OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2004 May 26 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** |
| 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" |
| 14 ** stores a single value in the VDBE. Mem is an opaque structure visible |
| 15 ** only within the VDBE. Interface routines refer to a Mem using the |
| 16 ** name sqlite_value |
| 17 */ |
| 18 #include "sqliteInt.h" |
| 19 #include "vdbeInt.h" |
| 20 |
| 21 #ifdef SQLITE_DEBUG |
| 22 /* |
| 23 ** Check invariants on a Mem object. |
| 24 ** |
| 25 ** This routine is intended for use inside of assert() statements, like |
| 26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); |
| 27 */ |
| 28 int sqlite3VdbeCheckMemInvariants(Mem *p){ |
| 29 /* If MEM_Dyn is set then Mem.xDel!=0. |
| 30 ** Mem.xDel is might not be initialized if MEM_Dyn is clear. |
| 31 */ |
| 32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); |
| 33 |
| 34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we |
| 35 ** ensure that if Mem.szMalloc>0 then it is safe to do |
| 36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. |
| 37 ** That saves a few cycles in inner loops. */ |
| 38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); |
| 39 |
| 40 /* Cannot be both MEM_Int and MEM_Real at the same time */ |
| 41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); |
| 42 |
| 43 /* The szMalloc field holds the correct memory allocation size */ |
| 44 assert( p->szMalloc==0 |
| 45 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); |
| 46 |
| 47 /* If p holds a string or blob, the Mem.z must point to exactly |
| 48 ** one of the following: |
| 49 ** |
| 50 ** (1) Memory in Mem.zMalloc and managed by the Mem object |
| 51 ** (2) Memory to be freed using Mem.xDel |
| 52 ** (3) An ephemeral string or blob |
| 53 ** (4) A static string or blob |
| 54 */ |
| 55 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ |
| 56 assert( |
| 57 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + |
| 58 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + |
| 59 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + |
| 60 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 |
| 61 ); |
| 62 } |
| 63 return 1; |
| 64 } |
| 65 #endif |
| 66 |
| 67 |
| 68 /* |
| 69 ** If pMem is an object with a valid string representation, this routine |
| 70 ** ensures the internal encoding for the string representation is |
| 71 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. |
| 72 ** |
| 73 ** If pMem is not a string object, or the encoding of the string |
| 74 ** representation is already stored using the requested encoding, then this |
| 75 ** routine is a no-op. |
| 76 ** |
| 77 ** SQLITE_OK is returned if the conversion is successful (or not required). |
| 78 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion |
| 79 ** between formats. |
| 80 */ |
| 81 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ |
| 82 #ifndef SQLITE_OMIT_UTF16 |
| 83 int rc; |
| 84 #endif |
| 85 assert( (pMem->flags&MEM_RowSet)==0 ); |
| 86 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE |
| 87 || desiredEnc==SQLITE_UTF16BE ); |
| 88 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ |
| 89 return SQLITE_OK; |
| 90 } |
| 91 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 92 #ifdef SQLITE_OMIT_UTF16 |
| 93 return SQLITE_ERROR; |
| 94 #else |
| 95 |
| 96 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, |
| 97 ** then the encoding of the value may not have changed. |
| 98 */ |
| 99 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); |
| 100 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); |
| 101 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); |
| 102 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); |
| 103 return rc; |
| 104 #endif |
| 105 } |
| 106 |
| 107 /* |
| 108 ** Make sure pMem->z points to a writable allocation of at least |
| 109 ** min(n,32) bytes. |
| 110 ** |
| 111 ** If the bPreserve argument is true, then copy of the content of |
| 112 ** pMem->z into the new allocation. pMem must be either a string or |
| 113 ** blob if bPreserve is true. If bPreserve is false, any prior content |
| 114 ** in pMem->z is discarded. |
| 115 */ |
| 116 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ |
| 117 assert( sqlite3VdbeCheckMemInvariants(pMem) ); |
| 118 assert( (pMem->flags&MEM_RowSet)==0 ); |
| 119 |
| 120 /* If the bPreserve flag is set to true, then the memory cell must already |
| 121 ** contain a valid string or blob value. */ |
| 122 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); |
| 123 testcase( bPreserve && pMem->z==0 ); |
| 124 |
| 125 assert( pMem->szMalloc==0 |
| 126 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); |
| 127 if( pMem->szMalloc<n ){ |
| 128 if( n<32 ) n = 32; |
| 129 if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){ |
| 130 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); |
| 131 bPreserve = 0; |
| 132 }else{ |
| 133 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); |
| 134 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); |
| 135 } |
| 136 if( pMem->zMalloc==0 ){ |
| 137 sqlite3VdbeMemSetNull(pMem); |
| 138 pMem->z = 0; |
| 139 pMem->szMalloc = 0; |
| 140 return SQLITE_NOMEM; |
| 141 }else{ |
| 142 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); |
| 143 } |
| 144 } |
| 145 |
| 146 if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){ |
| 147 memcpy(pMem->zMalloc, pMem->z, pMem->n); |
| 148 } |
| 149 if( (pMem->flags&MEM_Dyn)!=0 ){ |
| 150 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); |
| 151 pMem->xDel((void *)(pMem->z)); |
| 152 } |
| 153 |
| 154 pMem->z = pMem->zMalloc; |
| 155 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); |
| 156 return SQLITE_OK; |
| 157 } |
| 158 |
| 159 /* |
| 160 ** Change the pMem->zMalloc allocation to be at least szNew bytes. |
| 161 ** If pMem->zMalloc already meets or exceeds the requested size, this |
| 162 ** routine is a no-op. |
| 163 ** |
| 164 ** Any prior string or blob content in the pMem object may be discarded. |
| 165 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str |
| 166 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null |
| 167 ** values are preserved. |
| 168 ** |
| 169 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) |
| 170 ** if unable to complete the resizing. |
| 171 */ |
| 172 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ |
| 173 assert( szNew>0 ); |
| 174 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); |
| 175 if( pMem->szMalloc<szNew ){ |
| 176 return sqlite3VdbeMemGrow(pMem, szNew, 0); |
| 177 } |
| 178 assert( (pMem->flags & MEM_Dyn)==0 ); |
| 179 pMem->z = pMem->zMalloc; |
| 180 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real); |
| 181 return SQLITE_OK; |
| 182 } |
| 183 |
| 184 /* |
| 185 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in |
| 186 ** MEM.zMalloc, where it can be safely written. |
| 187 ** |
| 188 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. |
| 189 */ |
| 190 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ |
| 191 int f; |
| 192 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 193 assert( (pMem->flags&MEM_RowSet)==0 ); |
| 194 ExpandBlob(pMem); |
| 195 f = pMem->flags; |
| 196 if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){ |
