Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(6)

Side by Side Diff: third_party/sqlite/sqlite-src-3080704/src/vdbeaux.c

Issue 883353008: [sql] Import reference version of SQLite 3.8.7.4. (Closed) Base URL: http://chromium.googlesource.com/chromium/src.git@master
Patch Set: Hold back encoding change which is messing up patch. Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 ** 2003 September 6 2 ** 2003 September 6
3 ** 3 **
4 ** The author disclaims copyright to this source code. In place of 4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing: 5 ** a legal notice, here is a blessing:
6 ** 6 **
7 ** May you do good and not evil. 7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others. 8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give. 9 ** May you share freely, never taking more than you give.
10 ** 10 **
11 ************************************************************************* 11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating 12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 ** to version 2.8.7, all this code was combined into the vdbe.c source file.
15 ** But that file was getting too big so this subroutines were split out.
16 */ 14 */
17 #include "sqliteInt.h" 15 #include "sqliteInt.h"
18 #include "vdbeInt.h" 16 #include "vdbeInt.h"
19 17
20
21
22 /*
23 ** When debugging the code generator in a symbolic debugger, one can
24 ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
25 ** as they are added to the instruction stream.
26 */
27 #ifdef SQLITE_DEBUG
28 int sqlite3VdbeAddopTrace = 0;
29 #endif
30
31
32 /* 18 /*
33 ** Create a new virtual database engine. 19 ** Create a new virtual database engine.
34 */ 20 */
35 Vdbe *sqlite3VdbeCreate(sqlite3 *db){ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
36 Vdbe *p; 23 Vdbe *p;
37 p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); 24 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
38 if( p==0 ) return 0; 25 if( p==0 ) return 0;
39 p->db = db; 26 p->db = db;
40 if( db->pVdbe ){ 27 if( db->pVdbe ){
41 db->pVdbe->pPrev = p; 28 db->pVdbe->pPrev = p;
42 } 29 }
43 p->pNext = db->pVdbe; 30 p->pNext = db->pVdbe;
44 p->pPrev = 0; 31 p->pPrev = 0;
45 db->pVdbe = p; 32 db->pVdbe = p;
46 p->magic = VDBE_MAGIC_INIT; 33 p->magic = VDBE_MAGIC_INIT;
34 p->pParse = pParse;
35 assert( pParse->aLabel==0 );
36 assert( pParse->nLabel==0 );
37 assert( pParse->nOpAlloc==0 );
47 return p; 38 return p;
48 } 39 }
49 40
50 /* 41 /*
51 ** Remember the SQL string for a prepared statement. 42 ** Remember the SQL string for a prepared statement.
52 */ 43 */
53 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 44 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
54 assert( isPrepareV2==1 || isPrepareV2==0 ); 45 assert( isPrepareV2==1 || isPrepareV2==0 );
55 if( p==0 ) return; 46 if( p==0 ) return;
56 #ifdef SQLITE_OMIT_TRACE 47 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
57 if( !isPrepareV2 ) return; 48 if( !isPrepareV2 ) return;
58 #endif 49 #endif
59 assert( p->zSql==0 ); 50 assert( p->zSql==0 );
60 p->zSql = sqlite3DbStrNDup(p->db, z, n); 51 p->zSql = sqlite3DbStrNDup(p->db, z, n);
61 p->isPrepareV2 = (u8)isPrepareV2; 52 p->isPrepareV2 = (u8)isPrepareV2;
62 } 53 }
63 54
64 /* 55 /*
65 ** Return the SQL associated with a prepared statement 56 ** Return the SQL associated with a prepared statement
66 */ 57 */
(...skipping 16 matching lines...) Expand all
83 pB->pNext = pTmp; 74 pB->pNext = pTmp;
84 pTmp = pA->pPrev; 75 pTmp = pA->pPrev;
85 pA->pPrev = pB->pPrev; 76 pA->pPrev = pB->pPrev;
86 pB->pPrev = pTmp; 77 pB->pPrev = pTmp;
87 zTmp = pA->zSql; 78 zTmp = pA->zSql;
88 pA->zSql = pB->zSql; 79 pA->zSql = pB->zSql;
89 pB->zSql = zTmp; 80 pB->zSql = zTmp;
90 pB->isPrepareV2 = pA->isPrepareV2; 81 pB->isPrepareV2 = pA->isPrepareV2;
91 } 82 }
92 83
84 /*
85 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
86 ** than its current size. nOp is guaranteed to be less than or equal
87 ** to 1024/sizeof(Op).
88 **
89 ** If an out-of-memory error occurs while resizing the array, return
90 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
91 ** unchanged (this is so that any opcodes already allocated can be
92 ** correctly deallocated along with the rest of the Vdbe).
93 */
94 static int growOpArray(Vdbe *v, int nOp){
95 VdbeOp *pNew;
96 Parse *p = v->pParse;
97
98 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
99 ** more frequent reallocs and hence provide more opportunities for
100 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
101 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
102 ** by the minimum* amount required until the size reaches 512. Normal
103 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
104 ** size of the op array or add 1KB of space, whichever is smaller. */
105 #ifdef SQLITE_TEST_REALLOC_STRESS
106 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
107 #else
108 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
109 UNUSED_PARAMETER(nOp);
110 #endif
111
112 assert( nOp<=(1024/sizeof(Op)) );
113 assert( nNew>=(p->nOpAlloc+nOp) );
114 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
115 if( pNew ){
116 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
117 v->aOp = pNew;
118 }
119 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
120 }
121
93 #ifdef SQLITE_DEBUG 122 #ifdef SQLITE_DEBUG
94 /* 123 /* This routine is just a convenient place to set a breakpoint that will
95 ** Turn tracing on or off 124 ** fire after each opcode is inserted and displayed using
125 ** "PRAGMA vdbe_addoptrace=on".
96 */ 126 */
97 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ 127 static void test_addop_breakpoint(void){
98 p->trace = trace; 128 static int n = 0;
129 n++;
99 } 130 }
100 #endif 131 #endif
101 132
102 /* 133 /*
103 ** Resize the Vdbe.aOp array so that it is at least one op larger than
104 ** it was.
105 **
106 ** If an out-of-memory error occurs while resizing the array, return
107 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
108 ** unchanged (this is so that any opcodes already allocated can be
109 ** correctly deallocated along with the rest of the Vdbe).
110 */
111 static int growOpArray(Vdbe *p){
112 VdbeOp *pNew;
113 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
114 pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
115 if( pNew ){
116 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
117 p->aOp = pNew;
118 }
119 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
120 }
121
122 /*
123 ** Add a new instruction to the list of instructions current in the 134 ** Add a new instruction to the list of instructions current in the
124 ** VDBE. Return the address of the new instruction. 135 ** VDBE. Return the address of the new instruction.
125 ** 136 **
126 ** Parameters: 137 ** Parameters:
127 ** 138 **
128 ** p Pointer to the VDBE 139 ** p Pointer to the VDBE
129 ** 140 **
130 ** op The opcode for this instruction 141 ** op The opcode for this instruction
131 ** 142 **
132 ** p1, p2, p3 Operands 143 ** p1, p2, p3 Operands
133 ** 144 **
134 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 145 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
135 ** the sqlite3VdbeChangeP4() function to change the value of the P4 146 ** the sqlite3VdbeChangeP4() function to change the value of the P4
136 ** operand. 147 ** operand.
137 */ 148 */
138 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 149 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
139 int i; 150 int i;
140 VdbeOp *pOp; 151 VdbeOp *pOp;
141 152
142 i = p->nOp; 153 i = p->nOp;
143 assert( p->magic==VDBE_MAGIC_INIT ); 154 assert( p->magic==VDBE_MAGIC_INIT );
144 assert( op>0 && op<0xff ); 155 assert( op>0 && op<0xff );
145 if( p->nOpAlloc<=i ){ 156 if( p->pParse->nOpAlloc<=i ){
146 if( growOpArray(p) ){ 157 if( growOpArray(p, 1) ){
147 return 1; 158 return 1;
148 } 159 }
149 } 160 }
150 p->nOp++; 161 p->nOp++;
151 pOp = &p->aOp[i]; 162 pOp = &p->aOp[i];
152 pOp->opcode = (u8)op; 163 pOp->opcode = (u8)op;
153 pOp->p5 = 0; 164 pOp->p5 = 0;
154 pOp->p1 = p1; 165 pOp->p1 = p1;
155 pOp->p2 = p2; 166 pOp->p2 = p2;
156 pOp->p3 = p3; 167 pOp->p3 = p3;
157 pOp->p4.p = 0; 168 pOp->p4.p = 0;
158 pOp->p4type = P4_NOTUSED; 169 pOp->p4type = P4_NOTUSED;
159 p->expired = 0; 170 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
160 if( op==OP_ParseSchema ){ 171 pOp->zComment = 0;
161 /* Any program that uses the OP_ParseSchema opcode needs to lock 172 #endif
162 ** all btrees. */ 173 #ifdef SQLITE_DEBUG
163 int j; 174 if( p->db->flags & SQLITE_VdbeAddopTrace ){
164 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 175 int jj, kk;
176 Parse *pParse = p->pParse;
177 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
178 struct yColCache *x = pParse->aColCache + jj;
179 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
180 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
181 kk++;
182 }
183 if( kk ) printf("\n");
184 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
185 test_addop_breakpoint();
165 } 186 }
166 #ifdef SQLITE_DEBUG
167 pOp->zComment = 0;
168 if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
169 #endif 187 #endif
170 #ifdef VDBE_PROFILE 188 #ifdef VDBE_PROFILE
171 pOp->cycles = 0; 189 pOp->cycles = 0;
172 pOp->cnt = 0; 190 pOp->cnt = 0;
173 #endif 191 #endif
192 #ifdef SQLITE_VDBE_COVERAGE
193 pOp->iSrcLine = 0;
194 #endif
174 return i; 195 return i;
175 } 196 }
176 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 197 int sqlite3VdbeAddOp0(Vdbe *p, int op){
177 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 198 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
178 } 199 }
179 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 200 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
180 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 201 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
181 } 202 }
182 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 203 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
183 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 204 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
(...skipping 11 matching lines...) Expand all
195 int p3, /* The P3 operand */ 216 int p3, /* The P3 operand */
196 const char *zP4, /* The P4 operand */ 217 const char *zP4, /* The P4 operand */
197 int p4type /* P4 operand type */ 218 int p4type /* P4 operand type */
198 ){ 219 ){
199 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 220 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
200 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 221 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
201 return addr; 222 return addr;
202 } 223 }
203 224
204 /* 225 /*
226 ** Add an OP_ParseSchema opcode. This routine is broken out from
227 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
228 ** as having been used.
229 **
230 ** The zWhere string must have been obtained from sqlite3_malloc().
231 ** This routine will take ownership of the allocated memory.
232 */
233 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
234 int j;
235 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
236 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
237 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
238 }
239
240 /*
205 ** Add an opcode that includes the p4 value as an integer. 241 ** Add an opcode that includes the p4 value as an integer.
206 */ 242 */
207 int sqlite3VdbeAddOp4Int( 243 int sqlite3VdbeAddOp4Int(
208 Vdbe *p, /* Add the opcode to this VM */ 244 Vdbe *p, /* Add the opcode to this VM */
209 int op, /* The new opcode */ 245 int op, /* The new opcode */
210 int p1, /* The P1 operand */ 246 int p1, /* The P1 operand */
211 int p2, /* The P2 operand */ 247 int p2, /* The P2 operand */
212 int p3, /* The P3 operand */ 248 int p3, /* The P3 operand */
213 int p4 /* The P4 operand as an integer */ 249 int p4 /* The P4 operand as an integer */
214 ){ 250 ){
215 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 251 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
216 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); 252 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
217 return addr; 253 return addr;
218 } 254 }
219 255
220 /* 256 /*
221 ** Create a new symbolic label for an instruction that has yet to be 257 ** Create a new symbolic label for an instruction that has yet to be
222 ** coded. The symbolic label is really just a negative number. The 258 ** coded. The symbolic label is really just a negative number. The
223 ** label can be used as the P2 value of an operation. Later, when 259 ** label can be used as the P2 value of an operation. Later, when
224 ** the label is resolved to a specific address, the VDBE will scan 260 ** the label is resolved to a specific address, the VDBE will scan
225 ** through its operation list and change all values of P2 which match 261 ** through its operation list and change all values of P2 which match
226 ** the label into the resolved address. 262 ** the label into the resolved address.
