OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This module contains C code that generates VDBE code used to process |
| 13 ** the WHERE clause of SQL statements. This module is responsible for |
| 14 ** generating the code that loops through a table looking for applicable |
| 15 ** rows. Indices are selected and used to speed the search when doing |
| 16 ** so is applicable. Because this module is responsible for selecting |
| 17 ** indices, you might also think of this module as the "query optimizer". |
| 18 */ |
| 19 #include "sqliteInt.h" |
| 20 #include "whereInt.h" |
| 21 |
| 22 /* |
| 23 ** Return the estimated number of output rows from a WHERE clause |
| 24 */ |
| 25 u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ |
| 26 return sqlite3LogEstToInt(pWInfo->nRowOut); |
| 27 } |
| 28 |
| 29 /* |
| 30 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this |
| 31 ** WHERE clause returns outputs for DISTINCT processing. |
| 32 */ |
| 33 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ |
| 34 return pWInfo->eDistinct; |
| 35 } |
| 36 |
| 37 /* |
| 38 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. |
| 39 ** Return FALSE if the output needs to be sorted. |
| 40 */ |
| 41 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ |
| 42 return pWInfo->nOBSat; |
| 43 } |
| 44 |
| 45 /* |
| 46 ** Return the VDBE address or label to jump to in order to continue |
| 47 ** immediately with the next row of a WHERE clause. |
| 48 */ |
| 49 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ |
| 50 assert( pWInfo->iContinue!=0 ); |
| 51 return pWInfo->iContinue; |
| 52 } |
| 53 |
| 54 /* |
| 55 ** Return the VDBE address or label to jump to in order to break |
| 56 ** out of a WHERE loop. |
| 57 */ |
| 58 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ |
| 59 return pWInfo->iBreak; |
| 60 } |
| 61 |
| 62 /* |
| 63 ** Return TRUE if an UPDATE or DELETE statement can operate directly on |
| 64 ** the rowids returned by a WHERE clause. Return FALSE if doing an |
| 65 ** UPDATE or DELETE might change subsequent WHERE clause results. |
| 66 ** |
| 67 ** If the ONEPASS optimization is used (if this routine returns true) |
| 68 ** then also write the indices of open cursors used by ONEPASS |
| 69 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data |
| 70 ** table and iaCur[1] gets the cursor used by an auxiliary index. |
| 71 ** Either value may be -1, indicating that cursor is not used. |
| 72 ** Any cursors returned will have been opened for writing. |
| 73 ** |
| 74 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is |
| 75 ** unable to use the ONEPASS optimization. |
| 76 */ |
| 77 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ |
| 78 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); |
| 79 return pWInfo->okOnePass; |
| 80 } |
| 81 |
| 82 /* |
| 83 ** Move the content of pSrc into pDest |
| 84 */ |
| 85 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ |
| 86 pDest->n = pSrc->n; |
| 87 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); |
| 88 } |
| 89 |
| 90 /* |
| 91 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. |
| 92 ** |
| 93 ** The new entry might overwrite an existing entry, or it might be |
| 94 ** appended, or it might be discarded. Do whatever is the right thing |
| 95 ** so that pSet keeps the N_OR_COST best entries seen so far. |
| 96 */ |
| 97 static int whereOrInsert( |
| 98 WhereOrSet *pSet, /* The WhereOrSet to be updated */ |
| 99 Bitmask prereq, /* Prerequisites of the new entry */ |
| 100 LogEst rRun, /* Run-cost of the new entry */ |
| 101 LogEst nOut /* Number of outputs for the new entry */ |
| 102 ){ |
| 103 u16 i; |
| 104 WhereOrCost *p; |
| 105 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ |
| 106 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ |
| 107 goto whereOrInsert_done; |
| 108 } |
| 109 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ |
| 110 return 0; |
| 111 } |
| 112 } |
| 113 if( pSet->n<N_OR_COST ){ |
| 114 p = &pSet->a[pSet->n++]; |
| 115 p->nOut = nOut; |
| 116 }else{ |
| 117 p = pSet->a; |
| 118 for(i=1; i<pSet->n; i++){ |
| 119 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; |
| 120 } |
| 121 if( p->rRun<=rRun ) return 0; |
| 122 } |
| 123 whereOrInsert_done: |
| 124 p->prereq = prereq; |
| 125 p->rRun = rRun; |
| 126 if( p->nOut>nOut ) p->nOut = nOut; |
| 127 return 1; |
| 128 } |
| 129 |
| 130 /* |
| 131 ** Initialize a preallocated WhereClause structure. |
| 132 */ |
| 133 static void whereClauseInit( |
| 134 WhereClause *pWC, /* The WhereClause to be initialized */ |
| 135 WhereInfo *pWInfo /* The WHERE processing context */ |
| 136 ){ |
| 137 pWC->pWInfo = pWInfo; |
| 138 pWC->pOuter = 0; |
| 139 pWC->nTerm = 0; |
| 140 pWC->nSlot = ArraySize(pWC->aStatic); |
| 141 pWC->a = pWC->aStatic; |
| 142 } |
| 143 |
| 144 /* Forward reference */ |
| 145 static void whereClauseClear(WhereClause*); |
| 146 |
| 147 /* |
| 148 ** Deallocate all memory associated with a WhereOrInfo object. |
| 149 */ |
| 150 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ |
| 151 whereClauseClear(&p->wc); |
| 152 sqlite3DbFree(db, p); |
| 153 } |
| 154 |
| 155 /* |
| 156 ** Deallocate all memory associated with a WhereAndInfo object. |
| 157 */ |
| 158 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ |
| 159 whereClauseClear(&p->wc); |
| 160 sqlite3DbFree(db, p); |
| 161 } |
| 162 |
| 163 /* |
| 164 ** Deallocate a WhereClause structure. The WhereClause structure |
| 165 ** itself is not freed. This routine is the inverse of whereClauseInit(). |
| 166 */ |
| 167 static void whereClauseClear(WhereClause *pWC){ |
| 168 int i; |
| 169 WhereTerm *a; |
| 170 sqlite3 *db = pWC->pWInfo->pParse->db; |
| 171 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ |
| 172 if( a->wtFlags & TERM_DYNAMIC ){ |
| 173 sqlite3ExprDelete(db, a->pExpr); |
| 174 } |
| 175 if( a->wtFlags & TERM_ORINFO ){ |
| 176 whereOrInfoDelete(db, a->u.pOrInfo); |
| 177 }else if( a->wtFlags & TERM_ANDINFO ){ |
| 178 whereAndInfoDelete(db, a->u.pAndInfo); |
| 179 } |
| 180 } |
| 181 if( pWC->a!=pWC->aStatic ){ |
| 182 sqlite3DbFree(db, pWC->a); |
| 183 } |
| 184 } |
| 185 |
| 186 /* |
| 187 ** Add a single new WhereTerm entry to the WhereClause object pWC. |
| 188 ** The new WhereTerm object is constructed from Expr p and with wtFlags. |
| 189 ** The index in pWC->a[] of the new WhereTerm is returned on success. |
| 190 ** 0 is returned if the new WhereTerm could not be added due to a memory |
| 191 ** allocation error. The memory allocation failure will be recorded in |
| 192 ** the db->mallocFailed flag so that higher-level functions can detect it. |
| 193 ** |
| 194 ** This routine will increase the size of the pWC->a[] array as necessary. |
| 195 ** |
| 196 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility |
| 197 ** for freeing the expression p is assumed by the WhereClause object pWC. |
| 198 ** This is true even if this routine fails to allocate a new WhereTerm. |
| 199 ** |
| 200 ** WARNING: This routine might reallocate the space used to store |
| 201 ** WhereTerms. All pointers to WhereTerms should be invalidated after |
| 202 ** calling this routine. Such pointers may be reinitialized by referencing |
| 203 ** the pWC->a[] array. |
| 204 */ |
| 205 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ |
| 206 WhereTerm *pTerm; |
| 207 int idx; |
| 208 testcase( wtFlags & TERM_VIRTUAL ); |
| 209 if( pWC->nTerm>=pWC->nSlot ){ |
| 210 WhereTerm *pOld = pWC->a; |
| 211 sqlite3 *db = pWC->pWInfo->pParse->db; |
| 212 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); |
| 213 if( pWC->a==0 ){ |
| 214 if( wtFlags & TERM_DYNAMIC ){ |
| 215 sqlite3ExprDelete(db, p); |
| 216 } |
| 217 pWC->a = pOld; |
| 218 return 0; |
| 219 } |
| 220 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); |
| 221 if( pOld!=pWC->aStatic ){ |
| 222 sqlite3DbFree(db, pOld); |
| 223 } |
| 224 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); |
| 225 } |
| 226 pTerm = &pWC->a[idx = pWC->nTerm++]; |
| 227 if( p && ExprHasProperty(p, EP_Unlikely) ){ |
| 228 pTerm->truthProb = sqlite3LogEst(p->iTable) - 99; |
| 229 }else{ |
| 230 pTerm->truthProb = 1; |
| 231 } |
| 232 pTerm->pExpr = sqlite3ExprSkipCollate(p); |
| 233 pTerm->wtFlags = wtFlags; |
| 234 pTerm->pWC = pWC; |
| 235 pTerm->iParent = -1; |
| 236 return idx; |
| 237 } |
| 238 |
| 239 /* |
| 240 ** This routine identifies subexpressions in the WHERE clause where |
| 241 ** each subexpression is separated by the AND operator or some other |
| 242 ** operator specified in the op parameter. The WhereClause structure |
| 243 ** is filled with pointers to subexpressions. For example: |
| 244 ** |
| 245 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) |
| 246 ** \________/ \_______________/ \________________/ |
| 247 ** slot[0] slot[1] slot[2] |
| 248 ** |
| 249 ** The original WHERE clause in pExpr is unaltered. All this routine |
| 250 ** does is make slot[] entries point to substructure within pExpr. |
| 251 ** |
| 252 ** In the previous sentence and in the diagram, "slot[]" refers to |
| 253 ** the WhereClause.a[] array. The slot[] array grows as needed to contain |
| 254 ** all terms of the WHERE clause. |
| 255 */ |
| 256 static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ |
| 257 pWC->op = op; |
| 258 if( pExpr==0 ) return; |
| 259 if( pExpr->op!=op ){ |
| 260 whereClauseInsert(pWC, pExpr, 0); |
| 261 }else{ |
| 262 whereSplit(pWC, pExpr->pLeft, op); |
| 263 whereSplit(pWC, pExpr->pRight, op); |
| 264 } |
| 265 } |
| 266 |
| 267 /* |
| 268 ** Initialize a WhereMaskSet object |
| 269 */ |
| 270 #define initMaskSet(P) (P)->n=0 |
| 271 |
| 272 /* |
| 273 ** Return the bitmask for the given cursor number. Return 0 if |
| 274 ** iCursor is not in the set. |
| 275 */ |
| 276 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ |
| 277 int i; |
| 278 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); |
| 279 for(i=0; i<pMaskSet->n; i++){ |
| 280 if( pMaskSet->ix[i]==iCursor ){ |
| 281 return MASKBIT(i); |
| 282 } |
| 283 } |
| 284 return 0; |
| 285 } |
| 286 |
| 287 /* |
| 288 ** Create a new mask for cursor iCursor. |
| 289 ** |
| 290 ** There is one cursor per table in the FROM clause. The number of |
| 291 ** tables in the FROM clause is limited by a test early in the |
| 292 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] |
| 293 ** array will never overflow. |
| 294 */ |
| 295 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ |
| 296 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); |
| 297 pMaskSet->ix[pMaskSet->n++] = iCursor; |
| 298 } |
| 299 |
| 300 /* |
| 301 ** These routines walk (recursively) an expression tree and generate |
| 302 ** a bitmask indicating which tables are used in that expression |
| 303 ** tree. |
| 304 */ |
| 305 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); |
| 306 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); |
| 307 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ |
| 308 Bitmask mask = 0; |
| 309 if( p==0 ) return 0; |
| 310 if( p->op==TK_COLUMN ){ |
| 311 mask = getMask(pMaskSet, p->iTable); |
| 312 return mask; |
| 313 } |
| 314 mask = exprTableUsage(pMaskSet, p->pRight); |
| 315 mask |= exprTableUsage(pMaskSet, p->pLeft); |
| 316 if( ExprHasProperty(p, EP_xIsSelect) ){ |
| 317 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); |
| 318 }else{ |
| 319 mask |= exprListTableUsage(pMaskSet, p->x.pList); |
| 320 } |
| 321 return mask; |
| 322 } |
| 323 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ |
| 324 int i; |
| 325 Bitmask mask = 0; |
| 326 if( pList ){ |
| 327 for(i=0; i<pList->nExpr; i++){ |
| 328 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); |
| 329 } |
| 330 } |
| 331 return mask; |
| 332 } |
| 333 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ |
| 334 Bitmask mask = 0; |
| 335 while( pS ){ |
| 336 SrcList *pSrc = pS->pSrc; |
| 337 mask |= exprListTableUsage(pMaskSet, pS->pEList); |
| 338 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); |
| 339 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); |
| 340 mask |= exprTableUsage(pMaskSet, pS->pWhere); |
| 341 mask |= exprTableUsage(pMaskSet, pS->pHaving); |
| 342 if( ALWAYS(pSrc!=0) ){ |
| 343 int i; |
| 344 for(i=0; i<pSrc->nSrc; i++){ |
| 345 mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect); |
| 346 mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn); |
| 347 } |
| 348 } |
| 349 pS = pS->pPrior; |
| 350 } |
| 351 return mask; |
| 352 } |
| 353 |
| 354 /* |
| 355 ** Return TRUE if the given operator is one of the operators that is |
| 356 ** allowed for an indexable WHERE clause term. The allowed operators are |
| 357 ** "=", "<", ">", "<=", ">=", "IN", and "IS NULL" |
| 358 */ |
| 359 static int allowedOp(int op){ |
| 360 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); |
| 361 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); |
| 362 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); |
| 363 assert( TK_GE==TK_EQ+4 ); |
| 364 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; |
| 365 } |
| 366 |
| 367 /* |
| 368 ** Commute a comparison operator. Expressions of the form "X op Y" |
| 369 ** are converted into "Y op X". |
| 370 ** |
| 371 ** If left/right precedence rules come into play when determining the |
| 372 ** collating sequence, then COLLATE operators are adjusted to ensure |
| 373 ** that the collating sequence does not change. For example: |
| 374 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on |
| 375 ** the left hand side of a comparison overrides any collation sequence |
| 376 ** attached to the right. For the same reason the EP_Collate flag |
| 377 ** is not commuted. |
| 378 */ |
| 379 static void exprCommute(Parse *pParse, Expr *pExpr){ |
| 380 u16 expRight = (pExpr->pRight->flags & EP_Collate); |
| 381 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); |
| 382 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); |
| 383 if( expRight==expLeft ){ |
| 384 /* Either X and Y both have COLLATE operator or neither do */ |
| 385 if( expRight ){ |
| 386 /* Both X and Y have COLLATE operators. Make sure X is always |
| 387 ** used by clearing the EP_Collate flag from Y. */ |
| 388 pExpr->pRight->flags &= ~EP_Collate; |
| 389 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ |
| 390 /* Neither X nor Y have COLLATE operators, but X has a non-default |
| 391 ** collating sequence. So add the EP_Collate marker on X to cause |
| 392 ** it to be searched first. */ |
| 393 pExpr->pLeft->flags |= EP_Collate; |
| 394 } |
| 395 } |
| 396 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); |
| 397 if( pExpr->op>=TK_GT ){ |
| 398 assert( TK_LT==TK_GT+2 ); |
| 399 assert( TK_GE==TK_LE+2 ); |
| 400 assert( TK_GT>TK_EQ ); |
| 401 assert( TK_GT<TK_LE ); |
| 402 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); |
| 403 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; |
| 404 } |
| 405 } |
| 406 |
| 407 /* |
| 408 ** Translate from TK_xx operator to WO_xx bitmask. |
| 409 */ |
| 410 static u16 operatorMask(int op){ |
| 411 u16 c; |
| 412 assert( allowedOp(op) ); |
| 413 if( op==TK_IN ){ |
| 414 c = WO_IN; |
| 415 }else if( op==TK_ISNULL ){ |
| 416 c = WO_ISNULL; |
| 417 }else{ |
| 418 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); |
| 419 c = (u16)(WO_EQ<<(op-TK_EQ)); |
| 420 } |
| 421 assert( op!=TK_ISNULL || c==WO_ISNULL ); |
| 422 assert( op!=TK_IN || c==WO_IN ); |
| 423 assert( op!=TK_EQ || c==WO_EQ ); |
| 424 assert( op!=TK_LT || c==WO_LT ); |
| 425 assert( op!=TK_LE || c==WO_LE ); |
| 426 assert( op!=TK_GT || c==WO_GT ); |
| 427 assert( op!=TK_GE || c==WO_GE ); |
| 428 return c; |
| 429 } |
| 430 |
| 431 /* |
| 432 ** Advance to the next WhereTerm that matches according to the criteria |
| 433 ** established when the pScan object was initialized by whereScanInit(). |
| 434 ** Return NULL if there are no more matching WhereTerms. |
| 435 */ |
| 436 static WhereTerm *whereScanNext(WhereScan *pScan){ |
| 437 int iCur; /* The cursor on the LHS of the term */ |
| 438 int iColumn; /* The column on the LHS of the term. -1 for IPK */ |
| 439 Expr *pX; /* An expression being tested */ |
| 440 WhereClause *pWC; /* Shorthand for pScan->pWC */ |
| 441 WhereTerm *pTerm; /* The term being tested */ |
| 442 int k = pScan->k; /* Where to start scanning */ |
| 443 |
| 444 while( pScan->iEquiv<=pScan->nEquiv ){ |
| 445 iCur = pScan->aEquiv[pScan->iEquiv-2]; |
| 446 iColumn = pScan->aEquiv[pScan->iEquiv-1]; |
| 447 while( (pWC = pScan->pWC)!=0 ){ |
| 448 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ |
| 449 if( pTerm->leftCursor==iCur |
| 450 && pTerm->u.leftColumn==iColumn |
| 451 && (pScan->iEquiv<=2 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
| 452 ){ |
| 453 if( (pTerm->eOperator & WO_EQUIV)!=0 |
| 454 && pScan->nEquiv<ArraySize(pScan->aEquiv) |
| 455 ){ |
| 456 int j; |
| 457 pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight); |
| 458 assert( pX->op==TK_COLUMN ); |
| 459 for(j=0; j<pScan->nEquiv; j+=2){ |
| 460 if( pScan->aEquiv[j]==pX->iTable |
| 461 && pScan->aEquiv[j+1]==pX->iColumn ){ |
| 462 break; |
| 463 } |
| 464 } |
| 465 if( j==pScan->nEquiv ){ |
| 466 pScan->aEquiv[j] = pX->iTable; |
| 467 pScan->aEquiv[j+1] = pX->iColumn; |
| 468 pScan->nEquiv += 2; |
| 469 } |
| 470 } |
| 471 if( (pTerm->eOperator & pScan->opMask)!=0 ){ |
| 472 /* Verify the affinity and collating sequence match */ |
| 473 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ |
| 474 CollSeq *pColl; |
| 475 Parse *pParse = pWC->pWInfo->pParse; |
| 476 pX = pTerm->pExpr; |
| 477 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ |
| 478 continue; |
| 479 } |
| 480 assert(pX->pLeft); |
| 481 pColl = sqlite3BinaryCompareCollSeq(pParse, |
| 482 pX->pLeft, pX->pRight); |
| 483 if( pColl==0 ) pColl = pParse->db->pDfltColl; |
| 484 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ |
| 485 continue; |
| 486 } |
| 487 } |
| 488 if( (pTerm->eOperator & WO_EQ)!=0 |
| 489 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN |
| 490 && pX->iTable==pScan->aEquiv[0] |
| 491 && pX->iColumn==pScan->aEquiv[1] |
| 492 ){ |
| 493 continue; |
| 494 } |
| 495 pScan->k = k+1; |
| 496 return pTerm; |
| 497 } |
| 498 } |
| 499 } |
| 500 pScan->pWC = pScan->pWC->pOuter; |
| 501 k = 0; |
| 502 } |
| 503 pScan->pWC = pScan->pOrigWC; |
| 504 k = 0; |
| 505 pScan->iEquiv += 2; |
| 506 } |
| 507 return 0; |
| 508 } |
| 509 |
| 510 /* |
| 511 ** Initialize a WHERE clause scanner object. Return a pointer to the |
| 512 ** first match. Return NULL if there are no matches. |
| 513 ** |
| 514 ** The scanner will be searching the WHERE clause pWC. It will look |
| 515 ** for terms of the form "X <op> <expr>" where X is column iColumn of table |
| 516 ** iCur. The <op> must be one of the operators described by opMask. |
| 517 ** |
| 518 ** If the search is for X and the WHERE clause contains terms of the |
| 519 ** form X=Y then this routine might also return terms of the form |
| 520 ** "Y <op> <expr>". The number of levels of transitivity is limited, |
| 521 ** but is enough to handle most commonly occurring SQL statements. |
| 522 ** |
| 523 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with |
| 524 ** index pIdx. |
| 525 */ |
| 526 static WhereTerm *whereScanInit( |
| 527 WhereScan *pScan, /* The WhereScan object being initialized */ |
| 528 WhereClause *pWC, /* The WHERE clause to be scanned */ |
| 529 int iCur, /* Cursor to scan for */ |
| 530 int iColumn, /* Column to scan for */ |
| 531 u32 opMask, /* Operator(s) to scan for */ |
| 532 Index *pIdx /* Must be compatible with this index */ |
| 533 ){ |
| 534 int j; |
| 535 |
| 536 /* memset(pScan, 0, sizeof(*pScan)); */ |
| 537 pScan->pOrigWC = pWC; |
| 538 pScan->pWC = pWC; |
| 539 if( pIdx && iColumn>=0 ){ |
| 540 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; |
| 541 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ |
| 542 if( NEVER(j>pIdx->nColumn) ) return 0; |
| 543 } |
| 544 pScan->zCollName = pIdx->azColl[j]; |
| 545 }else{ |
| 546 pScan->idxaff = 0; |
| 547 pScan->zCollName = 0; |
| 548 } |
| 549 pScan->opMask = opMask; |
| 550 pScan->k = 0; |
| 551 pScan->aEquiv[0] = iCur; |
| 552 pScan->aEquiv[1] = iColumn; |
| 553 pScan->nEquiv = 2; |
| 554 pScan->iEquiv = 2; |
| 555 return whereScanNext(pScan); |
| 556 } |
| 557 |
| 558 /* |
| 559 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" |
| 560 ** where X is a reference to the iColumn of table iCur and <op> is one of |
| 561 ** the WO_xx operator codes specified by the op parameter. |
| 562 ** Return a pointer to the term. Return 0 if not found. |
| 563 ** |
| 564 ** The term returned might by Y=<expr> if there is another constraint in |
| 565 ** the WHERE clause that specifies that X=Y. Any such constraints will be |
| 566 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The |
| 567 ** aEquiv[] array holds X and all its equivalents, with each SQL variable |
| 568 ** taking up two slots in aEquiv[]. The first slot is for the cursor number |
| 569 ** and the second is for the column number. There are 22 slots in aEquiv[] |
| 570 ** so that means we can look for X plus up to 10 other equivalent values. |
| 571 ** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3 |
| 572 ** and ... and A9=A10 and A10=<expr>. |
| 573 ** |
| 574 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" |
| 575 ** then try for the one with no dependencies on <expr> - in other words where |
| 576 ** <expr> is a constant expression of some kind. Only return entries of |
| 577 ** the form "X <op> Y" where Y is a column in another table if no terms of |
| 578 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS |
| 579 ** exist, try to return a term that does not use WO_EQUIV. |
| 580 */ |
| 581 static WhereTerm *findTerm( |
| 582 WhereClause *pWC, /* The WHERE clause to be searched */ |
| 583 int iCur, /* Cursor number of LHS */ |
| 584 int iColumn, /* Column number of LHS */ |
| 585 Bitmask notReady, /* RHS must not overlap with this mask */ |
| 586 u32 op, /* Mask of WO_xx values describing operator */ |
| 587 Index *pIdx /* Must be compatible with this index, if not NULL */ |
| 588 ){ |
| 589 WhereTerm *pResult = 0; |
| 590 WhereTerm *p; |
| 591 WhereScan scan; |
| 592 |
| 593 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); |
| 594 while( p ){ |
| 595 if( (p->prereqRight & notReady)==0 ){ |
| 596 if( p->prereqRight==0 && (p->eOperator&WO_EQ)!=0 ){ |
| 597 return p; |
| 598 } |
| 599 if( pResult==0 ) pResult = p; |
| 600 } |
| 601 p = whereScanNext(&scan); |
| 602 } |
| 603 return pResult; |
| 604 } |
| 605 |
| 606 /* Forward reference */ |
| 607 static void exprAnalyze(SrcList*, WhereClause*, int); |
| 608 |
| 609 /* |
| 610 ** Call exprAnalyze on all terms in a WHERE clause. |
| 611 */ |
| 612 static void exprAnalyzeAll( |
| 613 SrcList *pTabList, /* the FROM clause */ |
| 614 WhereClause *pWC /* the WHERE clause to be analyzed */ |
| 615 ){ |
| 616 int i; |
| 617 for(i=pWC->nTerm-1; i>=0; i--){ |
| 618 exprAnalyze(pTabList, pWC, i); |
| 619 } |
| 620 } |
| 621 |
| 622 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
| 623 /* |
| 624 ** Check to see if the given expression is a LIKE or GLOB operator that |
| 625 ** can be optimized using inequality constraints. Return TRUE if it is |
| 626 ** so and false if not. |
| 627 ** |
| 628 ** In order for the operator to be optimizible, the RHS must be a string |
| 629 ** literal that does not begin with a wildcard. |
| 630 */ |
| 631 static int isLikeOrGlob( |
| 632 Parse *pParse, /* Parsing and code generating context */ |
| 633 Expr *pExpr, /* Test this expression */ |
| 634 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ |
| 635 int *pisComplete, /* True if the only wildcard is % in the last character */ |
| 636 int *pnoCase /* True if uppercase is equivalent to lowercase */ |
| 637 ){ |
| 638 const char *z = 0; /* String on RHS of LIKE operator */ |
| 639 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ |
| 640 ExprList *pList; /* List of operands to the LIKE operator */ |
| 641 int c; /* One character in z[] */ |
| 642 int cnt; /* Number of non-wildcard prefix characters */ |
| 643 char wc[3]; /* Wildcard characters */ |
| 644 sqlite3 *db = pParse->db; /* Database connection */ |
| 645 sqlite3_value *pVal = 0; |
| 646 int op; /* Opcode of pRight */ |
| 647 |
| 648 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ |
| 649 return 0; |
| 650 } |
| 651 #ifdef SQLITE_EBCDIC |
| 652 if( *pnoCase ) return 0; |
| 653 #endif |
| 654 pList = pExpr->x.pList; |
| 655 pLeft = pList->a[1].pExpr; |
| 656 if( pLeft->op!=TK_COLUMN |
| 657 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT |
| 658 || IsVirtual(pLeft->pTab) |
| 659 ){ |
| 660 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must |
| 661 ** be the name of an indexed column with TEXT affinity. */ |
| 662 return 0; |
| 663 } |
| 664 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ |
| 665 |
| 666 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); |
| 667 op = pRight->op; |
| 668 if( op==TK_VARIABLE ){ |
| 669 Vdbe *pReprepare = pParse->pReprepare; |
| 670 int iCol = pRight->iColumn; |
| 671 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_NONE); |
| 672 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ |
| 673 z = (char *)sqlite3_value_text(pVal); |
| 674 } |
| 675 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); |
| 676 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); |
| 677 }else if( op==TK_STRING ){ |
| 678 z = pRight->u.zToken; |
| 679 } |
| 680 if( z ){ |
| 681 cnt = 0; |
| 682 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ |
| 683 cnt++; |
| 684 } |
| 685 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ |
| 686 Expr *pPrefix; |
| 687 *pisComplete = c==wc[0] && z[cnt+1]==0; |
| 688 pPrefix = sqlite3Expr(db, TK_STRING, z); |
| 689 if( pPrefix ) pPrefix->u.zToken[cnt] = 0; |
| 690 *ppPrefix = pPrefix; |
| 691 if( op==TK_VARIABLE ){ |
| 692 Vdbe *v = pParse->pVdbe; |
| 693 sqlite3VdbeSetVarmask(v, pRight->iColumn); |
| 694 if( *pisComplete && pRight->u.zToken[1] ){ |
| 695 /* If the rhs of the LIKE expression is a variable, and the current |
| 696 ** value of the variable means there is no need to invoke the LIKE |
| 697 ** function, then no OP_Variable will be added to the program. |
| 698 ** This causes problems for the sqlite3_bind_parameter_name() |
| 699 ** API. To work around them, add a dummy OP_Variable here. |
| 700 */ |
| 701 int r1 = sqlite3GetTempReg(pParse); |
| 702 sqlite3ExprCodeTarget(pParse, pRight, r1); |
| 703 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); |
| 704 sqlite3ReleaseTempReg(pParse, r1); |
| 705 } |
| 706 } |
| 707 }else{ |
| 708 z = 0; |
| 709 } |
| 710 } |
| 711 |
| 712 sqlite3ValueFree(pVal); |
| 713 return (z!=0); |
| 714 } |
| 715 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
| 716 |
| 717 |
| 718 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 719 /* |
| 720 ** Check to see if the given expression is of the form |
| 721 ** |
| 722 ** column MATCH expr |
| 723 ** |
| 724 ** If it is then return TRUE. If not, return FALSE. |
| 725 */ |
| 726 static int isMatchOfColumn( |
| 727 Expr *pExpr /* Test this expression */ |
| 728 ){ |
| 729 ExprList *pList; |
| 730 |
| 731 if( pExpr->op!=TK_FUNCTION ){ |
| 732 return 0; |
| 733 } |
| 734 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ |
| 735 return 0; |
| 736 } |
| 737 pList = pExpr->x.pList; |
| 738 if( pList->nExpr!=2 ){ |
| 739 return 0; |
| 740 } |
| 741 if( pList->a[1].pExpr->op != TK_COLUMN ){ |
| 742 return 0; |
| 743 } |
| 744 return 1; |
| 745 } |
| 746 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 747 |
| 748 /* |
| 749 ** If the pBase expression originated in the ON or USING clause of |
| 750 ** a join, then transfer the appropriate markings over to derived. |
| 751 */ |
| 752 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ |
| 753 if( pDerived ){ |
| 754 pDerived->flags |= pBase->flags & EP_FromJoin; |
| 755 pDerived->iRightJoinTable = pBase->iRightJoinTable; |
| 756 } |
| 757 } |
| 758 |
| 759 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
| 760 /* |
| 761 ** Analyze a term that consists of two or more OR-connected |
| 762 ** subterms. So in: |
| 763 ** |
| 764 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) |
| 765 ** ^^^^^^^^^^^^^^^^^^^^ |
| 766 ** |
| 767 ** This routine analyzes terms such as the middle term in the above example. |
| 768 ** A WhereOrTerm object is computed and attached to the term under |
| 769 ** analysis, regardless of the outcome of the analysis. Hence: |
| 770 ** |
| 771 ** WhereTerm.wtFlags |= TERM_ORINFO |
| 772 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object |
| 773 ** |
| 774 ** The term being analyzed must have two or more of OR-connected subterms. |
| 775 ** A single subterm might be a set of AND-connected sub-subterms. |
| 776 ** Examples of terms under analysis: |
| 777 ** |
| 778 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 |
| 779 ** (B) x=expr1 OR expr2=x OR x=expr3 |
| 780 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) |
| 781 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') |
| 782 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) |
| 783 ** |
| 784 ** CASE 1: |
| 785 ** |
| 786 ** If all subterms are of the form T.C=expr for some single column of C and |
| 787 ** a single table T (as shown in example B above) then create a new virtual |
| 788 ** term that is an equivalent IN expression. In other words, if the term |
| 789 ** being analyzed is: |
| 790 ** |
| 791 ** x = expr1 OR expr2 = x OR x = expr3 |
| 792 ** |
| 793 ** then create a new virtual term like this: |
| 794 ** |
| 795 ** x IN (expr1,expr2,expr3) |
| 796 ** |
| 797 ** CASE 2: |
| 798 ** |
| 799 ** If all subterms are indexable by a single table T, then set |
| 800 ** |
| 801 ** WhereTerm.eOperator = WO_OR |
| 802 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T |
| 803 ** |
| 804 ** A subterm is "indexable" if it is of the form |
| 805 ** "T.C <op> <expr>" where C is any column of table T and |
| 806 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". |
| 807 ** A subterm is also indexable if it is an AND of two or more |
| 808 ** subsubterms at least one of which is indexable. Indexable AND |
| 809 ** subterms have their eOperator set to WO_AND and they have |
| 810 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. |
| 811 ** |
| 812 ** From another point of view, "indexable" means that the subterm could |
| 813 ** potentially be used with an index if an appropriate index exists. |
| 814 ** This analysis does not consider whether or not the index exists; that |
| 815 ** is decided elsewhere. This analysis only looks at whether subterms |
| 816 ** appropriate for indexing exist. |
| 817 ** |
| 818 ** All examples A through E above satisfy case 2. But if a term |
| 819 ** also satisfies case 1 (such as B) we know that the optimizer will |
| 820 ** always prefer case 1, so in that case we pretend that case 2 is not |
| 821 ** satisfied. |
| 822 ** |
| 823 ** It might be the case that multiple tables are indexable. For example, |
| 824 ** (E) above is indexable on tables P, Q, and R. |
| 825 ** |
| 826 ** Terms that satisfy case 2 are candidates for lookup by using |
| 827 ** separate indices to find rowids for each subterm and composing |
| 828 ** the union of all rowids using a RowSet object. This is similar |
| 829 ** to "bitmap indices" in other database engines. |
| 830 ** |
| 831 ** OTHERWISE: |
| 832 ** |
| 833 ** If neither case 1 nor case 2 apply, then leave the eOperator set to |
| 834 ** zero. This term is not useful for search. |
| 835 */ |
| 836 static void exprAnalyzeOrTerm( |
| 837 SrcList *pSrc, /* the FROM clause */ |
| 838 WhereClause *pWC, /* the complete WHERE clause */ |
| 839 int idxTerm /* Index of the OR-term to be analyzed */ |
| 840 ){ |
| 841 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
| 842 Parse *pParse = pWInfo->pParse; /* Parser context */ |
| 843 sqlite3 *db = pParse->db; /* Database connection */ |
| 844 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ |
| 845 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ |
| 846 int i; /* Loop counters */ |
| 847 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ |
| 848 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ |
| 849 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ |
| 850 Bitmask chngToIN; /* Tables that might satisfy case 1 */ |
| 851 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ |
| 852 |
| 853 /* |
| 854 ** Break the OR clause into its separate subterms. The subterms are |
| 855 ** stored in a WhereClause structure containing within the WhereOrInfo |
| 856 ** object that is attached to the original OR clause term. |
| 857 */ |
| 858 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); |
| 859 assert( pExpr->op==TK_OR ); |
| 860 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); |
| 861 if( pOrInfo==0 ) return; |
| 862 pTerm->wtFlags |= TERM_ORINFO; |
| 863 pOrWc = &pOrInfo->wc; |
| 864 whereClauseInit(pOrWc, pWInfo); |
| 865 whereSplit(pOrWc, pExpr, TK_OR); |
| 866 exprAnalyzeAll(pSrc, pOrWc); |
| 867 if( db->mallocFailed ) return; |
| 868 assert( pOrWc->nTerm>=2 ); |
| 869 |
| 870 /* |
| 871 ** Compute the set of tables that might satisfy cases 1 or 2. |
| 872 */ |
| 873 indexable = ~(Bitmask)0; |
| 874 chngToIN = ~(Bitmask)0; |
| 875 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ |
| 876 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ |
| 877 WhereAndInfo *pAndInfo; |
| 878 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); |
| 879 chngToIN = 0; |
| 880 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); |
| 881 if( pAndInfo ){ |
| 882 WhereClause *pAndWC; |
| 883 WhereTerm *pAndTerm; |
| 884 int j; |
| 885 Bitmask b = 0; |