| 197 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ |
| 198 return SQLITE_NOMEM; |
| 199 } |
| 200 pMem->z[pMem->n] = 0; |
| 201 pMem->z[pMem->n+1] = 0; |
| 202 pMem->flags |= MEM_Term; |
| 203 #ifdef SQLITE_DEBUG |
| 204 pMem->pScopyFrom = 0; |
| 205 #endif |
| 206 } |
| 207 |
| 208 return SQLITE_OK; |
| 209 } |
| 210 |
| 211 /* |
| 212 ** If the given Mem* has a zero-filled tail, turn it into an ordinary |
| 213 ** blob stored in dynamically allocated space. |
| 214 */ |
| 215 #ifndef SQLITE_OMIT_INCRBLOB |
| 216 int sqlite3VdbeMemExpandBlob(Mem *pMem){ |
| 217 if( pMem->flags & MEM_Zero ){ |
| 218 int nByte; |
| 219 assert( pMem->flags&MEM_Blob ); |
| 220 assert( (pMem->flags&MEM_RowSet)==0 ); |
| 221 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 222 |
| 223 /* Set nByte to the number of bytes required to store the expanded blob. */ |
| 224 nByte = pMem->n + pMem->u.nZero; |
| 225 if( nByte<=0 ){ |
| 226 nByte = 1; |
| 227 } |
| 228 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ |
| 229 return SQLITE_NOMEM; |
| 230 } |
| 231 |
| 232 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); |
| 233 pMem->n += pMem->u.nZero; |
| 234 pMem->flags &= ~(MEM_Zero|MEM_Term); |
| 235 } |
| 236 return SQLITE_OK; |
| 237 } |
| 238 #endif |
| 239 |
| 240 /* |
| 241 ** It is already known that pMem contains an unterminated string. |
| 242 ** Add the zero terminator. |
| 243 */ |
| 244 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ |
| 245 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ |
| 246 return SQLITE_NOMEM; |
| 247 } |
| 248 pMem->z[pMem->n] = 0; |
| 249 pMem->z[pMem->n+1] = 0; |
| 250 pMem->flags |= MEM_Term; |
| 251 return SQLITE_OK; |
| 252 } |
| 253 |
| 254 /* |
| 255 ** Make sure the given Mem is \u0000 terminated. |
| 256 */ |
| 257 int sqlite3VdbeMemNulTerminate(Mem *pMem){ |
| 258 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 259 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); |
| 260 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); |
| 261 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ |
| 262 return SQLITE_OK; /* Nothing to do */ |
| 263 }else{ |
| 264 return vdbeMemAddTerminator(pMem); |
| 265 } |
| 266 } |
| 267 |
| 268 /* |
| 269 ** Add MEM_Str to the set of representations for the given Mem. Numbers |
| 270 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string |
| 271 ** is a no-op. |
| 272 ** |
| 273 ** Existing representations MEM_Int and MEM_Real are invalidated if |
| 274 ** bForce is true but are retained if bForce is false. |
| 275 ** |
| 276 ** A MEM_Null value will never be passed to this function. This function is |
| 277 ** used for converting values to text for returning to the user (i.e. via |
| 278 ** sqlite3_value_text()), or for ensuring that values to be used as btree |
| 279 ** keys are strings. In the former case a NULL pointer is returned the |
| 280 ** user and the latter is an internal programming error. |
| 281 */ |
| 282 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ |
| 283 int fg = pMem->flags; |
| 284 const int nByte = 32; |
| 285 |
| 286 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 287 assert( !(fg&MEM_Zero) ); |
| 288 assert( !(fg&(MEM_Str|MEM_Blob)) ); |
| 289 assert( fg&(MEM_Int|MEM_Real) ); |
| 290 assert( (pMem->flags&MEM_RowSet)==0 ); |
| 291 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| 292 |
| 293 |
| 294 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ |
| 295 return SQLITE_NOMEM; |
| 296 } |
| 297 |
| 298 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 |
| 299 ** string representation of the value. Then, if the required encoding |
| 300 ** is UTF-16le or UTF-16be do a translation. |
| 301 ** |
| 302 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. |
| 303 */ |
| 304 if( fg & MEM_Int ){ |
| 305 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); |
| 306 }else{ |
| 307 assert( fg & MEM_Real ); |
| 308 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); |
| 309 } |
| 310 pMem->n = sqlite3Strlen30(pMem->z); |
| 311 pMem->enc = SQLITE_UTF8; |
| 312 pMem->flags |= MEM_Str|MEM_Term; |
| 313 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real); |
| 314 sqlite3VdbeChangeEncoding(pMem, enc); |
| 315 return SQLITE_OK; |
| 316 } |
| 317 |
| 318 /* |
| 319 ** Memory cell pMem contains the context of an aggregate function. |
| 320 ** This routine calls the finalize method for that function. The |
| 321 ** result of the aggregate is stored back into pMem. |
| 322 ** |
| 323 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK |
| 324 ** otherwise. |
| 325 */ |
| 326 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ |
| 327 int rc = SQLITE_OK; |
| 328 if( ALWAYS(pFunc && pFunc->xFinalize) ){ |
| 329 sqlite3_context ctx; |
| 330 Mem t; |
| 331 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); |
| 332 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 333 memset(&ctx, 0, sizeof(ctx)); |
| 334 memset(&t, 0, sizeof(t)); |
| 335 t.flags = MEM_Null; |
| 336 t.db = pMem->db; |
| 337 ctx.pOut = &t; |
| 338 ctx.pMem = pMem; |
| 339 ctx.pFunc = pFunc; |
| 340 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ |
| 341 assert( (pMem->flags & MEM_Dyn)==0 ); |
| 342 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); |
| 343 memcpy(pMem, &t, sizeof(t)); |
| 344 rc = ctx.isError; |
| 345 } |
| 346 return rc; |
| 347 } |
| 348 |
| 349 /* |
| 350 ** If the memory cell contains a value that must be freed by |
| 351 ** invoking the external callback in Mem.xDel, then this routine |
| 352 ** will free that value. It also sets Mem.flags to MEM_Null. |
| 353 ** |
| 354 ** This is a helper routine for sqlite3VdbeMemSetNull() and |
| 355 ** for sqlite3VdbeMemRelease(). Use those other routines as the |
| 356 ** entry point for releasing Mem resources. |
| 357 */ |
| 358 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ |
| 359 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); |
| 360 assert( VdbeMemDynamic(p) ); |
| 361 if( p->flags&MEM_Agg ){ |
| 362 sqlite3VdbeMemFinalize(p, p->u.pDef); |
| 363 assert( (p->flags & MEM_Agg)==0 ); |
| 364 testcase( p->flags & MEM_Dyn ); |
| 365 } |
| 366 if( p->flags&MEM_Dyn ){ |
| 367 assert( (p->flags&MEM_RowSet)==0 ); |
| 368 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); |
| 369 p->xDel((void *)p->z); |
| 370 }else if( p->flags&MEM_RowSet ){ |
| 371 sqlite3RowSetClear(p->u.pRowSet); |
| 372 }else if( p->flags&MEM_Frame ){ |
| 373 VdbeFrame *pFrame = p->u.pFrame; |
| 374 pFrame->pParent = pFrame->v->pDelFrame; |
| 375 pFrame->v->pDelFrame = pFrame; |
| 376 } |
| 377 p->flags = MEM_Null; |
| 378 } |
| 379 |
| 380 /* |
| 381 ** Release memory held by the Mem p, both external memory cleared |
| 382 ** by p->xDel and memory in p->zMalloc. |
| 383 ** |
| 384 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in |
| 385 ** the unusual case where there really is memory in p that needs |
| 386 ** to be freed. |
| 387 */ |
| 388 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ |
| 389 if( VdbeMemDynamic(p) ){ |
| 390 vdbeMemClearExternAndSetNull(p); |
| 391 } |
| 392 if( p->szMalloc ){ |
| 393 sqlite3DbFree(p->db, p->zMalloc); |
| 394 p->szMalloc = 0; |
| 395 } |
| 396 p->z = 0; |
| 397 } |
| 398 |
| 399 /* |