227 ** 263 **
228 ** The VDBE knows that a P2 value is a label because labels are 264 ** The VDBE knows that a P2 value is a label because labels are
229 ** always negative and P2 values are suppose to be non-negative. 265 ** always negative and P2 values are suppose to be non-negative.
230 ** Hence, a negative P2 value is a label that has yet to be resolved. 266 ** Hence, a negative P2 value is a label that has yet to be resolved.
231 ** 267 **
232 ** Zero is returned if a malloc() fails. 268 ** Zero is returned if a malloc() fails.
233 */ 269 */
234 int sqlite3VdbeMakeLabel(Vdbe *p){ 270 int sqlite3VdbeMakeLabel(Vdbe *v){
235 int i; 271 Parse *p = v->pParse;
236 i = p->nLabel++; 272 int i = p->nLabel++;
237 assert( p->magic==VDBE_MAGIC_INIT ); 273 assert( v->magic==VDBE_MAGIC_INIT );
238 if( i>=p->nLabelAlloc ){ 274 if( (i & (i-1))==0 ){
239 int n = p->nLabelAlloc*2 + 5; 275 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
240 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 276 (i*2+1)*sizeof(p->aLabel[0]));
241 n*sizeof(p->aLabel[0]));
242 p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]);
243 } 277 }
244 if( p->aLabel ){ 278 if( p->aLabel ){
245 p->aLabel[i] = -1; 279 p->aLabel[i] = -1;
246 } 280 }
247 return -1-i; 281 return -1-i;
248 } 282 }
249 283
250 /* 284 /*
251 ** Resolve label "x" to be the address of the next instruction to 285 ** Resolve label "x" to be the address of the next instruction to
252 ** be inserted. The parameter "x" must have been obtained from 286 ** be inserted. The parameter "x" must have been obtained from
253 ** a prior call to sqlite3VdbeMakeLabel(). 287 ** a prior call to sqlite3VdbeMakeLabel().
254 */ 288 */
255 void sqlite3VdbeResolveLabel(Vdbe *p, int x){ 289 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
290 Parse *p = v->pParse;
256 int j = -1-x; 291 int j = -1-x;
257 assert( p->magic==VDBE_MAGIC_INIT ); 292 assert( v->magic==VDBE_MAGIC_INIT );
258 assert( j>=0 && j<p->nLabel ); 293 assert( j<p->nLabel );
259 if( p->aLabel ){ 294 if( ALWAYS(j>=0) && p->aLabel ){
260 p->aLabel[j] = p->nOp; 295 p->aLabel[j] = v->nOp;
261 } 296 }
297 p->iFixedOp = v->nOp - 1;
262 } 298 }
263 299
264 /* 300 /*
265 ** Mark the VDBE as one that can only be run one time. 301 ** Mark the VDBE as one that can only be run one time.
266 */ 302 */
267 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 303 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
268 p->runOnlyOnce = 1; 304 p->runOnlyOnce = 1;
269 } 305 }
270 306
271 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 307 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
(...skipping 93 matching lines...) Expand 10 before | Expand all | Expand 10 after
365 memset(&sIter, 0, sizeof(sIter)); 401 memset(&sIter, 0, sizeof(sIter));
366 sIter.v = v; 402 sIter.v = v;
367 403
368 while( (pOp = opIterNext(&sIter))!=0 ){ 404 while( (pOp = opIterNext(&sIter))!=0 ){
369 int opcode = pOp->opcode; 405 int opcode = pOp->opcode;
370 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 406 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
371 #ifndef SQLITE_OMIT_FOREIGN_KEY 407 #ifndef SQLITE_OMIT_FOREIGN_KEY
372 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) 408 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
373 #endif 409 #endif
374 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 410 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
375 && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 411 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
376 ){ 412 ){
377 hasAbort = 1; 413 hasAbort = 1;
378 break; 414 break;
379 } 415 }
380 } 416 }
381 sqlite3DbFree(v->db, sIter.apSub); 417 sqlite3DbFree(v->db, sIter.apSub);
382 418
383 /* Return true if hasAbort==mayAbort. Or if a malloc failure occured. 419 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
384 ** If malloc failed, then the while() loop above may not have iterated 420 ** If malloc failed, then the while() loop above may not have iterated
385 ** through all opcodes and hasAbort may be set incorrectly. Return 421 ** through all opcodes and hasAbort may be set incorrectly. Return
386 ** true for this case to prevent the assert() in the callers frame 422 ** true for this case to prevent the assert() in the callers frame
387 ** from failing. */ 423 ** from failing. */
388 return ( v->db->mallocFailed || hasAbort==mayAbort ); 424 return ( v->db->mallocFailed || hasAbort==mayAbort );
389 } 425 }
390 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 426 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
391 427
392 /* 428 /*
393 ** Loop through the program looking for P2 values that are negative 429 ** Loop through the program looking for P2 values that are negative
394 ** on jump instructions. Each such value is a label. Resolve the 430 ** on jump instructions. Each such value is a label. Resolve the
395 ** label by setting the P2 value to its correct non-zero value. 431 ** label by setting the P2 value to its correct non-zero value.
396 ** 432 **
397 ** This routine is called once after all opcodes have been inserted. 433 ** This routine is called once after all opcodes have been inserted.
398 ** 434 **
399 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 435 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
400 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 436 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
401 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. 437 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
402 ** 438 **
403 ** The Op.opflags field is set on all opcodes. 439 ** The Op.opflags field is set on all opcodes.
404 */ 440 */
405 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 441 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
406 int i; 442 int i;
407 int nMaxArgs = *pMaxFuncArgs; 443 int nMaxArgs = *pMaxFuncArgs;
408 Op *pOp; 444 Op *pOp;
409 int *aLabel = p->aLabel; 445 Parse *pParse = p->pParse;
446 int *aLabel = pParse->aLabel;
410 p->readOnly = 1; 447 p->readOnly = 1;
448 p->bIsReader = 0;
411 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ 449 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
412 u8 opcode = pOp->opcode; 450 u8 opcode = pOp->opcode;
413 451
414 pOp->opflags = sqlite3OpcodeProperty[opcode]; 452 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
415 if( opcode==OP_Function || opcode==OP_AggStep ){ 453 ** cases from this switch! */
416 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; 454 switch( opcode ){
417 }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){ 455 case OP_Function:
418 p->readOnly = 0; 456 case OP_AggStep: {
457 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
458 break;
459 }
460 case OP_Transaction: {
461 if( pOp->p2!=0 ) p->readOnly = 0;
462 /* fall thru */
463 }
464 case OP_AutoCommit:
465 case OP_Savepoint: {
466 p->bIsReader = 1;
467 break;
468 }
469 #ifndef SQLITE_OMIT_WAL
470 case OP_Checkpoint:
471 #endif
472 case OP_Vacuum:
473 case OP_JournalMode: {
474 p->readOnly = 0;
475 p->bIsReader = 1;
476 break;
477 }
419 #ifndef SQLITE_OMIT_VIRTUALTABLE 478 #ifndef SQLITE_OMIT_VIRTUALTABLE
420 }else if( opcode==OP_VUpdate ){ 479 case OP_VUpdate: {
421 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 480 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
422 }else if( opcode==OP_VFilter ){ 481 break;
423 int n; 482 }
424 assert( p->nOp - i >= 3 ); 483 case OP_VFilter: {
425 assert( pOp[-1].opcode==OP_Integer ); 484 int n;
426 n = pOp[-1].p1; 485 assert( p->nOp - i >= 3 );
427 if( n>nMaxArgs ) nMaxArgs = n; 486 assert( pOp[-1].opcode==OP_Integer );
487 n = pOp[-1].p1;
488 if( n>nMaxArgs ) nMaxArgs = n;
489 break;
490 }
428 #endif 491 #endif
492 case OP_Next:
493 case OP_NextIfOpen:
494 case OP_SorterNext: {
495 pOp->p4.xAdvance = sqlite3BtreeNext;
496 pOp->p4type = P4_ADVANCE;
497 break;
498 }
499 case OP_Prev:
500 case OP_PrevIfOpen: {
501 pOp->p4.xAdvance = sqlite3BtreePrevious;
502 pOp->p4type = P4_ADVANCE;
503 break;
504 }
429 } 505 }
430 506
507 pOp->opflags = sqlite3OpcodeProperty[opcode];
431 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 508 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
432 assert( -1-pOp->p2<p->nLabel ); 509 assert( -1-pOp->p2<pParse->nLabel );
433 pOp->p2 = aLabel[-1-pOp->p2]; 510 pOp->p2 = aLabel[-1-pOp->p2];
434 } 511 }
435 } 512 }
436 sqlite3DbFree(p->db, p->aLabel); 513 sqlite3DbFree(p->db, pParse->aLabel);
437 p->aLabel = 0; 514 pParse->aLabel = 0;
438 515 pParse->nLabel = 0;
439 *pMaxFuncArgs = nMaxArgs; 516 *pMaxFuncArgs = nMaxArgs;
517 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
440 } 518 }
441 519
442 /* 520 /*
443 ** Return the address of the next instruction to be inserted. 521 ** Return the address of the next instruction to be inserted.
444 */ 522 */
445 int sqlite3VdbeCurrentAddr(Vdbe *p){ 523 int sqlite3VdbeCurrentAddr(Vdbe *p){
446 assert( p->magic==VDBE_MAGIC_INIT ); 524 assert( p->magic==VDBE_MAGIC_INIT );
447 return p->nOp; 525 return p->nOp;
448 } 526 }
449 527
450 /* 528 /*
451 ** This function returns a pointer to the array of opcodes associated with 529 ** This function returns a pointer to the array of opcodes associated with
452 ** the Vdbe passed as the first argument. It is the callers responsibility 530 ** the Vdbe passed as the first argument. It is the callers responsibility
453 ** to arrange for the returned array to be eventually freed using the 531 ** to arrange for the returned array to be eventually freed using the
454 ** vdbeFreeOpArray() function. 532 ** vdbeFreeOpArray() function.
455 ** 533 **
456 ** Before returning, *pnOp is set to the number of entries in the returned 534 ** Before returning, *pnOp is set to the number of entries in the returned
457 ** array. Also, *pnMaxArg is set to the larger of its current value and 535 ** array. Also, *pnMaxArg is set to the larger of its current value and
458 ** the number of entries in the Vdbe.apArg[] array required to execute the 536 ** the number of entries in the Vdbe.apArg[] array required to execute the
459 ** returned program. 537 ** returned program.
460 */ 538 */
461 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 539 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
462 VdbeOp *aOp = p->aOp; 540 VdbeOp *aOp = p->aOp;
463 assert( aOp && !p->db->mallocFailed ); 541 assert( aOp && !p->db->mallocFailed );
464 542
465 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 543 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
466 assert( p->btreeMask==0 ); 544 assert( DbMaskAllZero(p->btreeMask) );
467 545
468 resolveP2Values(p, pnMaxArg); 546 resolveP2Values(p, pnMaxArg);
469 *pnOp = p->nOp; 547 *pnOp = p->nOp;
470 p->aOp = 0; 548 p->aOp = 0;
471 return aOp; 549 return aOp;
472 } 550 }
473 551
474 /* 552 /*
475 ** Add a whole list of operations to the operation stack. Return the 553 ** Add a whole list of operations to the operation stack. Return the
476 ** address of the first operation added. 554 ** address of the first operation added.