| 886 pOrTerm->u.pAndInfo = pAndInfo; |
| 887 pOrTerm->wtFlags |= TERM_ANDINFO; |
| 888 pOrTerm->eOperator = WO_AND; |
| 889 pAndWC = &pAndInfo->wc; |
| 890 whereClauseInit(pAndWC, pWC->pWInfo); |
| 891 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); |
| 892 exprAnalyzeAll(pSrc, pAndWC); |
| 893 pAndWC->pOuter = pWC; |
| 894 testcase( db->mallocFailed ); |
| 895 if( !db->mallocFailed ){ |
| 896 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ |
| 897 assert( pAndTerm->pExpr ); |
| 898 if( allowedOp(pAndTerm->pExpr->op) ){ |
| 899 b |= getMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); |
| 900 } |
| 901 } |
| 902 } |
| 903 indexable &= b; |
| 904 } |
| 905 }else if( pOrTerm->wtFlags & TERM_COPIED ){ |
| 906 /* Skip this term for now. We revisit it when we process the |
| 907 ** corresponding TERM_VIRTUAL term */ |
| 908 }else{ |
| 909 Bitmask b; |
| 910 b = getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); |
| 911 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ |
| 912 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; |
| 913 b |= getMask(&pWInfo->sMaskSet, pOther->leftCursor); |
| 914 } |
| 915 indexable &= b; |
| 916 if( (pOrTerm->eOperator & WO_EQ)==0 ){ |
| 917 chngToIN = 0; |
| 918 }else{ |
| 919 chngToIN &= b; |
| 920 } |
| 921 } |
| 922 } |
| 923 |
| 924 /* |
| 925 ** Record the set of tables that satisfy case 2. The set might be |
| 926 ** empty. |
| 927 */ |
| 928 pOrInfo->indexable = indexable; |
| 929 pTerm->eOperator = indexable==0 ? 0 : WO_OR; |
| 930 |
| 931 /* |
| 932 ** chngToIN holds a set of tables that *might* satisfy case 1. But |
| 933 ** we have to do some additional checking to see if case 1 really |
| 934 ** is satisfied. |
| 935 ** |
| 936 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means |
| 937 ** that there is no possibility of transforming the OR clause into an |
| 938 ** IN operator because one or more terms in the OR clause contain |
| 939 ** something other than == on a column in the single table. The 1-bit |
| 940 ** case means that every term of the OR clause is of the form |
| 941 ** "table.column=expr" for some single table. The one bit that is set |
| 942 ** will correspond to the common table. We still need to check to make |
| 943 ** sure the same column is used on all terms. The 2-bit case is when |
| 944 ** the all terms are of the form "table1.column=table2.column". It |
| 945 ** might be possible to form an IN operator with either table1.column |
| 946 ** or table2.column as the LHS if either is common to every term of |
| 947 ** the OR clause. |
| 948 ** |
| 949 ** Note that terms of the form "table.column1=table.column2" (the |
| 950 ** same table on both sizes of the ==) cannot be optimized. |
| 951 */ |
| 952 if( chngToIN ){ |
| 953 int okToChngToIN = 0; /* True if the conversion to IN is valid */ |
| 954 int iColumn = -1; /* Column index on lhs of IN operator */ |
| 955 int iCursor = -1; /* Table cursor common to all terms */ |
| 956 int j = 0; /* Loop counter */ |
| 957 |
| 958 /* Search for a table and column that appears on one side or the |
| 959 ** other of the == operator in every subterm. That table and column |
| 960 ** will be recorded in iCursor and iColumn. There might not be any |
| 961 ** such table and column. Set okToChngToIN if an appropriate table |
| 962 ** and column is found but leave okToChngToIN false if not found. |
| 963 */ |
| 964 for(j=0; j<2 && !okToChngToIN; j++){ |
| 965 pOrTerm = pOrWc->a; |
| 966 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ |
| 967 assert( pOrTerm->eOperator & WO_EQ ); |
| 968 pOrTerm->wtFlags &= ~TERM_OR_OK; |
| 969 if( pOrTerm->leftCursor==iCursor ){ |
| 970 /* This is the 2-bit case and we are on the second iteration and |
| 971 ** current term is from the first iteration. So skip this term. */ |
| 972 assert( j==1 ); |
| 973 continue; |
| 974 } |
| 975 if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ |
| 976 /* This term must be of the form t1.a==t2.b where t2 is in the |
| 977 ** chngToIN set but t1 is not. This term will be either preceded |
| 978 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term |
| 979 ** and use its inversion. */ |
| 980 testcase( pOrTerm->wtFlags & TERM_COPIED ); |
| 981 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); |
| 982 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); |
| 983 continue; |
| 984 } |
| 985 iColumn = pOrTerm->u.leftColumn; |
| 986 iCursor = pOrTerm->leftCursor; |
| 987 break; |
| 988 } |
| 989 if( i<0 ){ |
| 990 /* No candidate table+column was found. This can only occur |
| 991 ** on the second iteration */ |
| 992 assert( j==1 ); |
| 993 assert( IsPowerOfTwo(chngToIN) ); |
| 994 assert( chngToIN==getMask(&pWInfo->sMaskSet, iCursor) ); |
| 995 break; |
| 996 } |
| 997 testcase( j==1 ); |
| 998 |
| 999 /* We have found a candidate table and column. Check to see if that |
| 1000 ** table and column is common to every term in the OR clause */ |
| 1001 okToChngToIN = 1; |
| 1002 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ |
| 1003 assert( pOrTerm->eOperator & WO_EQ ); |
| 1004 if( pOrTerm->leftCursor!=iCursor ){ |
| 1005 pOrTerm->wtFlags &= ~TERM_OR_OK; |
| 1006 }else if( pOrTerm->u.leftColumn!=iColumn ){ |
| 1007 okToChngToIN = 0; |
| 1008 }else{ |
| 1009 int affLeft, affRight; |
| 1010 /* If the right-hand side is also a column, then the affinities |
| 1011 ** of both right and left sides must be such that no type |
| 1012 ** conversions are required on the right. (Ticket #2249) |
| 1013 */ |
| 1014 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); |
| 1015 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); |
| 1016 if( affRight!=0 && affRight!=affLeft ){ |
| 1017 okToChngToIN = 0; |
| 1018 }else{ |
| 1019 pOrTerm->wtFlags |= TERM_OR_OK; |
| 1020 } |
| 1021 } |
| 1022 } |
| 1023 } |
| 1024 |
| 1025 /* At this point, okToChngToIN is true if original pTerm satisfies |
| 1026 ** case 1. In that case, construct a new virtual term that is |
| 1027 ** pTerm converted into an IN operator. |
| 1028 */ |
| 1029 if( okToChngToIN ){ |
| 1030 Expr *pDup; /* A transient duplicate expression */ |
| 1031 ExprList *pList = 0; /* The RHS of the IN operator */ |
| 1032 Expr *pLeft = 0; /* The LHS of the IN operator */ |
| 1033 Expr *pNew; /* The complete IN operator */ |
| 1034 |
| 1035 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ |
| 1036 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; |
| 1037 assert( pOrTerm->eOperator & WO_EQ ); |
| 1038 assert( pOrTerm->leftCursor==iCursor ); |
| 1039 assert( pOrTerm->u.leftColumn==iColumn ); |
| 1040 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); |
| 1041 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); |
| 1042 pLeft = pOrTerm->pExpr->pLeft; |
| 1043 } |
| 1044 assert( pLeft!=0 ); |
| 1045 pDup = sqlite3ExprDup(db, pLeft, 0); |
| 1046 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); |
| 1047 if( pNew ){ |
| 1048 int idxNew; |
| 1049 transferJoinMarkings(pNew, pExpr); |
| 1050 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); |
| 1051 pNew->x.pList = pList; |
| 1052 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
| 1053 testcase( idxNew==0 ); |
| 1054 exprAnalyze(pSrc, pWC, idxNew); |
| 1055 pTerm = &pWC->a[idxTerm]; |
| 1056 pWC->a[idxNew].iParent = idxTerm; |
| 1057 pTerm->nChild = 1; |
| 1058 }else{ |
| 1059 sqlite3ExprListDelete(db, pList); |
| 1060 } |
| 1061 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ |
| 1062 } |
| 1063 } |
| 1064 } |
| 1065 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ |
| 1066 |
| 1067 /* |
| 1068 ** The input to this routine is an WhereTerm structure with only the |
| 1069 ** "pExpr" field filled in. The job of this routine is to analyze the |
| 1070 ** subexpression and populate all the other fields of the WhereTerm |
| 1071 ** structure. |
| 1072 ** |
| 1073 ** If the expression is of the form "<expr> <op> X" it gets commuted |
| 1074 ** to the standard form of "X <op> <expr>". |
| 1075 ** |
| 1076 ** If the expression is of the form "X <op> Y" where both X and Y are |
| 1077 ** columns, then the original expression is unchanged and a new virtual |
| 1078 ** term of the form "Y <op> X" is added to the WHERE clause and |
| 1079 ** analyzed separately. The original term is marked with TERM_COPIED |
| 1080 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr |
| 1081 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it |
| 1082 ** is a commuted copy of a prior term.) The original term has nChild=1 |
| 1083 ** and the copy has idxParent set to the index of the original term. |
| 1084 */ |
| 1085 static void exprAnalyze( |
| 1086 SrcList *pSrc, /* the FROM clause */ |
| 1087 WhereClause *pWC, /* the WHERE clause */ |
| 1088 int idxTerm /* Index of the term to be analyzed */ |
| 1089 ){ |
| 1090 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
| 1091 WhereTerm *pTerm; /* The term to be analyzed */ |
| 1092 WhereMaskSet *pMaskSet; /* Set of table index masks */ |
| 1093 Expr *pExpr; /* The expression to be analyzed */ |
| 1094 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ |
| 1095 Bitmask prereqAll; /* Prerequesites of pExpr */ |
| 1096 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ |
| 1097 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ |
| 1098 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ |
| 1099 int noCase = 0; /* LIKE/GLOB distinguishes case */ |
| 1100 int op; /* Top-level operator. pExpr->op */ |
| 1101 Parse *pParse = pWInfo->pParse; /* Parsing context */ |
| 1102 sqlite3 *db = pParse->db; /* Database connection */ |
| 1103 |
| 1104 if( db->mallocFailed ){ |
| 1105 return; |
| 1106 } |
| 1107 pTerm = &pWC->a[idxTerm]; |
| 1108 pMaskSet = &pWInfo->sMaskSet; |
| 1109 pExpr = pTerm->pExpr; |
| 1110 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); |
| 1111 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); |
| 1112 op = pExpr->op; |
| 1113 if( op==TK_IN ){ |
| 1114 assert( pExpr->pRight==0 ); |
| 1115 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
| 1116 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); |
| 1117 }else{ |
| 1118 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); |
| 1119 } |
| 1120 }else if( op==TK_ISNULL ){ |
| 1121 pTerm->prereqRight = 0; |
| 1122 }else{ |
| 1123 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); |
| 1124 } |
| 1125 prereqAll = exprTableUsage(pMaskSet, pExpr); |
| 1126 if( ExprHasProperty(pExpr, EP_FromJoin) ){ |
| 1127 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); |
| 1128 prereqAll |= x; |
| 1129 extraRight = x-1; /* ON clause terms may not be used with an index |
| 1130 ** on left table of a LEFT JOIN. Ticket #3015 */ |
| 1131 } |
| 1132 pTerm->prereqAll = prereqAll; |
| 1133 pTerm->leftCursor = -1; |
| 1134 pTerm->iParent = -1; |
| 1135 pTerm->eOperator = 0; |
| 1136 if( allowedOp(op) ){ |
| 1137 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); |
| 1138 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); |
| 1139 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; |
| 1140 if( pLeft->op==TK_COLUMN ){ |
| 1141 pTerm->leftCursor = pLeft->iTable; |
| 1142 pTerm->u.leftColumn = pLeft->iColumn; |
| 1143 pTerm->eOperator = operatorMask(op) & opMask; |
| 1144 } |
| 1145 if( pRight && pRight->op==TK_COLUMN ){ |
| 1146 WhereTerm *pNew; |
| 1147 Expr *pDup; |
| 1148 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ |
| 1149 if( pTerm->leftCursor>=0 ){ |
| 1150 int idxNew; |
| 1151 pDup = sqlite3ExprDup(db, pExpr, 0); |
| 1152 if( db->mallocFailed ){ |
| 1153 sqlite3ExprDelete(db, pDup); |
| 1154 return; |
| 1155 } |
| 1156 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); |
| 1157 if( idxNew==0 ) return; |
| 1158 pNew = &pWC->a[idxNew]; |
| 1159 pNew->iParent = idxTerm; |
| 1160 pTerm = &pWC->a[idxTerm]; |
| 1161 pTerm->nChild = 1; |
| 1162 pTerm->wtFlags |= TERM_COPIED; |
| 1163 if( pExpr->op==TK_EQ |
| 1164 && !ExprHasProperty(pExpr, EP_FromJoin) |
| 1165 && OptimizationEnabled(db, SQLITE_Transitive) |
| 1166 ){ |
| 1167 pTerm->eOperator |= WO_EQUIV; |
| 1168 eExtraOp = WO_EQUIV; |
| 1169 } |
| 1170 }else{ |
| 1171 pDup = pExpr; |
| 1172 pNew = pTerm; |
| 1173 } |
| 1174 exprCommute(pParse, pDup); |
| 1175 pLeft = sqlite3ExprSkipCollate(pDup->pLeft); |
| 1176 pNew->leftCursor = pLeft->iTable; |
| 1177 pNew->u.leftColumn = pLeft->iColumn; |
| 1178 testcase( (prereqLeft | extraRight) != prereqLeft ); |
| 1179 pNew->prereqRight = prereqLeft | extraRight; |
| 1180 pNew->prereqAll = prereqAll; |
| 1181 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; |
| 1182 } |
| 1183 } |
| 1184 |
| 1185 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION |
| 1186 /* If a term is the BETWEEN operator, create two new virtual terms |
| 1187 ** that define the range that the BETWEEN implements. For example: |
| 1188 ** |
| 1189 ** a BETWEEN b AND c |
| 1190 ** |
| 1191 ** is converted into: |
| 1192 ** |
| 1193 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) |
| 1194 ** |
| 1195 ** The two new terms are added onto the end of the WhereClause object. |
| 1196 ** The new terms are "dynamic" and are children of the original BETWEEN |
| 1197 ** term. That means that if the BETWEEN term is coded, the children are |
| 1198 ** skipped. Or, if the children are satisfied by an index, the original |
| 1199 ** BETWEEN term is skipped. |
| 1200 */ |
| 1201 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ |
| 1202 ExprList *pList = pExpr->x.pList; |
| 1203 int i; |
| 1204 static const u8 ops[] = {TK_GE, TK_LE}; |
| 1205 assert( pList!=0 ); |
| 1206 assert( pList->nExpr==2 ); |
| 1207 for(i=0; i<2; i++){ |
| 1208 Expr *pNewExpr; |
| 1209 int idxNew; |
| 1210 pNewExpr = sqlite3PExpr(pParse, ops[i], |
| 1211 sqlite3ExprDup(db, pExpr->pLeft, 0), |
| 1212 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); |
| 1213 transferJoinMarkings(pNewExpr, pExpr); |
| 1214 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
| 1215 testcase( idxNew==0 ); |
| 1216 exprAnalyze(pSrc, pWC, idxNew); |
| 1217 pTerm = &pWC->a[idxTerm]; |
| 1218 pWC->a[idxNew].iParent = idxTerm; |
| 1219 } |
| 1220 pTerm->nChild = 2; |
| 1221 } |
| 1222 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ |
| 1223 |
| 1224 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
| 1225 /* Analyze a term that is composed of two or more subterms connected by |
| 1226 ** an OR operator. |
| 1227 */ |
| 1228 else if( pExpr->op==TK_OR ){ |
| 1229 assert( pWC->op==TK_AND ); |
| 1230 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); |
| 1231 pTerm = &pWC->a[idxTerm]; |
| 1232 } |
| 1233 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
| 1234 |
| 1235 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
| 1236 /* Add constraints to reduce the search space on a LIKE or GLOB |
| 1237 ** operator. |
| 1238 ** |
| 1239 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints |
| 1240 ** |
| 1241 ** x>='abc' AND x<'abd' AND x LIKE 'abc%' |
| 1242 ** |
| 1243 ** The last character of the prefix "abc" is incremented to form the |
| 1244 ** termination condition "abd". |
| 1245 */ |
| 1246 if( pWC->op==TK_AND |
| 1247 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) |
| 1248 ){ |
| 1249 Expr *pLeft; /* LHS of LIKE/GLOB operator */ |
| 1250 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ |
| 1251 Expr *pNewExpr1; |
| 1252 Expr *pNewExpr2; |
| 1253 int idxNew1; |
| 1254 int idxNew2; |
| 1255 Token sCollSeqName; /* Name of collating sequence */ |
| 1256 |
| 1257 pLeft = pExpr->x.pList->a[1].pExpr; |
| 1258 pStr2 = sqlite3ExprDup(db, pStr1, 0); |
| 1259 if( !db->mallocFailed ){ |
| 1260 u8 c, *pC; /* Last character before the first wildcard */ |
| 1261 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; |
| 1262 c = *pC; |
| 1263 if( noCase ){ |
| 1264 /* The point is to increment the last character before the first |
| 1265 ** wildcard. But if we increment '@', that will push it into the |
| 1266 ** alphabetic range where case conversions will mess up the |
| 1267 ** inequality. To avoid this, make sure to also run the full |
| 1268 ** LIKE on all candidate expressions by clearing the isComplete flag |
| 1269 */ |
| 1270 if( c=='A'-1 ) isComplete = 0; |
| 1271 c = sqlite3UpperToLower[c]; |
| 1272 } |
| 1273 *pC = c + 1; |
| 1274 } |
| 1275 sCollSeqName.z = noCase ? "NOCASE" : "BINARY"; |
| 1276 sCollSeqName.n = 6; |
| 1277 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); |
| 1278 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, |
| 1279 sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName), |
| 1280 pStr1, 0); |
| 1281 transferJoinMarkings(pNewExpr1, pExpr); |
| 1282 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); |
| 1283 testcase( idxNew1==0 ); |
| 1284 exprAnalyze(pSrc, pWC, idxNew1); |
| 1285 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); |
| 1286 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, |
| 1287 sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName), |
| 1288 pStr2, 0); |
| 1289 transferJoinMarkings(pNewExpr2, pExpr); |
| 1290 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); |
| 1291 testcase( idxNew2==0 ); |
| 1292 exprAnalyze(pSrc, pWC, idxNew2); |
| 1293 pTerm = &pWC->a[idxTerm]; |
| 1294 if( isComplete ){ |
| 1295 pWC->a[idxNew1].iParent = idxTerm; |
| 1296 pWC->a[idxNew2].iParent = idxTerm; |
| 1297 pTerm->nChild = 2; |
| 1298 } |
| 1299 } |
| 1300 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
| 1301 |
| 1302 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1303 /* Add a WO_MATCH auxiliary term to the constraint set if the |
| 1304 ** current expression is of the form: column MATCH expr. |
| 1305 ** This information is used by the xBestIndex methods of |
| 1306 ** virtual tables. The native query optimizer does not attempt |
| 1307 ** to do anything with MATCH functions. |
| 1308 */ |
| 1309 if( isMatchOfColumn(pExpr) ){ |
| 1310 int idxNew; |
| 1311 Expr *pRight, *pLeft; |
| 1312 WhereTerm *pNewTerm; |
| 1313 Bitmask prereqColumn, prereqExpr; |
| 1314 |
| 1315 pRight = pExpr->x.pList->a[0].pExpr; |
| 1316 pLeft = pExpr->x.pList->a[1].pExpr; |
| 1317 prereqExpr = exprTableUsage(pMaskSet, pRight); |
| 1318 prereqColumn = exprTableUsage(pMaskSet, pLeft); |
| 1319 if( (prereqExpr & prereqColumn)==0 ){ |
| 1320 Expr *pNewExpr; |
| 1321 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, |
| 1322 0, sqlite3ExprDup(db, pRight, 0), 0); |
| 1323 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
| 1324 testcase( idxNew==0 ); |
| 1325 pNewTerm = &pWC->a[idxNew]; |
| 1326 pNewTerm->prereqRight = prereqExpr; |
| 1327 pNewTerm->leftCursor = pLeft->iTable; |
| 1328 pNewTerm->u.leftColumn = pLeft->iColumn; |
| 1329 pNewTerm->eOperator = WO_MATCH; |
| 1330 pNewTerm->iParent = idxTerm; |
| 1331 pTerm = &pWC->a[idxTerm]; |
| 1332 pTerm->nChild = 1; |
| 1333 pTerm->wtFlags |= TERM_COPIED; |
| 1334 pNewTerm->prereqAll = pTerm->prereqAll; |
| 1335 } |
| 1336 } |
| 1337 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 1338 |
| 1339 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1340 /* When sqlite_stat3 histogram data is available an operator of the |
| 1341 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently |
| 1342 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a |
| 1343 ** virtual term of that form. |
| 1344 ** |
| 1345 ** Note that the virtual term must be tagged with TERM_VNULL. This |
| 1346 ** TERM_VNULL tag will suppress the not-null check at the beginning |
| 1347 ** of the loop. Without the TERM_VNULL flag, the not-null check at |
| 1348 ** the start of the loop will prevent any results from being returned. |
| 1349 */ |
| 1350 if( pExpr->op==TK_NOTNULL |
| 1351 && pExpr->pLeft->op==TK_COLUMN |
| 1352 && pExpr->pLeft->iColumn>=0 |
| 1353 && OptimizationEnabled(db, SQLITE_Stat3) |
| 1354 ){ |
| 1355 Expr *pNewExpr; |
| 1356 Expr *pLeft = pExpr->pLeft; |
| 1357 int idxNew; |
| 1358 WhereTerm *pNewTerm; |
| 1359 |
| 1360 pNewExpr = sqlite3PExpr(pParse, TK_GT, |
| 1361 sqlite3ExprDup(db, pLeft, 0), |
| 1362 sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); |
| 1363 |
| 1364 idxNew = whereClauseInsert(pWC, pNewExpr, |
| 1365 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); |
| 1366 if( idxNew ){ |
| 1367 pNewTerm = &pWC->a[idxNew]; |
| 1368 pNewTerm->prereqRight = 0; |
| 1369 pNewTerm->leftCursor = pLeft->iTable; |
| 1370 pNewTerm->u.leftColumn = pLeft->iColumn; |
| 1371 pNewTerm->eOperator = WO_GT; |
| 1372 pNewTerm->iParent = idxTerm; |
| 1373 pTerm = &pWC->a[idxTerm]; |
| 1374 pTerm->nChild = 1; |
| 1375 pTerm->wtFlags |= TERM_COPIED; |
| 1376 pNewTerm->prereqAll = pTerm->prereqAll; |
| 1377 } |
| 1378 } |
| 1379 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 1380 |
| 1381 /* Prevent ON clause terms of a LEFT JOIN from being used to drive |
| 1382 ** an index for tables to the left of the join. |
| 1383 */ |
| 1384 pTerm->prereqRight |= extraRight; |
| 1385 } |
| 1386 |
| 1387 /* |
| 1388 ** This function searches pList for an entry that matches the iCol-th column |
| 1389 ** of index pIdx. |
| 1390 ** |
| 1391 ** If such an expression is found, its index in pList->a[] is returned. If |
| 1392 ** no expression is found, -1 is returned. |
| 1393 */ |
| 1394 static int findIndexCol( |
| 1395 Parse *pParse, /* Parse context */ |
| 1396 ExprList *pList, /* Expression list to search */ |
| 1397 int iBase, /* Cursor for table associated with pIdx */ |
| 1398 Index *pIdx, /* Index to match column of */ |
| 1399 int iCol /* Column of index to match */ |
| 1400 ){ |
| 1401 int i; |
| 1402 const char *zColl = pIdx->azColl[iCol]; |
| 1403 |
| 1404 for(i=0; i<pList->nExpr; i++){ |
| 1405 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); |
| 1406 if( p->op==TK_COLUMN |
| 1407 && p->iColumn==pIdx->aiColumn[iCol] |
| 1408 && p->iTable==iBase |
| 1409 ){ |
| 1410 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); |
| 1411 if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){ |
| 1412 return i; |
| 1413 } |
| 1414 } |
| 1415 } |
| 1416 |
| 1417 return -1; |
| 1418 } |
| 1419 |
| 1420 /* |
| 1421 ** Return true if the DISTINCT expression-list passed as the third argument |
| 1422 ** is redundant. |
| 1423 ** |
| 1424 ** A DISTINCT list is redundant if the database contains some subset of |
| 1425 ** columns that are unique and non-null. |
| 1426 */ |
| 1427 static int isDistinctRedundant( |
| 1428 Parse *pParse, /* Parsing context */ |
| 1429 SrcList *pTabList, /* The FROM clause */ |
| 1430 WhereClause *pWC, /* The WHERE clause */ |
| 1431 ExprList *pDistinct /* The result set that needs to be DISTINCT */ |
| 1432 ){ |
| 1433 Table *pTab; |
| 1434 Index *pIdx; |
| 1435 int i; |
| 1436 int iBase; |
| 1437 |
| 1438 /* If there is more than one table or sub-select in the FROM clause of |
| 1439 ** this query, then it will not be possible to show that the DISTINCT |
| 1440 ** clause is redundant. */ |
| 1441 if( pTabList->nSrc!=1 ) return 0; |
| 1442 iBase = pTabList->a[0].iCursor; |
| 1443 pTab = pTabList->a[0].pTab; |
| 1444 |
| 1445 /* If any of the expressions is an IPK column on table iBase, then return |
| 1446 ** true. Note: The (p->iTable==iBase) part of this test may be false if the |
| 1447 ** current SELECT is a correlated sub-query. |
| 1448 */ |
| 1449 for(i=0; i<pDistinct->nExpr; i++){ |
| 1450 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); |
| 1451 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; |
| 1452 } |
| 1453 |
| 1454 /* Loop through all indices on the table, checking each to see if it makes |
| 1455 ** the DISTINCT qualifier redundant. It does so if: |
| 1456 ** |
| 1457 ** 1. The index is itself UNIQUE, and |
| 1458 ** |
| 1459 ** 2. All of the columns in the index are either part of the pDistinct |
| 1460 ** list, or else the WHERE clause contains a term of the form "col=X", |
| 1461 ** where X is a constant value. The collation sequences of the |
| 1462 ** comparison and select-list expressions must match those of the index. |
| 1463 ** |
| 1464 ** 3. All of those index columns for which the WHERE clause does not |
| 1465 ** contain a "col=X" term are subject to a NOT NULL constraint. |
| 1466 */ |
| 1467 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 1468 if( !IsUniqueIndex(pIdx) ) continue; |
| 1469 for(i=0; i<pIdx->nKeyCol; i++){ |
| 1470 i16 iCol = pIdx->aiColumn[i]; |
| 1471 if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){ |
| 1472 int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i); |
| 1473 if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){ |
| 1474 break; |
| 1475 } |
| 1476 } |
| 1477 } |
| 1478 if( i==pIdx->nKeyCol ){ |
| 1479 /* This index implies that the DISTINCT qualifier is redundant. */ |
| 1480 return 1; |
| 1481 } |
| 1482 } |
| 1483 |
| 1484 return 0; |
| 1485 } |
| 1486 |
| 1487 |
| 1488 /* |
| 1489 ** Estimate the logarithm of the input value to base 2. |
| 1490 */ |
| 1491 static LogEst estLog(LogEst N){ |
| 1492 return N<=10 ? 0 : sqlite3LogEst(N) - 33; |
| 1493 } |
| 1494 |
| 1495 /* |
| 1496 ** Two routines for printing the content of an sqlite3_index_info |
| 1497 ** structure. Used for testing and debugging only. If neither |
| 1498 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines |
| 1499 ** are no-ops. |
| 1500 */ |
| 1501 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) |
| 1502 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ |
| 1503 int i; |
| 1504 if( !sqlite3WhereTrace ) return; |
| 1505 for(i=0; i<p->nConstraint; i++){ |
| 1506 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", |
| 1507 i, |
| 1508 p->aConstraint[i].iColumn, |
| 1509 p->aConstraint[i].iTermOffset, |
| 1510 p->aConstraint[i].op, |
| 1511 p->aConstraint[i].usable); |
| 1512 } |
| 1513 for(i=0; i<p->nOrderBy; i++){ |
| 1514 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", |
| 1515 i, |
| 1516 p->aOrderBy[i].iColumn, |
| 1517 p->aOrderBy[i].desc); |
| 1518 } |
| 1519 } |
| 1520 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ |
| 1521 int i; |
| 1522 if( !sqlite3WhereTrace ) return; |
| 1523 for(i=0; i<p->nConstraint; i++){ |
| 1524 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", |
| 1525 i, |
| 1526 p->aConstraintUsage[i].argvIndex, |
| 1527 p->aConstraintUsage[i].omit); |
| 1528 } |
| 1529 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); |
| 1530 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); |
| 1531 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); |
| 1532 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); |
| 1533 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); |
| 1534 } |
| 1535 #else |
| 1536 #define TRACE_IDX_INPUTS(A) |
| 1537 #define TRACE_IDX_OUTPUTS(A) |
| 1538 #endif |
| 1539 |
| 1540 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
| 1541 /* |
| 1542 ** Return TRUE if the WHERE clause term pTerm is of a form where it |
| 1543 ** could be used with an index to access pSrc, assuming an appropriate |
| 1544 ** index existed. |
| 1545 */ |
| 1546 static int termCanDriveIndex( |
| 1547 WhereTerm *pTerm, /* WHERE clause term to check */ |
| 1548 struct SrcList_item *pSrc, /* Table we are trying to access */ |
| 1549 Bitmask notReady /* Tables in outer loops of the join */ |
| 1550 ){ |
| 1551 char aff; |
| 1552 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; |
| 1553 if( (pTerm->eOperator & WO_EQ)==0 ) return 0; |
| 1554 if( (pTerm->prereqRight & notReady)!=0 ) return 0; |
| 1555 if( pTerm->u.leftColumn<0 ) return 0; |
| 1556 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; |
| 1557 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; |
| 1558 return 1; |
| 1559 } |
| 1560 #endif |
| 1561 |
| 1562 |
| 1563 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
| 1564 /* |
| 1565 ** Generate code to construct the Index object for an automatic index |
| 1566 ** and to set up the WhereLevel object pLevel so that the code generator |
| 1567 ** makes use of the automatic index. |
| 1568 */ |
| 1569 static void constructAutomaticIndex( |
| 1570 Parse *pParse, /* The parsing context */ |
| 1571 WhereClause *pWC, /* The WHERE clause */ |
| 1572 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ |
| 1573 Bitmask notReady, /* Mask of cursors that are not available */ |
| 1574 WhereLevel *pLevel /* Write new index here */ |
| 1575 ){ |
| 1576 int nKeyCol; /* Number of columns in the constructed index */ |
| 1577 WhereTerm *pTerm; /* A single term of the WHERE clause */ |
| 1578 WhereTerm *pWCEnd; /* End of pWC->a[] */ |
| 1579 Index *pIdx; /* Object describing the transient index */ |
| 1580 Vdbe *v; /* Prepared statement under construction */ |
| 1581 int addrInit; /* Address of the initialization bypass jump */ |
| 1582 Table *pTable; /* The table being indexed */ |
| 1583 int addrTop; /* Top of the index fill loop */ |
| 1584 int regRecord; /* Register holding an index record */ |
| 1585 int n; /* Column counter */ |
| 1586 int i; /* Loop counter */ |
| 1587 int mxBitCol; /* Maximum column in pSrc->colUsed */ |
| 1588 CollSeq *pColl; /* Collating sequence to on a column */ |
| 1589 WhereLoop *pLoop; /* The Loop object */ |
| 1590 char *zNotUsed; /* Extra space on the end of pIdx */ |
| 1591 Bitmask idxCols; /* Bitmap of columns used for indexing */ |
| 1592 Bitmask extraCols; /* Bitmap of additional columns */ |
| 1593 u8 sentWarning = 0; /* True if a warnning has been issued */ |
| 1594 |
| 1595 /* Generate code to skip over the creation and initialization of the |
| 1596 ** transient index on 2nd and subsequent iterations of the loop. */ |
| 1597 v = pParse->pVdbe; |
| 1598 assert( v!=0 ); |
| 1599 addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); |
| 1600 |
| 1601 /* Count the number of columns that will be added to the index |
| 1602 ** and used to match WHERE clause constraints */ |
| 1603 nKeyCol = 0; |
| 1604 pTable = pSrc->pTab; |
| 1605 pWCEnd = &pWC->a[pWC->nTerm]; |
| 1606 pLoop = pLevel->pWLoop; |
| 1607 idxCols = 0; |
| 1608 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ |
| 1609 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ |
| 1610 int iCol = pTerm->u.leftColumn; |
| 1611 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); |
| 1612 testcase( iCol==BMS ); |
| 1613 testcase( iCol==BMS-1 ); |
| 1614 if( !sentWarning ){ |
| 1615 sqlite3_log(SQLITE_WARNING_AUTOINDEX, |
| 1616 "automatic index on %s(%s)", pTable->zName, |
| 1617 pTable->aCol[iCol].zName); |
| 1618 sentWarning = 1; |
| 1619 } |
| 1620 if( (idxCols & cMask)==0 ){ |
| 1621 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ) return; |
| 1622 pLoop->aLTerm[nKeyCol++] = pTerm; |
| 1623 idxCols |= cMask; |
| 1624 } |
| 1625 } |
| 1626 } |
| 1627 assert( nKeyCol>0 ); |
| 1628 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; |
| 1629 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED |
| 1630 | WHERE_AUTO_INDEX; |
| 1631 |
| 1632 /* Count the number of additional columns needed to create a |
| 1633 ** covering index. A "covering index" is an index that contains all |
| 1634 ** columns that are needed by the query. With a covering index, the |
| 1635 ** original table never needs to be accessed. Automatic indices must |
| 1636 ** be a covering index because the index will not be updated if the |
| 1637 ** original table changes and the index and table cannot both be used |
| 1638 ** if they go out of sync. |
| 1639 */ |
| 1640 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); |
| 1641 mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol; |
| 1642 testcase( pTable->nCol==BMS-1 ); |
| 1643 testcase( pTable->nCol==BMS-2 ); |
| 1644 for(i=0; i<mxBitCol; i++){ |
| 1645 if( extraCols & MASKBIT(i) ) nKeyCol++; |
| 1646 } |
| 1647 if( pSrc->colUsed & MASKBIT(BMS-1) ){ |
| 1648 nKeyCol += pTable->nCol - BMS + 1; |
| 1649 } |
| 1650 pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY; |
| 1651 |
| 1652 /* Construct the Index object to describe this index */ |
| 1653 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); |
| 1654 if( pIdx==0 ) return; |
| 1655 pLoop->u.btree.pIndex = pIdx; |
| 1656 pIdx->zName = "auto-index"; |
| 1657 pIdx->pTable = pTable; |
| 1658 n = 0; |
| 1659 idxCols = 0; |
| 1660 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ |
| 1661 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ |
| 1662 int iCol = pTerm->u.leftColumn; |
| 1663 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); |
| 1664 testcase( iCol==BMS-1 ); |
| 1665 testcase( iCol==BMS ); |
| 1666 if( (idxCols & cMask)==0 ){ |
| 1667 Expr *pX = pTerm->pExpr; |
| 1668 idxCols |= cMask; |
| 1669 pIdx->aiColumn[n] = pTerm->u.leftColumn; |
| 1670 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); |
| 1671 pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY"; |
| 1672 n++; |
| 1673 } |
| 1674 } |
| 1675 } |
| 1676 assert( (u32)n==pLoop->u.btree.nEq ); |
| 1677 |
| 1678 /* Add additional columns needed to make the automatic index into |
| 1679 ** a covering index */ |
| 1680 for(i=0; i<mxBitCol; i++){ |
| 1681 if( extraCols & MASKBIT(i) ){ |
| 1682 pIdx->aiColumn[n] = i; |
| 1683 pIdx->azColl[n] = "BINARY"; |
| 1684 n++; |
| 1685 } |
| 1686 } |
| 1687 if( pSrc->colUsed & MASKBIT(BMS-1) ){ |
| 1688 for(i=BMS-1; i<pTable->nCol; i++){ |
| 1689 pIdx->aiColumn[n] = i; |
| 1690 pIdx->azColl[n] = "BINARY"; |
| 1691 n++; |
| 1692 } |
| 1693 } |
| 1694 assert( n==nKeyCol ); |
| 1695 pIdx->aiColumn[n] = -1; |
| 1696 pIdx->azColl[n] = "BINARY"; |
| 1697 |
| 1698 /* Create the automatic index */ |
| 1699 assert( pLevel->iIdxCur>=0 ); |
| 1700 pLevel->iIdxCur = pParse->nTab++; |
| 1701 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); |
| 1702 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
| 1703 VdbeComment((v, "for %s", pTable->zName)); |
| 1704 |
| 1705 /* Fill the automatic index with content */ |
| 1706 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); |