| 400 ** Release any memory resources held by the Mem. Both the memory that is |
| 401 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. |
| 402 ** |
| 403 ** Use this routine prior to clean up prior to abandoning a Mem, or to |
| 404 ** reset a Mem back to its minimum memory utilization. |
| 405 ** |
| 406 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space |
| 407 ** prior to inserting new content into the Mem. |
| 408 */ |
| 409 void sqlite3VdbeMemRelease(Mem *p){ |
| 410 assert( sqlite3VdbeCheckMemInvariants(p) ); |
| 411 if( VdbeMemDynamic(p) || p->szMalloc ){ |
| 412 vdbeMemClear(p); |
| 413 } |
| 414 } |
| 415 |
| 416 /* |
| 417 ** Convert a 64-bit IEEE double into a 64-bit signed integer. |
| 418 ** If the double is out of range of a 64-bit signed integer then |
| 419 ** return the closest available 64-bit signed integer. |
| 420 */ |
| 421 static i64 doubleToInt64(double r){ |
| 422 #ifdef SQLITE_OMIT_FLOATING_POINT |
| 423 /* When floating-point is omitted, double and int64 are the same thing */ |
| 424 return r; |
| 425 #else |
| 426 /* |
| 427 ** Many compilers we encounter do not define constants for the |
| 428 ** minimum and maximum 64-bit integers, or they define them |
| 429 ** inconsistently. And many do not understand the "LL" notation. |
| 430 ** So we define our own static constants here using nothing |
| 431 ** larger than a 32-bit integer constant. |
| 432 */ |
| 433 static const i64 maxInt = LARGEST_INT64; |
| 434 static const i64 minInt = SMALLEST_INT64; |
| 435 |
| 436 if( r<=(double)minInt ){ |
| 437 return minInt; |
| 438 }else if( r>=(double)maxInt ){ |
| 439 return maxInt; |
| 440 }else{ |
| 441 return (i64)r; |
| 442 } |
| 443 #endif |
| 444 } |
| 445 |
| 446 /* |
| 447 ** Return some kind of integer value which is the best we can do |
| 448 ** at representing the value that *pMem describes as an integer. |
| 449 ** If pMem is an integer, then the value is exact. If pMem is |
| 450 ** a floating-point then the value returned is the integer part. |
| 451 ** If pMem is a string or blob, then we make an attempt to convert |
| 452 ** it into an integer and return that. If pMem represents an |
| 453 ** an SQL-NULL value, return 0. |
| 454 ** |
| 455 ** If pMem represents a string value, its encoding might be changed. |
| 456 */ |
| 457 i64 sqlite3VdbeIntValue(Mem *pMem){ |
| 458 int flags; |
| 459 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 460 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| 461 flags = pMem->flags; |
| 462 if( flags & MEM_Int ){ |
| 463 return pMem->u.i; |
| 464 }else if( flags & MEM_Real ){ |
| 465 return doubleToInt64(pMem->u.r); |
| 466 }else if( flags & (MEM_Str|MEM_Blob) ){ |
| 467 i64 value = 0; |
| 468 assert( pMem->z || pMem->n==0 ); |
| 469 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); |
| 470 return value; |
| 471 }else{ |
| 472 return 0; |
| 473 } |
| 474 } |
| 475 |
| 476 /* |
| 477 ** Return the best representation of pMem that we can get into a |
| 478 ** double. If pMem is already a double or an integer, return its |
| 479 ** value. If it is a string or blob, try to convert it to a double. |
| 480 ** If it is a NULL, return 0.0. |
| 481 */ |
| 482 double sqlite3VdbeRealValue(Mem *pMem){ |
| 483 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 484 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| 485 if( pMem->flags & MEM_Real ){ |
| 486 return pMem->u.r; |
| 487 }else if( pMem->flags & MEM_Int ){ |
| 488 return (double)pMem->u.i; |
| 489 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ |
| 490 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
| 491 double val = (double)0; |
| 492 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); |
| 493 return val; |
| 494 }else{ |
| 495 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
| 496 return (double)0; |
| 497 } |
| 498 } |
| 499 |
| 500 /* |
| 501 ** The MEM structure is already a MEM_Real. Try to also make it a |
| 502 ** MEM_Int if we can. |
| 503 */ |
| 504 void sqlite3VdbeIntegerAffinity(Mem *pMem){ |
| 505 i64 ix; |
| 506 assert( pMem->flags & MEM_Real ); |
| 507 assert( (pMem->flags & MEM_RowSet)==0 ); |
| 508 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 509 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| 510 |
| 511 ix = doubleToInt64(pMem->u.r); |
| 512 |
| 513 /* Only mark the value as an integer if |
| 514 ** |
| 515 ** (1) the round-trip conversion real->int->real is a no-op, and |
| 516 ** (2) The integer is neither the largest nor the smallest |
| 517 ** possible integer (ticket #3922) |
| 518 ** |
| 519 ** The second and third terms in the following conditional enforces |
| 520 ** the second condition under the assumption that addition overflow causes |
| 521 ** values to wrap around. |
| 522 */ |
| 523 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ |
| 524 pMem->u.i = ix; |
| 525 MemSetTypeFlag(pMem, MEM_Int); |
| 526 } |
| 527 } |
| 528 |
| 529 /* |
| 530 ** Convert pMem to type integer. Invalidate any prior representations. |
| 531 */ |
| 532 int sqlite3VdbeMemIntegerify(Mem *pMem){ |
| 533 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 534 assert( (pMem->flags & MEM_RowSet)==0 ); |
| 535 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| 536 |
| 537 pMem->u.i = sqlite3VdbeIntValue(pMem); |
| 538 MemSetTypeFlag(pMem, MEM_Int); |
| 539 return SQLITE_OK; |
| 540 } |
| 541 |
| 542 /* |
| 543 ** Convert pMem so that it is of type MEM_Real. |
| 544 ** Invalidate any prior representations. |
| 545 */ |
| 546 int sqlite3VdbeMemRealify(Mem *pMem){ |
| 547 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 548 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| 549 |
| 550 pMem->u.r = sqlite3VdbeRealValue(pMem); |
| 551 MemSetTypeFlag(pMem, MEM_Real); |
| 552 return SQLITE_OK; |
| 553 } |
| 554 |
| 555 /* |
| 556 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. |
| 557 ** Invalidate any prior representations. |
| 558 ** |
| 559 ** Every effort is made to force the conversion, even if the input |
| 560 ** is a string that does not look completely like a number. Convert |
| 561 ** as much of the string as we can and ignore the rest. |
| 562 */ |
| 563 int sqlite3VdbeMemNumerify(Mem *pMem){ |
| 564 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ |
| 565 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); |
| 566 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 567 if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){ |
| 568 MemSetTypeFlag(pMem, MEM_Int); |
| 569 }else{ |
| 570 pMem->u.r = sqlite3VdbeRealValue(pMem); |
| 571 MemSetTypeFlag(pMem, MEM_Real); |
| 572 sqlite3VdbeIntegerAffinity(pMem); |
| 573 } |
| 574 } |
| 575 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); |
| 576 pMem->flags &= ~(MEM_Str|MEM_Blob); |
| 577 return SQLITE_OK; |
| 578 } |
| 579 |
| 580 /* |
| 581 ** Cast the datatype of the value in pMem according to the affinity |
| 582 ** "aff". Casting is different from applying affinity in that a cast |
| 583 ** is forced. In other words, the value is converted into the desired |
| 584 ** affinity even if that results in loss of data. This routine is |
| 585 ** used (for example) to implement the SQL "cast()" operator. |
| 586 */ |
| 587 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ |
| 588 if( pMem->flags & MEM_Null ) return; |