477 */ 555 */
478 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ 556 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
479 int addr; 557 int addr;
480 assert( p->magic==VDBE_MAGIC_INIT ); 558 assert( p->magic==VDBE_MAGIC_INIT );
481 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){ 559 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
482 return 0; 560 return 0;
483 } 561 }
484 addr = p->nOp; 562 addr = p->nOp;
485 if( ALWAYS(nOp>0) ){ 563 if( ALWAYS(nOp>0) ){
486 int i; 564 int i;
487 VdbeOpList const *pIn = aOp; 565 VdbeOpList const *pIn = aOp;
488 for(i=0; i<nOp; i++, pIn++){ 566 for(i=0; i<nOp; i++, pIn++){
489 int p2 = pIn->p2; 567 int p2 = pIn->p2;
490 VdbeOp *pOut = &p->aOp[i+addr]; 568 VdbeOp *pOut = &p->aOp[i+addr];
491 pOut->opcode = pIn->opcode; 569 pOut->opcode = pIn->opcode;
492 pOut->p1 = pIn->p1; 570 pOut->p1 = pIn->p1;
493 if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){ 571 if( p2<0 ){
572 assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP );
494 pOut->p2 = addr + ADDR(p2); 573 pOut->p2 = addr + ADDR(p2);
495 }else{ 574 }else{
496 pOut->p2 = p2; 575 pOut->p2 = p2;
497 } 576 }
498 pOut->p3 = pIn->p3; 577 pOut->p3 = pIn->p3;
499 pOut->p4type = P4_NOTUSED; 578 pOut->p4type = P4_NOTUSED;
500 pOut->p4.p = 0; 579 pOut->p4.p = 0;
501 pOut->p5 = 0; 580 pOut->p5 = 0;
581 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
582 pOut->zComment = 0;
583 #endif
584 #ifdef SQLITE_VDBE_COVERAGE
585 pOut->iSrcLine = iLineno+i;
586 #else
587 (void)iLineno;
588 #endif
502 #ifdef SQLITE_DEBUG 589 #ifdef SQLITE_DEBUG
503 pOut->zComment = 0; 590 if( p->db->flags & SQLITE_VdbeAddopTrace ){
504 if( sqlite3VdbeAddopTrace ){
505 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); 591 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
506 } 592 }
507 #endif 593 #endif
508 } 594 }
509 p->nOp += nOp; 595 p->nOp += nOp;
510 } 596 }
511 return addr; 597 return addr;
512 } 598 }
513 599
514 /* 600 /*
515 ** Change the value of the P1 operand for a specific instruction. 601 ** Change the value of the P1 operand for a specific instruction.
516 ** This routine is useful when a large program is loaded from a 602 ** This routine is useful when a large program is loaded from a
517 ** static array using sqlite3VdbeAddOpList but we want to make a 603 ** static array using sqlite3VdbeAddOpList but we want to make a
518 ** few minor changes to the program. 604 ** few minor changes to the program.
519 */ 605 */
520 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 606 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
521 assert( p!=0 ); 607 assert( p!=0 );
522 assert( addr>=0 ); 608 if( ((u32)p->nOp)>addr ){
523 if( p->nOp>addr ){
524 p->aOp[addr].p1 = val; 609 p->aOp[addr].p1 = val;
525 } 610 }
526 } 611 }
527 612
528 /* 613 /*
529 ** Change the value of the P2 operand for a specific instruction. 614 ** Change the value of the P2 operand for a specific instruction.
530 ** This routine is useful for setting a jump destination. 615 ** This routine is useful for setting a jump destination.
531 */ 616 */
532 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 617 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
533 assert( p!=0 ); 618 assert( p!=0 );
534 assert( addr>=0 ); 619 if( ((u32)p->nOp)>addr ){
535 if( p->nOp>addr ){
536 p->aOp[addr].p2 = val; 620 p->aOp[addr].p2 = val;
537 } 621 }
538 } 622 }
539 623
540 /* 624 /*
541 ** Change the value of the P3 operand for a specific instruction. 625 ** Change the value of the P3 operand for a specific instruction.
542 */ 626 */
543 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 627 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
544 assert( p!=0 ); 628 assert( p!=0 );
545 assert( addr>=0 ); 629 if( ((u32)p->nOp)>addr ){
546 if( p->nOp>addr ){
547 p->aOp[addr].p3 = val; 630 p->aOp[addr].p3 = val;
548 } 631 }
549 } 632 }
550 633
551 /* 634 /*
552 ** Change the value of the P5 operand for the most recently 635 ** Change the value of the P5 operand for the most recently
553 ** added operation. 636 ** added operation.
554 */ 637 */
555 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ 638 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
556 assert( p!=0 ); 639 assert( p!=0 );
557 if( p->aOp ){ 640 if( p->aOp ){
558 assert( p->nOp>0 ); 641 assert( p->nOp>0 );
559 p->aOp[p->nOp-1].p5 = val; 642 p->aOp[p->nOp-1].p5 = val;
560 } 643 }
561 } 644 }
562 645
563 /* 646 /*
564 ** Change the P2 operand of instruction addr so that it points to 647 ** Change the P2 operand of instruction addr so that it points to
565 ** the address of the next instruction to be coded. 648 ** the address of the next instruction to be coded.
566 */ 649 */
567 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 650 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
568 assert( addr>=0 );
569 sqlite3VdbeChangeP2(p, addr, p->nOp); 651 sqlite3VdbeChangeP2(p, addr, p->nOp);
652 p->pParse->iFixedOp = p->nOp - 1;
570 } 653 }
571 654
572 655
573 /* 656 /*
574 ** If the input FuncDef structure is ephemeral, then free it. If 657 ** If the input FuncDef structure is ephemeral, then free it. If
575 ** the FuncDef is not ephermal, then do nothing. 658 ** the FuncDef is not ephermal, then do nothing.
576 */ 659 */
577 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 660 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
578 if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ 661 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
579 sqlite3DbFree(db, pDef); 662 sqlite3DbFree(db, pDef);
580 } 663 }
581 } 664 }
582 665
583 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 666 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
584 667
585 /* 668 /*
586 ** Delete a P4 value if necessary. 669 ** Delete a P4 value if necessary.
587 */ 670 */
588 static void freeP4(sqlite3 *db, int p4type, void *p4){ 671 static void freeP4(sqlite3 *db, int p4type, void *p4){
589 if( p4 ){ 672 if( p4 ){
590 assert( db ); 673 assert( db );
591 switch( p4type ){ 674 switch( p4type ){
592 case P4_REAL: 675 case P4_REAL:
593 case P4_INT64: 676 case P4_INT64:
594 case P4_DYNAMIC: 677 case P4_DYNAMIC:
595 case P4_KEYINFO: 678 case P4_INTARRAY: {
596 case P4_INTARRAY:
597 case P4_KEYINFO_HANDOFF: {
598 sqlite3DbFree(db, p4); 679 sqlite3DbFree(db, p4);
599 break; 680 break;
600 } 681 }
682 case P4_KEYINFO: {
683 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
684 break;
685 }
601 case P4_MPRINTF: { 686 case P4_MPRINTF: {
602 if( db->pnBytesFreed==0 ) sqlite3_free(p4); 687 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
603 break; 688 break;
604 } 689 }
605 case P4_VDBEFUNC: {
606 VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
607 freeEphemeralFunction(db, pVdbeFunc->pFunc);
608 if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
609 sqlite3DbFree(db, pVdbeFunc);
610 break;
611 }
612 case P4_FUNCDEF: { 690 case P4_FUNCDEF: {
613 freeEphemeralFunction(db, (FuncDef*)p4); 691 freeEphemeralFunction(db, (FuncDef*)p4);
614 break; 692 break;
615 } 693 }
616 case P4_MEM: { 694 case P4_MEM: {
617 if( db->pnBytesFreed==0 ){ 695 if( db->pnBytesFreed==0 ){
618 sqlite3ValueFree((sqlite3_value*)p4); 696 sqlite3ValueFree((sqlite3_value*)p4);
619 }else{ 697 }else{
620 Mem *p = (Mem*)p4; 698 Mem *p = (Mem*)p4;
621 sqlite3DbFree(db, p->zMalloc); 699 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
622 sqlite3DbFree(db, p); 700 sqlite3DbFree(db, p);
623 } 701 }
624 break; 702 break;
625 } 703 }
626 case P4_VTAB : { 704 case P4_VTAB : {
627 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 705 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
628 break; 706 break;
629 } 707 }
630 } 708 }
631 } 709 }
632 } 710 }
633 711
634 /* 712 /*
635 ** Free the space allocated for aOp and any p4 values allocated for the 713 ** Free the space allocated for aOp and any p4 values allocated for the
636 ** opcodes contained within. If aOp is not NULL it is assumed to contain 714 ** opcodes contained within. If aOp is not NULL it is assumed to contain
637 ** nOp entries. 715 ** nOp entries.
638 */ 716 */
639 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 717 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
640 if( aOp ){ 718 if( aOp ){
641 Op *pOp; 719 Op *pOp;
642 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 720 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
643 freeP4(db, pOp->p4type, pOp->p4.p); 721 freeP4(db, pOp->p4type, pOp->p4.p);
644 #ifdef SQLITE_DEBUG 722 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
645 sqlite3DbFree(db, pOp->zComment); 723 sqlite3DbFree(db, pOp->zComment);
646 #endif 724 #endif
647 } 725 }
648 } 726 }
649 sqlite3DbFree(db, aOp); 727 sqlite3DbFree(db, aOp);
650 } 728 }
651 729
652 /* 730 /*
653 ** Link the SubProgram object passed as the second argument into the linked 731 ** Link the SubProgram object passed as the second argument into the linked
654 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 732 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
655 ** objects when the VM is no longer required. 733 ** objects when the VM is no longer required.
656 */ 734 */
657 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 735 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
658 p->pNext = pVdbe->pProgram; 736 p->pNext = pVdbe->pProgram;
659 pVdbe->pProgram = p; 737 pVdbe->pProgram = p;
660 } 738 }
661 739
662 /* 740 /*
663 ** Change N opcodes starting at addr to No-ops. 741 ** Change the opcode at addr into OP_Noop
664 */ 742 */
665 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ 743 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
666 if( p->aOp ){ 744 if( addr<p->nOp ){
667 VdbeOp *pOp = &p->aOp[addr]; 745 VdbeOp *pOp = &p->aOp[addr];
668 sqlite3 *db = p->db; 746 sqlite3 *db = p->db;
669 while( N-- ){ 747 freeP4(db, pOp->p4type, pOp->p4.p);
670 freeP4(db, pOp->p4type, pOp->p4.p); 748 memset(pOp, 0, sizeof(pOp[0]));
671 memset(pOp, 0, sizeof(pOp[0])); 749 pOp->opcode = OP_Noop;
672 pOp->opcode = OP_Noop; 750 if( addr==p->nOp-1 ) p->nOp--;
673 pOp++;
674 }
675 } 751 }
676 } 752 }
677 753
754 /*
755 ** If the last opcode is "op" and it is not a jump destination,
756 ** then remove it. Return true if and only if an opcode was removed.
757 */
758 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
759 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
760 sqlite3VdbeChangeToNoop(p, p->nOp-1);
761 return 1;
762 }else{
763 return 0;
764 }
765 }
766
678 /* 767 /*
679 ** Change the value of the P4 operand for a specific instruction. 768 ** Change the value of the P4 operand for a specific instruction.
680 ** This routine is useful when a large program is loaded from a 769 ** This routine is useful when a large program is loaded from a
681 ** static array using sqlite3VdbeAddOpList but we want to make a 770 ** static array using sqlite3VdbeAddOpList but we want to make a
682 ** few minor changes to the program. 771 ** few minor changes to the program.
683 ** 772 **
684 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 773 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
685 ** the string is made into memory obtained from sqlite3_malloc(). 774 ** the string is made into memory obtained from sqlite3_malloc().
686 ** A value of n==0 means copy bytes of zP4 up to and including the 775 ** A value of n==0 means copy bytes of zP4 up to and including the
687 ** first null byte. If n>0 then copy n+1 bytes of zP4. 776 ** first null byte. If n>0 then copy n+1 bytes of zP4.
688 **
689 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
690 ** A copy is made of the KeyInfo structure into memory obtained from
691 ** sqlite3_malloc, to be freed when the Vdbe is finalized.
692 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
693 ** stored in memory that the caller has obtained from sqlite3_malloc. The
694 ** caller should not free the allocation, it will be freed when the Vdbe is
695 ** finalized.
696 ** 777 **
697 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 778 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
698 ** to a string or structure that is guaranteed to exist for the lifetime of 779 ** to a string or structure that is guaranteed to exist for the lifetime of
699 ** the Vdbe. In these cases we can just copy the pointer. 780 ** the Vdbe. In these cases we can just copy the pointer.