| 1707 regRecord = sqlite3GetTempReg(pParse); |
| 1708 sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0); |
| 1709 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); |
| 1710 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
| 1711 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); |
| 1712 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); |
| 1713 sqlite3VdbeJumpHere(v, addrTop); |
| 1714 sqlite3ReleaseTempReg(pParse, regRecord); |
| 1715 |
| 1716 /* Jump here when skipping the initialization */ |
| 1717 sqlite3VdbeJumpHere(v, addrInit); |
| 1718 } |
| 1719 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ |
| 1720 |
| 1721 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1722 /* |
| 1723 ** Allocate and populate an sqlite3_index_info structure. It is the |
| 1724 ** responsibility of the caller to eventually release the structure |
| 1725 ** by passing the pointer returned by this function to sqlite3_free(). |
| 1726 */ |
| 1727 static sqlite3_index_info *allocateIndexInfo( |
| 1728 Parse *pParse, |
| 1729 WhereClause *pWC, |
| 1730 struct SrcList_item *pSrc, |
| 1731 ExprList *pOrderBy |
| 1732 ){ |
| 1733 int i, j; |
| 1734 int nTerm; |
| 1735 struct sqlite3_index_constraint *pIdxCons; |
| 1736 struct sqlite3_index_orderby *pIdxOrderBy; |
| 1737 struct sqlite3_index_constraint_usage *pUsage; |
| 1738 WhereTerm *pTerm; |
| 1739 int nOrderBy; |
| 1740 sqlite3_index_info *pIdxInfo; |
| 1741 |
| 1742 /* Count the number of possible WHERE clause constraints referring |
| 1743 ** to this virtual table */ |
| 1744 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
| 1745 if( pTerm->leftCursor != pSrc->iCursor ) continue; |
| 1746 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); |
| 1747 testcase( pTerm->eOperator & WO_IN ); |
| 1748 testcase( pTerm->eOperator & WO_ISNULL ); |
| 1749 testcase( pTerm->eOperator & WO_ALL ); |
| 1750 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; |
| 1751 if( pTerm->wtFlags & TERM_VNULL ) continue; |
| 1752 nTerm++; |
| 1753 } |
| 1754 |
| 1755 /* If the ORDER BY clause contains only columns in the current |
| 1756 ** virtual table then allocate space for the aOrderBy part of |
| 1757 ** the sqlite3_index_info structure. |
| 1758 */ |
| 1759 nOrderBy = 0; |
| 1760 if( pOrderBy ){ |
| 1761 int n = pOrderBy->nExpr; |
| 1762 for(i=0; i<n; i++){ |
| 1763 Expr *pExpr = pOrderBy->a[i].pExpr; |
| 1764 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; |
| 1765 } |
| 1766 if( i==n){ |
| 1767 nOrderBy = n; |
| 1768 } |
| 1769 } |
| 1770 |
| 1771 /* Allocate the sqlite3_index_info structure |
| 1772 */ |
| 1773 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) |
| 1774 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm |
| 1775 + sizeof(*pIdxOrderBy)*nOrderBy ); |
| 1776 if( pIdxInfo==0 ){ |
| 1777 sqlite3ErrorMsg(pParse, "out of memory"); |
| 1778 return 0; |
| 1779 } |
| 1780 |
| 1781 /* Initialize the structure. The sqlite3_index_info structure contains |
| 1782 ** many fields that are declared "const" to prevent xBestIndex from |
| 1783 ** changing them. We have to do some funky casting in order to |
| 1784 ** initialize those fields. |
| 1785 */ |
| 1786 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; |
| 1787 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; |
| 1788 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; |
| 1789 *(int*)&pIdxInfo->nConstraint = nTerm; |
| 1790 *(int*)&pIdxInfo->nOrderBy = nOrderBy; |
| 1791 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; |
| 1792 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; |
| 1793 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = |
| 1794 pUsage; |
| 1795 |
| 1796 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
| 1797 u8 op; |
| 1798 if( pTerm->leftCursor != pSrc->iCursor ) continue; |
| 1799 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); |
| 1800 testcase( pTerm->eOperator & WO_IN ); |
| 1801 testcase( pTerm->eOperator & WO_ISNULL ); |
| 1802 testcase( pTerm->eOperator & WO_ALL ); |
| 1803 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; |
| 1804 if( pTerm->wtFlags & TERM_VNULL ) continue; |
| 1805 pIdxCons[j].iColumn = pTerm->u.leftColumn; |
| 1806 pIdxCons[j].iTermOffset = i; |
| 1807 op = (u8)pTerm->eOperator & WO_ALL; |
| 1808 if( op==WO_IN ) op = WO_EQ; |
| 1809 pIdxCons[j].op = op; |
| 1810 /* The direct assignment in the previous line is possible only because |
| 1811 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The |
| 1812 ** following asserts verify this fact. */ |
| 1813 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); |
| 1814 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); |
| 1815 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); |
| 1816 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); |
| 1817 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); |
| 1818 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); |
| 1819 assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); |
| 1820 j++; |
| 1821 } |
| 1822 for(i=0; i<nOrderBy; i++){ |
| 1823 Expr *pExpr = pOrderBy->a[i].pExpr; |
| 1824 pIdxOrderBy[i].iColumn = pExpr->iColumn; |
| 1825 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; |
| 1826 } |
| 1827 |
| 1828 return pIdxInfo; |
| 1829 } |
| 1830 |
| 1831 /* |
| 1832 ** The table object reference passed as the second argument to this function |
| 1833 ** must represent a virtual table. This function invokes the xBestIndex() |
| 1834 ** method of the virtual table with the sqlite3_index_info object that |
| 1835 ** comes in as the 3rd argument to this function. |
| 1836 ** |
| 1837 ** If an error occurs, pParse is populated with an error message and a |
| 1838 ** non-zero value is returned. Otherwise, 0 is returned and the output |
| 1839 ** part of the sqlite3_index_info structure is left populated. |
| 1840 ** |
| 1841 ** Whether or not an error is returned, it is the responsibility of the |
| 1842 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates |
| 1843 ** that this is required. |
| 1844 */ |
| 1845 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ |
| 1846 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; |
| 1847 int i; |
| 1848 int rc; |
| 1849 |
| 1850 TRACE_IDX_INPUTS(p); |
| 1851 rc = pVtab->pModule->xBestIndex(pVtab, p); |
| 1852 TRACE_IDX_OUTPUTS(p); |
| 1853 |
| 1854 if( rc!=SQLITE_OK ){ |
| 1855 if( rc==SQLITE_NOMEM ){ |
| 1856 pParse->db->mallocFailed = 1; |
| 1857 }else if( !pVtab->zErrMsg ){ |
| 1858 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); |
| 1859 }else{ |
| 1860 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); |
| 1861 } |
| 1862 } |
| 1863 sqlite3_free(pVtab->zErrMsg); |
| 1864 pVtab->zErrMsg = 0; |
| 1865 |
| 1866 for(i=0; i<p->nConstraint; i++){ |
| 1867 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ |
| 1868 sqlite3ErrorMsg(pParse, |
| 1869 "table %s: xBestIndex returned an invalid plan", pTab->zName); |
| 1870 } |
| 1871 } |
| 1872 |
| 1873 return pParse->nErr; |
| 1874 } |
| 1875 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ |
| 1876 |
| 1877 |
| 1878 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1879 /* |
| 1880 ** Estimate the location of a particular key among all keys in an |
| 1881 ** index. Store the results in aStat as follows: |
| 1882 ** |
| 1883 ** aStat[0] Est. number of rows less than pVal |
| 1884 ** aStat[1] Est. number of rows equal to pVal |
| 1885 ** |
| 1886 ** Return SQLITE_OK on success. |
| 1887 */ |
| 1888 static void whereKeyStats( |
| 1889 Parse *pParse, /* Database connection */ |
| 1890 Index *pIdx, /* Index to consider domain of */ |
| 1891 UnpackedRecord *pRec, /* Vector of values to consider */ |
| 1892 int roundUp, /* Round up if true. Round down if false */ |
| 1893 tRowcnt *aStat /* OUT: stats written here */ |
| 1894 ){ |
| 1895 IndexSample *aSample = pIdx->aSample; |
| 1896 int iCol; /* Index of required stats in anEq[] etc. */ |
| 1897 int iMin = 0; /* Smallest sample not yet tested */ |
| 1898 int i = pIdx->nSample; /* Smallest sample larger than or equal to pRec */ |
| 1899 int iTest; /* Next sample to test */ |
| 1900 int res; /* Result of comparison operation */ |
| 1901 |
| 1902 #ifndef SQLITE_DEBUG |
| 1903 UNUSED_PARAMETER( pParse ); |
| 1904 #endif |
| 1905 assert( pRec!=0 ); |
| 1906 iCol = pRec->nField - 1; |
| 1907 assert( pIdx->nSample>0 ); |
| 1908 assert( pRec->nField>0 && iCol<pIdx->nSampleCol ); |
| 1909 do{ |
| 1910 iTest = (iMin+i)/2; |
| 1911 res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec); |
| 1912 if( res<0 ){ |
| 1913 iMin = iTest+1; |
| 1914 }else{ |
| 1915 i = iTest; |
| 1916 } |
| 1917 }while( res && iMin<i ); |
| 1918 |
| 1919 #ifdef SQLITE_DEBUG |
| 1920 /* The following assert statements check that the binary search code |
| 1921 ** above found the right answer. This block serves no purpose other |
| 1922 ** than to invoke the asserts. */ |
| 1923 if( res==0 ){ |
| 1924 /* If (res==0) is true, then sample $i must be equal to pRec */ |
| 1925 assert( i<pIdx->nSample ); |
| 1926 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) |
| 1927 || pParse->db->mallocFailed ); |
| 1928 }else{ |
| 1929 /* Otherwise, pRec must be smaller than sample $i and larger than |
| 1930 ** sample ($i-1). */ |
| 1931 assert( i==pIdx->nSample |
| 1932 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 |
| 1933 || pParse->db->mallocFailed ); |
| 1934 assert( i==0 |
| 1935 || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 |
| 1936 || pParse->db->mallocFailed ); |
| 1937 } |
| 1938 #endif /* ifdef SQLITE_DEBUG */ |
| 1939 |
| 1940 /* At this point, aSample[i] is the first sample that is greater than |
| 1941 ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less |
| 1942 ** than pVal. If aSample[i]==pVal, then res==0. |
| 1943 */ |
| 1944 if( res==0 ){ |
| 1945 aStat[0] = aSample[i].anLt[iCol]; |
| 1946 aStat[1] = aSample[i].anEq[iCol]; |
| 1947 }else{ |
| 1948 tRowcnt iLower, iUpper, iGap; |
| 1949 if( i==0 ){ |
| 1950 iLower = 0; |
| 1951 iUpper = aSample[0].anLt[iCol]; |
| 1952 }else{ |
| 1953 i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); |
| 1954 iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol]; |
| 1955 iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol]; |
| 1956 } |
| 1957 aStat[1] = pIdx->aAvgEq[iCol]; |
| 1958 if( iLower>=iUpper ){ |
| 1959 iGap = 0; |
| 1960 }else{ |
| 1961 iGap = iUpper - iLower; |
| 1962 } |
| 1963 if( roundUp ){ |
| 1964 iGap = (iGap*2)/3; |
| 1965 }else{ |
| 1966 iGap = iGap/3; |
| 1967 } |
| 1968 aStat[0] = iLower + iGap; |
| 1969 } |
| 1970 } |
| 1971 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 1972 |
| 1973 /* |
| 1974 ** If it is not NULL, pTerm is a term that provides an upper or lower |
| 1975 ** bound on a range scan. Without considering pTerm, it is estimated |
| 1976 ** that the scan will visit nNew rows. This function returns the number |
| 1977 ** estimated to be visited after taking pTerm into account. |
| 1978 ** |
| 1979 ** If the user explicitly specified a likelihood() value for this term, |
| 1980 ** then the return value is the likelihood multiplied by the number of |
| 1981 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term |
| 1982 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. |
| 1983 */ |
| 1984 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ |
| 1985 LogEst nRet = nNew; |
| 1986 if( pTerm ){ |
| 1987 if( pTerm->truthProb<=0 ){ |
| 1988 nRet += pTerm->truthProb; |
| 1989 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ |
| 1990 nRet -= 20; assert( 20==sqlite3LogEst(4) ); |
| 1991 } |
| 1992 } |
| 1993 return nRet; |
| 1994 } |
| 1995 |
| 1996 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1997 /* |
| 1998 ** This function is called to estimate the number of rows visited by a |
| 1999 ** range-scan on a skip-scan index. For example: |
| 2000 ** |
| 2001 ** CREATE INDEX i1 ON t1(a, b, c); |
| 2002 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; |
| 2003 ** |
| 2004 ** Value pLoop->nOut is currently set to the estimated number of rows |
| 2005 ** visited for scanning (a=? AND b=?). This function reduces that estimate |
| 2006 ** by some factor to account for the (c BETWEEN ? AND ?) expression based |
| 2007 ** on the stat4 data for the index. this scan will be peformed multiple |
| 2008 ** times (once for each (a,b) combination that matches a=?) is dealt with |
| 2009 ** by the caller. |
| 2010 ** |
| 2011 ** It does this by scanning through all stat4 samples, comparing values |
| 2012 ** extracted from pLower and pUpper with the corresponding column in each |
| 2013 ** sample. If L and U are the number of samples found to be less than or |
| 2014 ** equal to the values extracted from pLower and pUpper respectively, and |
| 2015 ** N is the total number of samples, the pLoop->nOut value is adjusted |
| 2016 ** as follows: |
| 2017 ** |
| 2018 ** nOut = nOut * ( min(U - L, 1) / N ) |
| 2019 ** |
| 2020 ** If pLower is NULL, or a value cannot be extracted from the term, L is |
| 2021 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, |
| 2022 ** U is set to N. |
| 2023 ** |
| 2024 ** Normally, this function sets *pbDone to 1 before returning. However, |
| 2025 ** if no value can be extracted from either pLower or pUpper (and so the |
| 2026 ** estimate of the number of rows delivered remains unchanged), *pbDone |
| 2027 ** is left as is. |
| 2028 ** |
| 2029 ** If an error occurs, an SQLite error code is returned. Otherwise, |
| 2030 ** SQLITE_OK. |
| 2031 */ |
| 2032 static int whereRangeSkipScanEst( |
| 2033 Parse *pParse, /* Parsing & code generating context */ |
| 2034 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ |
| 2035 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ |
| 2036 WhereLoop *pLoop, /* Update the .nOut value of this loop */ |
| 2037 int *pbDone /* Set to true if at least one expr. value extracted */ |
| 2038 ){ |
| 2039 Index *p = pLoop->u.btree.pIndex; |
| 2040 int nEq = pLoop->u.btree.nEq; |
| 2041 sqlite3 *db = pParse->db; |
| 2042 int nLower = -1; |
| 2043 int nUpper = p->nSample+1; |
| 2044 int rc = SQLITE_OK; |
| 2045 int iCol = p->aiColumn[nEq]; |
| 2046 u8 aff = iCol>=0 ? p->pTable->aCol[iCol].affinity : SQLITE_AFF_INTEGER; |
| 2047 CollSeq *pColl; |
| 2048 |
| 2049 sqlite3_value *p1 = 0; /* Value extracted from pLower */ |
| 2050 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ |
| 2051 sqlite3_value *pVal = 0; /* Value extracted from record */ |
| 2052 |
| 2053 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); |
| 2054 if( pLower ){ |
| 2055 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); |
| 2056 nLower = 0; |
| 2057 } |
| 2058 if( pUpper && rc==SQLITE_OK ){ |
| 2059 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); |
| 2060 nUpper = p2 ? 0 : p->nSample; |
| 2061 } |
| 2062 |
| 2063 if( p1 || p2 ){ |
| 2064 int i; |
| 2065 int nDiff; |
| 2066 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ |
| 2067 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); |
| 2068 if( rc==SQLITE_OK && p1 ){ |
| 2069 int res = sqlite3MemCompare(p1, pVal, pColl); |
| 2070 if( res>=0 ) nLower++; |
| 2071 } |
| 2072 if( rc==SQLITE_OK && p2 ){ |
| 2073 int res = sqlite3MemCompare(p2, pVal, pColl); |
| 2074 if( res>=0 ) nUpper++; |
| 2075 } |
| 2076 } |
| 2077 nDiff = (nUpper - nLower); |
| 2078 if( nDiff<=0 ) nDiff = 1; |
| 2079 |
| 2080 /* If there is both an upper and lower bound specified, and the |
| 2081 ** comparisons indicate that they are close together, use the fallback |
| 2082 ** method (assume that the scan visits 1/64 of the rows) for estimating |
| 2083 ** the number of rows visited. Otherwise, estimate the number of rows |
| 2084 ** using the method described in the header comment for this function. */ |
| 2085 if( nDiff!=1 || pUpper==0 || pLower==0 ){ |
| 2086 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); |
| 2087 pLoop->nOut -= nAdjust; |
| 2088 *pbDone = 1; |
| 2089 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", |
| 2090 nLower, nUpper, nAdjust*-1, pLoop->nOut)); |
| 2091 } |
| 2092 |
| 2093 }else{ |
| 2094 assert( *pbDone==0 ); |
| 2095 } |
| 2096 |
| 2097 sqlite3ValueFree(p1); |
| 2098 sqlite3ValueFree(p2); |
| 2099 sqlite3ValueFree(pVal); |
| 2100 |
| 2101 return rc; |
| 2102 } |
| 2103 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 2104 |
| 2105 /* |
| 2106 ** This function is used to estimate the number of rows that will be visited |
| 2107 ** by scanning an index for a range of values. The range may have an upper |
| 2108 ** bound, a lower bound, or both. The WHERE clause terms that set the upper |
| 2109 ** and lower bounds are represented by pLower and pUpper respectively. For |
| 2110 ** example, assuming that index p is on t1(a): |
| 2111 ** |
| 2112 ** ... FROM t1 WHERE a > ? AND a < ? ... |
| 2113 ** |_____| |_____| |
| 2114 ** | | |
| 2115 ** pLower pUpper |
| 2116 ** |
| 2117 ** If either of the upper or lower bound is not present, then NULL is passed in |
| 2118 ** place of the corresponding WhereTerm. |
| 2119 ** |
| 2120 ** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index |
| 2121 ** column subject to the range constraint. Or, equivalently, the number of |
| 2122 ** equality constraints optimized by the proposed index scan. For example, |
| 2123 ** assuming index p is on t1(a, b), and the SQL query is: |
| 2124 ** |
| 2125 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... |
| 2126 ** |
| 2127 ** then nEq is set to 1 (as the range restricted column, b, is the second |
| 2128 ** left-most column of the index). Or, if the query is: |
| 2129 ** |
| 2130 ** ... FROM t1 WHERE a > ? AND a < ? ... |
| 2131 ** |
| 2132 ** then nEq is set to 0. |
| 2133 ** |
| 2134 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the |
| 2135 ** number of rows that the index scan is expected to visit without |
| 2136 ** considering the range constraints. If nEq is 0, this is the number of |
| 2137 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) |
| 2138 ** to account for the range constraints pLower and pUpper. |
| 2139 ** |
| 2140 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be |
| 2141 ** used, a single range inequality reduces the search space by a factor of 4. |
| 2142 ** and a pair of constraints (x>? AND x<?) reduces the expected number of |
| 2143 ** rows visited by a factor of 64. |
| 2144 */ |
| 2145 static int whereRangeScanEst( |
| 2146 Parse *pParse, /* Parsing & code generating context */ |
| 2147 WhereLoopBuilder *pBuilder, |
| 2148 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ |
| 2149 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ |
| 2150 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ |
| 2151 ){ |
| 2152 int rc = SQLITE_OK; |
| 2153 int nOut = pLoop->nOut; |
| 2154 LogEst nNew; |
| 2155 |
| 2156 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 2157 Index *p = pLoop->u.btree.pIndex; |
| 2158 int nEq = pLoop->u.btree.nEq; |
| 2159 |
| 2160 if( p->nSample>0 |
| 2161 && nEq<p->nSampleCol |
| 2162 && OptimizationEnabled(pParse->db, SQLITE_Stat3) |
| 2163 ){ |
| 2164 if( nEq==pBuilder->nRecValid ){ |
| 2165 UnpackedRecord *pRec = pBuilder->pRec; |
| 2166 tRowcnt a[2]; |
| 2167 u8 aff; |
| 2168 |
| 2169 /* Variable iLower will be set to the estimate of the number of rows in |
| 2170 ** the index that are less than the lower bound of the range query. The |
| 2171 ** lower bound being the concatenation of $P and $L, where $P is the |
| 2172 ** key-prefix formed by the nEq values matched against the nEq left-most |
| 2173 ** columns of the index, and $L is the value in pLower. |
| 2174 ** |
| 2175 ** Or, if pLower is NULL or $L cannot be extracted from it (because it |
| 2176 ** is not a simple variable or literal value), the lower bound of the |
| 2177 ** range is $P. Due to a quirk in the way whereKeyStats() works, even |
| 2178 ** if $L is available, whereKeyStats() is called for both ($P) and |
| 2179 ** ($P:$L) and the larger of the two returned values used. |
| 2180 ** |
| 2181 ** Similarly, iUpper is to be set to the estimate of the number of rows |
| 2182 ** less than the upper bound of the range query. Where the upper bound |
| 2183 ** is either ($P) or ($P:$U). Again, even if $U is available, both values |
| 2184 ** of iUpper are requested of whereKeyStats() and the smaller used. |
| 2185 */ |
| 2186 tRowcnt iLower; |
| 2187 tRowcnt iUpper; |
| 2188 |
| 2189 if( pRec ){ |
| 2190 testcase( pRec->nField!=pBuilder->nRecValid ); |
| 2191 pRec->nField = pBuilder->nRecValid; |
| 2192 } |
| 2193 if( nEq==p->nKeyCol ){ |
| 2194 aff = SQLITE_AFF_INTEGER; |
| 2195 }else{ |
| 2196 aff = p->pTable->aCol[p->aiColumn[nEq]].affinity; |
| 2197 } |
| 2198 /* Determine iLower and iUpper using ($P) only. */ |
| 2199 if( nEq==0 ){ |
| 2200 iLower = 0; |
| 2201 iUpper = sqlite3LogEstToInt(p->aiRowLogEst[0]); |
| 2202 }else{ |
| 2203 /* Note: this call could be optimized away - since the same values must |
| 2204 ** have been requested when testing key $P in whereEqualScanEst(). */ |
| 2205 whereKeyStats(pParse, p, pRec, 0, a); |
| 2206 iLower = a[0]; |
| 2207 iUpper = a[0] + a[1]; |
| 2208 } |
| 2209 |
| 2210 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); |
| 2211 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); |
| 2212 assert( p->aSortOrder!=0 ); |
| 2213 if( p->aSortOrder[nEq] ){ |
| 2214 /* The roles of pLower and pUpper are swapped for a DESC index */ |
| 2215 SWAP(WhereTerm*, pLower, pUpper); |
| 2216 } |
| 2217 |
| 2218 /* If possible, improve on the iLower estimate using ($P:$L). */ |
| 2219 if( pLower ){ |
| 2220 int bOk; /* True if value is extracted from pExpr */ |
| 2221 Expr *pExpr = pLower->pExpr->pRight; |
| 2222 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); |
| 2223 if( rc==SQLITE_OK && bOk ){ |
| 2224 tRowcnt iNew; |
| 2225 whereKeyStats(pParse, p, pRec, 0, a); |
| 2226 iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); |
| 2227 if( iNew>iLower ) iLower = iNew; |
| 2228 nOut--; |
| 2229 pLower = 0; |
| 2230 } |
| 2231 } |
| 2232 |
| 2233 /* If possible, improve on the iUpper estimate using ($P:$U). */ |
| 2234 if( pUpper ){ |
| 2235 int bOk; /* True if value is extracted from pExpr */ |
| 2236 Expr *pExpr = pUpper->pExpr->pRight; |
| 2237 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); |
| 2238 if( rc==SQLITE_OK && bOk ){ |
| 2239 tRowcnt iNew; |
| 2240 whereKeyStats(pParse, p, pRec, 1, a); |
| 2241 iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); |
| 2242 if( iNew<iUpper ) iUpper = iNew; |
| 2243 nOut--; |
| 2244 pUpper = 0; |
| 2245 } |
| 2246 } |
| 2247 |
| 2248 pBuilder->pRec = pRec; |
| 2249 if( rc==SQLITE_OK ){ |
| 2250 if( iUpper>iLower ){ |
| 2251 nNew = sqlite3LogEst(iUpper - iLower); |
| 2252 }else{ |
| 2253 nNew = 10; assert( 10==sqlite3LogEst(2) ); |
| 2254 } |
| 2255 if( nNew<nOut ){ |
| 2256 nOut = nNew; |
| 2257 } |
| 2258 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", |
| 2259 (u32)iLower, (u32)iUpper, nOut)); |
| 2260 } |
| 2261 }else{ |
| 2262 int bDone = 0; |
| 2263 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); |
| 2264 if( bDone ) return rc; |
| 2265 } |
| 2266 } |
| 2267 #else |
| 2268 UNUSED_PARAMETER(pParse); |
| 2269 UNUSED_PARAMETER(pBuilder); |
| 2270 assert( pLower || pUpper ); |
| 2271 #endif |
| 2272 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); |
| 2273 nNew = whereRangeAdjust(pLower, nOut); |
| 2274 nNew = whereRangeAdjust(pUpper, nNew); |
| 2275 |
| 2276 /* TUNING: If there is both an upper and lower limit, assume the range is |
| 2277 ** reduced by an additional 75%. This means that, by default, an open-ended |
| 2278 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the |
| 2279 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to |
| 2280 ** match 1/64 of the index. */ |
| 2281 if( pLower && pUpper ) nNew -= 20; |
| 2282 |
| 2283 nOut -= (pLower!=0) + (pUpper!=0); |
| 2284 if( nNew<10 ) nNew = 10; |
| 2285 if( nNew<nOut ) nOut = nNew; |
| 2286 #if defined(WHERETRACE_ENABLED) |
| 2287 if( pLoop->nOut>nOut ){ |
| 2288 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", |
| 2289 pLoop->nOut, nOut)); |
| 2290 } |
| 2291 #endif |
| 2292 pLoop->nOut = (LogEst)nOut; |
| 2293 return rc; |
| 2294 } |
| 2295 |
| 2296 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 2297 /* |
| 2298 ** Estimate the number of rows that will be returned based on |
| 2299 ** an equality constraint x=VALUE and where that VALUE occurs in |
| 2300 ** the histogram data. This only works when x is the left-most |
| 2301 ** column of an index and sqlite_stat3 histogram data is available |
| 2302 ** for that index. When pExpr==NULL that means the constraint is |
| 2303 ** "x IS NULL" instead of "x=VALUE". |
| 2304 ** |
| 2305 ** Write the estimated row count into *pnRow and return SQLITE_OK. |
| 2306 ** If unable to make an estimate, leave *pnRow unchanged and return |
| 2307 ** non-zero. |
| 2308 ** |
| 2309 ** This routine can fail if it is unable to load a collating sequence |
| 2310 ** required for string comparison, or if unable to allocate memory |
| 2311 ** for a UTF conversion required for comparison. The error is stored |
| 2312 ** in the pParse structure. |
| 2313 */ |
| 2314 static int whereEqualScanEst( |
| 2315 Parse *pParse, /* Parsing & code generating context */ |
| 2316 WhereLoopBuilder *pBuilder, |
| 2317 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ |
| 2318 tRowcnt *pnRow /* Write the revised row estimate here */ |
| 2319 ){ |
| 2320 Index *p = pBuilder->pNew->u.btree.pIndex; |
| 2321 int nEq = pBuilder->pNew->u.btree.nEq; |
| 2322 UnpackedRecord *pRec = pBuilder->pRec; |
| 2323 u8 aff; /* Column affinity */ |
| 2324 int rc; /* Subfunction return code */ |
| 2325 tRowcnt a[2]; /* Statistics */ |
| 2326 int bOk; |
| 2327 |
| 2328 assert( nEq>=1 ); |
| 2329 assert( nEq<=p->nColumn ); |
| 2330 assert( p->aSample!=0 ); |
| 2331 assert( p->nSample>0 ); |
| 2332 assert( pBuilder->nRecValid<nEq ); |
| 2333 |
| 2334 /* If values are not available for all fields of the index to the left |
| 2335 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ |
| 2336 if( pBuilder->nRecValid<(nEq-1) ){ |
| 2337 return SQLITE_NOTFOUND; |
| 2338 } |
| 2339 |
| 2340 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() |
| 2341 ** below would return the same value. */ |
| 2342 if( nEq>=p->nColumn ){ |
| 2343 *pnRow = 1; |
| 2344 return SQLITE_OK; |
| 2345 } |
| 2346 |
| 2347 aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity; |
| 2348 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk); |
| 2349 pBuilder->pRec = pRec; |
| 2350 if( rc!=SQLITE_OK ) return rc; |
| 2351 if( bOk==0 ) return SQLITE_NOTFOUND; |
| 2352 pBuilder->nRecValid = nEq; |
| 2353 |
| 2354 whereKeyStats(pParse, p, pRec, 0, a); |
| 2355 WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1])); |
| 2356 *pnRow = a[1]; |
| 2357 |
| 2358 return rc; |
| 2359 } |
| 2360 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 2361 |
| 2362 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 2363 /* |
| 2364 ** Estimate the number of rows that will be returned based on |
| 2365 ** an IN constraint where the right-hand side of the IN operator |
| 2366 ** is a list of values. Example: |
| 2367 ** |
| 2368 ** WHERE x IN (1,2,3,4) |
| 2369 ** |
| 2370 ** Write the estimated row count into *pnRow and return SQLITE_OK. |
| 2371 ** If unable to make an estimate, leave *pnRow unchanged and return |
| 2372 ** non-zero. |
| 2373 ** |
| 2374 ** This routine can fail if it is unable to load a collating sequence |
| 2375 ** required for string comparison, or if unable to allocate memory |
| 2376 ** for a UTF conversion required for comparison. The error is stored |
| 2377 ** in the pParse structure. |
| 2378 */ |
| 2379 static int whereInScanEst( |
| 2380 Parse *pParse, /* Parsing & code generating context */ |
| 2381 WhereLoopBuilder *pBuilder, |
| 2382 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ |
| 2383 tRowcnt *pnRow /* Write the revised row estimate here */ |
| 2384 ){ |
| 2385 Index *p = pBuilder->pNew->u.btree.pIndex; |
| 2386 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); |
| 2387 int nRecValid = pBuilder->nRecValid; |
| 2388 int rc = SQLITE_OK; /* Subfunction return code */ |
| 2389 tRowcnt nEst; /* Number of rows for a single term */ |
| 2390 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ |
| 2391 int i; /* Loop counter */ |
| 2392 |
| 2393 assert( p->aSample!=0 ); |
| 2394 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ |
| 2395 nEst = nRow0; |
| 2396 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); |
| 2397 nRowEst += nEst; |
| 2398 pBuilder->nRecValid = nRecValid; |
| 2399 } |
| 2400 |
| 2401 if( rc==SQLITE_OK ){ |
| 2402 if( nRowEst > nRow0 ) nRowEst = nRow0; |
| 2403 *pnRow = nRowEst; |
| 2404 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); |
| 2405 } |
| 2406 assert( pBuilder->nRecValid==nRecValid ); |
| 2407 return rc; |
| 2408 } |
| 2409 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 2410 |
| 2411 /* |
| 2412 ** Disable a term in the WHERE clause. Except, do not disable the term |
| 2413 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON |
| 2414 ** or USING clause of that join. |
| 2415 ** |
| 2416 ** Consider the term t2.z='ok' in the following queries: |
| 2417 ** |
| 2418 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' |
| 2419 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' |
| 2420 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' |
| 2421 ** |
| 2422 ** The t2.z='ok' is disabled in the in (2) because it originates |
| 2423 ** in the ON clause. The term is disabled in (3) because it is not part |
| 2424 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. |
| 2425 ** |
| 2426 ** Disabling a term causes that term to not be tested in the inner loop |
| 2427 ** of the join. Disabling is an optimization. When terms are satisfied |
| 2428 ** by indices, we disable them to prevent redundant tests in the inner |
| 2429 ** loop. We would get the correct results if nothing were ever disabled, |
| 2430 ** but joins might run a little slower. The trick is to disable as much |
| 2431 ** as we can without disabling too much. If we disabled in (1), we'd get |
| 2432 ** the wrong answer. See ticket #813. |
| 2433 */ |
| 2434 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ |
| 2435 if( pTerm |
| 2436 && (pTerm->wtFlags & TERM_CODED)==0 |
| 2437 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
| 2438 && (pLevel->notReady & pTerm->prereqAll)==0 |
| 2439 ){ |
| 2440 pTerm->wtFlags |= TERM_CODED; |
| 2441 if( pTerm->iParent>=0 ){ |
| 2442 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; |
| 2443 if( (--pOther->nChild)==0 ){ |
| 2444 disableTerm(pLevel, pOther); |
| 2445 } |
| 2446 } |
| 2447 } |
| 2448 } |
| 2449 |
| 2450 /* |
| 2451 ** Code an OP_Affinity opcode to apply the column affinity string zAff |
| 2452 ** to the n registers starting at base. |
| 2453 ** |
| 2454 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the |
| 2455 ** beginning and end of zAff are ignored. If all entries in zAff are |
| 2456 ** SQLITE_AFF_NONE, then no code gets generated. |
| 2457 ** |
| 2458 ** This routine makes its own copy of zAff so that the caller is free |
| 2459 ** to modify zAff after this routine returns. |
| 2460 */ |
| 2461 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ |
| 2462 Vdbe *v = pParse->pVdbe; |
| 2463 if( zAff==0 ){ |
| 2464 assert( pParse->db->mallocFailed ); |
| 2465 return; |
| 2466 } |
| 2467 assert( v!=0 ); |
| 2468 |
| 2469 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning |
| 2470 ** and end of the affinity string. |
| 2471 */ |
| 2472 while( n>0 && zAff[0]==SQLITE_AFF_NONE ){ |
| 2473 n--; |
| 2474 base++; |
| 2475 zAff++; |
| 2476 } |
| 2477 while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){ |
| 2478 n--; |
| 2479 } |
| 2480 |
| 2481 /* Code the OP_Affinity opcode if there is anything left to do. */ |
| 2482 if( n>0 ){ |
| 2483 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); |
| 2484 sqlite3VdbeChangeP4(v, -1, zAff, n); |
| 2485 sqlite3ExprCacheAffinityChange(pParse, base, n); |
| 2486 } |
| 2487 } |
| 2488 |
| 2489 |
| 2490 /* |
| 2491 ** Generate code for a single equality term of the WHERE clause. An equality |
| 2492 ** term can be either X=expr or X IN (...). pTerm is the term to be |
| 2493 ** coded. |
| 2494 ** |
| 2495 ** The current value for the constraint is left in register iReg. |
| 2496 ** |
| 2497 ** For a constraint of the form X=expr, the expression is evaluated and its |
| 2498 ** result is left on the stack. For constraints of the form X IN (...) |
| 2499 ** this routine sets up a loop that will iterate over all values of X. |
| 2500 */ |
| 2501 static int codeEqualityTerm( |
| 2502 Parse *pParse, /* The parsing context */ |
| 2503 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ |
| 2504 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ |
| 2505 int iEq, /* Index of the equality term within this level */ |
| 2506 int bRev, /* True for reverse-order IN operations */ |
| 2507 int iTarget /* Attempt to leave results in this register */ |
| 2508 ){ |
| 2509 Expr *pX = pTerm->pExpr; |
| 2510 Vdbe *v = pParse->pVdbe; |
| 2511 int iReg; /* Register holding results */ |
| 2512 |
| 2513 assert( iTarget>0 ); |
| 2514 if( pX->op==TK_EQ ){ |
| 2515 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); |
| 2516 }else if( pX->op==TK_ISNULL ){ |
| 2517 iReg = iTarget; |
| 2518 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); |
| 2519 #ifndef SQLITE_OMIT_SUBQUERY |
| 2520 }else{ |
| 2521 int eType; |
| 2522 int iTab; |
| 2523 struct InLoop *pIn; |
| 2524 WhereLoop *pLoop = pLevel->pWLoop; |
| 2525 |
| 2526 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 |
| 2527 && pLoop->u.btree.pIndex!=0 |