| 589 switch( aff ){ |
| 590 case SQLITE_AFF_NONE: { /* Really a cast to BLOB */ |
| 591 if( (pMem->flags & MEM_Blob)==0 ){ |
| 592 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); |
| 593 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); |
| 594 MemSetTypeFlag(pMem, MEM_Blob); |
| 595 }else{ |
| 596 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); |
| 597 } |
| 598 break; |
| 599 } |
| 600 case SQLITE_AFF_NUMERIC: { |
| 601 sqlite3VdbeMemNumerify(pMem); |
| 602 break; |
| 603 } |
| 604 case SQLITE_AFF_INTEGER: { |
| 605 sqlite3VdbeMemIntegerify(pMem); |
| 606 break; |
| 607 } |
| 608 case SQLITE_AFF_REAL: { |
| 609 sqlite3VdbeMemRealify(pMem); |
| 610 break; |
| 611 } |
| 612 default: { |
| 613 assert( aff==SQLITE_AFF_TEXT ); |
| 614 assert( MEM_Str==(MEM_Blob>>3) ); |
| 615 pMem->flags |= (pMem->flags&MEM_Blob)>>3; |
| 616 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); |
| 617 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); |
| 618 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); |
| 619 break; |
| 620 } |
| 621 } |
| 622 } |
| 623 |
| 624 /* |
| 625 ** Initialize bulk memory to be a consistent Mem object. |
| 626 ** |
| 627 ** The minimum amount of initialization feasible is performed. |
| 628 */ |
| 629 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ |
| 630 assert( (flags & ~MEM_TypeMask)==0 ); |
| 631 pMem->flags = flags; |
| 632 pMem->db = db; |
| 633 pMem->szMalloc = 0; |
| 634 } |
| 635 |
| 636 |
| 637 /* |
| 638 ** Delete any previous value and set the value stored in *pMem to NULL. |
| 639 ** |
| 640 ** This routine calls the Mem.xDel destructor to dispose of values that |
| 641 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. |
| 642 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this |
| 643 ** routine to invoke the destructor and deallocates Mem.zMalloc. |
| 644 ** |
| 645 ** Use this routine to reset the Mem prior to insert a new value. |
| 646 ** |
| 647 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. |
| 648 */ |
| 649 void sqlite3VdbeMemSetNull(Mem *pMem){ |
| 650 if( VdbeMemDynamic(pMem) ){ |
| 651 vdbeMemClearExternAndSetNull(pMem); |
| 652 }else{ |
| 653 pMem->flags = MEM_Null; |
| 654 } |
| 655 } |
| 656 void sqlite3ValueSetNull(sqlite3_value *p){ |
| 657 sqlite3VdbeMemSetNull((Mem*)p); |
| 658 } |
| 659 |
| 660 /* |
| 661 ** Delete any previous value and set the value to be a BLOB of length |
| 662 ** n containing all zeros. |
| 663 */ |
| 664 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ |
| 665 sqlite3VdbeMemRelease(pMem); |
| 666 pMem->flags = MEM_Blob|MEM_Zero; |
| 667 pMem->n = 0; |
| 668 if( n<0 ) n = 0; |
| 669 pMem->u.nZero = n; |
| 670 pMem->enc = SQLITE_UTF8; |
| 671 pMem->z = 0; |
| 672 } |
| 673 |
| 674 /* |
| 675 ** The pMem is known to contain content that needs to be destroyed prior |
| 676 ** to a value change. So invoke the destructor, then set the value to |
| 677 ** a 64-bit integer. |
| 678 */ |
| 679 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ |
| 680 sqlite3VdbeMemSetNull(pMem); |
| 681 pMem->u.i = val; |
| 682 pMem->flags = MEM_Int; |
| 683 } |
| 684 |
| 685 /* |
| 686 ** Delete any previous value and set the value stored in *pMem to val, |
| 687 ** manifest type INTEGER. |
| 688 */ |
| 689 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ |
| 690 if( VdbeMemDynamic(pMem) ){ |
| 691 vdbeReleaseAndSetInt64(pMem, val); |
| 692 }else{ |
| 693 pMem->u.i = val; |
| 694 pMem->flags = MEM_Int; |
| 695 } |
| 696 } |
| 697 |
| 698 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 699 /* |
| 700 ** Delete any previous value and set the value stored in *pMem to val, |
| 701 ** manifest type REAL. |
| 702 */ |
| 703 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ |
| 704 sqlite3VdbeMemSetNull(pMem); |
| 705 if( !sqlite3IsNaN(val) ){ |
| 706 pMem->u.r = val; |
| 707 pMem->flags = MEM_Real; |
| 708 } |
| 709 } |
| 710 #endif |
| 711 |
| 712 /* |
| 713 ** Delete any previous value and set the value of pMem to be an |
| 714 ** empty boolean index. |
| 715 */ |
| 716 void sqlite3VdbeMemSetRowSet(Mem *pMem){ |
| 717 sqlite3 *db = pMem->db; |
| 718 assert( db!=0 ); |
| 719 assert( (pMem->flags & MEM_RowSet)==0 ); |
| 720 sqlite3VdbeMemRelease(pMem); |
| 721 pMem->zMalloc = sqlite3DbMallocRaw(db, 64); |
| 722 if( db->mallocFailed ){ |
| 723 pMem->flags = MEM_Null; |
| 724 pMem->szMalloc = 0; |
| 725 }else{ |
| 726 assert( pMem->zMalloc ); |
| 727 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc); |
| 728 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc); |
| 729 assert( pMem->u.pRowSet!=0 ); |
| 730 pMem->flags = MEM_RowSet; |
| 731 } |
| 732 } |
| 733 |
| 734 /* |
| 735 ** Return true if the Mem object contains a TEXT or BLOB that is |
| 736 ** too large - whose size exceeds SQLITE_MAX_LENGTH. |
| 737 */ |
| 738 int sqlite3VdbeMemTooBig(Mem *p){ |
| 739 assert( p->db!=0 ); |
| 740 if( p->flags & (MEM_Str|MEM_Blob) ){ |
| 741 int n = p->n; |
| 742 if( p->flags & MEM_Zero ){ |
| 743 n += p->u.nZero; |
| 744 } |
| 745 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; |
| 746 } |
| 747 return 0; |
| 748 } |
| 749 |
| 750 #ifdef SQLITE_DEBUG |
| 751 /* |
| 752 ** This routine prepares a memory cell for modification by breaking |
| 753 ** its link to a shallow copy and by marking any current shallow |
| 754 ** copies of this cell as invalid. |
| 755 ** |
| 756 ** This is used for testing and debugging only - to make sure shallow |
| 757 ** copies are not misused. |
| 758 */ |
| 759 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ |
| 760 int i; |
| 761 Mem *pX; |
| 762 for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){ |
| 763 if( pX->pScopyFrom==pMem ){ |
| 764 pX->flags |= MEM_Undefined; |
| 765 pX->pScopyFrom = 0; |
| 766 } |
| 767 } |
| 768 pMem->pScopyFrom = 0; |
| 769 } |
| 770 #endif /* SQLITE_DEBUG */ |
| 771 |
| 772 /* |
| 773 ** Size of struct Mem not including the Mem.zMalloc member. |
| 774 */ |
| 775 #define MEMCELLSIZE offsetof(Mem,zMalloc) |
| 776 |
| 777 /* |
| 778 ** Make an shallow copy of pFrom into pTo. Prior contents of |
| 779 ** pTo are freed. The pFrom->z field is not duplicated. If |
| 780 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z |
| 781 ** and flags gets srcType (either MEM_Ephem or MEM_Static). |
| 782 */ |
| 783 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ |
| 784 assert( (pFrom->flags & MEM_RowSet)==0 ); |
| 785 assert( pTo->db==pFrom->db ); |
| 786 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); |
| 787 memcpy(pTo, pFrom, MEMCELLSIZE); |
| 788 if( (pFrom->flags&MEM_Static)==0 ){ |
| 789 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); |
| 790 assert( srcType==MEM_Ephem || srcType==MEM_Static ); |
| 791 pTo->flags |= srcType; |
| 792 } |
| 793 } |
| 794 |
| 795 /* |
| 796 ** Make a full copy of pFrom into pTo. Prior contents of pTo are |
| 797 ** freed before the copy is made. |
| 798 */ |
| 799 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ |
| 800 int rc = SQLITE_OK; |
| 801 |
| 802 assert( pTo->db==pFrom->db ); |
| 803 assert( (pFrom->flags & MEM_RowSet)==0 ); |
| 804 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); |
| 805 memcpy(pTo, pFrom, MEMCELLSIZE); |
| 806 pTo->flags &= ~MEM_Dyn; |
| 807 if( pTo->flags&(MEM_Str|MEM_Blob) ){ |