700 ** 781 **
701 ** If addr<0 then change P4 on the most recently inserted instruction. 782 ** If addr<0 then change P4 on the most recently inserted instruction.
702 */ 783 */
703 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 784 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
704 Op *pOp; 785 Op *pOp;
705 sqlite3 *db; 786 sqlite3 *db;
706 assert( p!=0 ); 787 assert( p!=0 );
707 db = p->db; 788 db = p->db;
708 assert( p->magic==VDBE_MAGIC_INIT ); 789 assert( p->magic==VDBE_MAGIC_INIT );
709 if( p->aOp==0 || db->mallocFailed ){ 790 if( p->aOp==0 || db->mallocFailed ){
710 if ( n!=P4_KEYINFO && n!=P4_VTAB ) { 791 if( n!=P4_VTAB ){
711 freeP4(db, n, (void*)*(char**)&zP4); 792 freeP4(db, n, (void*)*(char**)&zP4);
712 } 793 }
713 return; 794 return;
714 } 795 }
715 assert( p->nOp>0 ); 796 assert( p->nOp>0 );
716 assert( addr<p->nOp ); 797 assert( addr<p->nOp );
717 if( addr<0 ){ 798 if( addr<0 ){
718 addr = p->nOp - 1; 799 addr = p->nOp - 1;
719 } 800 }
720 pOp = &p->aOp[addr]; 801 pOp = &p->aOp[addr];
802 assert( pOp->p4type==P4_NOTUSED
803 || pOp->p4type==P4_INT32
804 || pOp->p4type==P4_KEYINFO );
721 freeP4(db, pOp->p4type, pOp->p4.p); 805 freeP4(db, pOp->p4type, pOp->p4.p);
722 pOp->p4.p = 0; 806 pOp->p4.p = 0;
723 if( n==P4_INT32 ){ 807 if( n==P4_INT32 ){
724 /* Note: this cast is safe, because the origin data point was an int 808 /* Note: this cast is safe, because the origin data point was an int
725 ** that was cast to a (const char *). */ 809 ** that was cast to a (const char *). */
726 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 810 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
727 pOp->p4type = P4_INT32; 811 pOp->p4type = P4_INT32;
728 }else if( zP4==0 ){ 812 }else if( zP4==0 ){
729 pOp->p4.p = 0; 813 pOp->p4.p = 0;
730 pOp->p4type = P4_NOTUSED; 814 pOp->p4type = P4_NOTUSED;
731 }else if( n==P4_KEYINFO ){ 815 }else if( n==P4_KEYINFO ){
732 KeyInfo *pKeyInfo;
733 int nField, nByte;
734
735 nField = ((KeyInfo*)zP4)->nField;
736 nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
737 pKeyInfo = sqlite3DbMallocRaw(0, nByte);
738 pOp->p4.pKeyInfo = pKeyInfo;
739 if( pKeyInfo ){
740 u8 *aSortOrder;
741 memcpy((char*)pKeyInfo, zP4, nByte - nField);
742 aSortOrder = pKeyInfo->aSortOrder;
743 if( aSortOrder ){
744 pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
745 memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
746 }
747 pOp->p4type = P4_KEYINFO;
748 }else{
749 p->db->mallocFailed = 1;
750 pOp->p4type = P4_NOTUSED;
751 }
752 }else if( n==P4_KEYINFO_HANDOFF ){
753 pOp->p4.p = (void*)zP4; 816 pOp->p4.p = (void*)zP4;
754 pOp->p4type = P4_KEYINFO; 817 pOp->p4type = P4_KEYINFO;
755 }else if( n==P4_VTAB ){ 818 }else if( n==P4_VTAB ){
756 pOp->p4.p = (void*)zP4; 819 pOp->p4.p = (void*)zP4;
757 pOp->p4type = P4_VTAB; 820 pOp->p4type = P4_VTAB;
758 sqlite3VtabLock((VTable *)zP4); 821 sqlite3VtabLock((VTable *)zP4);
759 assert( ((VTable *)zP4)->db==p->db ); 822 assert( ((VTable *)zP4)->db==p->db );
760 }else if( n<0 ){ 823 }else if( n<0 ){
761 pOp->p4.p = (void*)zP4; 824 pOp->p4.p = (void*)zP4;
762 pOp->p4type = (signed char)n; 825 pOp->p4type = (signed char)n;
763 }else{ 826 }else{
764 if( n==0 ) n = sqlite3Strlen30(zP4); 827 if( n==0 ) n = sqlite3Strlen30(zP4);
765 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 828 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
766 pOp->p4type = P4_DYNAMIC; 829 pOp->p4type = P4_DYNAMIC;
767 } 830 }
768 } 831 }
769 832
770 #ifndef NDEBUG
771 /* 833 /*
772 ** Change the comment on the the most recently coded instruction. Or 834 ** Set the P4 on the most recently added opcode to the KeyInfo for the
835 ** index given.
836 */
837 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
838 Vdbe *v = pParse->pVdbe;
839 assert( v!=0 );
840 assert( pIdx!=0 );
841 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
842 P4_KEYINFO);
843 }
844
845 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
846 /*
847 ** Change the comment on the most recently coded instruction. Or
773 ** insert a No-op and add the comment to that new instruction. This 848 ** insert a No-op and add the comment to that new instruction. This
774 ** makes the code easier to read during debugging. None of this happens 849 ** makes the code easier to read during debugging. None of this happens
775 ** in a production build. 850 ** in a production build.
776 */ 851 */
777 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 852 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
778 va_list ap;
779 if( !p ) return;
780 assert( p->nOp>0 || p->aOp==0 ); 853 assert( p->nOp>0 || p->aOp==0 );
781 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 854 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
782 if( p->nOp ){ 855 if( p->nOp ){
783 char **pz = &p->aOp[p->nOp-1].zComment; 856 assert( p->aOp );
857 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
858 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
859 }
860 }
861 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
862 va_list ap;
863 if( p ){
784 va_start(ap, zFormat); 864 va_start(ap, zFormat);
785 sqlite3DbFree(p->db, *pz); 865 vdbeVComment(p, zFormat, ap);
786 *pz = sqlite3VMPrintf(p->db, zFormat, ap);
787 va_end(ap); 866 va_end(ap);
788 } 867 }
789 } 868 }
790 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 869 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
791 va_list ap; 870 va_list ap;
792 if( !p ) return; 871 if( p ){
793 sqlite3VdbeAddOp0(p, OP_Noop); 872 sqlite3VdbeAddOp0(p, OP_Noop);
794 assert( p->nOp>0 || p->aOp==0 );
795 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
796 if( p->nOp ){
797 char **pz = &p->aOp[p->nOp-1].zComment;
798 va_start(ap, zFormat); 873 va_start(ap, zFormat);
799 sqlite3DbFree(p->db, *pz); 874 vdbeVComment(p, zFormat, ap);
800 *pz = sqlite3VMPrintf(p->db, zFormat, ap);
801 va_end(ap); 875 va_end(ap);
802 } 876 }
803 } 877 }
804 #endif /* NDEBUG */ 878 #endif /* NDEBUG */
805 879
880 #ifdef SQLITE_VDBE_COVERAGE
881 /*
882 ** Set the value if the iSrcLine field for the previously coded instruction.
883 */
884 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
885 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
886 }
887 #endif /* SQLITE_VDBE_COVERAGE */
888
806 /* 889 /*
807 ** Return the opcode for a given address. If the address is -1, then 890 ** Return the opcode for a given address. If the address is -1, then
808 ** return the most recently inserted opcode. 891 ** return the most recently inserted opcode.
809 ** 892 **
810 ** If a memory allocation error has occurred prior to the calling of this 893 ** If a memory allocation error has occurred prior to the calling of this
811 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 894 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
812 ** is readable but not writable, though it is cast to a writable value. 895 ** is readable but not writable, though it is cast to a writable value.
813 ** The return of a dummy opcode allows the call to continue functioning 896 ** The return of a dummy opcode allows the call to continue functioning
814 ** after a OOM fault without having to check to see if the return from 897 ** after an OOM fault without having to check to see if the return from
815 ** this routine is a valid pointer. But because the dummy.opcode is 0, 898 ** this routine is a valid pointer. But because the dummy.opcode is 0,
816 ** dummy will never be written to. This is verified by code inspection and 899 ** dummy will never be written to. This is verified by code inspection and
817 ** by running with Valgrind. 900 ** by running with Valgrind.
818 **
819 ** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called
820 ** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE,
821 ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
822 ** a new VDBE is created. So we are free to set addr to p->nOp-1 without
823 ** having to double-check to make sure that the result is non-negative. But
824 ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
825 ** check the value of p->nOp-1 before continuing.
826 */ 901 */
827 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 902 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
828 /* C89 specifies that the constant "dummy" will be initialized to all 903 /* C89 specifies that the constant "dummy" will be initialized to all
829 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 904 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
830 static const VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 905 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
831 assert( p->magic==VDBE_MAGIC_INIT ); 906 assert( p->magic==VDBE_MAGIC_INIT );
832 if( addr<0 ){ 907 if( addr<0 ){
833 #ifdef SQLITE_OMIT_TRACE
834 if( p->nOp==0 ) return (VdbeOp*)&dummy;
835 #endif
836 addr = p->nOp - 1; 908 addr = p->nOp - 1;
837 } 909 }
838 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 910 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
839 if( p->db->mallocFailed ){ 911 if( p->db->mallocFailed ){
840 return (VdbeOp*)&dummy; 912 return (VdbeOp*)&dummy;
841 }else{ 913 }else{
842 return &p->aOp[addr]; 914 return &p->aOp[addr];
843 } 915 }
844 } 916 }
845 917
918 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
919 /*
920 ** Return an integer value for one of the parameters to the opcode pOp
921 ** determined by character c.
922 */
923 static int translateP(char c, const Op *pOp){
924 if( c=='1' ) return pOp->p1;
925 if( c=='2' ) return pOp->p2;
926 if( c=='3' ) return pOp->p3;
927 if( c=='4' ) return pOp->p4.i;
928 return pOp->p5;
929 }
930
931 /*
932 ** Compute a string for the "comment" field of a VDBE opcode listing.
933 **
934 ** The Synopsis: field in comments in the vdbe.c source file gets converted
935 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
936 ** absence of other comments, this synopsis becomes the comment on the opcode.
937 ** Some translation occurs:
938 **
939 ** "PX" -> "r[X]"
940 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
941 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
942 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
943 */
944 static int displayComment(
945 const Op *pOp, /* The opcode to be commented */
946 const char *zP4, /* Previously obtained value for P4 */
947 char *zTemp, /* Write result here */
948 int nTemp /* Space available in zTemp[] */
949 ){
950 const char *zOpName;
951 const char *zSynopsis;
952 int nOpName;
953 int ii, jj;
954 zOpName = sqlite3OpcodeName(pOp->opcode);
955 nOpName = sqlite3Strlen30(zOpName);
956 if( zOpName[nOpName+1] ){
957 int seenCom = 0;
958 char c;
959 zSynopsis = zOpName += nOpName + 1;
960 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
961 if( c=='P' ){
962 c = zSynopsis[++ii];
963 if( c=='4' ){
964 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
965 }else if( c=='X' ){
966 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
967 seenCom = 1;
968 }else{
969 int v1 = translateP(c, pOp);
970 int v2;
971 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
972 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
973 ii += 3;
974 jj += sqlite3Strlen30(zTemp+jj);
975 v2 = translateP(zSynopsis[ii], pOp);
976 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
977 ii += 2;
978 v2++;
979 }
980 if( v2>1 ){
981 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
982 }
983 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
984 ii += 4;
985 }
986 }
987 jj += sqlite3Strlen30(zTemp+jj);
988 }else{
989 zTemp[jj++] = c;
990 }
991 }
992 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
993 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
994 jj += sqlite3Strlen30(zTemp+jj);
995 }
996 if( jj<nTemp ) zTemp[jj] = 0;
997 }else if( pOp->zComment ){
998 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
999 jj = sqlite3Strlen30(zTemp);
1000 }else{
1001 zTemp[0] = 0;
1002 jj = 0;
1003 }
1004 return jj;
1005 }
1006 #endif /* SQLITE_DEBUG */
1007
1008
846 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ 1009 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
847 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1010 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
848 /* 1011 /*
849 ** Compute a string that describes the P4 parameter for an opcode. 1012 ** Compute a string that describes the P4 parameter for an opcode.
