, size_t size) { 82 inline bool call_new_handler(bool nothrow, size_t size) {
109 // Get the current new handler. 83 // Get the current new handler.
110 _PNH nh = _query_new_handler(); 84 _PNH nh = _query_new_handler();
111 #if defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS 85 #if defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS
112 if (!nh) 86 if (!nh)
113 return false; 87 return false;
114 // Since exceptions are disabled, we don't really know if new_handler 88 // Since exceptions are disabled, we don't really know if new_handler
115 // failed. Assume it will abort if it fails. 89 // failed. Assume it will abort if it fails.
116 return nh(size); 90 return nh(size);
117 #else 91 #else
118 #error "Exceptions in allocator shim are not supported!" 92 #error "Exceptions in allocator shim are not supported!"
119 #endif // defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS 93 #endif // defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS
120 return false; 94 return false;
121 } 95 }
122 96
97 // Implement a C++ style allocation, which always calls the new_handler
98 // on failure.
99 inline void* generic_cpp_alloc(size_t size, bool nothrow) {
100 void* ptr;
101 for (;;) {
102 ptr = malloc(size);
103 if (ptr)
104 return ptr;
105 if (!call_new_handler(nothrow, size))
106 break;
107 }
108 return ptr;
109 }
110
111 } // namespace
112
113 // new.cpp
114 void* operator new(size_t size) {
115 return generic_cpp_alloc(size, false);
116 }
117
118 // delete.cpp
119 void operator delete(void* p) throw() {
120 free(p);
121 }
122
123 // new2.cpp
124 void* operator new[](size_t size) {
125 return generic_cpp_alloc(size, false);
126 }
127
128 // delete2.cpp
129 void operator delete[](void* p) throw() {
130 free(p);
131 }
132
133 // newopnt.cpp
134 void* operator new(size_t size, const std::nothrow_t& nt) {
135 return generic_cpp_alloc(size, true);
136 }
137
138 // newaopnt.cpp
139 void* operator new[](size_t size, const std::nothrow_t& nt) {
140 return generic_cpp_alloc(size, true);
141 }
142
143 // This function behaves similarly to MSVC's _set_new_mode.
144 // If flag is 0 (default), calls to malloc will behave normally.
145 // If flag is 1, calls to malloc will behave like calls to new,
146 // and the std_new_handler will be invoked on failure.
147 // Returns the previous mode.
148 // new_mode.cpp
149 int _set_new_mode(int flag) throw() {
150 int old_mode = new_mode;
151 new_mode = flag;
152 return old_mode;
153 }
154
155 // new_mode.cpp
156 int _query_new_mode() {
157 return new_mode;
158 }
159
123 extern "C" { 160 extern "C" {
124 161 // malloc.c
125 void* malloc(size_t size) { 162 void* malloc(size_t size) {
126 void* ptr; 163 void* ptr;
127 for (;;) { 164 for (;;) {
128 ptr = win_heap_malloc(size); 165 ptr = win_heap_malloc(size);
129 if (ptr) 166 if (ptr)
130 return ptr; 167 return ptr;
131 168
132 if (!new_mode || !call_new_handler(true, size)) 169 if (!new_mode || !call_new_handler(true, size))
133 break; 170 break;
134 } 171 }
135 return ptr; 172 return ptr;
136 } 173 }
137 174
175 // free.c
138 void free(void* p) { 176 void free(void* p) {
139 win_heap_free(p); 177 win_heap_free(p);
140 return; 178 return;
141 } 179 }
142 180
181 // realloc.c
143 void* realloc(void* ptr, size_t size) { 182 void* realloc(void* ptr, size_t size) {
144 // Webkit is brittle for allocators that return NULL for malloc(0). The 183 // Webkit is brittle for allocators that return NULL for malloc(0). The
145 // realloc(0, 0) code path does not guarantee a non-NULL return, so be sure 184 // realloc(0, 0) code path does not guarantee a non-NULL return, so be sure
146 // to call malloc for this case. 185 // to call malloc for this case.
147 if (!ptr) 186 if (!ptr)
148 return malloc(size); 187 return malloc(size);
149 188
150 void* new_ptr; 189 void* new_ptr;
151 for (;;) { 190 for (;;) {
152 new_ptr = win_heap_realloc(ptr, size); 191 new_ptr = win_heap_realloc(ptr, size);
153 192
154 // Subtle warning: NULL return does not alwas indicate out-of-memory. If 193 // Subtle warning: NULL return does not alwas indicate out-of-memory. If
155 // the requested new size is zero, realloc should free the ptr and return 194 // the requested new size is zero, realloc should free the ptr and return
156 // NULL. 195 // NULL.