| 808 if( 0==(pFrom->flags&MEM_Static) ){ |
| 809 pTo->flags |= MEM_Ephem; |
| 810 rc = sqlite3VdbeMemMakeWriteable(pTo); |
| 811 } |
| 812 } |
| 813 |
| 814 return rc; |
| 815 } |
| 816 |
| 817 /* |
| 818 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is |
| 819 ** freed. If pFrom contains ephemeral data, a copy is made. |
| 820 ** |
| 821 ** pFrom contains an SQL NULL when this routine returns. |
| 822 */ |
| 823 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ |
| 824 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); |
| 825 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); |
| 826 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); |
| 827 |
| 828 sqlite3VdbeMemRelease(pTo); |
| 829 memcpy(pTo, pFrom, sizeof(Mem)); |
| 830 pFrom->flags = MEM_Null; |
| 831 pFrom->szMalloc = 0; |
| 832 } |
| 833 |
| 834 /* |
| 835 ** Change the value of a Mem to be a string or a BLOB. |
| 836 ** |
| 837 ** The memory management strategy depends on the value of the xDel |
| 838 ** parameter. If the value passed is SQLITE_TRANSIENT, then the |
| 839 ** string is copied into a (possibly existing) buffer managed by the |
| 840 ** Mem structure. Otherwise, any existing buffer is freed and the |
| 841 ** pointer copied. |
| 842 ** |
| 843 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH |
| 844 ** size limit) then no memory allocation occurs. If the string can be |
| 845 ** stored without allocating memory, then it is. If a memory allocation |
| 846 ** is required to store the string, then value of pMem is unchanged. In |
| 847 ** either case, SQLITE_TOOBIG is returned. |
| 848 */ |
| 849 int sqlite3VdbeMemSetStr( |
| 850 Mem *pMem, /* Memory cell to set to string value */ |
| 851 const char *z, /* String pointer */ |
| 852 int n, /* Bytes in string, or negative */ |
| 853 u8 enc, /* Encoding of z. 0 for BLOBs */ |
| 854 void (*xDel)(void*) /* Destructor function */ |
| 855 ){ |
| 856 int nByte = n; /* New value for pMem->n */ |
| 857 int iLimit; /* Maximum allowed string or blob size */ |
| 858 u16 flags = 0; /* New value for pMem->flags */ |
| 859 |
| 860 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 861 assert( (pMem->flags & MEM_RowSet)==0 ); |
| 862 |
| 863 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ |
| 864 if( !z ){ |
| 865 sqlite3VdbeMemSetNull(pMem); |
| 866 return SQLITE_OK; |
| 867 } |
| 868 |
| 869 if( pMem->db ){ |
| 870 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; |
| 871 }else{ |
| 872 iLimit = SQLITE_MAX_LENGTH; |
| 873 } |
| 874 flags = (enc==0?MEM_Blob:MEM_Str); |
| 875 if( nByte<0 ){ |
| 876 assert( enc!=0 ); |
| 877 if( enc==SQLITE_UTF8 ){ |
| 878 nByte = sqlite3Strlen30(z); |
| 879 if( nByte>iLimit ) nByte = iLimit+1; |
| 880 }else{ |
| 881 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} |
| 882 } |
| 883 flags |= MEM_Term; |
| 884 } |
| 885 |
| 886 /* The following block sets the new values of Mem.z and Mem.xDel. It |
| 887 ** also sets a flag in local variable "flags" to indicate the memory |
| 888 ** management (one of MEM_Dyn or MEM_Static). |
| 889 */ |
| 890 if( xDel==SQLITE_TRANSIENT ){ |
| 891 int nAlloc = nByte; |
| 892 if( flags&MEM_Term ){ |
| 893 nAlloc += (enc==SQLITE_UTF8?1:2); |
| 894 } |
| 895 if( nByte>iLimit ){ |
| 896 return SQLITE_TOOBIG; |
| 897 } |
| 898 testcase( nAlloc==0 ); |
| 899 testcase( nAlloc==31 ); |
| 900 testcase( nAlloc==32 ); |
| 901 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){ |
| 902 return SQLITE_NOMEM; |
| 903 } |
| 904 memcpy(pMem->z, z, nAlloc); |
| 905 }else if( xDel==SQLITE_DYNAMIC ){ |
| 906 sqlite3VdbeMemRelease(pMem); |
| 907 pMem->zMalloc = pMem->z = (char *)z; |
| 908 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); |
| 909 }else{ |
| 910 sqlite3VdbeMemRelease(pMem); |
| 911 pMem->z = (char *)z; |
| 912 pMem->xDel = xDel; |
| 913 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); |
| 914 } |
| 915 |
| 916 pMem->n = nByte; |
| 917 pMem->flags = flags; |
| 918 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); |
| 919 |
| 920 #ifndef SQLITE_OMIT_UTF16 |
| 921 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ |
| 922 return SQLITE_NOMEM; |
| 923 } |
| 924 #endif |
| 925 |
| 926 if( nByte>iLimit ){ |
| 927 return SQLITE_TOOBIG; |
| 928 } |
| 929 |
| 930 return SQLITE_OK; |
| 931 } |
| 932 |
| 933 /* |
| 934 ** Move data out of a btree key or data field and into a Mem structure. |
| 935 ** The data or key is taken from the entry that pCur is currently pointing |
| 936 ** to. offset and amt determine what portion of the data or key to retrieve. |
| 937 ** key is true to get the key or false to get data. The result is written |
| 938 ** into the pMem element. |
| 939 ** |
| 940 ** The pMem object must have been initialized. This routine will use |
| 941 ** pMem->zMalloc to hold the content from the btree, if possible. New |
| 942 ** pMem->zMalloc space will be allocated if necessary. The calling routine |
| 943 ** is responsible for making sure that the pMem object is eventually |
| 944 ** destroyed. |
| 945 ** |
| 946 ** If this routine fails for any reason (malloc returns NULL or unable |
| 947 ** to read from the disk) then the pMem is left in an inconsistent state. |
| 948 */ |
| 949 int sqlite3VdbeMemFromBtree( |
| 950 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ |
| 951 u32 offset, /* Offset from the start of data to return bytes from. */ |
| 952 u32 amt, /* Number of bytes to return. */ |
| 953 int key, /* If true, retrieve from the btree key, not data. */ |
| 954 Mem *pMem /* OUT: Return data in this Mem structure. */ |
| 955 ){ |
| 956 char *zData; /* Data from the btree layer */ |
| 957 u32 available = 0; /* Number of bytes available on the local btree page */ |
| 958 int rc = SQLITE_OK; /* Return code */ |
| 959 |
| 960 assert( sqlite3BtreeCursorIsValid(pCur) ); |
| 961 assert( !VdbeMemDynamic(pMem) ); |
| 962 |
| 963 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() |
| 964 ** that both the BtShared and database handle mutexes are held. */ |
| 965 assert( (pMem->flags & MEM_RowSet)==0 ); |
| 966 if( key ){ |
| 967 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); |
| 968 }else{ |
| 969 zData = (char *)sqlite3BtreeDataFetch(pCur, &available); |
| 970 } |
| 971 assert( zData!=0 ); |
| 972 |
| 973 if( offset+amt<=available ){ |
| 974 pMem->z = &zData[offset]; |
| 975 pMem->flags = MEM_Blob|MEM_Ephem; |
| 976 pMem->n = (int)amt; |
| 977 }else{ |
| 978 pMem->flags = MEM_Null; |
| 979 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){ |
| 980 if( key ){ |
| 981 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); |
| 982 }else{ |
| 983 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); |
| 984 } |
| 985 if( rc==SQLITE_OK ){ |
| 986 pMem->z[amt] = 0; |
| 987 pMem->z[amt+1] = 0; |
| 988 pMem->flags = MEM_Blob|MEM_Term; |
| 989 pMem->n = (int)amt; |
| 990 }else{ |
| 991 sqlite3VdbeMemRelease(pMem); |
| 992 } |
| 993 } |
| 994 } |
| 995 |
| 996 return rc; |
| 997 } |
| 998 |
| 999 /* |
| 1000 ** The pVal argument is known to be a value other than NULL. |
| 1001 ** Convert it into a string with encoding enc and return a pointer |
| 1002 ** to a zero-terminated version of that string. |
| 1003 */ |
| 1004 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ |
| 1005 assert( pVal!=0 ); |