850 ** Use zTemp for any required temporary buffer space. 1013 ** Use zTemp for any required temporary buffer space.
851 */ 1014 */
852 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1015 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
853 char *zP4 = zTemp; 1016 char *zP4 = zTemp;
854 assert( nTemp>=20 ); 1017 assert( nTemp>=20 );
855 switch( pOp->p4type ){ 1018 switch( pOp->p4type ){
856 case P4_KEYINFO_STATIC:
857 case P4_KEYINFO: { 1019 case P4_KEYINFO: {
858 int i, j; 1020 int i, j;
859 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1021 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
860 sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); 1022 assert( pKeyInfo->aSortOrder!=0 );
1023 sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
861 i = sqlite3Strlen30(zTemp); 1024 i = sqlite3Strlen30(zTemp);
862 for(j=0; j<pKeyInfo->nField; j++){ 1025 for(j=0; j<pKeyInfo->nField; j++){
863 CollSeq *pColl = pKeyInfo->aColl[j]; 1026 CollSeq *pColl = pKeyInfo->aColl[j];
864 if( pColl ){ 1027 const char *zColl = pColl ? pColl->zName : "nil";
865 int n = sqlite3Strlen30(pColl->zName); 1028 int n = sqlite3Strlen30(zColl);
866 if( i+n>nTemp-6 ){ 1029 if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
867 memcpy(&zTemp[i],",...",4); 1030 zColl = "B";
868 break; 1031 n = 1;
869 }
870 zTemp[i++] = ',';
871 if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
872 zTemp[i++] = '-';
873 }
874 memcpy(&zTemp[i], pColl->zName,n+1);
875 i += n;
876 }else if( i+4<nTemp-6 ){
877 memcpy(&zTemp[i],",nil",4);
878 i += 4;
879 } 1032 }
1033 if( i+n>nTemp-6 ){
1034 memcpy(&zTemp[i],",...",4);
1035 break;
1036 }
1037 zTemp[i++] = ',';
1038 if( pKeyInfo->aSortOrder[j] ){
1039 zTemp[i++] = '-';
1040 }
1041 memcpy(&zTemp[i], zColl, n+1);
1042 i += n;
880 } 1043 }
881 zTemp[i++] = ')'; 1044 zTemp[i++] = ')';
882 zTemp[i] = 0; 1045 zTemp[i] = 0;
883 assert( i<nTemp ); 1046 assert( i<nTemp );
884 break; 1047 break;
885 } 1048 }
886 case P4_COLLSEQ: { 1049 case P4_COLLSEQ: {
887 CollSeq *pColl = pOp->p4.pColl; 1050 CollSeq *pColl = pOp->p4.pColl;
888 sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); 1051 sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
889 break; 1052 break;
890 } 1053 }
891 case P4_FUNCDEF: { 1054 case P4_FUNCDEF: {
892 FuncDef *pDef = pOp->p4.pFunc; 1055 FuncDef *pDef = pOp->p4.pFunc;
893 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); 1056 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
894 break; 1057 break;
895 } 1058 }
896 case P4_INT64: { 1059 case P4_INT64: {
897 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); 1060 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
898 break; 1061 break;
899 } 1062 }
900 case P4_INT32: { 1063 case P4_INT32: {
901 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); 1064 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
902 break; 1065 break;
903 } 1066 }
904 case P4_REAL: { 1067 case P4_REAL: {
905 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); 1068 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
906 break; 1069 break;
907 } 1070 }
908 case P4_MEM: { 1071 case P4_MEM: {
909 Mem *pMem = pOp->p4.pMem; 1072 Mem *pMem = pOp->p4.pMem;
910 assert( (pMem->flags & MEM_Null)==0 );
911 if( pMem->flags & MEM_Str ){ 1073 if( pMem->flags & MEM_Str ){
912 zP4 = pMem->z; 1074 zP4 = pMem->z;
913 }else if( pMem->flags & MEM_Int ){ 1075 }else if( pMem->flags & MEM_Int ){
914 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); 1076 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
915 }else if( pMem->flags & MEM_Real ){ 1077 }else if( pMem->flags & MEM_Real ){
916 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); 1078 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
1079 }else if( pMem->flags & MEM_Null ){
1080 sqlite3_snprintf(nTemp, zTemp, "NULL");
917 }else{ 1081 }else{
918 assert( pMem->flags & MEM_Blob ); 1082 assert( pMem->flags & MEM_Blob );
919 zP4 = "(blob)"; 1083 zP4 = "(blob)";
920 } 1084 }
921 break; 1085 break;
922 } 1086 }
923 #ifndef SQLITE_OMIT_VIRTUALTABLE 1087 #ifndef SQLITE_OMIT_VIRTUALTABLE
924 case P4_VTAB: { 1088 case P4_VTAB: {
925 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1089 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
926 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); 1090 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
927 break; 1091 break;
928 } 1092 }
929 #endif 1093 #endif
930 case P4_INTARRAY: { 1094 case P4_INTARRAY: {
931 sqlite3_snprintf(nTemp, zTemp, "intarray"); 1095 sqlite3_snprintf(nTemp, zTemp, "intarray");
932 break; 1096 break;
933 } 1097 }
934 case P4_SUBPROGRAM: { 1098 case P4_SUBPROGRAM: {
935 sqlite3_snprintf(nTemp, zTemp, "program"); 1099 sqlite3_snprintf(nTemp, zTemp, "program");
936 break; 1100 break;
937 } 1101 }
1102 case P4_ADVANCE: {
1103 zTemp[0] = 0;
1104 break;
1105 }
938 default: { 1106 default: {
939 zP4 = pOp->p4.z; 1107 zP4 = pOp->p4.z;
940 if( zP4==0 ){ 1108 if( zP4==0 ){
941 zP4 = zTemp; 1109 zP4 = zTemp;
942 zTemp[0] = 0; 1110 zTemp[0] = 0;
943 } 1111 }
944 } 1112 }
945 } 1113 }
946 assert( zP4!=0 ); 1114 assert( zP4!=0 );
947 return zP4; 1115 return zP4;
948 } 1116 }
949 #endif 1117 #endif
950 1118
951 /* 1119 /*
952 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1120 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
953 ** 1121 **
954 ** The prepared statements need to know in advance the complete set of 1122 ** The prepared statements need to know in advance the complete set of
955 ** attached databases that they will be using. A mask of these databases 1123 ** attached databases that will be use. A mask of these databases
956 ** is maintained in p->btreeMask and is used for locking and other purposes. 1124 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1125 ** p->btreeMask of databases that will require a lock.
957 */ 1126 */
958 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1127 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
959 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1128 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
960 assert( i<(int)sizeof(p->btreeMask)*8 ); 1129 assert( i<(int)sizeof(p->btreeMask)*8 );
961 p->btreeMask |= ((yDbMask)1)<<i; 1130 DbMaskSet(p->btreeMask, i);
962 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1131 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
963 p->lockMask |= ((yDbMask)1)<<i; 1132 DbMaskSet(p->lockMask, i);
964 } 1133 }
965 } 1134 }
966 1135
967 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1136 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
968 /* 1137 /*
969 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1138 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
970 ** this routine obtains the mutex associated with each BtShared structure 1139 ** this routine obtains the mutex associated with each BtShared structure
971 ** that may be accessed by the VM passed as an argument. In doing so it also 1140 ** that may be accessed by the VM passed as an argument. In doing so it also
972 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1141 ** sets the BtShared.db member of each of the BtShared structures, ensuring
973 ** that the correct busy-handler callback is invoked if required. 1142 ** that the correct busy-handler callback is invoked if required.
974 ** 1143 **
975 ** If SQLite is not threadsafe but does support shared-cache mode, then 1144 ** If SQLite is not threadsafe but does support shared-cache mode, then
976 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1145 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
977 ** of all of BtShared structures accessible via the database handle 1146 ** of all of BtShared structures accessible via the database handle
978 ** associated with the VM. 1147 ** associated with the VM.
979 ** 1148 **
980 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1149 ** If SQLite is not threadsafe and does not support shared-cache mode, this
981 ** function is a no-op. 1150 ** function is a no-op.
982 ** 1151 **
983 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1152 ** The p->btreeMask field is a bitmask of all btrees that the prepared
984 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1153 ** statement p will ever use. Let N be the number of bits in p->btreeMask
985 ** corresponding to btrees that use shared cache. Then the runtime of 1154 ** corresponding to btrees that use shared cache. Then the runtime of
986 ** this routine is N*N. But as N is rarely more than 1, this should not 1155 ** this routine is N*N. But as N is rarely more than 1, this should not
987 ** be a problem. 1156 ** be a problem.
988 */ 1157 */
989 void sqlite3VdbeEnter(Vdbe *p){ 1158 void sqlite3VdbeEnter(Vdbe *p){
990 int i; 1159 int i;
991 yDbMask mask;
992 sqlite3 *db; 1160 sqlite3 *db;
993 Db *aDb; 1161 Db *aDb;
994 int nDb; 1162 int nDb;
995 if( p->lockMask==0 ) return; /* The common case */ 1163 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
996 db = p->db; 1164 db = p->db;
997 aDb = db->aDb; 1165 aDb = db->aDb;
998 nDb = db->nDb; 1166 nDb = db->nDb;
999 for(i=0, mask=1; i<nDb; i++, mask += mask){ 1167 for(i=0; i<nDb; i++){
1000 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ 1168 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1001 sqlite3BtreeEnter(aDb[i].pBt); 1169 sqlite3BtreeEnter(aDb[i].pBt);
1002 } 1170 }
1003 } 1171 }
1004 } 1172 }
1005 #endif 1173 #endif
1006 1174
1007 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1175 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1008 /* 1176 /*
1009 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1177 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1010 */ 1178 */
1011 void sqlite3VdbeLeave(Vdbe *p){ 1179 void sqlite3VdbeLeave(Vdbe *p){
1012 int i; 1180 int i;
1013 yDbMask mask;
1014 sqlite3 *db; 1181 sqlite3 *db;
1015 Db *aDb; 1182 Db *aDb;
1016 int nDb; 1183 int nDb;
1017 if( p->lockMask==0 ) return; /* The common case */ 1184 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1018 db = p->db; 1185 db = p->db;
1019 aDb = db->aDb; 1186 aDb = db->aDb;
1020 nDb = db->nDb; 1187 nDb = db->nDb;
1021 for(i=0, mask=1; i<nDb; i++, mask += mask){ 1188 for(i=0; i<nDb; i++){
1022 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ 1189 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1023 sqlite3BtreeLeave(aDb[i].pBt); 1190 sqlite3BtreeLeave(aDb[i].pBt);
1024 } 1191 }
1025 } 1192 }
1026 } 1193 }
1027 #endif 1194 #endif
1028 1195
1029 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1196 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1030 /* 1197 /*
1031 ** Print a single opcode. This routine is used for debugging only. 1198 ** Print a single opcode. This routine is used for debugging only.