157 if (new_ptr || !size) 196 if (new_ptr || !size)
158 return new_ptr; 197 return new_ptr;
159 if (!new_mode || !call_new_handler(true, size)) 198 if (!new_mode || !call_new_handler(true, size))
160 break; 199 break;
161 } 200 }
162 return new_ptr; 201 return new_ptr;
163 } 202 }
164 203
165 204 // heapinit.c
166 size_t _msize(void* p) { 205 intptr_t _get_heap_handle() {
167 return win_heap_msize(p); 206 return reinterpret_cast<intptr_t>(_crtheap);
168 } 207 }
169 208
170 intptr_t _get_heap_handle() { 209 // heapinit.c
171 return reinterpret_cast<intptr_t>(win_heap);
172 }
173
174 // The CRT heap initialization stub.
175 int _heap_init() { 210 int _heap_init() {
176 return win_heap_init() ? 1 : 0; 211 return win_heap_init() ? 1 : 0;
177 } 212 }
178 213
179 // The CRT heap cleanup stub. 214 // heapinit.c
180 void _heap_term() { 215 void _heap_term() {
181 win_heap_term(); 216 win_heap_term();
182 } 217 }
183 218
184 // We set this to 1 because part of the CRT uses a check of _crtheap != 0 219 // calloc.c
185 // to test whether the CRT has been initialized. Once we've ripped out 220 void* calloc(size_t n, size_t elem_size) {
186 // the allocators from libcmt, we need to provide this definition so that 221 // Overflow check.
187 // the rest of the CRT is still usable. 222 const size_t size = n * elem_size;
188 void* _crtheap = reinterpret_cast<void*>(1); 223 if (elem_size != 0 && size / elem_size != n)
189
190 // Provide support for aligned memory through Windows only _aligned_malloc().
191 void* _aligned_malloc(size_t size, size_t alignment) {
192 // _aligned_malloc guarantees parameter validation, so do so here. These
193 // checks are somewhat stricter than _aligned_malloc() since we're effectively
194 // using memalign() under the hood.
195 if (size == 0U || (alignment & (alignment - 1)) != 0U ||
196 (alignment % sizeof(void*)) != 0U)
197 return NULL; 224 return NULL;
198 225
199 void* ptr; 226 void* result = malloc(size);
200 for (;;) { 227 if (result != NULL) {
201 ptr = win_heap_memalign(alignment, size); 228 memset(result, 0, size);
202
203 if (ptr) {
204 return ptr;
205 }
206
207 if (!new_mode || !call_new_handler(true, size))
208 break;
209 } 229 }
210 return ptr; 230 return result;
211 } 231 }
212 232
213 void _aligned_free(void* p) { 233 // recalloc.c
214 // Pointers allocated with win_heap_memalign() MUST be freed via 234 void* _recalloc(void* p, size_t n, size_t elem_size) {
215 // win_heap_memalign_free() since the aligned pointer is not the real one. 235 if (!p)
216 win_heap_memalign_free(p); 236 return calloc(n, elem_size);
237
238 // This API is a bit odd.
239 // Note: recalloc only guarantees zeroed memory when p is NULL.
240 // Generally, calls to malloc() have padding. So a request
241 // to malloc N bytes actually malloc's N+x bytes. Later, if
242 // that buffer is passed to recalloc, we don't know what N
243 // was anymore. We only know what N+x is. As such, there is
244 // no way to know what to zero out.
245 const size_t size = n * elem_size;
246 if (elem_size != 0 && size / elem_size != n)
247 return NULL;
248 return realloc(p, size);
217 } 249 }
218 250
219 #include "generic_allocators.cc" 251 // calloc_impl.c
252 void* _calloc_impl(size_t n, size_t size) {
253 return calloc(n, size);
254 }
255
256 #ifndef NDEBUG
257 #undef malloc
258 #undef free
259 #undef calloc
260
261 static int error_handler(int reportType) {
262 switch (reportType) {
263 case 0: // _CRT_WARN
264 __debugbreak();
265 return 0;
266
267 case 1: // _CRT_ERROR
268 __debugbreak();
269 return 0;
270
271 case 2: // _CRT_ASSERT
272 __debugbreak();
273 return 0;
274 }
275 char* p = NULL;
276 *p = '\0';
277 return 0;
278 }
279
280 int _CrtDbgReport(int reportType,
281 const char*,
282 int,
283 const char*,
284 const char*,
285 ...) {
286 return error_handler(reportType);
287 }
288
289 int _CrtDbgReportW(int reportType,
290 const wchar_t*,
291 int,
292 const wchar_t*,
293 const wchar_t*,
294 ...) {
295 return error_handler(reportType);
296 }
297
298 int _CrtSetReportMode(int, int) {
299 return 0;
300 }
301
302 void* _malloc_dbg(size_t size, int, const char*, int) {
303 return malloc(size);
304 }
305
306 void* _realloc_dbg(void* ptr, size_t size, int, const char*, int) {
307 return realloc(ptr, size);
308 }
309
310 void _free_dbg(void* ptr, int) {
311 free(ptr);
312 }
313
314 void* _calloc_dbg(size_t n, size_t size, int, const char*, int) {
315 return calloc(n, size);
316 }
317 #endif // NDEBUG
220 318
221 } // extern C 319 } // extern C
OLDNEW
« no previous file with comments | « base/allocator/allocator.gyp ('k') | base/allocator/generic_allocators.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698