| 2528 && pLoop->u.btree.pIndex->aSortOrder[iEq] |
| 2529 ){ |
| 2530 testcase( iEq==0 ); |
| 2531 testcase( bRev ); |
| 2532 bRev = !bRev; |
| 2533 } |
| 2534 assert( pX->op==TK_IN ); |
| 2535 iReg = iTarget; |
| 2536 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); |
| 2537 if( eType==IN_INDEX_INDEX_DESC ){ |
| 2538 testcase( bRev ); |
| 2539 bRev = !bRev; |
| 2540 } |
| 2541 iTab = pX->iTable; |
| 2542 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); |
| 2543 VdbeCoverageIf(v, bRev); |
| 2544 VdbeCoverageIf(v, !bRev); |
| 2545 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); |
| 2546 pLoop->wsFlags |= WHERE_IN_ABLE; |
| 2547 if( pLevel->u.in.nIn==0 ){ |
| 2548 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
| 2549 } |
| 2550 pLevel->u.in.nIn++; |
| 2551 pLevel->u.in.aInLoop = |
| 2552 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, |
| 2553 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); |
| 2554 pIn = pLevel->u.in.aInLoop; |
| 2555 if( pIn ){ |
| 2556 pIn += pLevel->u.in.nIn - 1; |
| 2557 pIn->iCur = iTab; |
| 2558 if( eType==IN_INDEX_ROWID ){ |
| 2559 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); |
| 2560 }else{ |
| 2561 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); |
| 2562 } |
| 2563 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; |
| 2564 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); |
| 2565 }else{ |
| 2566 pLevel->u.in.nIn = 0; |
| 2567 } |
| 2568 #endif |
| 2569 } |
| 2570 disableTerm(pLevel, pTerm); |
| 2571 return iReg; |
| 2572 } |
| 2573 |
| 2574 /* |
| 2575 ** Generate code that will evaluate all == and IN constraints for an |
| 2576 ** index scan. |
| 2577 ** |
| 2578 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). |
| 2579 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 |
| 2580 ** The index has as many as three equality constraints, but in this |
| 2581 ** example, the third "c" value is an inequality. So only two |
| 2582 ** constraints are coded. This routine will generate code to evaluate |
| 2583 ** a==5 and b IN (1,2,3). The current values for a and b will be stored |
| 2584 ** in consecutive registers and the index of the first register is returned. |
| 2585 ** |
| 2586 ** In the example above nEq==2. But this subroutine works for any value |
| 2587 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. |
| 2588 ** The only thing it does is allocate the pLevel->iMem memory cell and |
| 2589 ** compute the affinity string. |
| 2590 ** |
| 2591 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints |
| 2592 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is |
| 2593 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that |
| 2594 ** occurs after the nEq quality constraints. |
| 2595 ** |
| 2596 ** This routine allocates a range of nEq+nExtraReg memory cells and returns |
| 2597 ** the index of the first memory cell in that range. The code that |
| 2598 ** calls this routine will use that memory range to store keys for |
| 2599 ** start and termination conditions of the loop. |
| 2600 ** key value of the loop. If one or more IN operators appear, then |
| 2601 ** this routine allocates an additional nEq memory cells for internal |
| 2602 ** use. |
| 2603 ** |
| 2604 ** Before returning, *pzAff is set to point to a buffer containing a |
| 2605 ** copy of the column affinity string of the index allocated using |
| 2606 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated |
| 2607 ** with equality constraints that use NONE affinity are set to |
| 2608 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following: |
| 2609 ** |
| 2610 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); |
| 2611 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; |
| 2612 ** |
| 2613 ** In the example above, the index on t1(a) has TEXT affinity. But since |
| 2614 ** the right hand side of the equality constraint (t2.b) has NONE affinity, |
| 2615 ** no conversion should be attempted before using a t2.b value as part of |
| 2616 ** a key to search the index. Hence the first byte in the returned affinity |
| 2617 ** string in this example would be set to SQLITE_AFF_NONE. |
| 2618 */ |
| 2619 static int codeAllEqualityTerms( |
| 2620 Parse *pParse, /* Parsing context */ |
| 2621 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ |
| 2622 int bRev, /* Reverse the order of IN operators */ |
| 2623 int nExtraReg, /* Number of extra registers to allocate */ |
| 2624 char **pzAff /* OUT: Set to point to affinity string */ |
| 2625 ){ |
| 2626 u16 nEq; /* The number of == or IN constraints to code */ |
| 2627 u16 nSkip; /* Number of left-most columns to skip */ |
| 2628 Vdbe *v = pParse->pVdbe; /* The vm under construction */ |
| 2629 Index *pIdx; /* The index being used for this loop */ |
| 2630 WhereTerm *pTerm; /* A single constraint term */ |
| 2631 WhereLoop *pLoop; /* The WhereLoop object */ |
| 2632 int j; /* Loop counter */ |
| 2633 int regBase; /* Base register */ |
| 2634 int nReg; /* Number of registers to allocate */ |
| 2635 char *zAff; /* Affinity string to return */ |
| 2636 |
| 2637 /* This module is only called on query plans that use an index. */ |
| 2638 pLoop = pLevel->pWLoop; |
| 2639 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); |
| 2640 nEq = pLoop->u.btree.nEq; |
| 2641 nSkip = pLoop->u.btree.nSkip; |
| 2642 pIdx = pLoop->u.btree.pIndex; |
| 2643 assert( pIdx!=0 ); |
| 2644 |
| 2645 /* Figure out how many memory cells we will need then allocate them. |
| 2646 */ |
| 2647 regBase = pParse->nMem + 1; |
| 2648 nReg = pLoop->u.btree.nEq + nExtraReg; |
| 2649 pParse->nMem += nReg; |
| 2650 |
| 2651 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); |
| 2652 if( !zAff ){ |
| 2653 pParse->db->mallocFailed = 1; |
| 2654 } |
| 2655 |
| 2656 if( nSkip ){ |
| 2657 int iIdxCur = pLevel->iIdxCur; |
| 2658 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); |
| 2659 VdbeCoverageIf(v, bRev==0); |
| 2660 VdbeCoverageIf(v, bRev!=0); |
| 2661 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); |
| 2662 j = sqlite3VdbeAddOp0(v, OP_Goto); |
| 2663 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), |
| 2664 iIdxCur, 0, regBase, nSkip); |
| 2665 VdbeCoverageIf(v, bRev==0); |
| 2666 VdbeCoverageIf(v, bRev!=0); |
| 2667 sqlite3VdbeJumpHere(v, j); |
| 2668 for(j=0; j<nSkip; j++){ |
| 2669 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); |
| 2670 assert( pIdx->aiColumn[j]>=0 ); |
| 2671 VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName)); |
| 2672 } |
| 2673 } |
| 2674 |
| 2675 /* Evaluate the equality constraints |
| 2676 */ |
| 2677 assert( zAff==0 || (int)strlen(zAff)>=nEq ); |
| 2678 for(j=nSkip; j<nEq; j++){ |
| 2679 int r1; |
| 2680 pTerm = pLoop->aLTerm[j]; |
| 2681 assert( pTerm!=0 ); |
| 2682 /* The following testcase is true for indices with redundant columns. |
| 2683 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ |
| 2684 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); |
| 2685 testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| 2686 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); |
| 2687 if( r1!=regBase+j ){ |
| 2688 if( nReg==1 ){ |
| 2689 sqlite3ReleaseTempReg(pParse, regBase); |
| 2690 regBase = r1; |
| 2691 }else{ |
| 2692 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); |
| 2693 } |
| 2694 } |
| 2695 testcase( pTerm->eOperator & WO_ISNULL ); |
| 2696 testcase( pTerm->eOperator & WO_IN ); |
| 2697 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ |
| 2698 Expr *pRight = pTerm->pExpr->pRight; |
| 2699 if( sqlite3ExprCanBeNull(pRight) ){ |
| 2700 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); |
| 2701 VdbeCoverage(v); |
| 2702 } |
| 2703 if( zAff ){ |
| 2704 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ |
| 2705 zAff[j] = SQLITE_AFF_NONE; |
| 2706 } |
| 2707 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ |
| 2708 zAff[j] = SQLITE_AFF_NONE; |
| 2709 } |
| 2710 } |
| 2711 } |
| 2712 } |
| 2713 *pzAff = zAff; |
| 2714 return regBase; |
| 2715 } |
| 2716 |
| 2717 #ifndef SQLITE_OMIT_EXPLAIN |
| 2718 /* |
| 2719 ** This routine is a helper for explainIndexRange() below |
| 2720 ** |
| 2721 ** pStr holds the text of an expression that we are building up one term |
| 2722 ** at a time. This routine adds a new term to the end of the expression. |
| 2723 ** Terms are separated by AND so add the "AND" text for second and subsequent |
| 2724 ** terms only. |
| 2725 */ |
| 2726 static void explainAppendTerm( |
| 2727 StrAccum *pStr, /* The text expression being built */ |
| 2728 int iTerm, /* Index of this term. First is zero */ |
| 2729 const char *zColumn, /* Name of the column */ |
| 2730 const char *zOp /* Name of the operator */ |
| 2731 ){ |
| 2732 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); |
| 2733 sqlite3StrAccumAppendAll(pStr, zColumn); |
| 2734 sqlite3StrAccumAppend(pStr, zOp, 1); |
| 2735 sqlite3StrAccumAppend(pStr, "?", 1); |
| 2736 } |
| 2737 |
| 2738 /* |
| 2739 ** Argument pLevel describes a strategy for scanning table pTab. This |
| 2740 ** function appends text to pStr that describes the subset of table |
| 2741 ** rows scanned by the strategy in the form of an SQL expression. |
| 2742 ** |
| 2743 ** For example, if the query: |
| 2744 ** |
| 2745 ** SELECT * FROM t1 WHERE a=1 AND b>2; |
| 2746 ** |
| 2747 ** is run and there is an index on (a, b), then this function returns a |
| 2748 ** string similar to: |
| 2749 ** |
| 2750 ** "a=? AND b>?" |
| 2751 */ |
| 2752 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){ |
| 2753 Index *pIndex = pLoop->u.btree.pIndex; |
| 2754 u16 nEq = pLoop->u.btree.nEq; |
| 2755 u16 nSkip = pLoop->u.btree.nSkip; |
| 2756 int i, j; |
| 2757 Column *aCol = pTab->aCol; |
| 2758 i16 *aiColumn = pIndex->aiColumn; |
| 2759 |
| 2760 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; |
| 2761 sqlite3StrAccumAppend(pStr, " (", 2); |
| 2762 for(i=0; i<nEq; i++){ |
| 2763 char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName; |
| 2764 if( i>=nSkip ){ |
| 2765 explainAppendTerm(pStr, i, z, "="); |
| 2766 }else{ |
| 2767 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); |
| 2768 sqlite3XPrintf(pStr, 0, "ANY(%s)", z); |
| 2769 } |
| 2770 } |
| 2771 |
| 2772 j = i; |
| 2773 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ |
| 2774 char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; |
| 2775 explainAppendTerm(pStr, i++, z, ">"); |
| 2776 } |
| 2777 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ |
| 2778 char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; |
| 2779 explainAppendTerm(pStr, i, z, "<"); |
| 2780 } |
| 2781 sqlite3StrAccumAppend(pStr, ")", 1); |
| 2782 } |
| 2783 |
| 2784 /* |
| 2785 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN |
| 2786 ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single |
| 2787 ** record is added to the output to describe the table scan strategy in |
| 2788 ** pLevel. |
| 2789 */ |
| 2790 static void explainOneScan( |
| 2791 Parse *pParse, /* Parse context */ |
| 2792 SrcList *pTabList, /* Table list this loop refers to */ |
| 2793 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ |
| 2794 int iLevel, /* Value for "level" column of output */ |
| 2795 int iFrom, /* Value for "from" column of output */ |
| 2796 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ |
| 2797 ){ |
| 2798 #ifndef SQLITE_DEBUG |
| 2799 if( pParse->explain==2 ) |
| 2800 #endif |
| 2801 { |
| 2802 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; |
| 2803 Vdbe *v = pParse->pVdbe; /* VM being constructed */ |
| 2804 sqlite3 *db = pParse->db; /* Database handle */ |
| 2805 int iId = pParse->iSelectId; /* Select id (left-most output column) */ |
| 2806 int isSearch; /* True for a SEARCH. False for SCAN. */ |
| 2807 WhereLoop *pLoop; /* The controlling WhereLoop object */ |
| 2808 u32 flags; /* Flags that describe this loop */ |
| 2809 char *zMsg; /* Text to add to EQP output */ |
| 2810 StrAccum str; /* EQP output string */ |
| 2811 char zBuf[100]; /* Initial space for EQP output string */ |
| 2812 |
| 2813 pLoop = pLevel->pWLoop; |
| 2814 flags = pLoop->wsFlags; |
| 2815 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return; |
| 2816 |
| 2817 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 |
| 2818 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) |
| 2819 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); |
| 2820 |
| 2821 sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); |
| 2822 str.db = db; |
| 2823 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); |
| 2824 if( pItem->pSelect ){ |
| 2825 sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId); |
| 2826 }else{ |
| 2827 sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName); |
| 2828 } |
| 2829 |
| 2830 if( pItem->zAlias ){ |
| 2831 sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias); |
| 2832 } |
| 2833 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ |
| 2834 const char *zFmt = 0; |
| 2835 Index *pIdx; |
| 2836 |
| 2837 assert( pLoop->u.btree.pIndex!=0 ); |
| 2838 pIdx = pLoop->u.btree.pIndex; |
| 2839 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); |
| 2840 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ |
| 2841 if( isSearch ){ |
| 2842 zFmt = "PRIMARY KEY"; |
| 2843 } |
| 2844 }else if( flags & WHERE_AUTO_INDEX ){ |
| 2845 zFmt = "AUTOMATIC COVERING INDEX"; |
| 2846 }else if( flags & WHERE_IDX_ONLY ){ |
| 2847 zFmt = "COVERING INDEX %s"; |
| 2848 }else{ |
| 2849 zFmt = "INDEX %s"; |
| 2850 } |
| 2851 if( zFmt ){ |
| 2852 sqlite3StrAccumAppend(&str, " USING ", 7); |
| 2853 sqlite3XPrintf(&str, 0, zFmt, pIdx->zName); |
| 2854 explainIndexRange(&str, pLoop, pItem->pTab); |
| 2855 } |
| 2856 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ |
| 2857 const char *zRange; |
| 2858 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ |
| 2859 zRange = "(rowid=?)"; |
| 2860 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ |
| 2861 zRange = "(rowid>? AND rowid<?)"; |
| 2862 }else if( flags&WHERE_BTM_LIMIT ){ |
| 2863 zRange = "(rowid>?)"; |
| 2864 }else{ |
| 2865 assert( flags&WHERE_TOP_LIMIT); |
| 2866 zRange = "(rowid<?)"; |
| 2867 } |
| 2868 sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY "); |
| 2869 sqlite3StrAccumAppendAll(&str, zRange); |
| 2870 } |
| 2871 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2872 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ |
| 2873 sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s", |
| 2874 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); |
| 2875 } |
| 2876 #endif |
| 2877 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS |
| 2878 if( pLoop->nOut>=10 ){ |
| 2879 sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); |
| 2880 }else{ |
| 2881 sqlite3StrAccumAppend(&str, " (~1 row)", 9); |
| 2882 } |
| 2883 #endif |
| 2884 zMsg = sqlite3StrAccumFinish(&str); |
| 2885 sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC); |
| 2886 } |
| 2887 } |
| 2888 #else |
| 2889 # define explainOneScan(u,v,w,x,y,z) |
| 2890 #endif /* SQLITE_OMIT_EXPLAIN */ |
| 2891 |
| 2892 |
| 2893 /* |
| 2894 ** Generate code for the start of the iLevel-th loop in the WHERE clause |
| 2895 ** implementation described by pWInfo. |
| 2896 */ |
| 2897 static Bitmask codeOneLoopStart( |
| 2898 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ |
| 2899 int iLevel, /* Which level of pWInfo->a[] should be coded */ |
| 2900 Bitmask notReady /* Which tables are currently available */ |
| 2901 ){ |
| 2902 int j, k; /* Loop counters */ |
| 2903 int iCur; /* The VDBE cursor for the table */ |
| 2904 int addrNxt; /* Where to jump to continue with the next IN case */ |
| 2905 int omitTable; /* True if we use the index only */ |
| 2906 int bRev; /* True if we need to scan in reverse order */ |
| 2907 WhereLevel *pLevel; /* The where level to be coded */ |
| 2908 WhereLoop *pLoop; /* The WhereLoop object being coded */ |
| 2909 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ |
| 2910 WhereTerm *pTerm; /* A WHERE clause term */ |
| 2911 Parse *pParse; /* Parsing context */ |
| 2912 sqlite3 *db; /* Database connection */ |
| 2913 Vdbe *v; /* The prepared stmt under constructions */ |
| 2914 struct SrcList_item *pTabItem; /* FROM clause term being coded */ |
| 2915 int addrBrk; /* Jump here to break out of the loop */ |
| 2916 int addrCont; /* Jump here to continue with next cycle */ |
| 2917 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ |
| 2918 int iReleaseReg = 0; /* Temp register to free before returning */ |
| 2919 |
| 2920 pParse = pWInfo->pParse; |
| 2921 v = pParse->pVdbe; |
| 2922 pWC = &pWInfo->sWC; |
| 2923 db = pParse->db; |
| 2924 pLevel = &pWInfo->a[iLevel]; |
| 2925 pLoop = pLevel->pWLoop; |
| 2926 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; |
| 2927 iCur = pTabItem->iCursor; |
| 2928 pLevel->notReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur); |
| 2929 bRev = (pWInfo->revMask>>iLevel)&1; |
| 2930 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 |
| 2931 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; |
| 2932 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); |
| 2933 |
| 2934 /* Create labels for the "break" and "continue" instructions |
| 2935 ** for the current loop. Jump to addrBrk to break out of a loop. |
| 2936 ** Jump to cont to go immediately to the next iteration of the |
| 2937 ** loop. |
| 2938 ** |
| 2939 ** When there is an IN operator, we also have a "addrNxt" label that |
| 2940 ** means to continue with the next IN value combination. When |
| 2941 ** there are no IN operators in the constraints, the "addrNxt" label |
| 2942 ** is the same as "addrBrk". |
| 2943 */ |
| 2944 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
| 2945 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); |
| 2946 |
| 2947 /* If this is the right table of a LEFT OUTER JOIN, allocate and |
| 2948 ** initialize a memory cell that records if this table matches any |
| 2949 ** row of the left table of the join. |
| 2950 */ |
| 2951 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ |
| 2952 pLevel->iLeftJoin = ++pParse->nMem; |
| 2953 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); |
| 2954 VdbeComment((v, "init LEFT JOIN no-match flag")); |
| 2955 } |
| 2956 |
| 2957 /* Special case of a FROM clause subquery implemented as a co-routine */ |
| 2958 if( pTabItem->viaCoroutine ){ |
| 2959 int regYield = pTabItem->regReturn; |
| 2960 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); |
| 2961 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); |
| 2962 VdbeCoverage(v); |
| 2963 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); |
| 2964 pLevel->op = OP_Goto; |
| 2965 }else |
| 2966 |
| 2967 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2968 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ |
| 2969 /* Case 1: The table is a virtual-table. Use the VFilter and VNext |
| 2970 ** to access the data. |
| 2971 */ |
| 2972 int iReg; /* P3 Value for OP_VFilter */ |
| 2973 int addrNotFound; |
| 2974 int nConstraint = pLoop->nLTerm; |
| 2975 |
| 2976 sqlite3ExprCachePush(pParse); |
| 2977 iReg = sqlite3GetTempRange(pParse, nConstraint+2); |
| 2978 addrNotFound = pLevel->addrBrk; |
| 2979 for(j=0; j<nConstraint; j++){ |
| 2980 int iTarget = iReg+j+2; |
| 2981 pTerm = pLoop->aLTerm[j]; |
| 2982 if( pTerm==0 ) continue; |
| 2983 if( pTerm->eOperator & WO_IN ){ |
| 2984 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); |
| 2985 addrNotFound = pLevel->addrNxt; |
| 2986 }else{ |
| 2987 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); |
| 2988 } |
| 2989 } |
| 2990 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); |
| 2991 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); |
| 2992 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, |
| 2993 pLoop->u.vtab.idxStr, |
| 2994 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); |
| 2995 VdbeCoverage(v); |
| 2996 pLoop->u.vtab.needFree = 0; |
| 2997 for(j=0; j<nConstraint && j<16; j++){ |
| 2998 if( (pLoop->u.vtab.omitMask>>j)&1 ){ |
| 2999 disableTerm(pLevel, pLoop->aLTerm[j]); |
| 3000 } |
| 3001 } |
| 3002 pLevel->op = OP_VNext; |
| 3003 pLevel->p1 = iCur; |
| 3004 pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
| 3005 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); |
| 3006 sqlite3ExprCachePop(pParse); |
| 3007 }else |
| 3008 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 3009 |
| 3010 if( (pLoop->wsFlags & WHERE_IPK)!=0 |
| 3011 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 |
| 3012 ){ |
| 3013 /* Case 2: We can directly reference a single row using an |
| 3014 ** equality comparison against the ROWID field. Or |
| 3015 ** we reference multiple rows using a "rowid IN (...)" |
| 3016 ** construct. |
| 3017 */ |
| 3018 assert( pLoop->u.btree.nEq==1 ); |
| 3019 pTerm = pLoop->aLTerm[0]; |
| 3020 assert( pTerm!=0 ); |
| 3021 assert( pTerm->pExpr!=0 ); |
| 3022 assert( omitTable==0 ); |
| 3023 testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| 3024 iReleaseReg = ++pParse->nMem; |
| 3025 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); |
| 3026 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); |
| 3027 addrNxt = pLevel->addrNxt; |
| 3028 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); |
| 3029 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); |
| 3030 VdbeCoverage(v); |
| 3031 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); |
| 3032 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
| 3033 VdbeComment((v, "pk")); |
| 3034 pLevel->op = OP_Noop; |
| 3035 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 |
| 3036 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 |
| 3037 ){ |
| 3038 /* Case 3: We have an inequality comparison against the ROWID field. |
| 3039 */ |
| 3040 int testOp = OP_Noop; |
| 3041 int start; |
| 3042 int memEndValue = 0; |
| 3043 WhereTerm *pStart, *pEnd; |
| 3044 |
| 3045 assert( omitTable==0 ); |
| 3046 j = 0; |
| 3047 pStart = pEnd = 0; |
| 3048 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; |
| 3049 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; |
| 3050 assert( pStart!=0 || pEnd!=0 ); |
| 3051 if( bRev ){ |
| 3052 pTerm = pStart; |
| 3053 pStart = pEnd; |
| 3054 pEnd = pTerm; |
| 3055 } |
| 3056 if( pStart ){ |
| 3057 Expr *pX; /* The expression that defines the start bound */ |
| 3058 int r1, rTemp; /* Registers for holding the start boundary */ |
| 3059 |
| 3060 /* The following constant maps TK_xx codes into corresponding |
| 3061 ** seek opcodes. It depends on a particular ordering of TK_xx |
| 3062 */ |
| 3063 const u8 aMoveOp[] = { |
| 3064 /* TK_GT */ OP_SeekGT, |
| 3065 /* TK_LE */ OP_SeekLE, |
| 3066 /* TK_LT */ OP_SeekLT, |
| 3067 /* TK_GE */ OP_SeekGE |
| 3068 }; |
| 3069 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ |
| 3070 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ |
| 3071 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ |
| 3072 |
| 3073 assert( (pStart->wtFlags & TERM_VNULL)==0 ); |
| 3074 testcase( pStart->wtFlags & TERM_VIRTUAL ); |
| 3075 pX = pStart->pExpr; |
| 3076 assert( pX!=0 ); |
| 3077 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ |
| 3078 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); |
| 3079 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); |
| 3080 VdbeComment((v, "pk")); |
| 3081 VdbeCoverageIf(v, pX->op==TK_GT); |
| 3082 VdbeCoverageIf(v, pX->op==TK_LE); |
| 3083 VdbeCoverageIf(v, pX->op==TK_LT); |
| 3084 VdbeCoverageIf(v, pX->op==TK_GE); |
| 3085 sqlite3ExprCacheAffinityChange(pParse, r1, 1); |
| 3086 sqlite3ReleaseTempReg(pParse, rTemp); |
| 3087 disableTerm(pLevel, pStart); |
| 3088 }else{ |
| 3089 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); |
| 3090 VdbeCoverageIf(v, bRev==0); |
| 3091 VdbeCoverageIf(v, bRev!=0); |
| 3092 } |
| 3093 if( pEnd ){ |
| 3094 Expr *pX; |
| 3095 pX = pEnd->pExpr; |
| 3096 assert( pX!=0 ); |
| 3097 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); |
| 3098 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ |
| 3099 testcase( pEnd->wtFlags & TERM_VIRTUAL ); |
| 3100 memEndValue = ++pParse->nMem; |
| 3101 sqlite3ExprCode(pParse, pX->pRight, memEndValue); |
| 3102 if( pX->op==TK_LT || pX->op==TK_GT ){ |
| 3103 testOp = bRev ? OP_Le : OP_Ge; |
| 3104 }else{ |
| 3105 testOp = bRev ? OP_Lt : OP_Gt; |
| 3106 } |
| 3107 disableTerm(pLevel, pEnd); |
| 3108 } |
| 3109 start = sqlite3VdbeCurrentAddr(v); |
| 3110 pLevel->op = bRev ? OP_Prev : OP_Next; |
| 3111 pLevel->p1 = iCur; |
| 3112 pLevel->p2 = start; |
| 3113 assert( pLevel->p5==0 ); |
| 3114 if( testOp!=OP_Noop ){ |
| 3115 iRowidReg = ++pParse->nMem; |
| 3116 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); |
| 3117 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
| 3118 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); |
| 3119 VdbeCoverageIf(v, testOp==OP_Le); |
| 3120 VdbeCoverageIf(v, testOp==OP_Lt); |
| 3121 VdbeCoverageIf(v, testOp==OP_Ge); |
| 3122 VdbeCoverageIf(v, testOp==OP_Gt); |
| 3123 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); |
| 3124 } |
| 3125 }else if( pLoop->wsFlags & WHERE_INDEXED ){ |
| 3126 /* Case 4: A scan using an index. |
| 3127 ** |
| 3128 ** The WHERE clause may contain zero or more equality |
| 3129 ** terms ("==" or "IN" operators) that refer to the N |
| 3130 ** left-most columns of the index. It may also contain |
| 3131 ** inequality constraints (>, <, >= or <=) on the indexed |
| 3132 ** column that immediately follows the N equalities. Only |
| 3133 ** the right-most column can be an inequality - the rest must |
| 3134 ** use the "==" and "IN" operators. For example, if the |
| 3135 ** index is on (x,y,z), then the following clauses are all |
| 3136 ** optimized: |
| 3137 ** |
| 3138 ** x=5 |
| 3139 ** x=5 AND y=10 |
| 3140 ** x=5 AND y<10 |
| 3141 ** x=5 AND y>5 AND y<10 |
| 3142 ** x=5 AND y=5 AND z<=10 |
| 3143 ** |
| 3144 ** The z<10 term of the following cannot be used, only |
| 3145 ** the x=5 term: |
| 3146 ** |
| 3147 ** x=5 AND z<10 |
| 3148 ** |
| 3149 ** N may be zero if there are inequality constraints. |
| 3150 ** If there are no inequality constraints, then N is at |
| 3151 ** least one. |
| 3152 ** |
| 3153 ** This case is also used when there are no WHERE clause |
| 3154 ** constraints but an index is selected anyway, in order |
| 3155 ** to force the output order to conform to an ORDER BY. |
| 3156 */ |
| 3157 static const u8 aStartOp[] = { |
| 3158 0, |
| 3159 0, |
| 3160 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ |
| 3161 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ |
| 3162 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ |
| 3163 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ |
| 3164 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ |
| 3165 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ |
| 3166 }; |
| 3167 static const u8 aEndOp[] = { |
| 3168 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ |
| 3169 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ |
| 3170 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ |
| 3171 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ |
| 3172 }; |
| 3173 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ |
| 3174 int regBase; /* Base register holding constraint values */ |
| 3175 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ |
| 3176 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ |
| 3177 int startEq; /* True if range start uses ==, >= or <= */ |
| 3178 int endEq; /* True if range end uses ==, >= or <= */ |
| 3179 int start_constraints; /* Start of range is constrained */ |
| 3180 int nConstraint; /* Number of constraint terms */ |
| 3181 Index *pIdx; /* The index we will be using */ |
| 3182 int iIdxCur; /* The VDBE cursor for the index */ |
| 3183 int nExtraReg = 0; /* Number of extra registers needed */ |
| 3184 int op; /* Instruction opcode */ |
| 3185 char *zStartAff; /* Affinity for start of range constraint */ |
| 3186 char cEndAff = 0; /* Affinity for end of range constraint */ |
| 3187 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ |
| 3188 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ |
| 3189 |
| 3190 pIdx = pLoop->u.btree.pIndex; |
| 3191 iIdxCur = pLevel->iIdxCur; |
| 3192 assert( nEq>=pLoop->u.btree.nSkip ); |
| 3193 |
| 3194 /* If this loop satisfies a sort order (pOrderBy) request that |
| 3195 ** was passed to this function to implement a "SELECT min(x) ..." |
| 3196 ** query, then the caller will only allow the loop to run for |
| 3197 ** a single iteration. This means that the first row returned |
| 3198 ** should not have a NULL value stored in 'x'. If column 'x' is |
| 3199 ** the first one after the nEq equality constraints in the index, |
| 3200 ** this requires some special handling. |
| 3201 */ |
| 3202 assert( pWInfo->pOrderBy==0 |
| 3203 || pWInfo->pOrderBy->nExpr==1 |
| 3204 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); |
| 3205 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 |
| 3206 && pWInfo->nOBSat>0 |
| 3207 && (pIdx->nKeyCol>nEq) |
| 3208 ){ |
| 3209 assert( pLoop->u.btree.nSkip==0 ); |
| 3210 bSeekPastNull = 1; |
| 3211 nExtraReg = 1; |
| 3212 } |
| 3213 |
| 3214 /* Find any inequality constraint terms for the start and end |
| 3215 ** of the range. |
| 3216 */ |
| 3217 j = nEq; |
| 3218 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ |
| 3219 pRangeStart = pLoop->aLTerm[j++]; |
| 3220 nExtraReg = 1; |
| 3221 } |
| 3222 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ |
| 3223 pRangeEnd = pLoop->aLTerm[j++]; |
| 3224 nExtraReg = 1; |
| 3225 if( pRangeStart==0 |
| 3226 && (j = pIdx->aiColumn[nEq])>=0 |
| 3227 && pIdx->pTable->aCol[j].notNull==0 |
| 3228 ){ |
| 3229 bSeekPastNull = 1; |
| 3230 } |
| 3231 } |
| 3232 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); |
| 3233 |
| 3234 /* Generate code to evaluate all constraint terms using == or IN |
| 3235 ** and store the values of those terms in an array of registers |
| 3236 ** starting at regBase. |
| 3237 */ |
| 3238 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); |
| 3239 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); |
| 3240 if( zStartAff ) cEndAff = zStartAff[nEq]; |
| 3241 addrNxt = pLevel->addrNxt; |
| 3242 |
| 3243 /* If we are doing a reverse order scan on an ascending index, or |
| 3244 ** a forward order scan on a descending index, interchange the |
| 3245 ** start and end terms (pRangeStart and pRangeEnd). |
| 3246 */ |
| 3247 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) |
| 3248 || (bRev && pIdx->nKeyCol==nEq) |
| 3249 ){ |
| 3250 SWAP(WhereTerm *, pRangeEnd, pRangeStart); |
| 3251 SWAP(u8, bSeekPastNull, bStopAtNull); |
| 3252 } |
| 3253 |
| 3254 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); |
| 3255 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); |
| 3256 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); |
| 3257 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); |
| 3258 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); |
| 3259 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); |
| 3260 start_constraints = pRangeStart || nEq>0; |
| 3261 |
| 3262 /* Seek the index cursor to the start of the range. */ |
| 3263 nConstraint = nEq; |
| 3264 if( pRangeStart ){ |
| 3265 Expr *pRight = pRangeStart->pExpr->pRight; |
| 3266 sqlite3ExprCode(pParse, pRight, regBase+nEq); |
| 3267 if( (pRangeStart->wtFlags & TERM_VNULL)==0 |
| 3268 && sqlite3ExprCanBeNull(pRight) |
| 3269 ){ |
| 3270 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); |
| 3271 VdbeCoverage(v); |
| 3272 } |
| 3273 if( zStartAff ){ |
| 3274 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ |
| 3275 /* Since the comparison is to be performed with no conversions |
| 3276 ** applied to the operands, set the affinity to apply to pRight to |
| 3277 ** SQLITE_AFF_NONE. */ |
| 3278 zStartAff[nEq] = SQLITE_AFF_NONE; |
| 3279 } |
| 3280 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ |
| 3281 zStartAff[nEq] = SQLITE_AFF_NONE; |
| 3282 } |
| 3283 } |
| 3284 nConstraint++; |
| 3285 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); |
| 3286 }else if( bSeekPastNull ){ |
| 3287 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
| 3288 nConstraint++; |
| 3289 startEq = 0; |
| 3290 start_constraints = 1; |
| 3291 } |
| 3292 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); |
| 3293 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; |
| 3294 assert( op!=0 ); |
| 3295 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
| 3296 VdbeCoverage(v); |
| 3297 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); |
| 3298 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); |
| 3299 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); |
| 3300 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); |
| 3301 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); |
| 3302 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); |
| 3303 |
| 3304 /* Load the value for the inequality constraint at the end of the |
| 3305 ** range (if any). |
| 3306 */ |
| 3307 nConstraint = nEq; |
| 3308 if( pRangeEnd ){ |
| 3309 Expr *pRight = pRangeEnd->pExpr->pRight; |
| 3310 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); |
| 3311 sqlite3ExprCode(pParse, pRight, regBase+nEq); |
| 3312 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 |
| 3313 && sqlite3ExprCanBeNull(pRight) |
| 3314 ){ |
| 3315 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); |
| 3316 VdbeCoverage(v); |
| 3317 } |
| 3318 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE |
| 3319 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) |
| 3320 ){ |
| 3321 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); |
| 3322 } |
| 3323 nConstraint++; |
| 3324 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); |