1032 */ 1199 */
1033 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1200 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1034 char *zP4; 1201 char *zP4;
1035 char zPtr[50]; 1202 char zPtr[50];
1036 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n"; 1203 char zCom[100];
1204 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1037 if( pOut==0 ) pOut = stdout; 1205 if( pOut==0 ) pOut = stdout;
1038 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1206 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1207 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1208 displayComment(pOp, zP4, zCom, sizeof(zCom));
1209 #else
1210 zCom[0] = 0;
1211 #endif
1212 /* NB: The sqlite3OpcodeName() function is implemented by code created
1213 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1214 ** information from the vdbe.c source text */
1039 fprintf(pOut, zFormat1, pc, 1215 fprintf(pOut, zFormat1, pc,
1040 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1216 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1041 #ifdef SQLITE_DEBUG 1217 zCom
1042 pOp->zComment ? pOp->zComment : ""
1043 #else
1044 ""
1045 #endif
1046 ); 1218 );
1047 fflush(pOut); 1219 fflush(pOut);
1048 } 1220 }
1049 #endif 1221 #endif
1050 1222
1051 /* 1223 /*
1052 ** Release an array of N Mem elements 1224 ** Release an array of N Mem elements
1053 */ 1225 */
1054 static void releaseMemArray(Mem *p, int N){ 1226 static void releaseMemArray(Mem *p, int N){
1055 if( p && N ){ 1227 if( p && N ){
1056 Mem *pEnd; 1228 Mem *pEnd = &p[N];
1057 sqlite3 *db = p->db; 1229 sqlite3 *db = p->db;
1058 u8 malloc_failed = db->mallocFailed; 1230 u8 malloc_failed = db->mallocFailed;
1059 if( db->pnBytesFreed ){ 1231 if( db->pnBytesFreed ){
1060 for(pEnd=&p[N]; p<pEnd; p++){ 1232 do{
1061 sqlite3DbFree(db, p->zMalloc); 1233 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1062 } 1234 }while( (++p)<pEnd );
1063 return; 1235 return;
1064 } 1236 }
1065 for(pEnd=&p[N]; p<pEnd; p++){ 1237 do{
1066 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1238 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1239 assert( sqlite3VdbeCheckMemInvariants(p) );
1067 1240
1068 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1241 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1069 ** that takes advantage of the fact that the memory cell value is 1242 ** that takes advantage of the fact that the memory cell value is
1070 ** being set to NULL after releasing any dynamic resources. 1243 ** being set to NULL after releasing any dynamic resources.
1071 ** 1244 **
1072 ** The justification for duplicating code is that according to 1245 ** The justification for duplicating code is that according to
1073 ** callgrind, this causes a certain test case to hit the CPU 4.7 1246 ** callgrind, this causes a certain test case to hit the CPU 4.7
1074 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1247 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1075 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1248 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1076 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1249 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1077 ** with no indexes using a single prepared INSERT statement, bind() 1250 ** with no indexes using a single prepared INSERT statement, bind()
1078 ** and reset(). Inserts are grouped into a transaction. 1251 ** and reset(). Inserts are grouped into a transaction.
1079 */ 1252 */
1253 testcase( p->flags & MEM_Agg );
1254 testcase( p->flags & MEM_Dyn );
1255 testcase( p->flags & MEM_Frame );
1256 testcase( p->flags & MEM_RowSet );
1080 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1257 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1081 sqlite3VdbeMemRelease(p); 1258 sqlite3VdbeMemRelease(p);
1082 }else if( p->zMalloc ){ 1259 }else if( p->szMalloc ){
1083 sqlite3DbFree(db, p->zMalloc); 1260 sqlite3DbFree(db, p->zMalloc);
1084 p->zMalloc = 0; 1261 p->szMalloc = 0;
1085 } 1262 }
1086 1263
1087 p->flags = MEM_Null; 1264 p->flags = MEM_Undefined;
1088 } 1265 }while( (++p)<pEnd );
1089 db->mallocFailed = malloc_failed; 1266 db->mallocFailed = malloc_failed;
1090 } 1267 }
1091 } 1268 }
1092 1269
1093 /* 1270 /*
1094 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1271 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1095 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1272 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1096 */ 1273 */
1097 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1274 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1098 int i; 1275 int i;
(...skipping 25 matching lines...) Expand all
1124 int sqlite3VdbeList( 1301 int sqlite3VdbeList(
1125 Vdbe *p /* The VDBE */ 1302 Vdbe *p /* The VDBE */
1126 ){ 1303 ){
1127 int nRow; /* Stop when row count reaches this */ 1304 int nRow; /* Stop when row count reaches this */
1128 int nSub = 0; /* Number of sub-vdbes seen so far */ 1305 int nSub = 0; /* Number of sub-vdbes seen so far */
1129 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1306 SubProgram **apSub = 0; /* Array of sub-vdbes */
1130 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1307 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1131 sqlite3 *db = p->db; /* The database connection */ 1308 sqlite3 *db = p->db; /* The database connection */
1132 int i; /* Loop counter */ 1309 int i; /* Loop counter */
1133 int rc = SQLITE_OK; /* Return code */ 1310 int rc = SQLITE_OK; /* Return code */
1134 Mem *pMem = p->pResultSet = &p->aMem[1]; /* First Mem of result set */ 1311 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
1135 1312
1136 assert( p->explain ); 1313 assert( p->explain );
1137 assert( p->magic==VDBE_MAGIC_RUN ); 1314 assert( p->magic==VDBE_MAGIC_RUN );
1138 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1315 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1139 1316
1140 /* Even though this opcode does not use dynamic strings for 1317 /* Even though this opcode does not use dynamic strings for
1141 ** the result, result columns may become dynamic if the user calls 1318 ** the result, result columns may become dynamic if the user calls
1142 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1319 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1143 */ 1320 */
1144 releaseMemArray(pMem, 8); 1321 releaseMemArray(pMem, 8);
1322 p->pResultSet = 0;
1145 1323
1146 if( p->rc==SQLITE_NOMEM ){ 1324 if( p->rc==SQLITE_NOMEM ){
1147 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1325 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1148 ** sqlite3_column_text16() failed. */ 1326 ** sqlite3_column_text16() failed. */
1149 db->mallocFailed = 1; 1327 db->mallocFailed = 1;
1150 return SQLITE_ERROR; 1328 return SQLITE_ERROR;
1151 } 1329 }
1152 1330
1153 /* When the number of output rows reaches nRow, that means the 1331 /* When the number of output rows reaches nRow, that means the
1154 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1332 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
(...skipping 25 matching lines...) Expand all
1180 i = p->pc++; 1358 i = p->pc++;
1181 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1359 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1182 if( i>=nRow ){ 1360 if( i>=nRow ){
1183 p->rc = SQLITE_OK; 1361 p->rc = SQLITE_OK;
1184 rc = SQLITE_DONE; 1362 rc = SQLITE_DONE;
1185 }else if( db->u1.isInterrupted ){ 1363 }else if( db->u1.isInterrupted ){
1186 p->rc = SQLITE_INTERRUPT; 1364 p->rc = SQLITE_INTERRUPT;
1187 rc = SQLITE_ERROR; 1365 rc = SQLITE_ERROR;
1188 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); 1366 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
1189 }else{ 1367 }else{
1190 char *z; 1368 char *zP4;
1191 Op *pOp; 1369 Op *pOp;
1192 if( i<p->nOp ){ 1370 if( i<p->nOp ){
1193 /* The output line number is small enough that we are still in the 1371 /* The output line number is small enough that we are still in the
1194 ** main program. */ 1372 ** main program. */
1195 pOp = &p->aOp[i]; 1373 pOp = &p->aOp[i];
1196 }else{ 1374 }else{
1197 /* We are currently listing subprograms. Figure out which one and 1375 /* We are currently listing subprograms. Figure out which one and
1198 ** pick up the appropriate opcode. */ 1376 ** pick up the appropriate opcode. */
1199 int j; 1377 int j;
1200 i -= p->nOp; 1378 i -= p->nOp;
1201 for(j=0; i>=apSub[j]->nOp; j++){ 1379 for(j=0; i>=apSub[j]->nOp; j++){
1202 i -= apSub[j]->nOp; 1380 i -= apSub[j]->nOp;
1203 } 1381 }
1204 pOp = &apSub[j]->aOp[i]; 1382 pOp = &apSub[j]->aOp[i];
1205 } 1383 }
1206 if( p->explain==1 ){ 1384 if( p->explain==1 ){
1207 pMem->flags = MEM_Int; 1385 pMem->flags = MEM_Int;
1208 pMem->type = SQLITE_INTEGER;
1209 pMem->u.i = i; /* Program counter */ 1386 pMem->u.i = i; /* Program counter */
1210 pMem++; 1387 pMem++;
1211 1388
1212 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1389 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1213 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1390 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1214 assert( pMem->z!=0 ); 1391 assert( pMem->z!=0 );
1215 pMem->n = sqlite3Strlen30(pMem->z); 1392 pMem->n = sqlite3Strlen30(pMem->z);
1216 pMem->type = SQLITE_TEXT;
1217 pMem->enc = SQLITE_UTF8; 1393 pMem->enc = SQLITE_UTF8;
1218 pMem++; 1394 pMem++;
1219 1395
1220 /* When an OP_Program opcode is encounter (the only opcode that has 1396 /* When an OP_Program opcode is encounter (the only opcode that has
1221 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1397 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1222 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1398 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1223 ** has not already been seen. 1399 ** has not already been seen.
1224 */ 1400 */
1225 if( pOp->p4type==P4_SUBPROGRAM ){ 1401 if( pOp->p4type==P4_SUBPROGRAM ){
1226 int nByte = (nSub+1)*sizeof(SubProgram*); 1402 int nByte = (nSub+1)*sizeof(SubProgram*);
1227 int j; 1403 int j;
1228 for(j=0; j<nSub; j++){ 1404 for(j=0; j<nSub; j++){
1229 if( apSub[j]==pOp->p4.pProgram ) break; 1405 if( apSub[j]==pOp->p4.pProgram ) break;
1230 } 1406 }
1231 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){ 1407 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
1232 apSub = (SubProgram **)pSub->z; 1408 apSub = (SubProgram **)pSub->z;
1233 apSub[nSub++] = pOp->p4.pProgram; 1409 apSub[nSub++] = pOp->p4.pProgram;
1234 pSub->flags |= MEM_Blob; 1410 pSub->flags |= MEM_Blob;
1235 pSub->n = nSub*sizeof(SubProgram*); 1411 pSub->n = nSub*sizeof(SubProgram*);
1236 } 1412 }
1237 } 1413 }
1238 } 1414 }
1239 1415
1240 pMem->flags = MEM_Int; 1416 pMem->flags = MEM_Int;
1241 pMem->u.i = pOp->p1; /* P1 */ 1417 pMem->u.i = pOp->p1; /* P1 */
1242 pMem->type = SQLITE_INTEGER;
1243 pMem++; 1418 pMem++;
1244 1419
1245 pMem->flags = MEM_Int; 1420 pMem->flags = MEM_Int;
1246 pMem->u.i = pOp->p2; /* P2 */ 1421 pMem->u.i = pOp->p2; /* P2 */
1247 pMem->type = SQLITE_INTEGER;
1248 pMem++; 1422 pMem++;
1249 1423
1250 pMem->flags = MEM_Int; 1424 pMem->flags = MEM_Int;
1251 pMem->u.i = pOp->p3; /* P3 */ 1425 pMem->u.i = pOp->p3; /* P3 */
1252 pMem->type = SQLITE_INTEGER;
1253 pMem++; 1426 pMem++;
1254 1427
1255 if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ 1428 if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */
1256 assert( p->db->mallocFailed ); 1429 assert( p->db->mallocFailed );
1257 return SQLITE_ERROR; 1430 return SQLITE_ERROR;
1258 } 1431 }
1259 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; 1432 pMem->flags = MEM_Str|MEM_Term;
1260 z = displayP4(pOp, pMem->z, 32); 1433 zP4 = displayP4(pOp, pMem->z, 32);
1261 if( z!=pMem->z ){ 1434 if( zP4!=pMem->z ){
1262 sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0); 1435 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1263 }else{ 1436 }else{
1264 assert( pMem->z!=0 ); 1437 assert( pMem->z!=0 );
1265 pMem->n = sqlite3Strlen30(pMem->z); 1438 pMem->n = sqlite3Strlen30(pMem->z);
1266 pMem->enc = SQLITE_UTF8; 1439 pMem->enc = SQLITE_UTF8;
1267 } 1440 }
1268 pMem->type = SQLITE_TEXT;
1269 pMem++; 1441 pMem++;
1270 1442
1271 if( p->explain==1 ){ 1443 if( p->explain==1 ){
1272 if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ 1444 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1273 assert( p->db->mallocFailed ); 1445 assert( p->db->mallocFailed );
1274 return SQLITE_ERROR; 1446 return SQLITE_ERROR;
1275 } 1447 }
1276 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; 1448 pMem->flags = MEM_Str|MEM_Term;
1277 pMem->n = 2; 1449 pMem->n = 2;
1278 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1450 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1279 pMem->type = SQLITE_TEXT;
1280 pMem->enc = SQLITE_UTF8; 1451 pMem->enc = SQLITE_UTF8;
1281 pMem++; 1452 pMem++;
1282 1453
1283 #ifdef SQLITE_DEBUG 1454 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1284 if( pOp->zComment ){ 1455 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1285 pMem->flags = MEM_Str|MEM_Term; 1456 assert( p->db->mallocFailed );
1286 pMem->z = pOp->zComment; 1457 return SQLITE_ERROR;
1287 pMem->n = sqlite3Strlen30(pMem->z); 1458 }
1288 pMem->enc = SQLITE_UTF8; 1459 pMem->flags = MEM_Str|MEM_Term;
1289 pMem->type = SQLITE_TEXT; 1460 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1290 }else 1461 pMem->enc = SQLITE_UTF8;
1462 #else
1463 pMem->flags = MEM_Null; /* Comment */
1291 #endif 1464 #endif
1292 {
1293 pMem->flags = MEM_Null; /* Comment */
1294 pMem->type = SQLITE_NULL;
1295 }
1296 } 1465 }
1297 1466
1298 p->nResColumn = 8 - 4*(p->explain-1); 1467 p->nResColumn = 8 - 4*(p->explain-1);
1468 p->pResultSet = &p->aMem[1];
1299 p->rc = SQLITE_OK; 1469 p->rc = SQLITE_OK;
1300 rc = SQLITE_ROW; 1470 rc = SQLITE_ROW;
1301 } 1471 }
1302 return rc; 1472 return rc;
1303 } 1473 }
1304 #endif /* SQLITE_OMIT_EXPLAIN */ 1474 #endif /* SQLITE_OMIT_EXPLAIN */
1305 1475
1306 #ifdef SQLITE_DEBUG 1476 #ifdef SQLITE_DEBUG
1307 /* 1477 /*
1308 ** Print the SQL that was used to generate a VDBE program. 1478 ** Print the SQL that was used to generate a VDBE program.