| 1006 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); |
| 1007 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); |
| 1008 assert( (pVal->flags & MEM_RowSet)==0 ); |
| 1009 assert( (pVal->flags & (MEM_Null))==0 ); |
| 1010 if( pVal->flags & (MEM_Blob|MEM_Str) ){ |
| 1011 pVal->flags |= MEM_Str; |
| 1012 if( pVal->flags & MEM_Zero ){ |
| 1013 sqlite3VdbeMemExpandBlob(pVal); |
| 1014 } |
| 1015 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ |
| 1016 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); |
| 1017 } |
| 1018 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ |
| 1019 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); |
| 1020 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ |
| 1021 return 0; |
| 1022 } |
| 1023 } |
| 1024 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ |
| 1025 }else{ |
| 1026 sqlite3VdbeMemStringify(pVal, enc, 0); |
| 1027 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); |
| 1028 } |
| 1029 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 |
| 1030 || pVal->db->mallocFailed ); |
| 1031 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ |
| 1032 return pVal->z; |
| 1033 }else{ |
| 1034 return 0; |
| 1035 } |
| 1036 } |
| 1037 |
| 1038 /* This function is only available internally, it is not part of the |
| 1039 ** external API. It works in a similar way to sqlite3_value_text(), |
| 1040 ** except the data returned is in the encoding specified by the second |
| 1041 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or |
| 1042 ** SQLITE_UTF8. |
| 1043 ** |
| 1044 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. |
| 1045 ** If that is the case, then the result must be aligned on an even byte |
| 1046 ** boundary. |
| 1047 */ |
| 1048 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ |
| 1049 if( !pVal ) return 0; |
| 1050 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); |
| 1051 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); |
| 1052 assert( (pVal->flags & MEM_RowSet)==0 ); |
| 1053 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ |
| 1054 return pVal->z; |
| 1055 } |
| 1056 if( pVal->flags&MEM_Null ){ |
| 1057 return 0; |
| 1058 } |
| 1059 return valueToText(pVal, enc); |
| 1060 } |
| 1061 |
| 1062 /* |
| 1063 ** Create a new sqlite3_value object. |
| 1064 */ |
| 1065 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ |
| 1066 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); |
| 1067 if( p ){ |
| 1068 p->flags = MEM_Null; |
| 1069 p->db = db; |
| 1070 } |
| 1071 return p; |
| 1072 } |
| 1073 |
| 1074 /* |
| 1075 ** Context object passed by sqlite3Stat4ProbeSetValue() through to |
| 1076 ** valueNew(). See comments above valueNew() for details. |
| 1077 */ |
| 1078 struct ValueNewStat4Ctx { |
| 1079 Parse *pParse; |
| 1080 Index *pIdx; |
| 1081 UnpackedRecord **ppRec; |
| 1082 int iVal; |
| 1083 }; |
| 1084 |
| 1085 /* |
| 1086 ** Allocate and return a pointer to a new sqlite3_value object. If |
| 1087 ** the second argument to this function is NULL, the object is allocated |
| 1088 ** by calling sqlite3ValueNew(). |
| 1089 ** |
| 1090 ** Otherwise, if the second argument is non-zero, then this function is |
| 1091 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not |
| 1092 ** already been allocated, allocate the UnpackedRecord structure that |
| 1093 ** that function will return to its caller here. Then return a pointer |
| 1094 ** an sqlite3_value within the UnpackedRecord.a[] array. |
| 1095 */ |
| 1096 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ |
| 1097 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1098 if( p ){ |
| 1099 UnpackedRecord *pRec = p->ppRec[0]; |
| 1100 |
| 1101 if( pRec==0 ){ |
| 1102 Index *pIdx = p->pIdx; /* Index being probed */ |
| 1103 int nByte; /* Bytes of space to allocate */ |
| 1104 int i; /* Counter variable */ |
| 1105 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ |
| 1106 |
| 1107 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); |
| 1108 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); |
| 1109 if( pRec ){ |
| 1110 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); |
| 1111 if( pRec->pKeyInfo ){ |
| 1112 assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol ); |
| 1113 assert( pRec->pKeyInfo->enc==ENC(db) ); |
| 1114 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); |
| 1115 for(i=0; i<nCol; i++){ |
| 1116 pRec->aMem[i].flags = MEM_Null; |
| 1117 pRec->aMem[i].db = db; |
| 1118 } |
| 1119 }else{ |
| 1120 sqlite3DbFree(db, pRec); |
| 1121 pRec = 0; |
| 1122 } |
| 1123 } |
| 1124 if( pRec==0 ) return 0; |
| 1125 p->ppRec[0] = pRec; |
| 1126 } |
| 1127 |
| 1128 pRec->nField = p->iVal+1; |
| 1129 return &pRec->aMem[p->iVal]; |
| 1130 } |
| 1131 #else |
| 1132 UNUSED_PARAMETER(p); |
| 1133 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ |
| 1134 return sqlite3ValueNew(db); |
| 1135 } |
| 1136 |
| 1137 /* |
| 1138 ** Extract a value from the supplied expression in the manner described |
| 1139 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object |
| 1140 ** using valueNew(). |
| 1141 ** |
| 1142 ** If pCtx is NULL and an error occurs after the sqlite3_value object |
| 1143 ** has been allocated, it is freed before returning. Or, if pCtx is not |
| 1144 ** NULL, it is assumed that the caller will free any allocated object |
| 1145 ** in all cases. |
| 1146 */ |
| 1147 static int valueFromExpr( |
| 1148 sqlite3 *db, /* The database connection */ |
| 1149 Expr *pExpr, /* The expression to evaluate */ |
| 1150 u8 enc, /* Encoding to use */ |
| 1151 u8 affinity, /* Affinity to use */ |
| 1152 sqlite3_value **ppVal, /* Write the new value here */ |
| 1153 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ |
| 1154 ){ |
| 1155 int op; |
| 1156 char *zVal = 0; |
| 1157 sqlite3_value *pVal = 0; |
| 1158 int negInt = 1; |
| 1159 const char *zNeg = ""; |
| 1160 int rc = SQLITE_OK; |
| 1161 |
| 1162 if( !pExpr ){ |
| 1163 *ppVal = 0; |
| 1164 return SQLITE_OK; |
| 1165 } |
| 1166 while( (op = pExpr->op)==TK_UPLUS ) pExpr = pExpr->pLeft; |
| 1167 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; |
| 1168 |
| 1169 if( op==TK_CAST ){ |
| 1170 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); |
| 1171 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); |
| 1172 testcase( rc!=SQLITE_OK ); |
| 1173 if( *ppVal ){ |
| 1174 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); |
| 1175 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); |
| 1176 } |
| 1177 return rc; |
| 1178 } |
| 1179 |
| 1180 /* Handle negative integers in a single step. This is needed in the |
| 1181 ** case when the value is -9223372036854775808. |
| 1182 */ |
| 1183 if( op==TK_UMINUS |
| 1184 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ |
| 1185 pExpr = pExpr->pLeft; |
| 1186 op = pExpr->op; |
| 1187 negInt = -1; |
| 1188 zNeg = "-"; |
| 1189 } |
| 1190 |
| 1191 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ |
| 1192 pVal = valueNew(db, pCtx); |
| 1193 if( pVal==0 ) goto no_mem; |
| 1194 if( ExprHasProperty(pExpr, EP_IntValue) ){ |
| 1195 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); |
| 1196 }else{ |
| 1197 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); |
| 1198 if( zVal==0 ) goto no_mem; |
| 1199 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); |