| 3325 }else if( bStopAtNull ){ |
| 3326 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
| 3327 endEq = 0; |
| 3328 nConstraint++; |
| 3329 } |
| 3330 sqlite3DbFree(db, zStartAff); |
| 3331 |
| 3332 /* Top of the loop body */ |
| 3333 pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
| 3334 |
| 3335 /* Check if the index cursor is past the end of the range. */ |
| 3336 if( nConstraint ){ |
| 3337 op = aEndOp[bRev*2 + endEq]; |
| 3338 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
| 3339 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); |
| 3340 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); |
| 3341 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); |
| 3342 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); |
| 3343 } |
| 3344 |
| 3345 /* Seek the table cursor, if required */ |
| 3346 disableTerm(pLevel, pRangeStart); |
| 3347 disableTerm(pLevel, pRangeEnd); |
| 3348 if( omitTable ){ |
| 3349 /* pIdx is a covering index. No need to access the main table. */ |
| 3350 }else if( HasRowid(pIdx->pTable) ){ |
| 3351 iRowidReg = ++pParse->nMem; |
| 3352 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); |
| 3353 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
| 3354 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ |
| 3355 }else if( iCur!=iIdxCur ){ |
| 3356 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); |
| 3357 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); |
| 3358 for(j=0; j<pPk->nKeyCol; j++){ |
| 3359 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); |
| 3360 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); |
| 3361 } |
| 3362 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, |
| 3363 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); |
| 3364 } |
| 3365 |
| 3366 /* Record the instruction used to terminate the loop. Disable |
| 3367 ** WHERE clause terms made redundant by the index range scan. |
| 3368 */ |
| 3369 if( pLoop->wsFlags & WHERE_ONEROW ){ |
| 3370 pLevel->op = OP_Noop; |
| 3371 }else if( bRev ){ |
| 3372 pLevel->op = OP_Prev; |
| 3373 }else{ |
| 3374 pLevel->op = OP_Next; |
| 3375 } |
| 3376 pLevel->p1 = iIdxCur; |
| 3377 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; |
| 3378 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ |
| 3379 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
| 3380 }else{ |
| 3381 assert( pLevel->p5==0 ); |
| 3382 } |
| 3383 }else |
| 3384 |
| 3385 #ifndef SQLITE_OMIT_OR_OPTIMIZATION |
| 3386 if( pLoop->wsFlags & WHERE_MULTI_OR ){ |
| 3387 /* Case 5: Two or more separately indexed terms connected by OR |
| 3388 ** |
| 3389 ** Example: |
| 3390 ** |
| 3391 ** CREATE TABLE t1(a,b,c,d); |
| 3392 ** CREATE INDEX i1 ON t1(a); |
| 3393 ** CREATE INDEX i2 ON t1(b); |
| 3394 ** CREATE INDEX i3 ON t1(c); |
| 3395 ** |
| 3396 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) |
| 3397 ** |
| 3398 ** In the example, there are three indexed terms connected by OR. |
| 3399 ** The top of the loop looks like this: |
| 3400 ** |
| 3401 ** Null 1 # Zero the rowset in reg 1 |
| 3402 ** |
| 3403 ** Then, for each indexed term, the following. The arguments to |
| 3404 ** RowSetTest are such that the rowid of the current row is inserted |
| 3405 ** into the RowSet. If it is already present, control skips the |
| 3406 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). |
| 3407 ** |
| 3408 ** sqlite3WhereBegin(<term>) |
| 3409 ** RowSetTest # Insert rowid into rowset |
| 3410 ** Gosub 2 A |
| 3411 ** sqlite3WhereEnd() |
| 3412 ** |
| 3413 ** Following the above, code to terminate the loop. Label A, the target |
| 3414 ** of the Gosub above, jumps to the instruction right after the Goto. |
| 3415 ** |
| 3416 ** Null 1 # Zero the rowset in reg 1 |
| 3417 ** Goto B # The loop is finished. |
| 3418 ** |
| 3419 ** A: <loop body> # Return data, whatever. |
| 3420 ** |
| 3421 ** Return 2 # Jump back to the Gosub |
| 3422 ** |
| 3423 ** B: <after the loop> |
| 3424 ** |
| 3425 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then |
| 3426 ** use an ephemeral index instead of a RowSet to record the primary |
| 3427 ** keys of the rows we have already seen. |
| 3428 ** |
| 3429 */ |
| 3430 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ |
| 3431 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ |
| 3432 Index *pCov = 0; /* Potential covering index (or NULL) */ |
| 3433 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ |
| 3434 |
| 3435 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ |
| 3436 int regRowset = 0; /* Register for RowSet object */ |
| 3437 int regRowid = 0; /* Register holding rowid */ |
| 3438 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ |
| 3439 int iRetInit; /* Address of regReturn init */ |
| 3440 int untestedTerms = 0; /* Some terms not completely tested */ |
| 3441 int ii; /* Loop counter */ |
| 3442 u16 wctrlFlags; /* Flags for sub-WHERE clause */ |
| 3443 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ |
| 3444 Table *pTab = pTabItem->pTab; |
| 3445 |
| 3446 pTerm = pLoop->aLTerm[0]; |
| 3447 assert( pTerm!=0 ); |
| 3448 assert( pTerm->eOperator & WO_OR ); |
| 3449 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); |
| 3450 pOrWc = &pTerm->u.pOrInfo->wc; |
| 3451 pLevel->op = OP_Return; |
| 3452 pLevel->p1 = regReturn; |
| 3453 |
| 3454 /* Set up a new SrcList in pOrTab containing the table being scanned |
| 3455 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. |
| 3456 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). |
| 3457 */ |
| 3458 if( pWInfo->nLevel>1 ){ |
| 3459 int nNotReady; /* The number of notReady tables */ |
| 3460 struct SrcList_item *origSrc; /* Original list of tables */ |
| 3461 nNotReady = pWInfo->nLevel - iLevel - 1; |
| 3462 pOrTab = sqlite3StackAllocRaw(db, |
| 3463 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); |
| 3464 if( pOrTab==0 ) return notReady; |
| 3465 pOrTab->nAlloc = (u8)(nNotReady + 1); |
| 3466 pOrTab->nSrc = pOrTab->nAlloc; |
| 3467 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); |
| 3468 origSrc = pWInfo->pTabList->a; |
| 3469 for(k=1; k<=nNotReady; k++){ |
| 3470 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); |
| 3471 } |
| 3472 }else{ |
| 3473 pOrTab = pWInfo->pTabList; |
| 3474 } |
| 3475 |
| 3476 /* Initialize the rowset register to contain NULL. An SQL NULL is |
| 3477 ** equivalent to an empty rowset. Or, create an ephemeral index |
| 3478 ** capable of holding primary keys in the case of a WITHOUT ROWID. |
| 3479 ** |
| 3480 ** Also initialize regReturn to contain the address of the instruction |
| 3481 ** immediately following the OP_Return at the bottom of the loop. This |
| 3482 ** is required in a few obscure LEFT JOIN cases where control jumps |
| 3483 ** over the top of the loop into the body of it. In this case the |
| 3484 ** correct response for the end-of-loop code (the OP_Return) is to |
| 3485 ** fall through to the next instruction, just as an OP_Next does if |
| 3486 ** called on an uninitialized cursor. |
| 3487 */ |
| 3488 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
| 3489 if( HasRowid(pTab) ){ |
| 3490 regRowset = ++pParse->nMem; |
| 3491 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); |
| 3492 }else{ |
| 3493 Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
| 3494 regRowset = pParse->nTab++; |
| 3495 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); |
| 3496 sqlite3VdbeSetP4KeyInfo(pParse, pPk); |
| 3497 } |
| 3498 regRowid = ++pParse->nMem; |
| 3499 } |
| 3500 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); |
| 3501 |
| 3502 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y |
| 3503 ** Then for every term xN, evaluate as the subexpression: xN AND z |
| 3504 ** That way, terms in y that are factored into the disjunction will |
| 3505 ** be picked up by the recursive calls to sqlite3WhereBegin() below. |
| 3506 ** |
| 3507 ** Actually, each subexpression is converted to "xN AND w" where w is |
| 3508 ** the "interesting" terms of z - terms that did not originate in the |
| 3509 ** ON or USING clause of a LEFT JOIN, and terms that are usable as |
| 3510 ** indices. |
| 3511 ** |
| 3512 ** This optimization also only applies if the (x1 OR x2 OR ...) term |
| 3513 ** is not contained in the ON clause of a LEFT JOIN. |
| 3514 ** See ticket http://www.sqlite.org/src/info/f2369304e4 |
| 3515 */ |
| 3516 if( pWC->nTerm>1 ){ |
| 3517 int iTerm; |
| 3518 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ |
| 3519 Expr *pExpr = pWC->a[iTerm].pExpr; |
| 3520 if( &pWC->a[iTerm] == pTerm ) continue; |
| 3521 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; |
| 3522 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); |
| 3523 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); |
| 3524 if( pWC->a[iTerm].wtFlags & (TERM_ORINFO|TERM_VIRTUAL) ) continue; |
| 3525 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; |
| 3526 pExpr = sqlite3ExprDup(db, pExpr, 0); |
| 3527 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); |
| 3528 } |
| 3529 if( pAndExpr ){ |
| 3530 pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); |
| 3531 } |
| 3532 } |
| 3533 |
| 3534 /* Run a separate WHERE clause for each term of the OR clause. After |
| 3535 ** eliminating duplicates from other WHERE clauses, the action for each |
| 3536 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. |
| 3537 */ |
| 3538 wctrlFlags = WHERE_OMIT_OPEN_CLOSE |
| 3539 | WHERE_FORCE_TABLE |
| 3540 | WHERE_ONETABLE_ONLY; |
| 3541 for(ii=0; ii<pOrWc->nTerm; ii++){ |
| 3542 WhereTerm *pOrTerm = &pOrWc->a[ii]; |
| 3543 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ |
| 3544 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ |
| 3545 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ |
| 3546 int j1 = 0; /* Address of jump operation */ |
| 3547 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ |
| 3548 pAndExpr->pLeft = pOrExpr; |
| 3549 pOrExpr = pAndExpr; |
| 3550 } |
| 3551 /* Loop through table entries that match term pOrTerm. */ |
| 3552 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); |
| 3553 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, |
| 3554 wctrlFlags, iCovCur); |
| 3555 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); |
| 3556 if( pSubWInfo ){ |
| 3557 WhereLoop *pSubLoop; |
| 3558 explainOneScan( |
| 3559 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 |
| 3560 ); |
| 3561 /* This is the sub-WHERE clause body. First skip over |
| 3562 ** duplicate rows from prior sub-WHERE clauses, and record the |
| 3563 ** rowid (or PRIMARY KEY) for the current row so that the same |
| 3564 ** row will be skipped in subsequent sub-WHERE clauses. |
| 3565 */ |
| 3566 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
| 3567 int r; |
| 3568 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); |
| 3569 if( HasRowid(pTab) ){ |
| 3570 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); |
| 3571 j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet); |
| 3572 VdbeCoverage(v); |
| 3573 }else{ |
| 3574 Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
| 3575 int nPk = pPk->nKeyCol; |
| 3576 int iPk; |
| 3577 |
| 3578 /* Read the PK into an array of temp registers. */ |
| 3579 r = sqlite3GetTempRange(pParse, nPk); |
| 3580 for(iPk=0; iPk<nPk; iPk++){ |
| 3581 int iCol = pPk->aiColumn[iPk]; |
| 3582 sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur, r+iPk, 0); |
| 3583 } |
| 3584 |
| 3585 /* Check if the temp table already contains this key. If so, |
| 3586 ** the row has already been included in the result set and |
| 3587 ** can be ignored (by jumping past the Gosub below). Otherwise, |
| 3588 ** insert the key into the temp table and proceed with processing |
| 3589 ** the row. |
| 3590 ** |
| 3591 ** Use some of the same optimizations as OP_RowSetTest: If iSet |
| 3592 ** is zero, assume that the key cannot already be present in |
| 3593 ** the temp table. And if iSet is -1, assume that there is no |
| 3594 ** need to insert the key into the temp table, as it will never |
| 3595 ** be tested for. */ |
| 3596 if( iSet ){ |
| 3597 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); |
| 3598 VdbeCoverage(v); |
| 3599 } |
| 3600 if( iSet>=0 ){ |
| 3601 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); |
| 3602 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); |
| 3603 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
| 3604 } |
| 3605 |
| 3606 /* Release the array of temp registers */ |
| 3607 sqlite3ReleaseTempRange(pParse, r, nPk); |
| 3608 } |
| 3609 } |
| 3610 |
| 3611 /* Invoke the main loop body as a subroutine */ |
| 3612 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); |
| 3613 |
| 3614 /* Jump here (skipping the main loop body subroutine) if the |
| 3615 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ |
| 3616 if( j1 ) sqlite3VdbeJumpHere(v, j1); |
| 3617 |
| 3618 /* The pSubWInfo->untestedTerms flag means that this OR term |
| 3619 ** contained one or more AND term from a notReady table. The |
| 3620 ** terms from the notReady table could not be tested and will |
| 3621 ** need to be tested later. |
| 3622 */ |
| 3623 if( pSubWInfo->untestedTerms ) untestedTerms = 1; |
| 3624 |
| 3625 /* If all of the OR-connected terms are optimized using the same |
| 3626 ** index, and the index is opened using the same cursor number |
| 3627 ** by each call to sqlite3WhereBegin() made by this loop, it may |
| 3628 ** be possible to use that index as a covering index. |
| 3629 ** |
| 3630 ** If the call to sqlite3WhereBegin() above resulted in a scan that |
| 3631 ** uses an index, and this is either the first OR-connected term |
| 3632 ** processed or the index is the same as that used by all previous |
| 3633 ** terms, set pCov to the candidate covering index. Otherwise, set |
| 3634 ** pCov to NULL to indicate that no candidate covering index will |
| 3635 ** be available. |
| 3636 */ |
| 3637 pSubLoop = pSubWInfo->a[0].pWLoop; |
| 3638 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); |
| 3639 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 |
| 3640 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) |
| 3641 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) |
| 3642 ){ |
| 3643 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); |
| 3644 pCov = pSubLoop->u.btree.pIndex; |
| 3645 wctrlFlags |= WHERE_REOPEN_IDX; |
| 3646 }else{ |
| 3647 pCov = 0; |
| 3648 } |
| 3649 |
| 3650 /* Finish the loop through table entries that match term pOrTerm. */ |
| 3651 sqlite3WhereEnd(pSubWInfo); |
| 3652 } |
| 3653 } |
| 3654 } |
| 3655 pLevel->u.pCovidx = pCov; |
| 3656 if( pCov ) pLevel->iIdxCur = iCovCur; |
| 3657 if( pAndExpr ){ |
| 3658 pAndExpr->pLeft = 0; |
| 3659 sqlite3ExprDelete(db, pAndExpr); |
| 3660 } |
| 3661 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); |
| 3662 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); |
| 3663 sqlite3VdbeResolveLabel(v, iLoopBody); |
| 3664 |
| 3665 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); |
| 3666 if( !untestedTerms ) disableTerm(pLevel, pTerm); |
| 3667 }else |
| 3668 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
| 3669 |
| 3670 { |
| 3671 /* Case 6: There is no usable index. We must do a complete |
| 3672 ** scan of the entire table. |
| 3673 */ |
| 3674 static const u8 aStep[] = { OP_Next, OP_Prev }; |
| 3675 static const u8 aStart[] = { OP_Rewind, OP_Last }; |
| 3676 assert( bRev==0 || bRev==1 ); |
| 3677 if( pTabItem->isRecursive ){ |
| 3678 /* Tables marked isRecursive have only a single row that is stored in |
| 3679 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ |
| 3680 pLevel->op = OP_Noop; |
| 3681 }else{ |
| 3682 pLevel->op = aStep[bRev]; |
| 3683 pLevel->p1 = iCur; |
| 3684 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); |
| 3685 VdbeCoverageIf(v, bRev==0); |
| 3686 VdbeCoverageIf(v, bRev!=0); |
| 3687 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
| 3688 } |
| 3689 } |
| 3690 |
| 3691 /* Insert code to test every subexpression that can be completely |
| 3692 ** computed using the current set of tables. |
| 3693 */ |
| 3694 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ |
| 3695 Expr *pE; |
| 3696 testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| 3697 testcase( pTerm->wtFlags & TERM_CODED ); |
| 3698 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
| 3699 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ |
| 3700 testcase( pWInfo->untestedTerms==0 |
| 3701 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); |
| 3702 pWInfo->untestedTerms = 1; |
| 3703 continue; |
| 3704 } |
| 3705 pE = pTerm->pExpr; |
| 3706 assert( pE!=0 ); |
| 3707 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ |
| 3708 continue; |
| 3709 } |
| 3710 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); |
| 3711 pTerm->wtFlags |= TERM_CODED; |
| 3712 } |
| 3713 |
| 3714 /* Insert code to test for implied constraints based on transitivity |
| 3715 ** of the "==" operator. |
| 3716 ** |
| 3717 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" |
| 3718 ** and we are coding the t1 loop and the t2 loop has not yet coded, |
| 3719 ** then we cannot use the "t1.a=t2.b" constraint, but we can code |
| 3720 ** the implied "t1.a=123" constraint. |
| 3721 */ |
| 3722 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ |
| 3723 Expr *pE, *pEAlt; |
| 3724 WhereTerm *pAlt; |
| 3725 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
| 3726 if( pTerm->eOperator!=(WO_EQUIV|WO_EQ) ) continue; |
| 3727 if( pTerm->leftCursor!=iCur ) continue; |
| 3728 if( pLevel->iLeftJoin ) continue; |
| 3729 pE = pTerm->pExpr; |
| 3730 assert( !ExprHasProperty(pE, EP_FromJoin) ); |
| 3731 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); |
| 3732 pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0); |
| 3733 if( pAlt==0 ) continue; |
| 3734 if( pAlt->wtFlags & (TERM_CODED) ) continue; |
| 3735 testcase( pAlt->eOperator & WO_EQ ); |
| 3736 testcase( pAlt->eOperator & WO_IN ); |
| 3737 VdbeModuleComment((v, "begin transitive constraint")); |
| 3738 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); |
| 3739 if( pEAlt ){ |
| 3740 *pEAlt = *pAlt->pExpr; |
| 3741 pEAlt->pLeft = pE->pLeft; |
| 3742 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); |
| 3743 sqlite3StackFree(db, pEAlt); |
| 3744 } |
| 3745 } |
| 3746 |
| 3747 /* For a LEFT OUTER JOIN, generate code that will record the fact that |
| 3748 ** at least one row of the right table has matched the left table. |
| 3749 */ |
| 3750 if( pLevel->iLeftJoin ){ |
| 3751 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); |
| 3752 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); |
| 3753 VdbeComment((v, "record LEFT JOIN hit")); |
| 3754 sqlite3ExprCacheClear(pParse); |
| 3755 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ |
| 3756 testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| 3757 testcase( pTerm->wtFlags & TERM_CODED ); |
| 3758 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
| 3759 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ |
| 3760 assert( pWInfo->untestedTerms ); |
| 3761 continue; |
| 3762 } |
| 3763 assert( pTerm->pExpr ); |
| 3764 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); |
| 3765 pTerm->wtFlags |= TERM_CODED; |
| 3766 } |
| 3767 } |
| 3768 |
| 3769 return pLevel->notReady; |
| 3770 } |
| 3771 |
| 3772 #ifdef WHERETRACE_ENABLED |
| 3773 /* |
| 3774 ** Print the content of a WhereTerm object |
| 3775 */ |
| 3776 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ |
| 3777 if( pTerm==0 ){ |
| 3778 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); |
| 3779 }else{ |
| 3780 char zType[4]; |
| 3781 memcpy(zType, "...", 4); |
| 3782 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; |
| 3783 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; |
| 3784 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; |
| 3785 sqlite3DebugPrintf("TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x\n", |
| 3786 iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb, |
| 3787 pTerm->eOperator); |
| 3788 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); |
| 3789 } |
| 3790 } |
| 3791 #endif |
| 3792 |
| 3793 #ifdef WHERETRACE_ENABLED |
| 3794 /* |
| 3795 ** Print a WhereLoop object for debugging purposes |
| 3796 */ |
| 3797 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ |
| 3798 WhereInfo *pWInfo = pWC->pWInfo; |
| 3799 int nb = 1+(pWInfo->pTabList->nSrc+7)/8; |
| 3800 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; |
| 3801 Table *pTab = pItem->pTab; |
| 3802 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, |
| 3803 p->iTab, nb, p->maskSelf, nb, p->prereq); |
| 3804 sqlite3DebugPrintf(" %12s", |
| 3805 pItem->zAlias ? pItem->zAlias : pTab->zName); |
| 3806 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ |
| 3807 const char *zName; |
| 3808 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ |
| 3809 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ |
| 3810 int i = sqlite3Strlen30(zName) - 1; |
| 3811 while( zName[i]!='_' ) i--; |
| 3812 zName += i; |
| 3813 } |
| 3814 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); |
| 3815 }else{ |
| 3816 sqlite3DebugPrintf("%20s",""); |
| 3817 } |
| 3818 }else{ |
| 3819 char *z; |
| 3820 if( p->u.vtab.idxStr ){ |
| 3821 z = sqlite3_mprintf("(%d,\"%s\",%x)", |
| 3822 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); |
| 3823 }else{ |
| 3824 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); |
| 3825 } |
| 3826 sqlite3DebugPrintf(" %-19s", z); |
| 3827 sqlite3_free(z); |
| 3828 } |
| 3829 if( p->wsFlags & WHERE_SKIPSCAN ){ |
| 3830 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->u.btree.nSkip); |
| 3831 }else{ |
| 3832 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); |
| 3833 } |
| 3834 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); |
| 3835 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ |
| 3836 int i; |
| 3837 for(i=0; i<p->nLTerm; i++){ |
| 3838 whereTermPrint(p->aLTerm[i], i); |
| 3839 } |
| 3840 } |
| 3841 } |
| 3842 #endif |
| 3843 |
| 3844 /* |
| 3845 ** Convert bulk memory into a valid WhereLoop that can be passed |
| 3846 ** to whereLoopClear harmlessly. |
| 3847 */ |
| 3848 static void whereLoopInit(WhereLoop *p){ |
| 3849 p->aLTerm = p->aLTermSpace; |
| 3850 p->nLTerm = 0; |
| 3851 p->nLSlot = ArraySize(p->aLTermSpace); |
| 3852 p->wsFlags = 0; |
| 3853 } |
| 3854 |
| 3855 /* |
| 3856 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. |
| 3857 */ |
| 3858 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ |
| 3859 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ |
| 3860 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ |
| 3861 sqlite3_free(p->u.vtab.idxStr); |
| 3862 p->u.vtab.needFree = 0; |
| 3863 p->u.vtab.idxStr = 0; |
| 3864 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ |
| 3865 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); |
| 3866 sqlite3KeyInfoUnref(p->u.btree.pIndex->pKeyInfo); |
| 3867 sqlite3DbFree(db, p->u.btree.pIndex); |
| 3868 p->u.btree.pIndex = 0; |
| 3869 } |
| 3870 } |
| 3871 } |
| 3872 |
| 3873 /* |
| 3874 ** Deallocate internal memory used by a WhereLoop object |
| 3875 */ |
| 3876 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ |
| 3877 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); |
| 3878 whereLoopClearUnion(db, p); |
| 3879 whereLoopInit(p); |
| 3880 } |
| 3881 |
| 3882 /* |
| 3883 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. |
| 3884 */ |
| 3885 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ |
| 3886 WhereTerm **paNew; |
| 3887 if( p->nLSlot>=n ) return SQLITE_OK; |
| 3888 n = (n+7)&~7; |
| 3889 paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n); |
| 3890 if( paNew==0 ) return SQLITE_NOMEM; |
| 3891 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); |
| 3892 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); |
| 3893 p->aLTerm = paNew; |
| 3894 p->nLSlot = n; |
| 3895 return SQLITE_OK; |
| 3896 } |
| 3897 |
| 3898 /* |
| 3899 ** Transfer content from the second pLoop into the first. |
| 3900 */ |
| 3901 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ |
| 3902 whereLoopClearUnion(db, pTo); |
| 3903 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ |
| 3904 memset(&pTo->u, 0, sizeof(pTo->u)); |
| 3905 return SQLITE_NOMEM; |
| 3906 } |
| 3907 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); |
| 3908 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); |
| 3909 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ |
| 3910 pFrom->u.vtab.needFree = 0; |
| 3911 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ |
| 3912 pFrom->u.btree.pIndex = 0; |
| 3913 } |
| 3914 return SQLITE_OK; |
| 3915 } |
| 3916 |
| 3917 /* |
| 3918 ** Delete a WhereLoop object |
| 3919 */ |
| 3920 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ |
| 3921 whereLoopClear(db, p); |
| 3922 sqlite3DbFree(db, p); |
| 3923 } |
| 3924 |
| 3925 /* |
| 3926 ** Free a WhereInfo structure |
| 3927 */ |
| 3928 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ |
| 3929 if( ALWAYS(pWInfo) ){ |
| 3930 whereClauseClear(&pWInfo->sWC); |
| 3931 while( pWInfo->pLoops ){ |
| 3932 WhereLoop *p = pWInfo->pLoops; |
| 3933 pWInfo->pLoops = p->pNextLoop; |
| 3934 whereLoopDelete(db, p); |
| 3935 } |
| 3936 sqlite3DbFree(db, pWInfo); |
| 3937 } |
| 3938 } |
| 3939 |
| 3940 /* |
| 3941 ** Return TRUE if both of the following are true: |
| 3942 ** |
| 3943 ** (1) X has the same or lower cost that Y |
| 3944 ** (2) X is a proper subset of Y |
| 3945 ** |
| 3946 ** By "proper subset" we mean that X uses fewer WHERE clause terms |
| 3947 ** than Y and that every WHERE clause term used by X is also used |
| 3948 ** by Y. |
| 3949 ** |
| 3950 ** If X is a proper subset of Y then Y is a better choice and ought |
| 3951 ** to have a lower cost. This routine returns TRUE when that cost |
| 3952 ** relationship is inverted and needs to be adjusted. |
| 3953 */ |
| 3954 static int whereLoopCheaperProperSubset( |
| 3955 const WhereLoop *pX, /* First WhereLoop to compare */ |
| 3956 const WhereLoop *pY /* Compare against this WhereLoop */ |
| 3957 ){ |
| 3958 int i, j; |
| 3959 if( pX->nLTerm >= pY->nLTerm ) return 0; /* X is not a subset of Y */ |
| 3960 if( pX->rRun >= pY->rRun ){ |
| 3961 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ |
| 3962 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ |
| 3963 } |
| 3964 for(i=pX->nLTerm-1; i>=0; i--){ |
| 3965 for(j=pY->nLTerm-1; j>=0; j--){ |
| 3966 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; |
| 3967 } |
| 3968 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ |
| 3969 } |
| 3970 return 1; /* All conditions meet */ |
| 3971 } |
| 3972 |
| 3973 /* |
| 3974 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so |
| 3975 ** that: |
| 3976 ** |
| 3977 ** (1) pTemplate costs less than any other WhereLoops that are a proper |
| 3978 ** subset of pTemplate |
| 3979 ** |
| 3980 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate |
| 3981 ** is a proper subset. |
| 3982 ** |
| 3983 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer |
| 3984 ** WHERE clause terms than Y and that every WHERE clause term used by X is |
| 3985 ** also used by Y. |
| 3986 ** |
| 3987 ** This adjustment is omitted for SKIPSCAN loops. In a SKIPSCAN loop, the |
| 3988 ** WhereLoop.nLTerm field is not an accurate measure of the number of WHERE |
| 3989 ** clause terms covered, since some of the first nLTerm entries in aLTerm[] |
| 3990 ** will be NULL (because they are skipped). That makes it more difficult |
| 3991 ** to compare the loops. We could add extra code to do the comparison, and |
| 3992 ** perhaps we will someday. But SKIPSCAN is sufficiently uncommon, and this |
| 3993 ** adjustment is sufficient minor, that it is very difficult to construct |
| 3994 ** a test case where the extra code would improve the query plan. Better |
| 3995 ** to avoid the added complexity and just omit cost adjustments to SKIPSCAN |
| 3996 ** loops. |
| 3997 */ |
| 3998 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ |
| 3999 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; |
| 4000 if( (pTemplate->wsFlags & WHERE_SKIPSCAN)!=0 ) return; |
| 4001 for(; p; p=p->pNextLoop){ |
| 4002 if( p->iTab!=pTemplate->iTab ) continue; |
| 4003 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; |
| 4004 if( (p->wsFlags & WHERE_SKIPSCAN)!=0 ) continue; |
| 4005 if( whereLoopCheaperProperSubset(p, pTemplate) ){ |
| 4006 /* Adjust pTemplate cost downward so that it is cheaper than its |
| 4007 ** subset p */ |
| 4008 pTemplate->rRun = p->rRun; |
| 4009 pTemplate->nOut = p->nOut - 1; |
| 4010 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ |
| 4011 /* Adjust pTemplate cost upward so that it is costlier than p since |
| 4012 ** pTemplate is a proper subset of p */ |
| 4013 pTemplate->rRun = p->rRun; |
| 4014 pTemplate->nOut = p->nOut + 1; |
| 4015 } |
| 4016 } |
| 4017 } |
| 4018 |
| 4019 /* |
| 4020 ** Search the list of WhereLoops in *ppPrev looking for one that can be |
| 4021 ** supplanted by pTemplate. |
| 4022 ** |
| 4023 ** Return NULL if the WhereLoop list contains an entry that can supplant |
| 4024 ** pTemplate, in other words if pTemplate does not belong on the list. |
| 4025 ** |
| 4026 ** If pX is a WhereLoop that pTemplate can supplant, then return the |
| 4027 ** link that points to pX. |
| 4028 ** |
| 4029 ** If pTemplate cannot supplant any existing element of the list but needs |
| 4030 ** to be added to the list, then return a pointer to the tail of the list. |
| 4031 */ |
| 4032 static WhereLoop **whereLoopFindLesser( |
| 4033 WhereLoop **ppPrev, |
| 4034 const WhereLoop *pTemplate |
| 4035 ){ |
| 4036 WhereLoop *p; |
| 4037 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ |
| 4038 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ |
| 4039 /* If either the iTab or iSortIdx values for two WhereLoop are different |
| 4040 ** then those WhereLoops need to be considered separately. Neither is |
| 4041 ** a candidate to replace the other. */ |
| 4042 continue; |
| 4043 } |
| 4044 /* In the current implementation, the rSetup value is either zero |
| 4045 ** or the cost of building an automatic index (NlogN) and the NlogN |
| 4046 ** is the same for compatible WhereLoops. */ |
| 4047 assert( p->rSetup==0 || pTemplate->rSetup==0 |
| 4048 || p->rSetup==pTemplate->rSetup ); |
| 4049 |
| 4050 /* whereLoopAddBtree() always generates and inserts the automatic index |
| 4051 ** case first. Hence compatible candidate WhereLoops never have a larger |
| 4052 ** rSetup. Call this SETUP-INVARIANT */ |
| 4053 assert( p->rSetup>=pTemplate->rSetup ); |
| 4054 |
| 4055 /* Any loop using an appliation-defined index (or PRIMARY KEY or |
| 4056 ** UNIQUE constraint) with one or more == constraints is better |
| 4057 ** than an automatic index. */ |
| 4058 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 |
| 4059 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 |
| 4060 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 |
| 4061 && (p->prereq & pTemplate->prereq)==pTemplate->prereq |
| 4062 ){ |
| 4063 break; |
| 4064 } |
| 4065 |
| 4066 /* If existing WhereLoop p is better than pTemplate, pTemplate can be |
| 4067 ** discarded. WhereLoop p is better if: |
| 4068 ** (1) p has no more dependencies than pTemplate, and |
| 4069 ** (2) p has an equal or lower cost than pTemplate |
| 4070 */ |
| 4071 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ |
| 4072 && p->rSetup<=pTemplate->rSetup /* (2a) */ |
| 4073 && p->rRun<=pTemplate->rRun /* (2b) */ |
| 4074 && p->nOut<=pTemplate->nOut /* (2c) */ |
| 4075 ){ |
| 4076 return 0; /* Discard pTemplate */ |
| 4077 } |
| 4078 |
| 4079 /* If pTemplate is always better than p, then cause p to be overwritten |
| 4080 ** with pTemplate. pTemplate is better than p if: |
| 4081 ** (1) pTemplate has no more dependences than p, and |
| 4082 ** (2) pTemplate has an equal or lower cost than p. |
| 4083 */ |
| 4084 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ |
| 4085 && p->rRun>=pTemplate->rRun /* (2a) */ |
| 4086 && p->nOut>=pTemplate->nOut /* (2b) */ |
| 4087 ){ |
| 4088 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ |
| 4089 break; /* Cause p to be overwritten by pTemplate */ |
| 4090 } |
| 4091 } |
| 4092 return ppPrev; |
| 4093 } |
| 4094 |
| 4095 /* |
| 4096 ** Insert or replace a WhereLoop entry using the template supplied. |
| 4097 ** |
| 4098 ** An existing WhereLoop entry might be overwritten if the new template |
| 4099 ** is better and has fewer dependencies. Or the template will be ignored |
| 4100 ** and no insert will occur if an existing WhereLoop is faster and has |
| 4101 ** fewer dependencies than the template. Otherwise a new WhereLoop is |
| 4102 ** added based on the template. |
| 4103 ** |
| 4104 ** If pBuilder->pOrSet is not NULL then we care about only the |
| 4105 ** prerequisites and rRun and nOut costs of the N best loops. That |
| 4106 ** information is gathered in the pBuilder->pOrSet object. This special |
| 4107 ** processing mode is used only for OR clause processing. |
| 4108 ** |
| 4109 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we |
| 4110 ** still might overwrite similar loops with the new template if the |
| 4111 ** new template is better. Loops may be overwritten if the following |
| 4112 ** conditions are met: |
| 4113 ** |
| 4114 ** (1) They have the same iTab. |
| 4115 ** (2) They have the same iSortIdx. |
| 4116 ** (3) The template has same or fewer dependencies than the current loop |
| 4117 ** (4) The template has the same or lower cost than the current loop |
| 4118 */ |
| 4119 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ |
| 4120 WhereLoop **ppPrev, *p; |
| 4121 WhereInfo *pWInfo = pBuilder->pWInfo; |
| 4122 sqlite3 *db = pWInfo->pParse->db; |