1309 */ 1479 */
1310 void sqlite3VdbePrintSql(Vdbe *p){ 1480 void sqlite3VdbePrintSql(Vdbe *p){
1311 int nOp = p->nOp; 1481 const char *z = 0;
1312 VdbeOp *pOp; 1482 if( p->zSql ){
1313 if( nOp<1 ) return; 1483 z = p->zSql;
1314 pOp = &p->aOp[0]; 1484 }else if( p->nOp>=1 ){
1315 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ 1485 const VdbeOp *pOp = &p->aOp[0];
1316 const char *z = pOp->p4.z; 1486 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1317 while( sqlite3Isspace(*z) ) z++; 1487 z = pOp->p4.z;
1318 printf("SQL: [%s]\n", z); 1488 while( sqlite3Isspace(*z) ) z++;
1489 }
1319 } 1490 }
1491 if( z ) printf("SQL: [%s]\n", z);
1320 } 1492 }
1321 #endif 1493 #endif
1322 1494
1323 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1495 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1324 /* 1496 /*
1325 ** Print an IOTRACE message showing SQL content. 1497 ** Print an IOTRACE message showing SQL content.
1326 */ 1498 */
1327 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1499 void sqlite3VdbeIOTraceSql(Vdbe *p){
1328 int nOp = p->nOp; 1500 int nOp = p->nOp;
1329 VdbeOp *pOp; 1501 VdbeOp *pOp;
1330 if( sqlite3IoTrace==0 ) return; 1502 if( sqlite3IoTrace==0 ) return;
1331 if( nOp<1 ) return; 1503 if( nOp<1 ) return;
1332 pOp = &p->aOp[0]; 1504 pOp = &p->aOp[0];
1333 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ 1505 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1334 int i, j; 1506 int i, j;
1335 char z[1000]; 1507 char z[1000];
1336 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1508 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1337 for(i=0; sqlite3Isspace(z[i]); i++){} 1509 for(i=0; sqlite3Isspace(z[i]); i++){}
1338 for(j=0; z[i]; i++){ 1510 for(j=0; z[i]; i++){
1339 if( sqlite3Isspace(z[i]) ){ 1511 if( sqlite3Isspace(z[i]) ){
1340 if( z[i-1]!=' ' ){ 1512 if( z[i-1]!=' ' ){
1341 z[j++] = ' '; 1513 z[j++] = ' ';
1342 } 1514 }
1343 }else{ 1515 }else{
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
1384 if( &(*ppFrom)[nByte] <= pEnd ){ 1556 if( &(*ppFrom)[nByte] <= pEnd ){
1385 pBuf = (void*)*ppFrom; 1557 pBuf = (void*)*ppFrom;
1386 *ppFrom += nByte; 1558 *ppFrom += nByte;
1387 }else{ 1559 }else{
1388 *pnByte += nByte; 1560 *pnByte += nByte;
1389 } 1561 }
1390 return pBuf; 1562 return pBuf;
1391 } 1563 }
1392 1564
1393 /* 1565 /*
1394 ** Prepare a virtual machine for execution. This involves things such 1566 ** Rewind the VDBE back to the beginning in preparation for
1395 ** as allocating stack space and initializing the program counter. 1567 ** running it.
1396 ** After the VDBE has be prepped, it can be executed by one or more
1397 ** calls to sqlite3VdbeExec().
1398 **
1399 ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
1400 ** VDBE_MAGIC_RUN.
1401 **
1402 ** This function may be called more than once on a single virtual machine.
1403 ** The first call is made while compiling the SQL statement. Subsequent
1404 ** calls are made as part of the process of resetting a statement to be
1405 ** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor
1406 ** and isExplain parameters are only passed correct values the first time
1407 ** the function is called. On subsequent calls, from sqlite3_reset(), nVar
1408 ** is passed -1 and nMem, nCursor and isExplain are all passed zero.
1409 */ 1568 */
1410 void sqlite3VdbeMakeReady( 1569 void sqlite3VdbeRewind(Vdbe *p){
1411 Vdbe *p, /* The VDBE */ 1570 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1412 int nVar, /* Number of '?' see in the SQL statement */ 1571 int i;
1413 int nMem, /* Number of memory cells to allocate */ 1572 #endif
1414 int nCursor, /* Number of cursors to allocate */
1415 int nArg, /* Maximum number of args in SubPrograms */
1416 int isExplain, /* True if the EXPLAIN keywords is present */
1417 int usesStmtJournal /* True to set Vdbe.usesStmtJournal */
1418 ){
1419 int n;
1420 sqlite3 *db = p->db;
1421
1422 assert( p!=0 ); 1573 assert( p!=0 );
1423 assert( p->magic==VDBE_MAGIC_INIT ); 1574 assert( p->magic==VDBE_MAGIC_INIT );
1424 1575
1425 /* There should be at least one opcode. 1576 /* There should be at least one opcode.
1426 */ 1577 */
1427 assert( p->nOp>0 ); 1578 assert( p->nOp>0 );
1428 1579
1429 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1580 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1430 p->magic = VDBE_MAGIC_RUN; 1581 p->magic = VDBE_MAGIC_RUN;
1431 1582
1583 #ifdef SQLITE_DEBUG
1584 for(i=1; i<p->nMem; i++){
1585 assert( p->aMem[i].db==p->db );
1586 }
1587 #endif
1588 p->pc = -1;
1589 p->rc = SQLITE_OK;
1590 p->errorAction = OE_Abort;
1591 p->magic = VDBE_MAGIC_RUN;
1592 p->nChange = 0;
1593 p->cacheCtr = 1;
1594 p->minWriteFileFormat = 255;
1595 p->iStatement = 0;
1596 p->nFkConstraint = 0;
1597 #ifdef VDBE_PROFILE
1598 for(i=0; i<p->nOp; i++){
1599 p->aOp[i].cnt = 0;
1600 p->aOp[i].cycles = 0;
1601 }
1602 #endif
1603 }
1604
1605 /*
1606 ** Prepare a virtual machine for execution for the first time after
1607 ** creating the virtual machine. This involves things such
1608 ** as allocating registers and initializing the program counter.
1609 ** After the VDBE has be prepped, it can be executed by one or more
1610 ** calls to sqlite3VdbeExec().
1611 **
1612 ** This function may be called exactly once on each virtual machine.
1613 ** After this routine is called the VM has been "packaged" and is ready
1614 ** to run. After this routine is called, further calls to
1615 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1616 ** the Vdbe from the Parse object that helped generate it so that the
1617 ** the Vdbe becomes an independent entity and the Parse object can be
1618 ** destroyed.
1619 **
1620 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1621 ** to its initial state after it has been run.
1622 */
1623 void sqlite3VdbeMakeReady(
1624 Vdbe *p, /* The VDBE */
1625 Parse *pParse /* Parsing context */
1626 ){
1627 sqlite3 *db; /* The database connection */
1628 int nVar; /* Number of parameters */
1629 int nMem; /* Number of VM memory registers */
1630 int nCursor; /* Number of cursors required */
1631 int nArg; /* Number of arguments in subprograms */
1632 int nOnce; /* Number of OP_Once instructions */
1633 int n; /* Loop counter */
1634 u8 *zCsr; /* Memory available for allocation */
1635 u8 *zEnd; /* First byte past allocated memory */
1636 int nByte; /* How much extra memory is needed */
1637
1638 assert( p!=0 );
1639 assert( p->nOp>0 );
1640 assert( pParse!=0 );
1641 assert( p->magic==VDBE_MAGIC_INIT );
1642 assert( pParse==p->pParse );
1643 db = p->db;
1644 assert( db->mallocFailed==0 );
1645 nVar = pParse->nVar;
1646 nMem = pParse->nMem;
1647 nCursor = pParse->nTab;
1648 nArg = pParse->nMaxArg;
1649 nOnce = pParse->nOnce;
1650 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
1651
1432 /* For each cursor required, also allocate a memory cell. Memory 1652 /* For each cursor required, also allocate a memory cell. Memory
1433 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by 1653 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1434 ** the vdbe program. Instead they are used to allocate space for 1654 ** the vdbe program. Instead they are used to allocate space for
1435 ** VdbeCursor/BtCursor structures. The blob of memory associated with 1655 ** VdbeCursor/BtCursor structures. The blob of memory associated with
1436 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) 1656 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1437 ** stores the blob of memory associated with cursor 1, etc. 1657 ** stores the blob of memory associated with cursor 1, etc.
1438 ** 1658 **
1439 ** See also: allocateCursor(). 1659 ** See also: allocateCursor().
1440 */ 1660 */
1441 nMem += nCursor; 1661 nMem += nCursor;
1442 1662
1443 /* Allocate space for memory registers, SQL variables, VDBE cursors and 1663 /* Allocate space for memory registers, SQL variables, VDBE cursors and
1444 ** an array to marshal SQL function arguments in. This is only done the 1664 ** an array to marshal SQL function arguments in.
1445 ** first time this function is called for a given VDBE, not when it is
1446 ** being called from sqlite3_reset() to reset the virtual machine.
1447 */ 1665 */
1448 if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){ 1666 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
1449 u8 *zCsr = (u8 *)&p->aOp[p->nOp]; /* Memory avaliable for alloation */ 1667 zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */
1450 u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc]; /* First byte past available mem */
1451 int nByte; /* How much extra memory needed */
1452 1668
1453 resolveP2Values(p, &nArg); 1669 resolveP2Values(p, &nArg);
1454 p->usesStmtJournal = (u8)usesStmtJournal; 1670 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1455 if( isExplain && nMem<10 ){ 1671 if( pParse->explain && nMem<10 ){
1456 nMem = 10; 1672 nMem = 10;
1673 }
1674 memset(zCsr, 0, zEnd-zCsr);
1675 zCsr += (zCsr - (u8*)0)&7;
1676 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
1677 p->expired = 0;
1678
1679 /* Memory for registers, parameters, cursor, etc, is allocated in two
1680 ** passes. On the first pass, we try to reuse unused space at the
1681 ** end of the opcode array. If we are unable to satisfy all memory
1682 ** requirements by reusing the opcode array tail, then the second
1683 ** pass will fill in the rest using a fresh allocation.