| 1200 } |
| 1201 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ |
| 1202 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); |
| 1203 }else{ |
| 1204 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); |
| 1205 } |
| 1206 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; |
| 1207 if( enc!=SQLITE_UTF8 ){ |
| 1208 rc = sqlite3VdbeChangeEncoding(pVal, enc); |
| 1209 } |
| 1210 }else if( op==TK_UMINUS ) { |
| 1211 /* This branch happens for multiple negative signs. Ex: -(-5) */ |
| 1212 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) |
| 1213 && pVal!=0 |
| 1214 ){ |
| 1215 sqlite3VdbeMemNumerify(pVal); |
| 1216 if( pVal->flags & MEM_Real ){ |
| 1217 pVal->u.r = -pVal->u.r; |
| 1218 }else if( pVal->u.i==SMALLEST_INT64 ){ |
| 1219 pVal->u.r = -(double)SMALLEST_INT64; |
| 1220 MemSetTypeFlag(pVal, MEM_Real); |
| 1221 }else{ |
| 1222 pVal->u.i = -pVal->u.i; |
| 1223 } |
| 1224 sqlite3ValueApplyAffinity(pVal, affinity, enc); |
| 1225 } |
| 1226 }else if( op==TK_NULL ){ |
| 1227 pVal = valueNew(db, pCtx); |
| 1228 if( pVal==0 ) goto no_mem; |
| 1229 } |
| 1230 #ifndef SQLITE_OMIT_BLOB_LITERAL |
| 1231 else if( op==TK_BLOB ){ |
| 1232 int nVal; |
| 1233 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); |
| 1234 assert( pExpr->u.zToken[1]=='\'' ); |
| 1235 pVal = valueNew(db, pCtx); |
| 1236 if( !pVal ) goto no_mem; |
| 1237 zVal = &pExpr->u.zToken[2]; |
| 1238 nVal = sqlite3Strlen30(zVal)-1; |
| 1239 assert( zVal[nVal]=='\'' ); |
| 1240 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, |
| 1241 0, SQLITE_DYNAMIC); |
| 1242 } |
| 1243 #endif |
| 1244 |
| 1245 *ppVal = pVal; |
| 1246 return rc; |
| 1247 |
| 1248 no_mem: |
| 1249 db->mallocFailed = 1; |
| 1250 sqlite3DbFree(db, zVal); |
| 1251 assert( *ppVal==0 ); |
| 1252 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1253 if( pCtx==0 ) sqlite3ValueFree(pVal); |
| 1254 #else |
| 1255 assert( pCtx==0 ); sqlite3ValueFree(pVal); |
| 1256 #endif |
| 1257 return SQLITE_NOMEM; |
| 1258 } |
| 1259 |
| 1260 /* |
| 1261 ** Create a new sqlite3_value object, containing the value of pExpr. |
| 1262 ** |
| 1263 ** This only works for very simple expressions that consist of one constant |
| 1264 ** token (i.e. "5", "5.1", "'a string'"). If the expression can |
| 1265 ** be converted directly into a value, then the value is allocated and |
| 1266 ** a pointer written to *ppVal. The caller is responsible for deallocating |
| 1267 ** the value by passing it to sqlite3ValueFree() later on. If the expression |
| 1268 ** cannot be converted to a value, then *ppVal is set to NULL. |
| 1269 */ |
| 1270 int sqlite3ValueFromExpr( |
| 1271 sqlite3 *db, /* The database connection */ |
| 1272 Expr *pExpr, /* The expression to evaluate */ |
| 1273 u8 enc, /* Encoding to use */ |
| 1274 u8 affinity, /* Affinity to use */ |
| 1275 sqlite3_value **ppVal /* Write the new value here */ |
| 1276 ){ |
| 1277 return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0); |
| 1278 } |
| 1279 |
| 1280 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1281 /* |
| 1282 ** The implementation of the sqlite_record() function. This function accepts |
| 1283 ** a single argument of any type. The return value is a formatted database |
| 1284 ** record (a blob) containing the argument value. |
| 1285 ** |
| 1286 ** This is used to convert the value stored in the 'sample' column of the |
| 1287 ** sqlite_stat3 table to the record format SQLite uses internally. |
| 1288 */ |
| 1289 static void recordFunc( |
| 1290 sqlite3_context *context, |
| 1291 int argc, |
| 1292 sqlite3_value **argv |
| 1293 ){ |
| 1294 const int file_format = 1; |
| 1295 int iSerial; /* Serial type */ |
| 1296 int nSerial; /* Bytes of space for iSerial as varint */ |
| 1297 int nVal; /* Bytes of space required for argv[0] */ |
| 1298 int nRet; |
| 1299 sqlite3 *db; |
| 1300 u8 *aRet; |
| 1301 |
| 1302 UNUSED_PARAMETER( argc ); |
| 1303 iSerial = sqlite3VdbeSerialType(argv[0], file_format); |
| 1304 nSerial = sqlite3VarintLen(iSerial); |
| 1305 nVal = sqlite3VdbeSerialTypeLen(iSerial); |
| 1306 db = sqlite3_context_db_handle(context); |
| 1307 |
| 1308 nRet = 1 + nSerial + nVal; |
| 1309 aRet = sqlite3DbMallocRaw(db, nRet); |
| 1310 if( aRet==0 ){ |
| 1311 sqlite3_result_error_nomem(context); |
| 1312 }else{ |
| 1313 aRet[0] = nSerial+1; |
| 1314 putVarint32(&aRet[1], iSerial); |
| 1315 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial); |
| 1316 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT); |
| 1317 sqlite3DbFree(db, aRet); |
| 1318 } |
| 1319 } |
| 1320 |
| 1321 /* |
| 1322 ** Register built-in functions used to help read ANALYZE data. |
| 1323 */ |
| 1324 void sqlite3AnalyzeFunctions(void){ |
| 1325 static SQLITE_WSD FuncDef aAnalyzeTableFuncs[] = { |
| 1326 FUNCTION(sqlite_record, 1, 0, 0, recordFunc), |
| 1327 }; |
| 1328 int i; |
| 1329 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); |
| 1330 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAnalyzeTableFuncs); |
| 1331 for(i=0; i<ArraySize(aAnalyzeTableFuncs); i++){ |
| 1332 sqlite3FuncDefInsert(pHash, &aFunc[i]); |
| 1333 } |
| 1334 } |
| 1335 |
| 1336 /* |
| 1337 ** Attempt to extract a value from pExpr and use it to construct *ppVal. |
| 1338 ** |
| 1339 ** If pAlloc is not NULL, then an UnpackedRecord object is created for |
| 1340 ** pAlloc if one does not exist and the new value is added to the |
| 1341 ** UnpackedRecord object. |
| 1342 ** |
| 1343 ** A value is extracted in the following cases: |
| 1344 ** |
| 1345 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, |
| 1346 ** |
| 1347 ** * The expression is a bound variable, and this is a reprepare, or |
| 1348 ** |
| 1349 ** * The expression is a literal value. |
| 1350 ** |
| 1351 ** On success, *ppVal is made to point to the extracted value. The caller |
| 1352 ** is responsible for ensuring that the value is eventually freed. |
| 1353 */ |
| 1354 static int stat4ValueFromExpr( |
| 1355 Parse *pParse, /* Parse context */ |
| 1356 Expr *pExpr, /* The expression to extract a value from */ |
| 1357 u8 affinity, /* Affinity to use */ |
| 1358 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ |
| 1359 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ |
| 1360 ){ |
| 1361 int rc = SQLITE_OK; |
| 1362 sqlite3_value *pVal = 0; |
| 1363 sqlite3 *db = pParse->db; |
| 1364 |
| 1365 /* Skip over any TK_COLLATE nodes */ |
| 1366 pExpr = sqlite3ExprSkipCollate(pExpr); |
| 1367 |
| 1368 if( !pExpr ){ |
| 1369 pVal = valueNew(db, pAlloc); |
| 1370 if( pVal ){ |
| 1371 sqlite3VdbeMemSetNull((Mem*)pVal); |
| 1372 } |
| 1373 }else if( pExpr->op==TK_VARIABLE |
| 1374 || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) |
| 1375 ){ |
| 1376 Vdbe *v; |
| 1377 int iBindVar = pExpr->iColumn; |
| 1378 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); |
| 1379 if( (v = pParse->pReprepare)!=0 ){ |
| 1380 pVal = valueNew(db, pAlloc); |
| 1381 if( pVal ){ |
| 1382 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); |
| 1383 if( rc==SQLITE_OK ){ |
| 1384 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); |
| 1385 } |
| 1386 pVal->db = pParse->db; |
| 1387 } |
| 1388 } |
| 1389 }else{ |
| 1390 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); |
| 1391 } |
| 1392 |