| 4123 |
| 4124 /* If pBuilder->pOrSet is defined, then only keep track of the costs |
| 4125 ** and prereqs. |
| 4126 */ |
| 4127 if( pBuilder->pOrSet!=0 ){ |
| 4128 #if WHERETRACE_ENABLED |
| 4129 u16 n = pBuilder->pOrSet->n; |
| 4130 int x = |
| 4131 #endif |
| 4132 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, |
| 4133 pTemplate->nOut); |
| 4134 #if WHERETRACE_ENABLED /* 0x8 */ |
| 4135 if( sqlite3WhereTrace & 0x8 ){ |
| 4136 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); |
| 4137 whereLoopPrint(pTemplate, pBuilder->pWC); |
| 4138 } |
| 4139 #endif |
| 4140 return SQLITE_OK; |
| 4141 } |
| 4142 |
| 4143 /* Look for an existing WhereLoop to replace with pTemplate |
| 4144 */ |
| 4145 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); |
| 4146 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); |
| 4147 |
| 4148 if( ppPrev==0 ){ |
| 4149 /* There already exists a WhereLoop on the list that is better |
| 4150 ** than pTemplate, so just ignore pTemplate */ |
| 4151 #if WHERETRACE_ENABLED /* 0x8 */ |
| 4152 if( sqlite3WhereTrace & 0x8 ){ |
| 4153 sqlite3DebugPrintf(" skip: "); |
| 4154 whereLoopPrint(pTemplate, pBuilder->pWC); |
| 4155 } |
| 4156 #endif |
| 4157 return SQLITE_OK; |
| 4158 }else{ |
| 4159 p = *ppPrev; |
| 4160 } |
| 4161 |
| 4162 /* If we reach this point it means that either p[] should be overwritten |
| 4163 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new |
| 4164 ** WhereLoop and insert it. |
| 4165 */ |
| 4166 #if WHERETRACE_ENABLED /* 0x8 */ |
| 4167 if( sqlite3WhereTrace & 0x8 ){ |
| 4168 if( p!=0 ){ |
| 4169 sqlite3DebugPrintf("replace: "); |
| 4170 whereLoopPrint(p, pBuilder->pWC); |
| 4171 } |
| 4172 sqlite3DebugPrintf(" add: "); |
| 4173 whereLoopPrint(pTemplate, pBuilder->pWC); |
| 4174 } |
| 4175 #endif |
| 4176 if( p==0 ){ |
| 4177 /* Allocate a new WhereLoop to add to the end of the list */ |
| 4178 *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop)); |
| 4179 if( p==0 ) return SQLITE_NOMEM; |
| 4180 whereLoopInit(p); |
| 4181 p->pNextLoop = 0; |
| 4182 }else{ |
| 4183 /* We will be overwriting WhereLoop p[]. But before we do, first |
| 4184 ** go through the rest of the list and delete any other entries besides |
| 4185 ** p[] that are also supplated by pTemplate */ |
| 4186 WhereLoop **ppTail = &p->pNextLoop; |
| 4187 WhereLoop *pToDel; |
| 4188 while( *ppTail ){ |
| 4189 ppTail = whereLoopFindLesser(ppTail, pTemplate); |
| 4190 if( ppTail==0 ) break; |
| 4191 pToDel = *ppTail; |
| 4192 if( pToDel==0 ) break; |
| 4193 *ppTail = pToDel->pNextLoop; |
| 4194 #if WHERETRACE_ENABLED /* 0x8 */ |
| 4195 if( sqlite3WhereTrace & 0x8 ){ |
| 4196 sqlite3DebugPrintf(" delete: "); |
| 4197 whereLoopPrint(pToDel, pBuilder->pWC); |
| 4198 } |
| 4199 #endif |
| 4200 whereLoopDelete(db, pToDel); |
| 4201 } |
| 4202 } |
| 4203 whereLoopXfer(db, p, pTemplate); |
| 4204 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ |
| 4205 Index *pIndex = p->u.btree.pIndex; |
| 4206 if( pIndex && pIndex->tnum==0 ){ |
| 4207 p->u.btree.pIndex = 0; |
| 4208 } |
| 4209 } |
| 4210 return SQLITE_OK; |
| 4211 } |
| 4212 |
| 4213 /* |
| 4214 ** Adjust the WhereLoop.nOut value downward to account for terms of the |
| 4215 ** WHERE clause that reference the loop but which are not used by an |
| 4216 ** index. |
| 4217 ** |
| 4218 ** In the current implementation, the first extra WHERE clause term reduces |
| 4219 ** the number of output rows by a factor of 10 and each additional term |
| 4220 ** reduces the number of output rows by sqrt(2). |
| 4221 */ |
| 4222 static void whereLoopOutputAdjust( |
| 4223 WhereClause *pWC, /* The WHERE clause */ |
| 4224 WhereLoop *pLoop, /* The loop to adjust downward */ |
| 4225 LogEst nRow /* Number of rows in the entire table */ |
| 4226 ){ |
| 4227 WhereTerm *pTerm, *pX; |
| 4228 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); |
| 4229 int i, j; |
| 4230 int nEq = 0; /* Number of = constraints not within likely()/unlikely() */ |
| 4231 |
| 4232 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ |
| 4233 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; |
| 4234 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; |
| 4235 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; |
| 4236 for(j=pLoop->nLTerm-1; j>=0; j--){ |
| 4237 pX = pLoop->aLTerm[j]; |
| 4238 if( pX==0 ) continue; |
| 4239 if( pX==pTerm ) break; |
| 4240 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; |
| 4241 } |
| 4242 if( j<0 ){ |
| 4243 if( pTerm->truthProb<=0 ){ |
| 4244 pLoop->nOut += pTerm->truthProb; |
| 4245 }else{ |
| 4246 pLoop->nOut--; |
| 4247 if( pTerm->eOperator&WO_EQ ) nEq++; |
| 4248 } |
| 4249 } |
| 4250 } |
| 4251 /* TUNING: If there is at least one equality constraint in the WHERE |
| 4252 ** clause that does not have a likelihood() explicitly assigned to it |
| 4253 ** then do not let the estimated number of output rows exceed half |
| 4254 ** the number of rows in the table. */ |
| 4255 if( nEq && pLoop->nOut>nRow-10 ){ |
| 4256 pLoop->nOut = nRow - 10; |
| 4257 } |
| 4258 } |
| 4259 |
| 4260 /* |
| 4261 ** Adjust the cost C by the costMult facter T. This only occurs if |
| 4262 ** compiled with -DSQLITE_ENABLE_COSTMULT |
| 4263 */ |
| 4264 #ifdef SQLITE_ENABLE_COSTMULT |
| 4265 # define ApplyCostMultiplier(C,T) C += T |
| 4266 #else |
| 4267 # define ApplyCostMultiplier(C,T) |
| 4268 #endif |
| 4269 |
| 4270 /* |
| 4271 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the |
| 4272 ** index pIndex. Try to match one more. |
| 4273 ** |
| 4274 ** When this function is called, pBuilder->pNew->nOut contains the |
| 4275 ** number of rows expected to be visited by filtering using the nEq |
| 4276 ** terms only. If it is modified, this value is restored before this |
| 4277 ** function returns. |
| 4278 ** |
| 4279 ** If pProbe->tnum==0, that means pIndex is a fake index used for the |
| 4280 ** INTEGER PRIMARY KEY. |
| 4281 */ |
| 4282 static int whereLoopAddBtreeIndex( |
| 4283 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ |
| 4284 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ |
| 4285 Index *pProbe, /* An index on pSrc */ |
| 4286 LogEst nInMul /* log(Number of iterations due to IN) */ |
| 4287 ){ |
| 4288 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ |
| 4289 Parse *pParse = pWInfo->pParse; /* Parsing context */ |
| 4290 sqlite3 *db = pParse->db; /* Database connection malloc context */ |
| 4291 WhereLoop *pNew; /* Template WhereLoop under construction */ |
| 4292 WhereTerm *pTerm; /* A WhereTerm under consideration */ |
| 4293 int opMask; /* Valid operators for constraints */ |
| 4294 WhereScan scan; /* Iterator for WHERE terms */ |
| 4295 Bitmask saved_prereq; /* Original value of pNew->prereq */ |
| 4296 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ |
| 4297 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ |
| 4298 u16 saved_nSkip; /* Original value of pNew->u.btree.nSkip */ |
| 4299 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ |
| 4300 LogEst saved_nOut; /* Original value of pNew->nOut */ |
| 4301 int iCol; /* Index of the column in the table */ |
| 4302 int rc = SQLITE_OK; /* Return code */ |
| 4303 LogEst rSize; /* Number of rows in the table */ |
| 4304 LogEst rLogSize; /* Logarithm of table size */ |
| 4305 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ |
| 4306 |
| 4307 pNew = pBuilder->pNew; |
| 4308 if( db->mallocFailed ) return SQLITE_NOMEM; |
| 4309 |
| 4310 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); |
| 4311 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); |
| 4312 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ |
| 4313 opMask = WO_LT|WO_LE; |
| 4314 }else if( pProbe->tnum<=0 || (pSrc->jointype & JT_LEFT)!=0 ){ |
| 4315 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE; |
| 4316 }else{ |
| 4317 opMask = WO_EQ|WO_IN|WO_ISNULL|WO_GT|WO_GE|WO_LT|WO_LE; |
| 4318 } |
| 4319 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); |
| 4320 |
| 4321 assert( pNew->u.btree.nEq<pProbe->nColumn ); |
| 4322 iCol = pProbe->aiColumn[pNew->u.btree.nEq]; |
| 4323 |
| 4324 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol, |
| 4325 opMask, pProbe); |
| 4326 saved_nEq = pNew->u.btree.nEq; |
| 4327 saved_nSkip = pNew->u.btree.nSkip; |
| 4328 saved_nLTerm = pNew->nLTerm; |
| 4329 saved_wsFlags = pNew->wsFlags; |
| 4330 saved_prereq = pNew->prereq; |
| 4331 saved_nOut = pNew->nOut; |
| 4332 pNew->rSetup = 0; |
| 4333 rSize = pProbe->aiRowLogEst[0]; |
| 4334 rLogSize = estLog(rSize); |
| 4335 |
| 4336 /* Consider using a skip-scan if there are no WHERE clause constraints |
| 4337 ** available for the left-most terms of the index, and if the average |
| 4338 ** number of repeats in the left-most terms is at least 18. |
| 4339 ** |
| 4340 ** The magic number 18 is selected on the basis that scanning 17 rows |
| 4341 ** is almost always quicker than an index seek (even though if the index |
| 4342 ** contains fewer than 2^17 rows we assume otherwise in other parts of |
| 4343 ** the code). And, even if it is not, it should not be too much slower. |
| 4344 ** On the other hand, the extra seeks could end up being significantly |
| 4345 ** more expensive. */ |
| 4346 assert( 42==sqlite3LogEst(18) ); |
| 4347 if( saved_nEq==saved_nSkip |
| 4348 && saved_nEq+1<pProbe->nKeyCol |
| 4349 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ |
| 4350 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK |
| 4351 ){ |
| 4352 LogEst nIter; |
| 4353 pNew->u.btree.nEq++; |
| 4354 pNew->u.btree.nSkip++; |
| 4355 pNew->aLTerm[pNew->nLTerm++] = 0; |
| 4356 pNew->wsFlags |= WHERE_SKIPSCAN; |
| 4357 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; |
| 4358 if( pTerm ){ |
| 4359 /* TUNING: When estimating skip-scan for a term that is also indexable, |
| 4360 ** multiply the cost of the skip-scan by 2.0, to make it a little less |
| 4361 ** desirable than the regular index lookup. */ |
| 4362 nIter += 10; assert( 10==sqlite3LogEst(2) ); |
| 4363 } |
| 4364 pNew->nOut -= nIter; |
| 4365 /* TUNING: Because uncertainties in the estimates for skip-scan queries, |
| 4366 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ |
| 4367 nIter += 5; |
| 4368 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); |
| 4369 pNew->nOut = saved_nOut; |
| 4370 pNew->u.btree.nEq = saved_nEq; |
| 4371 pNew->u.btree.nSkip = saved_nSkip; |
| 4372 } |
| 4373 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ |
| 4374 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ |
| 4375 LogEst rCostIdx; |
| 4376 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ |
| 4377 int nIn = 0; |
| 4378 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 4379 int nRecValid = pBuilder->nRecValid; |
| 4380 #endif |
| 4381 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) |
| 4382 && (iCol<0 || pSrc->pTab->aCol[iCol].notNull) |
| 4383 ){ |
| 4384 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ |
| 4385 } |
| 4386 if( pTerm->prereqRight & pNew->maskSelf ) continue; |
| 4387 |
| 4388 pNew->wsFlags = saved_wsFlags; |
| 4389 pNew->u.btree.nEq = saved_nEq; |
| 4390 pNew->nLTerm = saved_nLTerm; |
| 4391 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ |
| 4392 pNew->aLTerm[pNew->nLTerm++] = pTerm; |
| 4393 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; |
| 4394 |
| 4395 assert( nInMul==0 |
| 4396 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 |
| 4397 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 |
| 4398 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 |
| 4399 ); |
| 4400 |
| 4401 if( eOp & WO_IN ){ |
| 4402 Expr *pExpr = pTerm->pExpr; |
| 4403 pNew->wsFlags |= WHERE_COLUMN_IN; |
| 4404 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
| 4405 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ |
| 4406 nIn = 46; assert( 46==sqlite3LogEst(25) ); |
| 4407 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ |
| 4408 /* "x IN (value, value, ...)" */ |
| 4409 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); |
| 4410 } |
| 4411 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser |
| 4412 ** changes "x IN (?)" into "x=?". */ |
| 4413 |
| 4414 }else if( eOp & (WO_EQ) ){ |
| 4415 pNew->wsFlags |= WHERE_COLUMN_EQ; |
| 4416 if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){ |
| 4417 if( iCol>=0 && !IsUniqueIndex(pProbe) ){ |
| 4418 pNew->wsFlags |= WHERE_UNQ_WANTED; |
| 4419 }else{ |
| 4420 pNew->wsFlags |= WHERE_ONEROW; |
| 4421 } |
| 4422 } |
| 4423 }else if( eOp & WO_ISNULL ){ |
| 4424 pNew->wsFlags |= WHERE_COLUMN_NULL; |
| 4425 }else if( eOp & (WO_GT|WO_GE) ){ |
| 4426 testcase( eOp & WO_GT ); |
| 4427 testcase( eOp & WO_GE ); |
| 4428 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; |
| 4429 pBtm = pTerm; |
| 4430 pTop = 0; |
| 4431 }else{ |
| 4432 assert( eOp & (WO_LT|WO_LE) ); |
| 4433 testcase( eOp & WO_LT ); |
| 4434 testcase( eOp & WO_LE ); |
| 4435 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; |
| 4436 pTop = pTerm; |
| 4437 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? |
| 4438 pNew->aLTerm[pNew->nLTerm-2] : 0; |
| 4439 } |
| 4440 |
| 4441 /* At this point pNew->nOut is set to the number of rows expected to |
| 4442 ** be visited by the index scan before considering term pTerm, or the |
| 4443 ** values of nIn and nInMul. In other words, assuming that all |
| 4444 ** "x IN(...)" terms are replaced with "x = ?". This block updates |
| 4445 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ |
| 4446 assert( pNew->nOut==saved_nOut ); |
| 4447 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ |
| 4448 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 |
| 4449 ** data, using some other estimate. */ |
| 4450 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); |
| 4451 }else{ |
| 4452 int nEq = ++pNew->u.btree.nEq; |
| 4453 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN) ); |
| 4454 |
| 4455 assert( pNew->nOut==saved_nOut ); |
| 4456 if( pTerm->truthProb<=0 && iCol>=0 ){ |
| 4457 assert( (eOp & WO_IN) || nIn==0 ); |
| 4458 testcase( eOp & WO_IN ); |
| 4459 pNew->nOut += pTerm->truthProb; |
| 4460 pNew->nOut -= nIn; |
| 4461 }else{ |
| 4462 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 4463 tRowcnt nOut = 0; |
| 4464 if( nInMul==0 |
| 4465 && pProbe->nSample |
| 4466 && pNew->u.btree.nEq<=pProbe->nSampleCol |
| 4467 && OptimizationEnabled(db, SQLITE_Stat3) |
| 4468 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) |
| 4469 ){ |
| 4470 Expr *pExpr = pTerm->pExpr; |
| 4471 if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){ |
| 4472 testcase( eOp & WO_EQ ); |
| 4473 testcase( eOp & WO_ISNULL ); |
| 4474 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); |
| 4475 }else{ |
| 4476 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); |
| 4477 } |
| 4478 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; |
| 4479 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ |
| 4480 if( nOut ){ |
| 4481 pNew->nOut = sqlite3LogEst(nOut); |
| 4482 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; |
| 4483 pNew->nOut -= nIn; |
| 4484 } |
| 4485 } |
| 4486 if( nOut==0 ) |
| 4487 #endif |
| 4488 { |
| 4489 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); |
| 4490 if( eOp & WO_ISNULL ){ |
| 4491 /* TUNING: If there is no likelihood() value, assume that a |
| 4492 ** "col IS NULL" expression matches twice as many rows |
| 4493 ** as (col=?). */ |
| 4494 pNew->nOut += 10; |
| 4495 } |
| 4496 } |
| 4497 } |
| 4498 } |
| 4499 |
| 4500 /* Set rCostIdx to the cost of visiting selected rows in index. Add |
| 4501 ** it to pNew->rRun, which is currently set to the cost of the index |
| 4502 ** seek only. Then, if this is a non-covering index, add the cost of |
| 4503 ** visiting the rows in the main table. */ |
| 4504 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; |
| 4505 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); |
| 4506 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ |
| 4507 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); |
| 4508 } |
| 4509 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); |
| 4510 |
| 4511 nOutUnadjusted = pNew->nOut; |
| 4512 pNew->rRun += nInMul + nIn; |
| 4513 pNew->nOut += nInMul + nIn; |
| 4514 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); |
| 4515 rc = whereLoopInsert(pBuilder, pNew); |
| 4516 |
| 4517 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ |
| 4518 pNew->nOut = saved_nOut; |
| 4519 }else{ |
| 4520 pNew->nOut = nOutUnadjusted; |
| 4521 } |
| 4522 |
| 4523 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 |
| 4524 && pNew->u.btree.nEq<pProbe->nColumn |
| 4525 ){ |
| 4526 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); |
| 4527 } |
| 4528 pNew->nOut = saved_nOut; |
| 4529 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 4530 pBuilder->nRecValid = nRecValid; |
| 4531 #endif |
| 4532 } |
| 4533 pNew->prereq = saved_prereq; |
| 4534 pNew->u.btree.nEq = saved_nEq; |
| 4535 pNew->u.btree.nSkip = saved_nSkip; |
| 4536 pNew->wsFlags = saved_wsFlags; |
| 4537 pNew->nOut = saved_nOut; |
| 4538 pNew->nLTerm = saved_nLTerm; |
| 4539 return rc; |
| 4540 } |
| 4541 |
| 4542 /* |
| 4543 ** Return True if it is possible that pIndex might be useful in |
| 4544 ** implementing the ORDER BY clause in pBuilder. |
| 4545 ** |
| 4546 ** Return False if pBuilder does not contain an ORDER BY clause or |
| 4547 ** if there is no way for pIndex to be useful in implementing that |
| 4548 ** ORDER BY clause. |
| 4549 */ |
| 4550 static int indexMightHelpWithOrderBy( |
| 4551 WhereLoopBuilder *pBuilder, |
| 4552 Index *pIndex, |
| 4553 int iCursor |
| 4554 ){ |
| 4555 ExprList *pOB; |
| 4556 int ii, jj; |
| 4557 |
| 4558 if( pIndex->bUnordered ) return 0; |
| 4559 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; |
| 4560 for(ii=0; ii<pOB->nExpr; ii++){ |
| 4561 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); |
| 4562 if( pExpr->op!=TK_COLUMN ) return 0; |
| 4563 if( pExpr->iTable==iCursor ){ |
| 4564 if( pExpr->iColumn<0 ) return 1; |
| 4565 for(jj=0; jj<pIndex->nKeyCol; jj++){ |
| 4566 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; |
| 4567 } |
| 4568 } |
| 4569 } |
| 4570 return 0; |
| 4571 } |
| 4572 |
| 4573 /* |
| 4574 ** Return a bitmask where 1s indicate that the corresponding column of |
| 4575 ** the table is used by an index. Only the first 63 columns are considered. |
| 4576 */ |
| 4577 static Bitmask columnsInIndex(Index *pIdx){ |
| 4578 Bitmask m = 0; |
| 4579 int j; |
| 4580 for(j=pIdx->nColumn-1; j>=0; j--){ |
| 4581 int x = pIdx->aiColumn[j]; |
| 4582 if( x>=0 ){ |
| 4583 testcase( x==BMS-1 ); |
| 4584 testcase( x==BMS-2 ); |
| 4585 if( x<BMS-1 ) m |= MASKBIT(x); |
| 4586 } |
| 4587 } |
| 4588 return m; |
| 4589 } |
| 4590 |
| 4591 /* Check to see if a partial index with pPartIndexWhere can be used |
| 4592 ** in the current query. Return true if it can be and false if not. |
| 4593 */ |
| 4594 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ |
| 4595 int i; |
| 4596 WhereTerm *pTerm; |
| 4597 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
| 4598 if( sqlite3ExprImpliesExpr(pTerm->pExpr, pWhere, iTab) ) return 1; |
| 4599 } |
| 4600 return 0; |
| 4601 } |
| 4602 |
| 4603 /* |
| 4604 ** Add all WhereLoop objects for a single table of the join where the table |
| 4605 ** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be |
| 4606 ** a b-tree table, not a virtual table. |
| 4607 ** |
| 4608 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function |
| 4609 ** are calculated as follows: |
| 4610 ** |
| 4611 ** For a full scan, assuming the table (or index) contains nRow rows: |
| 4612 ** |
| 4613 ** cost = nRow * 3.0 // full-table scan |
| 4614 ** cost = nRow * K // scan of covering index |
| 4615 ** cost = nRow * (K+3.0) // scan of non-covering index |
| 4616 ** |
| 4617 ** where K is a value between 1.1 and 3.0 set based on the relative |
| 4618 ** estimated average size of the index and table records. |
| 4619 ** |
| 4620 ** For an index scan, where nVisit is the number of index rows visited |
| 4621 ** by the scan, and nSeek is the number of seek operations required on |
| 4622 ** the index b-tree: |
| 4623 ** |
| 4624 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index |
| 4625 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index |
| 4626 ** |
| 4627 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the |
| 4628 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when |
| 4629 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. |
| 4630 ** |
| 4631 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount |
| 4632 ** of uncertainty. For this reason, scoring is designed to pick plans that |
| 4633 ** "do the least harm" if the estimates are inaccurate. For example, a |
| 4634 ** log(nRow) factor is omitted from a non-covering index scan in order to |
| 4635 ** bias the scoring in favor of using an index, since the worst-case |
| 4636 ** performance of using an index is far better than the worst-case performance |
| 4637 ** of a full table scan. |
| 4638 */ |
| 4639 static int whereLoopAddBtree( |
| 4640 WhereLoopBuilder *pBuilder, /* WHERE clause information */ |
| 4641 Bitmask mExtra /* Extra prerequesites for using this table */ |
| 4642 ){ |
| 4643 WhereInfo *pWInfo; /* WHERE analysis context */ |
| 4644 Index *pProbe; /* An index we are evaluating */ |
| 4645 Index sPk; /* A fake index object for the primary key */ |
| 4646 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ |
| 4647 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ |
| 4648 SrcList *pTabList; /* The FROM clause */ |
| 4649 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ |
| 4650 WhereLoop *pNew; /* Template WhereLoop object */ |
| 4651 int rc = SQLITE_OK; /* Return code */ |
| 4652 int iSortIdx = 1; /* Index number */ |
| 4653 int b; /* A boolean value */ |
| 4654 LogEst rSize; /* number of rows in the table */ |
| 4655 LogEst rLogSize; /* Logarithm of the number of rows in the table */ |
| 4656 WhereClause *pWC; /* The parsed WHERE clause */ |
| 4657 Table *pTab; /* Table being queried */ |
| 4658 |
| 4659 pNew = pBuilder->pNew; |
| 4660 pWInfo = pBuilder->pWInfo; |
| 4661 pTabList = pWInfo->pTabList; |
| 4662 pSrc = pTabList->a + pNew->iTab; |
| 4663 pTab = pSrc->pTab; |
| 4664 pWC = pBuilder->pWC; |
| 4665 assert( !IsVirtual(pSrc->pTab) ); |
| 4666 |
| 4667 if( pSrc->pIndex ){ |
| 4668 /* An INDEXED BY clause specifies a particular index to use */ |
| 4669 pProbe = pSrc->pIndex; |
| 4670 }else if( !HasRowid(pTab) ){ |
| 4671 pProbe = pTab->pIndex; |
| 4672 }else{ |
| 4673 /* There is no INDEXED BY clause. Create a fake Index object in local |
| 4674 ** variable sPk to represent the rowid primary key index. Make this |
| 4675 ** fake index the first in a chain of Index objects with all of the real |
| 4676 ** indices to follow */ |
| 4677 Index *pFirst; /* First of real indices on the table */ |
| 4678 memset(&sPk, 0, sizeof(Index)); |
| 4679 sPk.nKeyCol = 1; |
| 4680 sPk.nColumn = 1; |
| 4681 sPk.aiColumn = &aiColumnPk; |
| 4682 sPk.aiRowLogEst = aiRowEstPk; |
| 4683 sPk.onError = OE_Replace; |
| 4684 sPk.pTable = pTab; |
| 4685 sPk.szIdxRow = pTab->szTabRow; |
| 4686 aiRowEstPk[0] = pTab->nRowLogEst; |
| 4687 aiRowEstPk[1] = 0; |
| 4688 pFirst = pSrc->pTab->pIndex; |
| 4689 if( pSrc->notIndexed==0 ){ |
| 4690 /* The real indices of the table are only considered if the |
| 4691 ** NOT INDEXED qualifier is omitted from the FROM clause */ |
| 4692 sPk.pNext = pFirst; |
| 4693 } |
| 4694 pProbe = &sPk; |
| 4695 } |
| 4696 rSize = pTab->nRowLogEst; |
| 4697 rLogSize = estLog(rSize); |
| 4698 |
| 4699 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
| 4700 /* Automatic indexes */ |
| 4701 if( !pBuilder->pOrSet |
| 4702 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 |
| 4703 && pSrc->pIndex==0 |
| 4704 && !pSrc->viaCoroutine |
| 4705 && !pSrc->notIndexed |
| 4706 && HasRowid(pTab) |
| 4707 && !pSrc->isCorrelated |
| 4708 && !pSrc->isRecursive |
| 4709 ){ |
| 4710 /* Generate auto-index WhereLoops */ |
| 4711 WhereTerm *pTerm; |
| 4712 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; |
| 4713 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ |
| 4714 if( pTerm->prereqRight & pNew->maskSelf ) continue; |
| 4715 if( termCanDriveIndex(pTerm, pSrc, 0) ){ |
| 4716 pNew->u.btree.nEq = 1; |
| 4717 pNew->u.btree.nSkip = 0; |
| 4718 pNew->u.btree.pIndex = 0; |
| 4719 pNew->nLTerm = 1; |
| 4720 pNew->aLTerm[0] = pTerm; |
| 4721 /* TUNING: One-time cost for computing the automatic index is |
| 4722 ** estimated to be X*N*log2(N) where N is the number of rows in |
| 4723 ** the table being indexed and where X is 7 (LogEst=28) for normal |
| 4724 ** tables or 1.375 (LogEst=4) for views and subqueries. The value |
| 4725 ** of X is smaller for views and subqueries so that the query planner |
| 4726 ** will be more aggressive about generating automatic indexes for |
| 4727 ** those objects, since there is no opportunity to add schema |
| 4728 ** indexes on subqueries and views. */ |
| 4729 pNew->rSetup = rLogSize + rSize + 4; |
| 4730 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ |
| 4731 pNew->rSetup += 24; |
| 4732 } |
| 4733 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); |
| 4734 /* TUNING: Each index lookup yields 20 rows in the table. This |
| 4735 ** is more than the usual guess of 10 rows, since we have no way |
| 4736 ** of knowing how selective the index will ultimately be. It would |
| 4737 ** not be unreasonable to make this value much larger. */ |
| 4738 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); |
| 4739 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); |
| 4740 pNew->wsFlags = WHERE_AUTO_INDEX; |
| 4741 pNew->prereq = mExtra | pTerm->prereqRight; |
| 4742 rc = whereLoopInsert(pBuilder, pNew); |
| 4743 } |
| 4744 } |
| 4745 } |
| 4746 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ |
| 4747 |
| 4748 /* Loop over all indices |
| 4749 */ |
| 4750 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ |
| 4751 if( pProbe->pPartIdxWhere!=0 |
| 4752 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ |
| 4753 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ |
| 4754 continue; /* Partial index inappropriate for this query */ |
| 4755 } |
| 4756 rSize = pProbe->aiRowLogEst[0]; |
| 4757 pNew->u.btree.nEq = 0; |
| 4758 pNew->u.btree.nSkip = 0; |
| 4759 pNew->nLTerm = 0; |
| 4760 pNew->iSortIdx = 0; |
| 4761 pNew->rSetup = 0; |
| 4762 pNew->prereq = mExtra; |
| 4763 pNew->nOut = rSize; |
| 4764 pNew->u.btree.pIndex = pProbe; |
| 4765 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); |
| 4766 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ |
| 4767 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); |
| 4768 if( pProbe->tnum<=0 ){ |
| 4769 /* Integer primary key index */ |
| 4770 pNew->wsFlags = WHERE_IPK; |
| 4771 |
| 4772 /* Full table scan */ |
| 4773 pNew->iSortIdx = b ? iSortIdx : 0; |
| 4774 /* TUNING: Cost of full table scan is (N*3.0). */ |
| 4775 pNew->rRun = rSize + 16; |
| 4776 ApplyCostMultiplier(pNew->rRun, pTab->costMult); |
| 4777 whereLoopOutputAdjust(pWC, pNew, rSize); |
| 4778 rc = whereLoopInsert(pBuilder, pNew); |
| 4779 pNew->nOut = rSize; |
| 4780 if( rc ) break; |
| 4781 }else{ |
| 4782 Bitmask m; |
| 4783 if( pProbe->isCovering ){ |
| 4784 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; |
| 4785 m = 0; |
| 4786 }else{ |
| 4787 m = pSrc->colUsed & ~columnsInIndex(pProbe); |
| 4788 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; |
| 4789 } |
| 4790 |
| 4791 /* Full scan via index */ |
| 4792 if( b |
| 4793 || !HasRowid(pTab) |
| 4794 || ( m==0 |
| 4795 && pProbe->bUnordered==0 |
| 4796 && (pProbe->szIdxRow<pTab->szTabRow) |
| 4797 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 |
| 4798 && sqlite3GlobalConfig.bUseCis |
| 4799 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) |
| 4800 ) |
| 4801 ){ |
| 4802 pNew->iSortIdx = b ? iSortIdx : 0; |
| 4803 |
| 4804 /* The cost of visiting the index rows is N*K, where K is |
| 4805 ** between 1.1 and 3.0, depending on the relative sizes of the |
| 4806 ** index and table rows. If this is a non-covering index scan, |
| 4807 ** also add the cost of visiting table rows (N*3.0). */ |
| 4808 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; |
| 4809 if( m!=0 ){ |
| 4810 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16); |
| 4811 } |
| 4812 ApplyCostMultiplier(pNew->rRun, pTab->costMult); |
| 4813 whereLoopOutputAdjust(pWC, pNew, rSize); |
| 4814 rc = whereLoopInsert(pBuilder, pNew); |
| 4815 pNew->nOut = rSize; |
| 4816 if( rc ) break; |
| 4817 } |
| 4818 } |
| 4819 |
| 4820 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); |
| 4821 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 4822 sqlite3Stat4ProbeFree(pBuilder->pRec); |
| 4823 pBuilder->nRecValid = 0; |
| 4824 pBuilder->pRec = 0; |
| 4825 #endif |
| 4826 |
| 4827 /* If there was an INDEXED BY clause, then only that one index is |
| 4828 ** considered. */ |
| 4829 if( pSrc->pIndex ) break; |
| 4830 } |
| 4831 return rc; |
| 4832 } |
| 4833 |
| 4834 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 4835 /* |
| 4836 ** Add all WhereLoop objects for a table of the join identified by |
| 4837 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. |
| 4838 */ |
| 4839 static int whereLoopAddVirtual( |
| 4840 WhereLoopBuilder *pBuilder, /* WHERE clause information */ |
| 4841 Bitmask mExtra |
| 4842 ){ |
| 4843 WhereInfo *pWInfo; /* WHERE analysis context */ |
| 4844 Parse *pParse; /* The parsing context */ |
| 4845 WhereClause *pWC; /* The WHERE clause */ |
| 4846 struct SrcList_item *pSrc; /* The FROM clause term to search */ |
| 4847 Table *pTab; |
| 4848 sqlite3 *db; |
| 4849 sqlite3_index_info *pIdxInfo; |
| 4850 struct sqlite3_index_constraint *pIdxCons; |
| 4851 struct sqlite3_index_constraint_usage *pUsage; |
| 4852 WhereTerm *pTerm; |
| 4853 int i, j; |
| 4854 int iTerm, mxTerm; |
| 4855 int nConstraint; |
| 4856 int seenIn = 0; /* True if an IN operator is seen */ |
| 4857 int seenVar = 0; /* True if a non-constant constraint is seen */ |
| 4858 int iPhase; /* 0: const w/o IN, 1: const, 2: no IN, 2: IN */ |
| 4859 WhereLoop *pNew; |
| 4860 int rc = SQLITE_OK; |
| 4861 |
| 4862 pWInfo = pBuilder->pWInfo; |
| 4863 pParse = pWInfo->pParse; |
| 4864 db = pParse->db; |
| 4865 pWC = pBuilder->pWC; |
| 4866 pNew = pBuilder->pNew; |
| 4867 pSrc = &pWInfo->pTabList->a[pNew->iTab]; |
| 4868 pTab = pSrc->pTab; |
| 4869 assert( IsVirtual(pTab) ); |
| 4870 pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pBuilder->pOrderBy); |
| 4871 if( pIdxInfo==0 ) return SQLITE_NOMEM; |
| 4872 pNew->prereq = 0; |
| 4873 pNew->rSetup = 0; |
| 4874 pNew->wsFlags = WHERE_VIRTUALTABLE; |
| 4875 pNew->nLTerm = 0; |
| 4876 pNew->u.vtab.needFree = 0; |
| 4877 pUsage = pIdxInfo->aConstraintUsage; |
| 4878 nConstraint = pIdxInfo->nConstraint; |
| 4879 if( whereLoopResize(db, pNew, nConstraint) ){ |
| 4880 sqlite3DbFree(db, pIdxInfo); |
| 4881 return SQLITE_NOMEM; |
| 4882 } |
| 4883 |
| 4884 for(iPhase=0; iPhase<=3; iPhase++){ |
| 4885 if( !seenIn && (iPhase&1)!=0 ){ |
| 4886 iPhase++; |
| 4887 if( iPhase>3 ) break; |
| 4888 } |
| 4889 if( !seenVar && iPhase>1 ) break; |
| 4890 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
| 4891 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ |
| 4892 j = pIdxCons->iTermOffset; |
| 4893 pTerm = &pWC->a[j]; |
| 4894 switch( iPhase ){ |
| 4895 case 0: /* Constants without IN operator */ |
| 4896 pIdxCons->usable = 0; |
| 4897 if( (pTerm->eOperator & WO_IN)!=0 ){ |
| 4898 seenIn = 1; |
| 4899 } |
| 4900 if( pTerm->prereqRight!=0 ){ |
| 4901 seenVar = 1; |
| 4902 }else if( (pTerm->eOperator & WO_IN)==0 ){ |
| 4903 pIdxCons->usable = 1; |
| 4904 } |
| 4905 break; |
| 4906 case 1: /* Constants with IN operators */ |
| 4907 assert( seenIn ); |
| 4908 pIdxCons->usable = (pTerm->prereqRight==0); |
| 4909 break; |
| 4910 case 2: /* Variables without IN */ |
| 4911 assert( seenVar ); |
| 4912 pIdxCons->usable = (pTerm->eOperator & WO_IN)==0; |
| 4913 break; |
| 4914 default: /* Variables with IN */ |
| 4915 assert( seenVar && seenIn ); |
| 4916 pIdxCons->usable = 1; |
| 4917 break; |
| 4918 } |
| 4919 } |
| 4920 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); |
| 4921 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); |
| 4922 pIdxInfo->idxStr = 0; |
| 4923 pIdxInfo->idxNum = 0; |
| 4924 pIdxInfo->needToFreeIdxStr = 0; |
| 4925 pIdxInfo->orderByConsumed = 0; |
| 4926 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; |
| 4927 pIdxInfo->estimatedRows = 25; |
| 4928 rc = vtabBestIndex(pParse, pTab, pIdxInfo); |
| 4929 if( rc ) goto whereLoopAddVtab_exit; |
| 4930 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
| 4931 pNew->prereq = mExtra; |
| 4932 mxTerm = -1; |
| 4933 assert( pNew->nLSlot>=nConstraint ); |
| 4934 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; |
| 4935 pNew->u.vtab.omitMask = 0; |
| 4936 for(i=0; i<nConstraint; i++, pIdxCons++){ |
| 4937 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ |
| 4938 j = pIdxCons->iTermOffset; |
| 4939 if( iTerm>=nConstraint |
| 4940 || j<0 |
| 4941 || j>=pWC->nTerm |
| 4942 || pNew->aLTerm[iTerm]!=0 |
| 4943 ){ |
| 4944 rc = SQLITE_ERROR; |
| 4945 sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName); |
| 4946 goto whereLoopAddVtab_exit; |
| 4947 } |
| 4948 testcase( iTerm==nConstraint-1 ); |
| 4949 testcase( j==0 ); |
| 4950 testcase( j==pWC->nTerm-1 ); |
| 4951 pTerm = &pWC->a[j]; |
| 4952 pNew->prereq |= pTerm->prereqRight; |
| 4953 assert( iTerm<pNew->nLSlot ); |
| 4954 pNew->aLTerm[iTerm] = pTerm; |
| 4955 if( iTerm>mxTerm ) mxTerm = iTerm; |
| 4956 testcase( iTerm==15 ); |
| 4957 testcase( iTerm==16 ); |
| 4958 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; |
| 4959 if( (pTerm->eOperator & WO_IN)!=0 ){ |