| 1393 assert( pVal==0 || pVal->db==db ); |
| 1394 *ppVal = pVal; |
| 1395 return rc; |
| 1396 } |
| 1397 |
| 1398 /* |
| 1399 ** This function is used to allocate and populate UnpackedRecord |
| 1400 ** structures intended to be compared against sample index keys stored |
| 1401 ** in the sqlite_stat4 table. |
| 1402 ** |
| 1403 ** A single call to this function attempts to populates field iVal (leftmost |
| 1404 ** is 0 etc.) of the unpacked record with a value extracted from expression |
| 1405 ** pExpr. Extraction of values is possible if: |
| 1406 ** |
| 1407 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, |
| 1408 ** |
| 1409 ** * The expression is a bound variable, and this is a reprepare, or |
| 1410 ** |
| 1411 ** * The sqlite3ValueFromExpr() function is able to extract a value |
| 1412 ** from the expression (i.e. the expression is a literal value). |
| 1413 ** |
| 1414 ** If a value can be extracted, the affinity passed as the 5th argument |
| 1415 ** is applied to it before it is copied into the UnpackedRecord. Output |
| 1416 ** parameter *pbOk is set to true if a value is extracted, or false |
| 1417 ** otherwise. |
| 1418 ** |
| 1419 ** When this function is called, *ppRec must either point to an object |
| 1420 ** allocated by an earlier call to this function, or must be NULL. If it |
| 1421 ** is NULL and a value can be successfully extracted, a new UnpackedRecord |
| 1422 ** is allocated (and *ppRec set to point to it) before returning. |
| 1423 ** |
| 1424 ** Unless an error is encountered, SQLITE_OK is returned. It is not an |
| 1425 ** error if a value cannot be extracted from pExpr. If an error does |
| 1426 ** occur, an SQLite error code is returned. |
| 1427 */ |
| 1428 int sqlite3Stat4ProbeSetValue( |
| 1429 Parse *pParse, /* Parse context */ |
| 1430 Index *pIdx, /* Index being probed */ |
| 1431 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ |
| 1432 Expr *pExpr, /* The expression to extract a value from */ |
| 1433 u8 affinity, /* Affinity to use */ |
| 1434 int iVal, /* Array element to populate */ |
| 1435 int *pbOk /* OUT: True if value was extracted */ |
| 1436 ){ |
| 1437 int rc; |
| 1438 sqlite3_value *pVal = 0; |
| 1439 struct ValueNewStat4Ctx alloc; |
| 1440 |
| 1441 alloc.pParse = pParse; |
| 1442 alloc.pIdx = pIdx; |
| 1443 alloc.ppRec = ppRec; |
| 1444 alloc.iVal = iVal; |
| 1445 |
| 1446 rc = stat4ValueFromExpr(pParse, pExpr, affinity, &alloc, &pVal); |
| 1447 assert( pVal==0 || pVal->db==pParse->db ); |
| 1448 *pbOk = (pVal!=0); |
| 1449 return rc; |
| 1450 } |
| 1451 |
| 1452 /* |
| 1453 ** Attempt to extract a value from expression pExpr using the methods |
| 1454 ** as described for sqlite3Stat4ProbeSetValue() above. |
| 1455 ** |
| 1456 ** If successful, set *ppVal to point to a new value object and return |
| 1457 ** SQLITE_OK. If no value can be extracted, but no other error occurs |
| 1458 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error |
| 1459 ** does occur, return an SQLite error code. The final value of *ppVal |
| 1460 ** is undefined in this case. |
| 1461 */ |
| 1462 int sqlite3Stat4ValueFromExpr( |
| 1463 Parse *pParse, /* Parse context */ |
| 1464 Expr *pExpr, /* The expression to extract a value from */ |
| 1465 u8 affinity, /* Affinity to use */ |
| 1466 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ |
| 1467 ){ |
| 1468 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); |
| 1469 } |
| 1470 |
| 1471 /* |
| 1472 ** Extract the iCol-th column from the nRec-byte record in pRec. Write |
| 1473 ** the column value into *ppVal. If *ppVal is initially NULL then a new |
| 1474 ** sqlite3_value object is allocated. |
| 1475 ** |
| 1476 ** If *ppVal is initially NULL then the caller is responsible for |
| 1477 ** ensuring that the value written into *ppVal is eventually freed. |
| 1478 */ |
| 1479 int sqlite3Stat4Column( |
| 1480 sqlite3 *db, /* Database handle */ |
| 1481 const void *pRec, /* Pointer to buffer containing record */ |
| 1482 int nRec, /* Size of buffer pRec in bytes */ |
| 1483 int iCol, /* Column to extract */ |
| 1484 sqlite3_value **ppVal /* OUT: Extracted value */ |
| 1485 ){ |
| 1486 u32 t; /* a column type code */ |
| 1487 int nHdr; /* Size of the header in the record */ |
| 1488 int iHdr; /* Next unread header byte */ |
| 1489 int iField; /* Next unread data byte */ |
| 1490 int szField; /* Size of the current data field */ |
| 1491 int i; /* Column index */ |
| 1492 u8 *a = (u8*)pRec; /* Typecast byte array */ |
| 1493 Mem *pMem = *ppVal; /* Write result into this Mem object */ |
| 1494 |
| 1495 assert( iCol>0 ); |
| 1496 iHdr = getVarint32(a, nHdr); |
| 1497 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; |
| 1498 iField = nHdr; |
| 1499 for(i=0; i<=iCol; i++){ |
| 1500 iHdr += getVarint32(&a[iHdr], t); |
| 1501 testcase( iHdr==nHdr ); |
| 1502 testcase( iHdr==nHdr+1 ); |
| 1503 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; |
| 1504 szField = sqlite3VdbeSerialTypeLen(t); |
| 1505 iField += szField; |
| 1506 } |
| 1507 testcase( iField==nRec ); |
| 1508 testcase( iField==nRec+1 ); |
| 1509 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; |
| 1510 if( pMem==0 ){ |
| 1511 pMem = *ppVal = sqlite3ValueNew(db); |
| 1512 if( pMem==0 ) return SQLITE_NOMEM; |
| 1513 } |
| 1514 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); |
| 1515 pMem->enc = ENC(db); |
| 1516 return SQLITE_OK; |
| 1517 } |
| 1518 |
| 1519 /* |
| 1520 ** Unless it is NULL, the argument must be an UnpackedRecord object returned |
| 1521 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes |
| 1522 ** the object. |
| 1523 */ |
| 1524 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ |
| 1525 if( pRec ){ |
| 1526 int i; |
| 1527 int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField; |
| 1528 Mem *aMem = pRec->aMem; |
| 1529 sqlite3 *db = aMem[0].db; |
| 1530 for(i=0; i<nCol; i++){ |
| 1531 if( aMem[i].szMalloc ) sqlite3DbFree(db, aMem[i].zMalloc); |
| 1532 } |
| 1533 sqlite3KeyInfoUnref(pRec->pKeyInfo); |
| 1534 sqlite3DbFree(db, pRec); |
| 1535 } |
| 1536 } |
| 1537 #endif /* ifdef SQLITE_ENABLE_STAT4 */ |
| 1538 |
| 1539 /* |
| 1540 ** Change the string value of an sqlite3_value object |
| 1541 */ |
| 1542 void sqlite3ValueSetStr( |
| 1543 sqlite3_value *v, /* Value to be set */ |
| 1544 int n, /* Length of string z */ |
| 1545 const void *z, /* Text of the new string */ |
| 1546 u8 enc, /* Encoding to use */ |
| 1547 void (*xDel)(void*) /* Destructor for the string */ |
| 1548 ){ |
| 1549 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); |
| 1550 } |
| 1551 |
| 1552 /* |
| 1553 ** Free an sqlite3_value object |
| 1554 */ |
| 1555 void sqlite3ValueFree(sqlite3_value *v){ |
| 1556 if( !v ) return; |
| 1557 sqlite3VdbeMemRelease((Mem *)v); |
| 1558 sqlite3DbFree(((Mem*)v)->db, v); |
| 1559 } |
| 1560 |
| 1561 /* |
| 1562 ** Return the number of bytes in the sqlite3_value object assuming |
| 1563 ** that it uses the encoding "enc" |
| 1564 */ |
| 1565 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ |
| 1566 Mem *p = (Mem*)pVal; |
| 1567 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ |
| 1568 if( p->flags & MEM_Zero ){ |
| 1569 return p->n + p->u.nZero; |
| 1570 }else{ |
| 1571 return p->n; |
| 1572 } |
| 1573 } |
| 1574 return 0; |
| 1575 } |
OLD | NEW |