| 4960 if( pUsage[i].omit==0 ){ |
| 4961 /* Do not attempt to use an IN constraint if the virtual table |
| 4962 ** says that the equivalent EQ constraint cannot be safely omitted. |
| 4963 ** If we do attempt to use such a constraint, some rows might be |
| 4964 ** repeated in the output. */ |
| 4965 break; |
| 4966 } |
| 4967 /* A virtual table that is constrained by an IN clause may not |
| 4968 ** consume the ORDER BY clause because (1) the order of IN terms |
| 4969 ** is not necessarily related to the order of output terms and |
| 4970 ** (2) Multiple outputs from a single IN value will not merge |
| 4971 ** together. */ |
| 4972 pIdxInfo->orderByConsumed = 0; |
| 4973 } |
| 4974 } |
| 4975 } |
| 4976 if( i>=nConstraint ){ |
| 4977 pNew->nLTerm = mxTerm+1; |
| 4978 assert( pNew->nLTerm<=pNew->nLSlot ); |
| 4979 pNew->u.vtab.idxNum = pIdxInfo->idxNum; |
| 4980 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; |
| 4981 pIdxInfo->needToFreeIdxStr = 0; |
| 4982 pNew->u.vtab.idxStr = pIdxInfo->idxStr; |
| 4983 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? |
| 4984 pIdxInfo->nOrderBy : 0); |
| 4985 pNew->rSetup = 0; |
| 4986 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); |
| 4987 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); |
| 4988 whereLoopInsert(pBuilder, pNew); |
| 4989 if( pNew->u.vtab.needFree ){ |
| 4990 sqlite3_free(pNew->u.vtab.idxStr); |
| 4991 pNew->u.vtab.needFree = 0; |
| 4992 } |
| 4993 } |
| 4994 } |
| 4995 |
| 4996 whereLoopAddVtab_exit: |
| 4997 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); |
| 4998 sqlite3DbFree(db, pIdxInfo); |
| 4999 return rc; |
| 5000 } |
| 5001 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 5002 |
| 5003 /* |
| 5004 ** Add WhereLoop entries to handle OR terms. This works for either |
| 5005 ** btrees or virtual tables. |
| 5006 */ |
| 5007 static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){ |
| 5008 WhereInfo *pWInfo = pBuilder->pWInfo; |
| 5009 WhereClause *pWC; |
| 5010 WhereLoop *pNew; |
| 5011 WhereTerm *pTerm, *pWCEnd; |
| 5012 int rc = SQLITE_OK; |
| 5013 int iCur; |
| 5014 WhereClause tempWC; |
| 5015 WhereLoopBuilder sSubBuild; |
| 5016 WhereOrSet sSum, sCur; |
| 5017 struct SrcList_item *pItem; |
| 5018 |
| 5019 pWC = pBuilder->pWC; |
| 5020 pWCEnd = pWC->a + pWC->nTerm; |
| 5021 pNew = pBuilder->pNew; |
| 5022 memset(&sSum, 0, sizeof(sSum)); |
| 5023 pItem = pWInfo->pTabList->a + pNew->iTab; |
| 5024 iCur = pItem->iCursor; |
| 5025 |
| 5026 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ |
| 5027 if( (pTerm->eOperator & WO_OR)!=0 |
| 5028 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 |
| 5029 ){ |
| 5030 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; |
| 5031 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; |
| 5032 WhereTerm *pOrTerm; |
| 5033 int once = 1; |
| 5034 int i, j; |
| 5035 |
| 5036 sSubBuild = *pBuilder; |
| 5037 sSubBuild.pOrderBy = 0; |
| 5038 sSubBuild.pOrSet = &sCur; |
| 5039 |
| 5040 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); |
| 5041 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ |
| 5042 if( (pOrTerm->eOperator & WO_AND)!=0 ){ |
| 5043 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; |
| 5044 }else if( pOrTerm->leftCursor==iCur ){ |
| 5045 tempWC.pWInfo = pWC->pWInfo; |
| 5046 tempWC.pOuter = pWC; |
| 5047 tempWC.op = TK_AND; |
| 5048 tempWC.nTerm = 1; |
| 5049 tempWC.a = pOrTerm; |
| 5050 sSubBuild.pWC = &tempWC; |
| 5051 }else{ |
| 5052 continue; |
| 5053 } |
| 5054 sCur.n = 0; |
| 5055 #ifdef WHERETRACE_ENABLED |
| 5056 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", |
| 5057 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); |
| 5058 if( sqlite3WhereTrace & 0x400 ){ |
| 5059 for(i=0; i<sSubBuild.pWC->nTerm; i++){ |
| 5060 whereTermPrint(&sSubBuild.pWC->a[i], i); |
| 5061 } |
| 5062 } |
| 5063 #endif |
| 5064 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 5065 if( IsVirtual(pItem->pTab) ){ |
| 5066 rc = whereLoopAddVirtual(&sSubBuild, mExtra); |
| 5067 }else |
| 5068 #endif |
| 5069 { |
| 5070 rc = whereLoopAddBtree(&sSubBuild, mExtra); |
| 5071 } |
| 5072 if( rc==SQLITE_OK ){ |
| 5073 rc = whereLoopAddOr(&sSubBuild, mExtra); |
| 5074 } |
| 5075 assert( rc==SQLITE_OK || sCur.n==0 ); |
| 5076 if( sCur.n==0 ){ |
| 5077 sSum.n = 0; |
| 5078 break; |
| 5079 }else if( once ){ |
| 5080 whereOrMove(&sSum, &sCur); |
| 5081 once = 0; |
| 5082 }else{ |
| 5083 WhereOrSet sPrev; |
| 5084 whereOrMove(&sPrev, &sSum); |
| 5085 sSum.n = 0; |
| 5086 for(i=0; i<sPrev.n; i++){ |
| 5087 for(j=0; j<sCur.n; j++){ |
| 5088 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, |
| 5089 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), |
| 5090 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); |
| 5091 } |
| 5092 } |
| 5093 } |
| 5094 } |
| 5095 pNew->nLTerm = 1; |
| 5096 pNew->aLTerm[0] = pTerm; |
| 5097 pNew->wsFlags = WHERE_MULTI_OR; |
| 5098 pNew->rSetup = 0; |
| 5099 pNew->iSortIdx = 0; |
| 5100 memset(&pNew->u, 0, sizeof(pNew->u)); |
| 5101 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ |
| 5102 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs |
| 5103 ** of all sub-scans required by the OR-scan. However, due to rounding |
| 5104 ** errors, it may be that the cost of the OR-scan is equal to its |
| 5105 ** most expensive sub-scan. Add the smallest possible penalty |
| 5106 ** (equivalent to multiplying the cost by 1.07) to ensure that |
| 5107 ** this does not happen. Otherwise, for WHERE clauses such as the |
| 5108 ** following where there is an index on "y": |
| 5109 ** |
| 5110 ** WHERE likelihood(x=?, 0.99) OR y=? |
| 5111 ** |
| 5112 ** the planner may elect to "OR" together a full-table scan and an |
| 5113 ** index lookup. And other similarly odd results. */ |
| 5114 pNew->rRun = sSum.a[i].rRun + 1; |
| 5115 pNew->nOut = sSum.a[i].nOut; |
| 5116 pNew->prereq = sSum.a[i].prereq; |
| 5117 rc = whereLoopInsert(pBuilder, pNew); |
| 5118 } |
| 5119 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); |
| 5120 } |
| 5121 } |
| 5122 return rc; |
| 5123 } |
| 5124 |
| 5125 /* |
| 5126 ** Add all WhereLoop objects for all tables |
| 5127 */ |
| 5128 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ |
| 5129 WhereInfo *pWInfo = pBuilder->pWInfo; |
| 5130 Bitmask mExtra = 0; |
| 5131 Bitmask mPrior = 0; |
| 5132 int iTab; |
| 5133 SrcList *pTabList = pWInfo->pTabList; |
| 5134 struct SrcList_item *pItem; |
| 5135 sqlite3 *db = pWInfo->pParse->db; |
| 5136 int nTabList = pWInfo->nLevel; |
| 5137 int rc = SQLITE_OK; |
| 5138 u8 priorJoinType = 0; |
| 5139 WhereLoop *pNew; |
| 5140 |
| 5141 /* Loop over the tables in the join, from left to right */ |
| 5142 pNew = pBuilder->pNew; |
| 5143 whereLoopInit(pNew); |
| 5144 for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){ |
| 5145 pNew->iTab = iTab; |
| 5146 pNew->maskSelf = getMask(&pWInfo->sMaskSet, pItem->iCursor); |
| 5147 if( ((pItem->jointype|priorJoinType) & (JT_LEFT|JT_CROSS))!=0 ){ |
| 5148 mExtra = mPrior; |
| 5149 } |
| 5150 priorJoinType = pItem->jointype; |
| 5151 if( IsVirtual(pItem->pTab) ){ |
| 5152 rc = whereLoopAddVirtual(pBuilder, mExtra); |
| 5153 }else{ |
| 5154 rc = whereLoopAddBtree(pBuilder, mExtra); |
| 5155 } |
| 5156 if( rc==SQLITE_OK ){ |
| 5157 rc = whereLoopAddOr(pBuilder, mExtra); |
| 5158 } |
| 5159 mPrior |= pNew->maskSelf; |
| 5160 if( rc || db->mallocFailed ) break; |
| 5161 } |
| 5162 whereLoopClear(db, pNew); |
| 5163 return rc; |
| 5164 } |
| 5165 |
| 5166 /* |
| 5167 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th |
| 5168 ** parameters) to see if it outputs rows in the requested ORDER BY |
| 5169 ** (or GROUP BY) without requiring a separate sort operation. Return N: |
| 5170 ** |
| 5171 ** N>0: N terms of the ORDER BY clause are satisfied |
| 5172 ** N==0: No terms of the ORDER BY clause are satisfied |
| 5173 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. |
| 5174 ** |
| 5175 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as |
| 5176 ** strict. With GROUP BY and DISTINCT the only requirement is that |
| 5177 ** equivalent rows appear immediately adjacent to one another. GROUP BY |
| 5178 ** and DISTINCT do not require rows to appear in any particular order as long |
| 5179 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT |
| 5180 ** the pOrderBy terms can be matched in any order. With ORDER BY, the |
| 5181 ** pOrderBy terms must be matched in strict left-to-right order. |
| 5182 */ |
| 5183 static i8 wherePathSatisfiesOrderBy( |
| 5184 WhereInfo *pWInfo, /* The WHERE clause */ |
| 5185 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ |
| 5186 WherePath *pPath, /* The WherePath to check */ |
| 5187 u16 wctrlFlags, /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */ |
| 5188 u16 nLoop, /* Number of entries in pPath->aLoop[] */ |
| 5189 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ |
| 5190 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ |
| 5191 ){ |
| 5192 u8 revSet; /* True if rev is known */ |
| 5193 u8 rev; /* Composite sort order */ |
| 5194 u8 revIdx; /* Index sort order */ |
| 5195 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ |
| 5196 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ |
| 5197 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ |
| 5198 u16 nKeyCol; /* Number of key columns in pIndex */ |
| 5199 u16 nColumn; /* Total number of ordered columns in the index */ |
| 5200 u16 nOrderBy; /* Number terms in the ORDER BY clause */ |
| 5201 int iLoop; /* Index of WhereLoop in pPath being processed */ |
| 5202 int i, j; /* Loop counters */ |
| 5203 int iCur; /* Cursor number for current WhereLoop */ |
| 5204 int iColumn; /* A column number within table iCur */ |
| 5205 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ |
| 5206 WhereTerm *pTerm; /* A single term of the WHERE clause */ |
| 5207 Expr *pOBExpr; /* An expression from the ORDER BY clause */ |
| 5208 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ |
| 5209 Index *pIndex; /* The index associated with pLoop */ |
| 5210 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ |
| 5211 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ |
| 5212 Bitmask obDone; /* Mask of all ORDER BY terms */ |
| 5213 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ |
| 5214 Bitmask ready; /* Mask of inner loops */ |
| 5215 |
| 5216 /* |
| 5217 ** We say the WhereLoop is "one-row" if it generates no more than one |
| 5218 ** row of output. A WhereLoop is one-row if all of the following are true: |
| 5219 ** (a) All index columns match with WHERE_COLUMN_EQ. |
| 5220 ** (b) The index is unique |
| 5221 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. |
| 5222 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. |
| 5223 ** |
| 5224 ** We say the WhereLoop is "order-distinct" if the set of columns from |
| 5225 ** that WhereLoop that are in the ORDER BY clause are different for every |
| 5226 ** row of the WhereLoop. Every one-row WhereLoop is automatically |
| 5227 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause |
| 5228 ** is not order-distinct. To be order-distinct is not quite the same as being |
| 5229 ** UNIQUE since a UNIQUE column or index can have multiple rows that |
| 5230 ** are NULL and NULL values are equivalent for the purpose of order-distinct. |
| 5231 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. |
| 5232 ** |
| 5233 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the |
| 5234 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is |
| 5235 ** automatically order-distinct. |
| 5236 */ |
| 5237 |
| 5238 assert( pOrderBy!=0 ); |
| 5239 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; |
| 5240 |
| 5241 nOrderBy = pOrderBy->nExpr; |
| 5242 testcase( nOrderBy==BMS-1 ); |
| 5243 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ |
| 5244 isOrderDistinct = 1; |
| 5245 obDone = MASKBIT(nOrderBy)-1; |
| 5246 orderDistinctMask = 0; |
| 5247 ready = 0; |
| 5248 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ |
| 5249 if( iLoop>0 ) ready |= pLoop->maskSelf; |
| 5250 pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast; |
| 5251 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ |
| 5252 if( pLoop->u.vtab.isOrdered ) obSat = obDone; |
| 5253 break; |
| 5254 } |
| 5255 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; |
| 5256 |
| 5257 /* Mark off any ORDER BY term X that is a column in the table of |
| 5258 ** the current loop for which there is term in the WHERE |
| 5259 ** clause of the form X IS NULL or X=? that reference only outer |
| 5260 ** loops. |
| 5261 */ |
| 5262 for(i=0; i<nOrderBy; i++){ |
| 5263 if( MASKBIT(i) & obSat ) continue; |
| 5264 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); |
| 5265 if( pOBExpr->op!=TK_COLUMN ) continue; |
| 5266 if( pOBExpr->iTable!=iCur ) continue; |
| 5267 pTerm = findTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, |
| 5268 ~ready, WO_EQ|WO_ISNULL, 0); |
| 5269 if( pTerm==0 ) continue; |
| 5270 if( (pTerm->eOperator&WO_EQ)!=0 && pOBExpr->iColumn>=0 ){ |
| 5271 const char *z1, *z2; |
| 5272 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); |
| 5273 if( !pColl ) pColl = db->pDfltColl; |
| 5274 z1 = pColl->zName; |
| 5275 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); |
| 5276 if( !pColl ) pColl = db->pDfltColl; |
| 5277 z2 = pColl->zName; |
| 5278 if( sqlite3StrICmp(z1, z2)!=0 ) continue; |
| 5279 } |
| 5280 obSat |= MASKBIT(i); |
| 5281 } |
| 5282 |
| 5283 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ |
| 5284 if( pLoop->wsFlags & WHERE_IPK ){ |
| 5285 pIndex = 0; |
| 5286 nKeyCol = 0; |
| 5287 nColumn = 1; |
| 5288 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ |
| 5289 return 0; |
| 5290 }else{ |
| 5291 nKeyCol = pIndex->nKeyCol; |
| 5292 nColumn = pIndex->nColumn; |
| 5293 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); |
| 5294 assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable)); |
| 5295 isOrderDistinct = IsUniqueIndex(pIndex); |
| 5296 } |
| 5297 |
| 5298 /* Loop through all columns of the index and deal with the ones |
| 5299 ** that are not constrained by == or IN. |
| 5300 */ |
| 5301 rev = revSet = 0; |
| 5302 distinctColumns = 0; |
| 5303 for(j=0; j<nColumn; j++){ |
| 5304 u8 bOnce; /* True to run the ORDER BY search loop */ |
| 5305 |
| 5306 /* Skip over == and IS NULL terms */ |
| 5307 if( j<pLoop->u.btree.nEq |
| 5308 && pLoop->u.btree.nSkip==0 |
| 5309 && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0 |
| 5310 ){ |
| 5311 if( i & WO_ISNULL ){ |
| 5312 testcase( isOrderDistinct ); |
| 5313 isOrderDistinct = 0; |
| 5314 } |
| 5315 continue; |
| 5316 } |
| 5317 |
| 5318 /* Get the column number in the table (iColumn) and sort order |
| 5319 ** (revIdx) for the j-th column of the index. |
| 5320 */ |
| 5321 if( pIndex ){ |
| 5322 iColumn = pIndex->aiColumn[j]; |
| 5323 revIdx = pIndex->aSortOrder[j]; |
| 5324 if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; |
| 5325 }else{ |
| 5326 iColumn = -1; |
| 5327 revIdx = 0; |
| 5328 } |
| 5329 |
| 5330 /* An unconstrained column that might be NULL means that this |
| 5331 ** WhereLoop is not well-ordered |
| 5332 */ |
| 5333 if( isOrderDistinct |
| 5334 && iColumn>=0 |
| 5335 && j>=pLoop->u.btree.nEq |
| 5336 && pIndex->pTable->aCol[iColumn].notNull==0 |
| 5337 ){ |
| 5338 isOrderDistinct = 0; |
| 5339 } |
| 5340 |
| 5341 /* Find the ORDER BY term that corresponds to the j-th column |
| 5342 ** of the index and mark that ORDER BY term off |
| 5343 */ |
| 5344 bOnce = 1; |
| 5345 isMatch = 0; |
| 5346 for(i=0; bOnce && i<nOrderBy; i++){ |
| 5347 if( MASKBIT(i) & obSat ) continue; |
| 5348 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); |
| 5349 testcase( wctrlFlags & WHERE_GROUPBY ); |
| 5350 testcase( wctrlFlags & WHERE_DISTINCTBY ); |
| 5351 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; |
| 5352 if( pOBExpr->op!=TK_COLUMN ) continue; |
| 5353 if( pOBExpr->iTable!=iCur ) continue; |
| 5354 if( pOBExpr->iColumn!=iColumn ) continue; |
| 5355 if( iColumn>=0 ){ |
| 5356 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); |
| 5357 if( !pColl ) pColl = db->pDfltColl; |
| 5358 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; |
| 5359 } |
| 5360 isMatch = 1; |
| 5361 break; |
| 5362 } |
| 5363 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ |
| 5364 /* Make sure the sort order is compatible in an ORDER BY clause. |
| 5365 ** Sort order is irrelevant for a GROUP BY clause. */ |
| 5366 if( revSet ){ |
| 5367 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; |
| 5368 }else{ |
| 5369 rev = revIdx ^ pOrderBy->a[i].sortOrder; |
| 5370 if( rev ) *pRevMask |= MASKBIT(iLoop); |
| 5371 revSet = 1; |
| 5372 } |
| 5373 } |
| 5374 if( isMatch ){ |
| 5375 if( iColumn<0 ){ |
| 5376 testcase( distinctColumns==0 ); |
| 5377 distinctColumns = 1; |
| 5378 } |
| 5379 obSat |= MASKBIT(i); |
| 5380 }else{ |
| 5381 /* No match found */ |
| 5382 if( j==0 || j<nKeyCol ){ |
| 5383 testcase( isOrderDistinct!=0 ); |
| 5384 isOrderDistinct = 0; |
| 5385 } |
| 5386 break; |
| 5387 } |
| 5388 } /* end Loop over all index columns */ |
| 5389 if( distinctColumns ){ |
| 5390 testcase( isOrderDistinct==0 ); |
| 5391 isOrderDistinct = 1; |
| 5392 } |
| 5393 } /* end-if not one-row */ |
| 5394 |
| 5395 /* Mark off any other ORDER BY terms that reference pLoop */ |
| 5396 if( isOrderDistinct ){ |
| 5397 orderDistinctMask |= pLoop->maskSelf; |
| 5398 for(i=0; i<nOrderBy; i++){ |
| 5399 Expr *p; |
| 5400 Bitmask mTerm; |
| 5401 if( MASKBIT(i) & obSat ) continue; |
| 5402 p = pOrderBy->a[i].pExpr; |
| 5403 mTerm = exprTableUsage(&pWInfo->sMaskSet,p); |
| 5404 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; |
| 5405 if( (mTerm&~orderDistinctMask)==0 ){ |
| 5406 obSat |= MASKBIT(i); |
| 5407 } |
| 5408 } |
| 5409 } |
| 5410 } /* End the loop over all WhereLoops from outer-most down to inner-most */ |
| 5411 if( obSat==obDone ) return (i8)nOrderBy; |
| 5412 if( !isOrderDistinct ){ |
| 5413 for(i=nOrderBy-1; i>0; i--){ |
| 5414 Bitmask m = MASKBIT(i) - 1; |
| 5415 if( (obSat&m)==m ) return i; |
| 5416 } |
| 5417 return 0; |
| 5418 } |
| 5419 return -1; |
| 5420 } |
| 5421 |
| 5422 |
| 5423 /* |
| 5424 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), |
| 5425 ** the planner assumes that the specified pOrderBy list is actually a GROUP |
| 5426 ** BY clause - and so any order that groups rows as required satisfies the |
| 5427 ** request. |
| 5428 ** |
| 5429 ** Normally, in this case it is not possible for the caller to determine |
| 5430 ** whether or not the rows are really being delivered in sorted order, or |
| 5431 ** just in some other order that provides the required grouping. However, |
| 5432 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then |
| 5433 ** this function may be called on the returned WhereInfo object. It returns |
| 5434 ** true if the rows really will be sorted in the specified order, or false |
| 5435 ** otherwise. |
| 5436 ** |
| 5437 ** For example, assuming: |
| 5438 ** |
| 5439 ** CREATE INDEX i1 ON t1(x, Y); |
| 5440 ** |
| 5441 ** then |
| 5442 ** |
| 5443 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 |
| 5444 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 |
| 5445 */ |
| 5446 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ |
| 5447 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); |
| 5448 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); |
| 5449 return pWInfo->sorted; |
| 5450 } |
| 5451 |
| 5452 #ifdef WHERETRACE_ENABLED |
| 5453 /* For debugging use only: */ |
| 5454 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ |
| 5455 static char zName[65]; |
| 5456 int i; |
| 5457 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } |
| 5458 if( pLast ) zName[i++] = pLast->cId; |
| 5459 zName[i] = 0; |
| 5460 return zName; |
| 5461 } |
| 5462 #endif |
| 5463 |
| 5464 /* |
| 5465 ** Return the cost of sorting nRow rows, assuming that the keys have |
| 5466 ** nOrderby columns and that the first nSorted columns are already in |
| 5467 ** order. |
| 5468 */ |
| 5469 static LogEst whereSortingCost( |
| 5470 WhereInfo *pWInfo, |
| 5471 LogEst nRow, |
| 5472 int nOrderBy, |
| 5473 int nSorted |
| 5474 ){ |
| 5475 /* TUNING: Estimated cost of a full external sort, where N is |
| 5476 ** the number of rows to sort is: |
| 5477 ** |
| 5478 ** cost = (3.0 * N * log(N)). |
| 5479 ** |
| 5480 ** Or, if the order-by clause has X terms but only the last Y |
| 5481 ** terms are out of order, then block-sorting will reduce the |
| 5482 ** sorting cost to: |
| 5483 ** |
| 5484 ** cost = (3.0 * N * log(N)) * (Y/X) |
| 5485 ** |
| 5486 ** The (Y/X) term is implemented using stack variable rScale |
| 5487 ** below. */ |
| 5488 LogEst rScale, rSortCost; |
| 5489 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); |
| 5490 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; |
| 5491 rSortCost = nRow + estLog(nRow) + rScale + 16; |
| 5492 |
| 5493 /* TUNING: The cost of implementing DISTINCT using a B-TREE is |
| 5494 ** similar but with a larger constant of proportionality. |
| 5495 ** Multiply by an additional factor of 3.0. */ |
| 5496 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ |
| 5497 rSortCost += 16; |
| 5498 } |
| 5499 |
| 5500 return rSortCost; |
| 5501 } |
| 5502 |
| 5503 /* |
| 5504 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine |
| 5505 ** attempts to find the lowest cost path that visits each WhereLoop |
| 5506 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. |
| 5507 ** |
| 5508 ** Assume that the total number of output rows that will need to be sorted |
| 5509 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting |
| 5510 ** costs if nRowEst==0. |
| 5511 ** |
| 5512 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation |
| 5513 ** error occurs. |
| 5514 */ |
| 5515 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ |
| 5516 int mxChoice; /* Maximum number of simultaneous paths tracked */ |
| 5517 int nLoop; /* Number of terms in the join */ |
| 5518 Parse *pParse; /* Parsing context */ |
| 5519 sqlite3 *db; /* The database connection */ |
| 5520 int iLoop; /* Loop counter over the terms of the join */ |
| 5521 int ii, jj; /* Loop counters */ |
| 5522 int mxI = 0; /* Index of next entry to replace */ |
| 5523 int nOrderBy; /* Number of ORDER BY clause terms */ |
| 5524 LogEst mxCost = 0; /* Maximum cost of a set of paths */ |
| 5525 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ |
| 5526 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ |
| 5527 WherePath *aFrom; /* All nFrom paths at the previous level */ |
| 5528 WherePath *aTo; /* The nTo best paths at the current level */ |
| 5529 WherePath *pFrom; /* An element of aFrom[] that we are working on */ |
| 5530 WherePath *pTo; /* An element of aTo[] that we are working on */ |
| 5531 WhereLoop *pWLoop; /* One of the WhereLoop objects */ |
| 5532 WhereLoop **pX; /* Used to divy up the pSpace memory */ |
| 5533 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ |
| 5534 char *pSpace; /* Temporary memory used by this routine */ |
| 5535 int nSpace; /* Bytes of space allocated at pSpace */ |
| 5536 |
| 5537 pParse = pWInfo->pParse; |
| 5538 db = pParse->db; |
| 5539 nLoop = pWInfo->nLevel; |
| 5540 /* TUNING: For simple queries, only the best path is tracked. |
| 5541 ** For 2-way joins, the 5 best paths are followed. |
| 5542 ** For joins of 3 or more tables, track the 10 best paths */ |
| 5543 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); |
| 5544 assert( nLoop<=pWInfo->pTabList->nSrc ); |
| 5545 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); |
| 5546 |
| 5547 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this |
| 5548 ** case the purpose of this call is to estimate the number of rows returned |
| 5549 ** by the overall query. Once this estimate has been obtained, the caller |
| 5550 ** will invoke this function a second time, passing the estimate as the |
| 5551 ** nRowEst parameter. */ |
| 5552 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ |
| 5553 nOrderBy = 0; |
| 5554 }else{ |
| 5555 nOrderBy = pWInfo->pOrderBy->nExpr; |
| 5556 } |
| 5557 |
| 5558 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ |
| 5559 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; |
| 5560 nSpace += sizeof(LogEst) * nOrderBy; |
| 5561 pSpace = sqlite3DbMallocRaw(db, nSpace); |
| 5562 if( pSpace==0 ) return SQLITE_NOMEM; |
| 5563 aTo = (WherePath*)pSpace; |
| 5564 aFrom = aTo+mxChoice; |
| 5565 memset(aFrom, 0, sizeof(aFrom[0])); |
| 5566 pX = (WhereLoop**)(aFrom+mxChoice); |
| 5567 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ |
| 5568 pFrom->aLoop = pX; |
| 5569 } |
| 5570 if( nOrderBy ){ |
| 5571 /* If there is an ORDER BY clause and it is not being ignored, set up |
| 5572 ** space for the aSortCost[] array. Each element of the aSortCost array |
| 5573 ** is either zero - meaning it has not yet been initialized - or the |
| 5574 ** cost of sorting nRowEst rows of data where the first X terms of |
| 5575 ** the ORDER BY clause are already in order, where X is the array |
| 5576 ** index. */ |
| 5577 aSortCost = (LogEst*)pX; |
| 5578 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); |
| 5579 } |
| 5580 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); |
| 5581 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); |
| 5582 |
| 5583 /* Seed the search with a single WherePath containing zero WhereLoops. |
| 5584 ** |
| 5585 ** TUNING: Do not let the number of iterations go above 25. If the cost |
| 5586 ** of computing an automatic index is not paid back within the first 25 |
| 5587 ** rows, then do not use the automatic index. */ |
| 5588 aFrom[0].nRow = MIN(pParse->nQueryLoop, 46); assert( 46==sqlite3LogEst(25) ); |
| 5589 nFrom = 1; |
| 5590 assert( aFrom[0].isOrdered==0 ); |
| 5591 if( nOrderBy ){ |
| 5592 /* If nLoop is zero, then there are no FROM terms in the query. Since |
| 5593 ** in this case the query may return a maximum of one row, the results |
| 5594 ** are already in the requested order. Set isOrdered to nOrderBy to |
| 5595 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to |
| 5596 ** -1, indicating that the result set may or may not be ordered, |
| 5597 ** depending on the loops added to the current plan. */ |
| 5598 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; |
| 5599 } |
| 5600 |
| 5601 /* Compute successively longer WherePaths using the previous generation |
| 5602 ** of WherePaths as the basis for the next. Keep track of the mxChoice |
| 5603 ** best paths at each generation */ |
| 5604 for(iLoop=0; iLoop<nLoop; iLoop++){ |
| 5605 nTo = 0; |
| 5606 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ |
| 5607 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ |
| 5608 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ |
| 5609 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ |
| 5610 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ |
| 5611 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ |
| 5612 Bitmask maskNew; /* Mask of src visited by (..) */ |
| 5613 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ |
| 5614 |
| 5615 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; |
| 5616 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; |
| 5617 /* At this point, pWLoop is a candidate to be the next loop. |
| 5618 ** Compute its cost */ |
| 5619 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); |
| 5620 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); |
| 5621 nOut = pFrom->nRow + pWLoop->nOut; |
| 5622 maskNew = pFrom->maskLoop | pWLoop->maskSelf; |
| 5623 if( isOrdered<0 ){ |
| 5624 isOrdered = wherePathSatisfiesOrderBy(pWInfo, |
| 5625 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, |
| 5626 iLoop, pWLoop, &revMask); |
| 5627 }else{ |
| 5628 revMask = pFrom->revLoop; |
| 5629 } |
| 5630 if( isOrdered>=0 && isOrdered<nOrderBy ){ |
| 5631 if( aSortCost[isOrdered]==0 ){ |
| 5632 aSortCost[isOrdered] = whereSortingCost( |
| 5633 pWInfo, nRowEst, nOrderBy, isOrdered |
| 5634 ); |
| 5635 } |
| 5636 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); |
| 5637 |
| 5638 WHERETRACE(0x002, |
| 5639 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", |
| 5640 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, |
| 5641 rUnsorted, rCost)); |
| 5642 }else{ |
| 5643 rCost = rUnsorted; |
| 5644 } |
| 5645 |
| 5646 /* Check to see if pWLoop should be added to the set of |
| 5647 ** mxChoice best-so-far paths. |
| 5648 ** |
| 5649 ** First look for an existing path among best-so-far paths |
| 5650 ** that covers the same set of loops and has the same isOrdered |
| 5651 ** setting as the current path candidate. |
| 5652 ** |
| 5653 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent |
| 5654 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range |
| 5655 ** of legal values for isOrdered, -1..64. |
| 5656 */ |
| 5657 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ |
| 5658 if( pTo->maskLoop==maskNew |
| 5659 && ((pTo->isOrdered^isOrdered)&0x80)==0 |
| 5660 ){ |
| 5661 testcase( jj==nTo-1 ); |
| 5662 break; |
| 5663 } |
| 5664 } |
| 5665 if( jj>=nTo ){ |
| 5666 /* None of the existing best-so-far paths match the candidate. */ |
| 5667 if( nTo>=mxChoice |
| 5668 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) |
| 5669 ){ |
| 5670 /* The current candidate is no better than any of the mxChoice |
| 5671 ** paths currently in the best-so-far buffer. So discard |
| 5672 ** this candidate as not viable. */ |
| 5673 #ifdef WHERETRACE_ENABLED /* 0x4 */ |
| 5674 if( sqlite3WhereTrace&0x4 ){ |
| 5675 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", |
| 5676 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
| 5677 isOrdered>=0 ? isOrdered+'0' : '?'); |
| 5678 } |
| 5679 #endif |
| 5680 continue; |
| 5681 } |
| 5682 /* If we reach this points it means that the new candidate path |
| 5683 ** needs to be added to the set of best-so-far paths. */ |
| 5684 if( nTo<mxChoice ){ |
| 5685 /* Increase the size of the aTo set by one */ |
| 5686 jj = nTo++; |
| 5687 }else{ |
| 5688 /* New path replaces the prior worst to keep count below mxChoice */ |
| 5689 jj = mxI; |
| 5690 } |
| 5691 pTo = &aTo[jj]; |
| 5692 #ifdef WHERETRACE_ENABLED /* 0x4 */ |
| 5693 if( sqlite3WhereTrace&0x4 ){ |
| 5694 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", |
| 5695 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
| 5696 isOrdered>=0 ? isOrdered+'0' : '?'); |
| 5697 } |
| 5698 #endif |
| 5699 }else{ |
| 5700 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the |
| 5701 ** same set of loops and has the sam isOrdered setting as the |
| 5702 ** candidate path. Check to see if the candidate should replace |
| 5703 ** pTo or if the candidate should be skipped */ |
| 5704 if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ |
| 5705 #ifdef WHERETRACE_ENABLED /* 0x4 */ |
| 5706 if( sqlite3WhereTrace&0x4 ){ |
| 5707 sqlite3DebugPrintf( |
| 5708 "Skip %s cost=%-3d,%3d order=%c", |
| 5709 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
| 5710 isOrdered>=0 ? isOrdered+'0' : '?'); |
| 5711 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", |
| 5712 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, |
| 5713 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); |
| 5714 } |
| 5715 #endif |
| 5716 /* Discard the candidate path from further consideration */ |
| 5717 testcase( pTo->rCost==rCost ); |
| 5718 continue; |
| 5719 } |
| 5720 testcase( pTo->rCost==rCost+1 ); |
| 5721 /* Control reaches here if the candidate path is better than the |
| 5722 ** pTo path. Replace pTo with the candidate. */ |
| 5723 #ifdef WHERETRACE_ENABLED /* 0x4 */ |
| 5724 if( sqlite3WhereTrace&0x4 ){ |
| 5725 sqlite3DebugPrintf( |
| 5726 "Update %s cost=%-3d,%3d order=%c", |
| 5727 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
| 5728 isOrdered>=0 ? isOrdered+'0' : '?'); |
| 5729 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", |
| 5730 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, |
| 5731 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); |
| 5732 } |
| 5733 #endif |
| 5734 } |
| 5735 /* pWLoop is a winner. Add it to the set of best so far */ |
| 5736 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; |
| 5737 pTo->revLoop = revMask; |
| 5738 pTo->nRow = nOut; |
| 5739 pTo->rCost = rCost; |
| 5740 pTo->rUnsorted = rUnsorted; |
| 5741 pTo->isOrdered = isOrdered; |
| 5742 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); |
| 5743 pTo->aLoop[iLoop] = pWLoop; |
| 5744 if( nTo>=mxChoice ){ |
| 5745 mxI = 0; |
| 5746 mxCost = aTo[0].rCost; |
| 5747 mxUnsorted = aTo[0].nRow; |
| 5748 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ |
| 5749 if( pTo->rCost>mxCost |
| 5750 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) |
| 5751 ){ |
| 5752 mxCost = pTo->rCost; |
| 5753 mxUnsorted = pTo->rUnsorted; |
| 5754 mxI = jj; |
| 5755 } |
| 5756 } |
| 5757 } |
| 5758 } |
| 5759 } |
| 5760 |
| 5761 #ifdef WHERETRACE_ENABLED /* >=2 */ |
| 5762 if( sqlite3WhereTrace>=2 ){ |
| 5763 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); |
| 5764 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ |
| 5765 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", |
| 5766 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, |
| 5767 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); |
| 5768 if( pTo->isOrdered>0 ){ |
| 5769 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); |
| 5770 }else{ |
| 5771 sqlite3DebugPrintf("\n"); |
| 5772 } |
| 5773 } |
| 5774 } |
| 5775 #endif |
| 5776 |
| 5777 /* Swap the roles of aFrom and aTo for the next generation */ |
| 5778 pFrom = aTo; |
| 5779 aTo = aFrom; |
| 5780 aFrom = pFrom; |
| 5781 nFrom = nTo; |
| 5782 } |
| 5783 |
| 5784 if( nFrom==0 ){ |
| 5785 sqlite3ErrorMsg(pParse, "no query solution"); |
| 5786 sqlite3DbFree(db, pSpace); |
| 5787 return SQLITE_ERROR; |
| 5788 } |
| 5789 |
| 5790 /* Find the lowest cost path. pFrom will be left pointing to that path */ |
| 5791 pFrom = aFrom; |
| 5792 for(ii=1; ii<nFrom; ii++){ |
| 5793 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; |
| 5794 } |
| 5795 assert( pWInfo->nLevel==nLoop ); |
| 5796 /* Load the lowest cost path into pWInfo */ |
| 5797 for(iLoop=0; iLoop<nLoop; iLoop++){ |
| 5798 WhereLevel *pLevel = pWInfo->a + iLoop; |
| 5799 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; |
| 5800 pLevel->iFrom = pWLoop->iTab; |
| 5801 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; |
| 5802 } |
| 5803 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 |
| 5804 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 |
| 5805 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP |
| 5806 && nRowEst |
| 5807 ){ |
| 5808 Bitmask notUsed; |
| 5809 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, |
| 5810 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); |
| 5811 if( rc==pWInfo->pResultSet->nExpr ){ |
| 5812 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; |
| 5813 } |
| 5814 } |
| 5815 if( pWInfo->pOrderBy ){ |
| 5816 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ |
| 5817 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ |
| 5818 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; |
| 5819 } |
| 5820 }else{ |
| 5821 pWInfo->nOBSat = pFrom->isOrdered; |
| 5822 if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; |
| 5823 pWInfo->revMask = pFrom->revLoop; |
| 5824 } |
| 5825 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) |
| 5826 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr |
| 5827 ){ |
| 5828 Bitmask revMask = 0; |
| 5829 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, |
| 5830 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask |
| 5831 ); |
| 5832 assert( pWInfo->sorted==0 ); |
| 5833 if( nOrder==pWInfo->pOrderBy->nExpr ){ |
| 5834 pWInfo->sorted = 1; |
| 5835 pWInfo->revMask = revMask; |
| 5836 } |
| 5837 } |
| 5838 } |
| 5839 |
| 5840 |
| 5841 pWInfo->nRowOut = pFrom->nRow; |
| 5842 |
| 5843 /* Free temporary memory and return success */ |
| 5844 sqlite3DbFree(db, pSpace); |
| 5845 return SQLITE_OK; |
| 5846 } |
| 5847 |
| 5848 /* |
| 5849 ** Most queries use only a single table (they are not joins) and have |
| 5850 ** simple == constraints against indexed fields. This routine attempts |
| 5851 ** to plan those simple cases using much less ceremony than the |
| 5852 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() |
| 5853 ** times for the common case. |
| 5854 ** |
| 5855 ** Return non-zero on success, if this query can be handled by this |
| 5856 ** no-frills query planner. Return zero if this query needs the |
| 5857 ** general-purpose query planner. |
| 5858 */ |
| 5859 static int whereShortCut(WhereLoopBuilder *pBuilder){ |
| 5860 WhereInfo *pWInfo; |
| 5861 struct SrcList_item *pItem; |
| 5862 WhereClause *pWC; |
| 5863 WhereTerm *pTerm; |
| 5864 WhereLoop *pLoop; |
| 5865 int iCur; |
| 5866 int j; |
| 5867 Table *pTab; |
| 5868 Index *pIdx; |
| 5869 |
| 5870 pWInfo = pBuilder->pWInfo; |
| 5871 if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0; |
| 5872 assert( pWInfo->pTabList->nSrc>=1 ); |
| 5873 pItem = pWInfo->pTabList->a; |
| 5874 pTab = pItem->pTab; |
| 5875 if( IsVirtual(pTab) ) return 0; |
| 5876 if( pItem->zIndex ) return 0; |
| 5877 iCur = pItem->iCursor; |
| 5878 pWC = &pWInfo->sWC; |
| 5879 pLoop = pBuilder->pNew; |
| 5880 pLoop->wsFlags = 0; |
| 5881 pLoop->u.btree.nSkip = 0; |
| 5882 pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0); |
| 5883 if( pTerm ){ |
| 5884 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; |
| 5885 pLoop->aLTerm[0] = pTerm; |
| 5886 pLoop->nLTerm = 1; |
| 5887 pLoop->u.btree.nEq = 1; |
| 5888 /* TUNING: Cost of a rowid lookup is 10 */ |
| 5889 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ |
| 5890 }else{ |
| 5891 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 5892 assert( pLoop->aLTermSpace==pLoop->aLTerm ); |
| 5893 assert( ArraySize(pLoop->aLTermSpace)==4 ); |
| 5894 if( !IsUniqueIndex(pIdx) |
| 5895 || pIdx->pPartIdxWhere!=0 |
| 5896 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) |
| 5897 ) continue; |
| 5898 for(j=0; j<pIdx->nKeyCol; j++){ |
| 5899 pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx); |
| 5900 if( pTerm==0 ) break; |
| 5901 pLoop->aLTerm[j] = pTerm; |
| 5902 } |
| 5903 if( j!=pIdx->nKeyCol ) continue; |
| 5904 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; |
| 5905 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ |
| 5906 pLoop->wsFlags |= WHERE_IDX_ONLY; |
| 5907 } |
| 5908 pLoop->nLTerm = j; |
| 5909 pLoop->u.btree.nEq = j; |
| 5910 pLoop->u.btree.pIndex = pIdx; |
| 5911 /* TUNING: Cost of a unique index lookup is 15 */ |
| 5912 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ |
| 5913 break; |
| 5914 } |
| 5915 } |
| 5916 if( pLoop->wsFlags ){ |
| 5917 pLoop->nOut = (LogEst)1; |
| 5918 pWInfo->a[0].pWLoop = pLoop; |
| 5919 pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur); |
| 5920 pWInfo->a[0].iTabCur = iCur; |
| 5921 pWInfo->nRowOut = 1; |
| 5922 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; |
| 5923 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ |
| 5924 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; |
| 5925 } |
| 5926 #ifdef SQLITE_DEBUG |
| 5927 pLoop->cId = '0'; |
| 5928 #endif |
| 5929 return 1; |
| 5930 } |
| 5931 return 0; |
| 5932 } |
| 5933 |
| 5934 /* |
| 5935 ** Generate the beginning of the loop used for WHERE clause processing. |
| 5936 ** The return value is a pointer to an opaque structure that contains |
| 5937 ** information needed to terminate the loop. Later, the calling routine |
| 5938 ** should invoke sqlite3WhereEnd() with the return value of this function |
| 5939 ** in order to complete the WHERE clause processing. |
| 5940 ** |
| 5941 ** If an error occurs, this routine returns NULL. |
| 5942 ** |
| 5943 ** The basic idea is to do a nested loop, one loop for each table in |
| 5944 ** the FROM clause of a select. (INSERT and UPDATE statements are the |
| 5945 ** same as a SELECT with only a single table in the FROM clause.) For |
| 5946 ** example, if the SQL is this: |
| 5947 ** |
| 5948 ** SELECT * FROM t1, t2, t3 WHERE ...; |
| 5949 ** |
| 5950 ** Then the code generated is conceptually like the following: |
| 5951 ** |
| 5952 ** foreach row1 in t1 do \ Code generated |
| 5953 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() |
| 5954 ** foreach row3 in t3 do / |
| 5955 ** ... |
| 5956 ** end \ Code generated |
| 5957 ** end |-- by sqlite3WhereEnd() |
| 5958 ** end / |
| 5959 ** |
| 5960 ** Note that the loops might not be nested in the order in which they |
| 5961 ** appear in the FROM clause if a different order is better able to make |
| 5962 ** use of indices. Note also that when the IN operator appears in |
| 5963 ** the WHERE clause, it might result in additional nested loops for |
| 5964 ** scanning through all values on the right-hand side of the IN. |
| 5965 ** |
| 5966 ** There are Btree cursors associated with each table. t1 uses cursor |
| 5967 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. |
| 5968 ** And so forth. This routine generates code to open those VDBE cursors |
| 5969 ** and sqlite3WhereEnd() generates the code to close them. |
| 5970 ** |
| 5971 ** The code that sqlite3WhereBegin() generates leaves the cursors named |
| 5972 ** in pTabList pointing at their appropriate entries. The [...] code |
| 5973 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract |
| 5974 ** data from the various tables of the loop. |
| 5975 ** |
| 5976 ** If the WHERE clause is empty, the foreach loops must each scan their |
| 5977 ** entire tables. Thus a three-way join is an O(N^3) operation. But if |
| 5978 ** the tables have indices and there are terms in the WHERE clause that |
| 5979 ** refer to those indices, a complete table scan can be avoided and the |
| 5980 ** code will run much faster. Most of the work of this routine is checking |
| 5981 ** to see if there are indices that can be used to speed up the loop. |
| 5982 ** |
| 5983 ** Terms of the WHERE clause are also used to limit which rows actually |
| 5984 ** make it to the "..." in the middle of the loop. After each "foreach", |
| 5985 ** terms of the WHERE clause that use only terms in that loop and outer |
| 5986 ** loops are evaluated and if false a jump is made around all subsequent |
| 5987 ** inner loops (or around the "..." if the test occurs within the inner- |
| 5988 ** most loop) |
| 5989 ** |
| 5990 ** OUTER JOINS |
| 5991 ** |
| 5992 ** An outer join of tables t1 and t2 is conceptally coded as follows: |
| 5993 ** |
| 5994 ** foreach row1 in t1 do |
| 5995 ** flag = 0 |
| 5996 ** foreach row2 in t2 do |
| 5997 ** start: |
| 5998 ** ... |
| 5999 ** flag = 1 |
| 6000 ** end |
| 6001 ** if flag==0 then |
| 6002 ** move the row2 cursor to a null row |
| 6003 ** goto start |
| 6004 ** fi |
| 6005 ** end |
| 6006 ** |
| 6007 ** ORDER BY CLAUSE PROCESSING |
| 6008 ** |
| 6009 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause |
| 6010 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement |
| 6011 ** if there is one. If there is no ORDER BY clause or if this routine |
| 6012 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. |
| 6013 ** |
| 6014 ** The iIdxCur parameter is the cursor number of an index. If |
| 6015 ** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index |
| 6016 ** to use for OR clause processing. The WHERE clause should use this |
| 6017 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is |
| 6018 ** the first cursor in an array of cursors for all indices. iIdxCur should |
| 6019 ** be used to compute the appropriate cursor depending on which index is |
| 6020 ** used. |
| 6021 */ |
| 6022 WhereInfo *sqlite3WhereBegin( |
| 6023 Parse *pParse, /* The parser context */ |
| 6024 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ |
| 6025 Expr *pWhere, /* The WHERE clause */ |
| 6026 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ |
| 6027 ExprList *pResultSet, /* Result set of the query */ |
| 6028 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ |
| 6029 int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */ |
| 6030 ){ |
| 6031 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ |
| 6032 int nTabList; /* Number of elements in pTabList */ |
| 6033 WhereInfo *pWInfo; /* Will become the return value of this function */ |
| 6034 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ |
| 6035 Bitmask notReady; /* Cursors that are not yet positioned */ |
| 6036 WhereLoopBuilder sWLB; /* The WhereLoop builder */ |
| 6037 WhereMaskSet *pMaskSet; /* The expression mask set */ |
| 6038 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ |
| 6039 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ |
| 6040 int ii; /* Loop counter */ |
| 6041 sqlite3 *db; /* Database connection */ |
| 6042 int rc; /* Return code */ |
| 6043 |
| 6044 |
| 6045 /* Variable initialization */ |
| 6046 db = pParse->db; |
| 6047 memset(&sWLB, 0, sizeof(sWLB)); |
| 6048 |
| 6049 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ |
| 6050 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); |
| 6051 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; |
| 6052 sWLB.pOrderBy = pOrderBy; |
| 6053 |
| 6054 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via |
| 6055 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ |
| 6056 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ |
| 6057 wctrlFlags &= ~WHERE_WANT_DISTINCT; |
| 6058 } |
| 6059 |
| 6060 /* The number of tables in the FROM clause is limited by the number of |
| 6061 ** bits in a Bitmask |
| 6062 */ |
| 6063 testcase( pTabList->nSrc==BMS ); |
| 6064 if( pTabList->nSrc>BMS ){ |
| 6065 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); |
| 6066 return 0; |
| 6067 } |
| 6068 |
| 6069 /* This function normally generates a nested loop for all tables in |
| 6070 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should |
| 6071 ** only generate code for the first table in pTabList and assume that |
| 6072 ** any cursors associated with subsequent tables are uninitialized. |
| 6073 */ |
| 6074 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; |
| 6075 |
| 6076 /* Allocate and initialize the WhereInfo structure that will become the |
| 6077 ** return value. A single allocation is used to store the WhereInfo |
| 6078 ** struct, the contents of WhereInfo.a[], the WhereClause structure |
| 6079 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte |
| 6080 ** field (type Bitmask) it must be aligned on an 8-byte boundary on |
| 6081 ** some architectures. Hence the ROUND8() below. |
| 6082 */ |
| 6083 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); |
| 6084 pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop)); |
| 6085 if( db->mallocFailed ){ |
| 6086 sqlite3DbFree(db, pWInfo); |
| 6087 pWInfo = 0; |
| 6088 goto whereBeginError; |
| 6089 } |
| 6090 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; |
| 6091 pWInfo->nLevel = nTabList; |
| 6092 pWInfo->pParse = pParse; |
| 6093 pWInfo->pTabList = pTabList; |
| 6094 pWInfo->pOrderBy = pOrderBy; |
| 6095 pWInfo->pResultSet = pResultSet; |
| 6096 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); |
| 6097 pWInfo->wctrlFlags = wctrlFlags; |
| 6098 pWInfo->savedNQueryLoop = pParse->nQueryLoop; |
| 6099 pMaskSet = &pWInfo->sMaskSet; |
| 6100 sWLB.pWInfo = pWInfo; |
| 6101 sWLB.pWC = &pWInfo->sWC; |
| 6102 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); |
| 6103 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); |
| 6104 whereLoopInit(sWLB.pNew); |
| 6105 #ifdef SQLITE_DEBUG |
| 6106 sWLB.pNew->cId = '*'; |
| 6107 #endif |
| 6108 |
| 6109 /* Split the WHERE clause into separate subexpressions where each |
| 6110 ** subexpression is separated by an AND operator. |
| 6111 */ |
| 6112 initMaskSet(pMaskSet); |
| 6113 whereClauseInit(&pWInfo->sWC, pWInfo); |
| 6114 whereSplit(&pWInfo->sWC, pWhere, TK_AND); |
| 6115 |
| 6116 /* Special case: a WHERE clause that is constant. Evaluate the |
| 6117 ** expression and either jump over all of the code or fall thru. |
| 6118 */ |
| 6119 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ |
| 6120 if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ |
| 6121 sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, |
| 6122 SQLITE_JUMPIFNULL); |
| 6123 sWLB.pWC->a[ii].wtFlags |= TERM_CODED; |
| 6124 } |
| 6125 } |
| 6126 |
| 6127 /* Special case: No FROM clause |
| 6128 */ |
| 6129 if( nTabList==0 ){ |
| 6130 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; |
| 6131 if( wctrlFlags & WHERE_WANT_DISTINCT ){ |
| 6132 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; |
| 6133 } |
| 6134 } |
| 6135 |
| 6136 /* Assign a bit from the bitmask to every term in the FROM clause. |
| 6137 ** |
| 6138 ** When assigning bitmask values to FROM clause cursors, it must be |
| 6139 ** the case that if X is the bitmask for the N-th FROM clause term then |
| 6140 ** the bitmask for all FROM clause terms to the left of the N-th term |
| 6141 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use |
| 6142 ** its Expr.iRightJoinTable value to find the bitmask of the right table |
| 6143 ** of the join. Subtracting one from the right table bitmask gives a |
| 6144 ** bitmask for all tables to the left of the join. Knowing the bitmask |
| 6145 ** for all tables to the left of a left join is important. Ticket #3015. |
| 6146 ** |
| 6147 ** Note that bitmasks are created for all pTabList->nSrc tables in |
| 6148 ** pTabList, not just the first nTabList tables. nTabList is normally |
| 6149 ** equal to pTabList->nSrc but might be shortened to 1 if the |
| 6150 ** WHERE_ONETABLE_ONLY flag is set. |
| 6151 */ |
| 6152 for(ii=0; ii<pTabList->nSrc; ii++){ |
| 6153 createMask(pMaskSet, pTabList->a[ii].iCursor); |
| 6154 } |
| 6155 #ifndef NDEBUG |
| 6156 { |
| 6157 Bitmask toTheLeft = 0; |
| 6158 for(ii=0; ii<pTabList->nSrc; ii++){ |
| 6159 Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor); |
| 6160 assert( (m-1)==toTheLeft ); |
| 6161 toTheLeft |= m; |
| 6162 } |
| 6163 } |
| 6164 #endif |
| 6165 |
| 6166 /* Analyze all of the subexpressions. Note that exprAnalyze() might |
| 6167 ** add new virtual terms onto the end of the WHERE clause. We do not |
| 6168 ** want to analyze these virtual terms, so start analyzing at the end |
| 6169 ** and work forward so that the added virtual terms are never processed. |
| 6170 */ |
| 6171 exprAnalyzeAll(pTabList, &pWInfo->sWC); |
| 6172 if( db->mallocFailed ){ |
| 6173 goto whereBeginError; |
| 6174 } |
| 6175 |
| 6176 if( wctrlFlags & WHERE_WANT_DISTINCT ){ |
| 6177 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ |
| 6178 /* The DISTINCT marking is pointless. Ignore it. */ |
| 6179 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; |
| 6180 }else if( pOrderBy==0 ){ |
| 6181 /* Try to ORDER BY the result set to make distinct processing easier */ |
| 6182 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; |
| 6183 pWInfo->pOrderBy = pResultSet; |
| 6184 } |
| 6185 } |
| 6186 |
| 6187 /* Construct the WhereLoop objects */ |
| 6188 WHERETRACE(0xffff,("*** Optimizer Start ***\n")); |
| 6189 #if defined(WHERETRACE_ENABLED) |
| 6190 /* Display all terms of the WHERE clause */ |
| 6191 if( sqlite3WhereTrace & 0x100 ){ |
| 6192 int i; |
| 6193 for(i=0; i<sWLB.pWC->nTerm; i++){ |
| 6194 whereTermPrint(&sWLB.pWC->a[i], i); |
| 6195 } |
| 6196 } |
| 6197 #endif |
| 6198 |
| 6199 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ |
| 6200 rc = whereLoopAddAll(&sWLB); |
| 6201 if( rc ) goto whereBeginError; |
| 6202 |
| 6203 /* Display all of the WhereLoop objects if wheretrace is enabled */ |
| 6204 #ifdef WHERETRACE_ENABLED /* !=0 */ |
| 6205 if( sqlite3WhereTrace ){ |
| 6206 WhereLoop *p; |
| 6207 int i; |
| 6208 static char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" |
| 6209 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; |
| 6210 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ |
| 6211 p->cId = zLabel[i%sizeof(zLabel)]; |
| 6212 whereLoopPrint(p, sWLB.pWC); |
| 6213 } |
| 6214 } |
| 6215 #endif |
| 6216 |
| 6217 wherePathSolver(pWInfo, 0); |
| 6218 if( db->mallocFailed ) goto whereBeginError; |
| 6219 if( pWInfo->pOrderBy ){ |
| 6220 wherePathSolver(pWInfo, pWInfo->nRowOut+1); |
| 6221 if( db->mallocFailed ) goto whereBeginError; |
| 6222 } |
| 6223 } |
| 6224 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ |
| 6225 pWInfo->revMask = (Bitmask)(-1); |
| 6226 } |
| 6227 if( pParse->nErr || NEVER(db->mallocFailed) ){ |
| 6228 goto whereBeginError; |
| 6229 } |
| 6230 #ifdef WHERETRACE_ENABLED /* !=0 */ |
| 6231 if( sqlite3WhereTrace ){ |
| 6232 int ii; |
| 6233 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); |
| 6234 if( pWInfo->nOBSat>0 ){ |
| 6235 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); |
| 6236 } |
| 6237 switch( pWInfo->eDistinct ){ |
| 6238 case WHERE_DISTINCT_UNIQUE: { |
| 6239 sqlite3DebugPrintf(" DISTINCT=unique"); |
| 6240 break; |
| 6241 } |
| 6242 case WHERE_DISTINCT_ORDERED: { |
| 6243 sqlite3DebugPrintf(" DISTINCT=ordered"); |
| 6244 break; |
| 6245 } |
| 6246 case WHERE_DISTINCT_UNORDERED: { |
| 6247 sqlite3DebugPrintf(" DISTINCT=unordered"); |
| 6248 break; |
| 6249 } |
| 6250 } |
| 6251 sqlite3DebugPrintf("\n"); |
| 6252 for(ii=0; ii<pWInfo->nLevel; ii++){ |
| 6253 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); |
| 6254 } |
| 6255 } |
| 6256 #endif |
| 6257 /* Attempt to omit tables from the join that do not effect the result */ |
| 6258 if( pWInfo->nLevel>=2 |
| 6259 && pResultSet!=0 |
| 6260 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) |
| 6261 ){ |
| 6262 Bitmask tabUsed = exprListTableUsage(pMaskSet, pResultSet); |
| 6263 if( sWLB.pOrderBy ) tabUsed |= exprListTableUsage(pMaskSet, sWLB.pOrderBy); |
| 6264 while( pWInfo->nLevel>=2 ){ |
| 6265 WhereTerm *pTerm, *pEnd; |
| 6266 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; |
| 6267 if( (pWInfo->pTabList->a[pLoop->iTab].jointype & JT_LEFT)==0 ) break; |
| 6268 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 |
| 6269 && (pLoop->wsFlags & WHERE_ONEROW)==0 |
| 6270 ){ |
| 6271 break; |
| 6272 } |
| 6273 if( (tabUsed & pLoop->maskSelf)!=0 ) break; |
| 6274 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; |
| 6275 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ |
| 6276 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 |
| 6277 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) |
| 6278 ){ |
| 6279 break; |
| 6280 } |
| 6281 } |
| 6282 if( pTerm<pEnd ) break; |
| 6283 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); |
| 6284 pWInfo->nLevel--; |
| 6285 nTabList--; |
| 6286 } |
| 6287 } |
| 6288 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); |
| 6289 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; |
| 6290 |
| 6291 /* If the caller is an UPDATE or DELETE statement that is requesting |
| 6292 ** to use a one-pass algorithm, determine if this is appropriate. |
| 6293 ** The one-pass algorithm only works if the WHERE clause constrains |
| 6294 ** the statement to update a single row. |
| 6295 */ |
| 6296 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); |
| 6297 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 |
| 6298 && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){ |
| 6299 pWInfo->okOnePass = 1; |
| 6300 if( HasRowid(pTabList->a[0].pTab) ){ |
| 6301 pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY; |
| 6302 } |
| 6303 } |
| 6304 |
| 6305 /* Open all tables in the pTabList and any indices selected for |
| 6306 ** searching those tables. |
| 6307 */ |
| 6308 notReady = ~(Bitmask)0; |
| 6309 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ |
| 6310 Table *pTab; /* Table to open */ |
| 6311 int iDb; /* Index of database containing table/index */ |
| 6312 struct SrcList_item *pTabItem; |
| 6313 |
| 6314 pTabItem = &pTabList->a[pLevel->iFrom]; |
| 6315 pTab = pTabItem->pTab; |
| 6316 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 6317 pLoop = pLevel->pWLoop; |
| 6318 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ |
| 6319 /* Do nothing */ |
| 6320 }else |
| 6321 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6322 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ |
| 6323 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); |
| 6324 int iCur = pTabItem->iCursor; |
| 6325 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); |
| 6326 }else if( IsVirtual(pTab) ){ |
| 6327 /* noop */ |
| 6328 }else |
| 6329 #endif |
| 6330 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 |
| 6331 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ |
| 6332 int op = OP_OpenRead; |
| 6333 if( pWInfo->okOnePass ){ |
| 6334 op = OP_OpenWrite; |
| 6335 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; |
| 6336 }; |
| 6337 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); |
| 6338 assert( pTabItem->iCursor==pLevel->iTabCur ); |
| 6339 testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 ); |
| 6340 testcase( !pWInfo->okOnePass && pTab->nCol==BMS ); |
| 6341 if( !pWInfo->okOnePass && pTab->nCol<BMS && HasRowid(pTab) ){ |
| 6342 Bitmask b = pTabItem->colUsed; |
| 6343 int n = 0; |
| 6344 for(; b; b=b>>1, n++){} |
| 6345 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, |
| 6346 SQLITE_INT_TO_PTR(n), P4_INT32); |
| 6347 assert( n<=pTab->nCol ); |
| 6348 } |
| 6349 }else{ |
| 6350 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
| 6351 } |
| 6352 if( pLoop->wsFlags & WHERE_INDEXED ){ |
| 6353 Index *pIx = pLoop->u.btree.pIndex; |
| 6354 int iIndexCur; |
| 6355 int op = OP_OpenRead; |
| 6356 /* iIdxCur is always set if to a positive value if ONEPASS is possible */ |
| 6357 assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); |
| 6358 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) |
| 6359 && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 |
| 6360 ){ |
| 6361 /* This is one term of an OR-optimization using the PRIMARY KEY of a |
| 6362 ** WITHOUT ROWID table. No need for a separate index */ |
| 6363 iIndexCur = pLevel->iTabCur; |
| 6364 op = 0; |
| 6365 }else if( pWInfo->okOnePass ){ |
| 6366 Index *pJ = pTabItem->pTab->pIndex; |
| 6367 iIndexCur = iIdxCur; |
| 6368 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); |
| 6369 while( ALWAYS(pJ) && pJ!=pIx ){ |
| 6370 iIndexCur++; |
| 6371 pJ = pJ->pNext; |
| 6372 } |
| 6373 op = OP_OpenWrite; |
| 6374 pWInfo->aiCurOnePass[1] = iIndexCur; |
| 6375 }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){ |
| 6376 iIndexCur = iIdxCur; |
| 6377 if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx; |
| 6378 }else{ |
| 6379 iIndexCur = pParse->nTab++; |
| 6380 } |
| 6381 pLevel->iIdxCur = iIndexCur; |
| 6382 assert( pIx->pSchema==pTab->pSchema ); |
| 6383 assert( iIndexCur>=0 ); |
| 6384 if( op ){ |
| 6385 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); |
| 6386 sqlite3VdbeSetP4KeyInfo(pParse, pIx); |
| 6387 VdbeComment((v, "%s", pIx->zName)); |
| 6388 } |
| 6389 } |
| 6390 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); |
| 6391 notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor); |
| 6392 } |
| 6393 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); |
| 6394 if( db->mallocFailed ) goto whereBeginError; |
| 6395 |
| 6396 /* Generate the code to do the search. Each iteration of the for |
| 6397 ** loop below generates code for a single nested loop of the VM |
| 6398 ** program. |
| 6399 */ |
| 6400 notReady = ~(Bitmask)0; |
| 6401 for(ii=0; ii<nTabList; ii++){ |
| 6402 pLevel = &pWInfo->a[ii]; |
| 6403 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
| 6404 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ |
| 6405 constructAutomaticIndex(pParse, &pWInfo->sWC, |
| 6406 &pTabList->a[pLevel->iFrom], notReady, pLevel); |
| 6407 if( db->mallocFailed ) goto whereBeginError; |
| 6408 } |
| 6409 #endif |
| 6410 explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags); |
| 6411 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); |
| 6412 notReady = codeOneLoopStart(pWInfo, ii, notReady); |
| 6413 pWInfo->iContinue = pLevel->addrCont; |
| 6414 } |
| 6415 |
| 6416 /* Done. */ |
| 6417 VdbeModuleComment((v, "Begin WHERE-core")); |
| 6418 return pWInfo; |
| 6419 |
| 6420 /* Jump here if malloc fails */ |
| 6421 whereBeginError: |
| 6422 if( pWInfo ){ |
| 6423 pParse->nQueryLoop = pWInfo->savedNQueryLoop; |
| 6424 whereInfoFree(db, pWInfo); |
| 6425 } |
| 6426 return 0; |
| 6427 } |
| 6428 |
| 6429 /* |
| 6430 ** Generate the end of the WHERE loop. See comments on |
| 6431 ** sqlite3WhereBegin() for additional information. |
| 6432 */ |
| 6433 void sqlite3WhereEnd(WhereInfo *pWInfo){ |
| 6434 Parse *pParse = pWInfo->pParse; |
| 6435 Vdbe *v = pParse->pVdbe; |
| 6436 int i; |
| 6437 WhereLevel *pLevel; |
| 6438 WhereLoop *pLoop; |
| 6439 SrcList *pTabList = pWInfo->pTabList; |
| 6440 sqlite3 *db = pParse->db; |
| 6441 |
| 6442 /* Generate loop termination code. |
| 6443 */ |
| 6444 VdbeModuleComment((v, "End WHERE-core")); |
| 6445 sqlite3ExprCacheClear(pParse); |
| 6446 for(i=pWInfo->nLevel-1; i>=0; i--){ |
| 6447 int addr; |
| 6448 pLevel = &pWInfo->a[i]; |
| 6449 pLoop = pLevel->pWLoop; |
| 6450 sqlite3VdbeResolveLabel(v, pLevel->addrCont); |
| 6451 if( pLevel->op!=OP_Noop ){ |
| 6452 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); |
| 6453 sqlite3VdbeChangeP5(v, pLevel->p5); |
| 6454 VdbeCoverage(v); |
| 6455 VdbeCoverageIf(v, pLevel->op==OP_Next); |
| 6456 VdbeCoverageIf(v, pLevel->op==OP_Prev); |
| 6457 VdbeCoverageIf(v, pLevel->op==OP_VNext); |
| 6458 } |
| 6459 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ |
| 6460 struct InLoop *pIn; |
| 6461 int j; |
| 6462 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); |
| 6463 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ |
| 6464 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); |
| 6465 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); |
| 6466 VdbeCoverage(v); |
| 6467 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); |
| 6468 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); |
| 6469 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); |
| 6470 } |
| 6471 sqlite3DbFree(db, pLevel->u.in.aInLoop); |
| 6472 } |
| 6473 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); |
| 6474 if( pLevel->addrSkip ){ |
| 6475 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip); |
| 6476 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); |
| 6477 sqlite3VdbeJumpHere(v, pLevel->addrSkip); |
| 6478 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); |
| 6479 } |
| 6480 if( pLevel->iLeftJoin ){ |
| 6481 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); |
| 6482 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 |
| 6483 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); |
| 6484 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ |
| 6485 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); |
| 6486 } |
| 6487 if( pLoop->wsFlags & WHERE_INDEXED ){ |
| 6488 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); |
| 6489 } |
| 6490 if( pLevel->op==OP_Return ){ |
| 6491 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); |
| 6492 }else{ |
| 6493 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); |
| 6494 } |
| 6495 sqlite3VdbeJumpHere(v, addr); |
| 6496 } |
| 6497 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, |
| 6498 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); |
| 6499 } |
| 6500 |
| 6501 /* The "break" point is here, just past the end of the outer loop. |
| 6502 ** Set it. |
| 6503 */ |
| 6504 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); |
| 6505 |
| 6506 assert( pWInfo->nLevel<=pTabList->nSrc ); |
| 6507 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ |
| 6508 int k, last; |
| 6509 VdbeOp *pOp; |
| 6510 Index *pIdx = 0; |
| 6511 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; |
| 6512 Table *pTab = pTabItem->pTab; |
| 6513 assert( pTab!=0 ); |
| 6514 pLoop = pLevel->pWLoop; |
| 6515 |
| 6516 /* For a co-routine, change all OP_Column references to the table of |
| 6517 ** the co-routine into OP_SCopy of result contained in a register. |
| 6518 ** OP_Rowid becomes OP_Null. |
| 6519 */ |
| 6520 if( pTabItem->viaCoroutine && !db->mallocFailed ){ |
| 6521 last = sqlite3VdbeCurrentAddr(v); |
| 6522 k = pLevel->addrBody; |
| 6523 pOp = sqlite3VdbeGetOp(v, k); |
| 6524 for(; k<last; k++, pOp++){ |
| 6525 if( pOp->p1!=pLevel->iTabCur ) continue; |
| 6526 if( pOp->opcode==OP_Column ){ |
| 6527 pOp->opcode = OP_Copy; |
| 6528 pOp->p1 = pOp->p2 + pTabItem->regResult; |
| 6529 pOp->p2 = pOp->p3; |
| 6530 pOp->p3 = 0; |
| 6531 }else if( pOp->opcode==OP_Rowid ){ |
| 6532 pOp->opcode = OP_Null; |
| 6533 pOp->p1 = 0; |
| 6534 pOp->p3 = 0; |
| 6535 } |
| 6536 } |
| 6537 continue; |
| 6538 } |
| 6539 |
| 6540 /* Close all of the cursors that were opened by sqlite3WhereBegin. |
| 6541 ** Except, do not close cursors that will be reused by the OR optimization |
| 6542 ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors |
| 6543 ** created for the ONEPASS optimization. |
| 6544 */ |
| 6545 if( (pTab->tabFlags & TF_Ephemeral)==0 |
| 6546 && pTab->pSelect==0 |
| 6547 && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 |
| 6548 ){ |
| 6549 int ws = pLoop->wsFlags; |
| 6550 if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ |
| 6551 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); |
| 6552 } |
| 6553 if( (ws & WHERE_INDEXED)!=0 |
| 6554 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 |
| 6555 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] |
| 6556 ){ |
| 6557 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); |
| 6558 } |
| 6559 } |
| 6560 |
| 6561 /* If this scan uses an index, make VDBE code substitutions to read data |
| 6562 ** from the index instead of from the table where possible. In some cases |
| 6563 ** this optimization prevents the table from ever being read, which can |
| 6564 ** yield a significant performance boost. |
| 6565 ** |
| 6566 ** Calls to the code generator in between sqlite3WhereBegin and |
| 6567 ** sqlite3WhereEnd will have created code that references the table |
| 6568 ** directly. This loop scans all that code looking for opcodes |
| 6569 ** that reference the table and converts them into opcodes that |
| 6570 ** reference the index. |
| 6571 */ |
| 6572 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ |
| 6573 pIdx = pLoop->u.btree.pIndex; |
| 6574 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ |
| 6575 pIdx = pLevel->u.pCovidx; |
| 6576 } |
| 6577 if( pIdx && !db->mallocFailed ){ |
| 6578 last = sqlite3VdbeCurrentAddr(v); |
| 6579 k = pLevel->addrBody; |
| 6580 pOp = sqlite3VdbeGetOp(v, k); |
| 6581 for(; k<last; k++, pOp++){ |
| 6582 if( pOp->p1!=pLevel->iTabCur ) continue; |
| 6583 if( pOp->opcode==OP_Column ){ |
| 6584 int x = pOp->p2; |
| 6585 assert( pIdx->pTable==pTab ); |
| 6586 if( !HasRowid(pTab) ){ |
| 6587 Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
| 6588 x = pPk->aiColumn[x]; |
| 6589 } |
| 6590 x = sqlite3ColumnOfIndex(pIdx, x); |
| 6591 if( x>=0 ){ |
| 6592 pOp->p2 = x; |
| 6593 pOp->p1 = pLevel->iIdxCur; |
| 6594 } |
| 6595 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); |
| 6596 }else if( pOp->opcode==OP_Rowid ){ |
| 6597 pOp->p1 = pLevel->iIdxCur; |
| 6598 pOp->opcode = OP_IdxRowid; |
| 6599 } |
| 6600 } |
| 6601 } |
| 6602 } |
| 6603 |
| 6604 /* Final cleanup |
| 6605 */ |
| 6606 pParse->nQueryLoop = pWInfo->savedNQueryLoop; |
| 6607 whereInfoFree(db, pWInfo); |
| 6608 return; |
| 6609 } |
OLD | NEW |