1684 **
1685 ** This two-pass approach that reuses as much memory as possible from
1686 ** the leftover space at the end of the opcode array can significantly
1687 ** reduce the amount of memory held by a prepared statement.
1688 */
1689 do {
1690 nByte = 0;
1691 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1692 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1693 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1694 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1695 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1696 &zCsr, zEnd, &nByte);
1697 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
1698 if( nByte ){
1699 p->pFree = sqlite3DbMallocZero(db, nByte);
1457 } 1700 }
1458 memset(zCsr, 0, zEnd-zCsr); 1701 zCsr = p->pFree;
1459 zCsr += (zCsr - (u8*)0)&7; 1702 zEnd = &zCsr[nByte];
1460 assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); 1703 }while( nByte && !db->mallocFailed );
1461 1704
1462 /* Memory for registers, parameters, cursor, etc, is allocated in two 1705 p->nCursor = nCursor;
1463 ** passes. On the first pass, we try to reuse unused space at the 1706 p->nOnceFlag = nOnce;
1464 ** end of the opcode array. If we are unable to satisfy all memory 1707 if( p->aVar ){
1465 ** requirements by reusing the opcode array tail, then the second 1708 p->nVar = (ynVar)nVar;
1466 ** pass will fill in the rest using a fresh allocation. 1709 for(n=0; n<nVar; n++){
1467 ** 1710 p->aVar[n].flags = MEM_Null;
1468 ** This two-pass approach that reuses as much memory as possible from 1711 p->aVar[n].db = db;
1469 ** the leftover space at the end of the opcode array can significantly
1470 ** reduce the amount of memory held by a prepared statement.
1471 */
1472 do {
1473 nByte = 0;
1474 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1475 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1476 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1477 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1478 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1479 &zCsr, zEnd, &nByte);
1480 if( nByte ){
1481 p->pFree = sqlite3DbMallocZero(db, nByte);
1482 }
1483 zCsr = p->pFree;
1484 zEnd = &zCsr[nByte];
1485 }while( nByte && !db->mallocFailed );
1486
1487 p->nCursor = (u16)nCursor;
1488 if( p->aVar ){
1489 p->nVar = (ynVar)nVar;
1490 for(n=0; n<nVar; n++){
1491 p->aVar[n].flags = MEM_Null;
1492 p->aVar[n].db = db;
1493 }
1494 }
1495 if( p->aMem ){
1496 p->aMem--; /* aMem[] goes from 1..nMem */
1497 p->nMem = nMem; /* not from 0..nMem-1 */
1498 for(n=1; n<=nMem; n++){
1499 p->aMem[n].flags = MEM_Null;
1500 p->aMem[n].db = db;
1501 }
1502 } 1712 }
1503 } 1713 }
1504 #ifdef SQLITE_DEBUG 1714 if( p->azVar ){
1505 for(n=1; n<p->nMem; n++){ 1715 p->nzVar = pParse->nzVar;
1506 assert( p->aMem[n].db==db ); 1716 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
1717 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
1507 } 1718 }
1508 #endif 1719 if( p->aMem ){
1509 1720 p->aMem--; /* aMem[] goes from 1..nMem */
1510 p->pc = -1; 1721 p->nMem = nMem; /* not from 0..nMem-1 */
1511 p->rc = SQLITE_OK; 1722 for(n=1; n<=nMem; n++){
1512 p->errorAction = OE_Abort; 1723 p->aMem[n].flags = MEM_Undefined;
1513 p->explain |= isExplain; 1724 p->aMem[n].db = db;
1514 p->magic = VDBE_MAGIC_RUN;
1515 p->nChange = 0;
1516 p->cacheCtr = 1;
1517 p->minWriteFileFormat = 255;
1518 p->iStatement = 0;
1519 p->nFkConstraint = 0;
1520 #ifdef VDBE_PROFILE
1521 {
1522 int i;
1523 for(i=0; i<p->nOp; i++){
1524 p->aOp[i].cnt = 0;
1525 p->aOp[i].cycles = 0;
1526 } 1725 }
1527 } 1726 }
1528 #endif 1727 p->explain = pParse->explain;
1728 sqlite3VdbeRewind(p);
1529 } 1729 }
1530 1730
1531 /* 1731 /*
1532 ** Close a VDBE cursor and release all the resources that cursor 1732 ** Close a VDBE cursor and release all the resources that cursor
1533 ** happens to hold. 1733 ** happens to hold.
1534 */ 1734 */
1535 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 1735 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
1536 if( pCx==0 ){ 1736 if( pCx==0 ){
1537 return; 1737 return;
1538 } 1738 }
1739 sqlite3VdbeSorterClose(p->db, pCx);
1539 if( pCx->pBt ){ 1740 if( pCx->pBt ){
1540 sqlite3BtreeClose(pCx->pBt); 1741 sqlite3BtreeClose(pCx->pBt);
1541 /* The pCx->pCursor will be close automatically, if it exists, by 1742 /* The pCx->pCursor will be close automatically, if it exists, by
1542 ** the call above. */ 1743 ** the call above. */
1543 }else if( pCx->pCursor ){ 1744 }else if( pCx->pCursor ){
1544 sqlite3BtreeCloseCursor(pCx->pCursor); 1745 sqlite3BtreeCloseCursor(pCx->pCursor);
1545 } 1746 }
1546 #ifndef SQLITE_OMIT_VIRTUALTABLE 1747 #ifndef SQLITE_OMIT_VIRTUALTABLE
1547 if( pCx->pVtabCursor ){ 1748 else if( pCx->pVtabCursor ){
1548 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; 1749 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
1549 const sqlite3_module *pModule = pCx->pModule; 1750 const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
1550 p->inVtabMethod = 1; 1751 p->inVtabMethod = 1;
1551 pModule->xClose(pVtabCursor); 1752 pModule->xClose(pVtabCursor);
1552 p->inVtabMethod = 0; 1753 p->inVtabMethod = 0;
1553 } 1754 }
1554 #endif 1755 #endif
1555 } 1756 }
1556 1757
1557 /* 1758 /*
1558 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 1759 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1559 ** is used, for example, when a trigger sub-program is halted to restore 1760 ** is used, for example, when a trigger sub-program is halted to restore
1560 ** control to the main program. 1761 ** control to the main program.
1561 */ 1762 */
1562 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 1763 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1563 Vdbe *v = pFrame->v; 1764 Vdbe *v = pFrame->v;
1765 v->aOnceFlag = pFrame->aOnceFlag;
1766 v->nOnceFlag = pFrame->nOnceFlag;
1564 v->aOp = pFrame->aOp; 1767 v->aOp = pFrame->aOp;
1565 v->nOp = pFrame->nOp; 1768 v->nOp = pFrame->nOp;
1566 v->aMem = pFrame->aMem; 1769 v->aMem = pFrame->aMem;
1567 v->nMem = pFrame->nMem; 1770 v->nMem = pFrame->nMem;
1568 v->apCsr = pFrame->apCsr; 1771 v->apCsr = pFrame->apCsr;
1569 v->nCursor = pFrame->nCursor; 1772 v->nCursor = pFrame->nCursor;
1570 v->db->lastRowid = pFrame->lastRowid; 1773 v->db->lastRowid = pFrame->lastRowid;
1571 v->nChange = pFrame->nChange; 1774 v->nChange = pFrame->nChange;
1572 return pFrame->pc; 1775 return pFrame->pc;
1573 } 1776 }
1574 1777
1575 /* 1778 /*
1576 ** Close all cursors. 1779 ** Close all cursors.
1577 ** 1780 **
1578 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 1781 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1579 ** cell array. This is necessary as the memory cell array may contain 1782 ** cell array. This is necessary as the memory cell array may contain
1580 ** pointers to VdbeFrame objects, which may in turn contain pointers to 1783 ** pointers to VdbeFrame objects, which may in turn contain pointers to
1581 ** open cursors. 1784 ** open cursors.
1582 */ 1785 */
1583 static void closeAllCursors(Vdbe *p){ 1786 static void closeAllCursors(Vdbe *p){
1584 if( p->pFrame ){ 1787 if( p->pFrame ){
1585 VdbeFrame *pFrame; 1788 VdbeFrame *pFrame;
1586 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 1789 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
1587 sqlite3VdbeFrameRestore(pFrame); 1790 sqlite3VdbeFrameRestore(pFrame);
1791 p->pFrame = 0;
1792 p->nFrame = 0;
1588 } 1793 }
1589 p->pFrame = 0; 1794 assert( p->nFrame==0 );
1590 p->nFrame = 0;
1591 1795
1592 if( p->apCsr ){ 1796 if( p->apCsr ){
1593 int i; 1797 int i;
1594 for(i=0; i<p->nCursor; i++){ 1798 for(i=0; i<p->nCursor; i++){
1595 VdbeCursor *pC = p->apCsr[i]; 1799 VdbeCursor *pC = p->apCsr[i];
1596 if( pC ){ 1800 if( pC ){
1597 sqlite3VdbeFreeCursor(p, pC); 1801 sqlite3VdbeFreeCursor(p, pC);
1598 p->apCsr[i] = 0; 1802 p->apCsr[i] = 0;
1599 } 1803 }
1600 } 1804 }
1601 } 1805 }
1602 if( p->aMem ){ 1806 if( p->aMem ){
1603 releaseMemArray(&p->aMem[1], p->nMem); 1807 releaseMemArray(&p->aMem[1], p->nMem);
1604 } 1808 }
1605 while( p->pDelFrame ){ 1809 while( p->pDelFrame ){
1606 VdbeFrame *pDel = p->pDelFrame; 1810 VdbeFrame *pDel = p->pDelFrame;
1607 p->pDelFrame = pDel->pParent; 1811 p->pDelFrame = pDel->pParent;
1608 sqlite3VdbeFrameDelete(pDel); 1812 sqlite3VdbeFrameDelete(pDel);
1609 } 1813 }
1814
1815 /* Delete any auxdata allocations made by the VM */
1816 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
1817 assert( p->pAuxData==0 );
1610 } 1818 }
1611 1819
1612 /* 1820 /*
1613 ** Clean up the VM after execution. 1821 ** Clean up the VM after a single run.
1614 **
1615 ** This routine will automatically close any cursors, lists, and/or
1616 ** sorters that were left open. It also deletes the values of
1617 ** variables in the aVar[] array.
1618 */ 1822 */
1619 static void Cleanup(Vdbe *p){ 1823 static void Cleanup(Vdbe *p){
1620 sqlite3 *db = p->db; 1824 sqlite3 *db = p->db;
1621 1825
1622 #ifdef SQLITE_DEBUG 1826 #ifdef SQLITE_DEBUG
1623 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 1827 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
1624 ** Vdbe.aMem[] arrays have already been cleaned up. */ 1828 ** Vdbe.aMem[] arrays have already been cleaned up. */
1625 int i; 1829 int i;
1626 for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 ); 1830 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
1627 for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null ); 1831 if( p->aMem ){
1832 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
1833 }
1628 #endif 1834 #endif
1629 1835
1630 sqlite3DbFree(db, p->zErrMsg); 1836 sqlite3DbFree(db, p->zErrMsg);
1631 p->zErrMsg = 0; 1837 p->zErrMsg = 0;
1632 p->pResultSet = 0; 1838 p->pResultSet = 0;
1633 } 1839 }
1634 1840
1635 /* 1841 /*
1636 ** Set the number of result columns that will be returned by this SQL 1842 ** Set the number of result columns that will be returned by this SQL
1637 ** statement. This is now set at compile time, rather than during 1843 ** statement. This is now set at compile time, rather than during
(...skipping 68 matching lines...) Expand 10 before | Expand all | Expand 10 after
1706 */ 1912 */
1707 UNUSED_PARAMETER(p); 1913 UNUSED_PARAMETER(p);
1708 #endif 1914 #endif
1709 1915
1710 /* Before doing anything else, call the xSync() callback for any 1916 /* Before doing anything else, call the xSync() callback for any
1711 ** virtual module tables written in this transaction. This has to 1917 ** virtual module tables written in this transaction. This has to
1712 ** be done before determining whether a master journal file is 1918 ** be done before determining whether a master journal file is
1713 ** required, as an xSync() callback may add an attached database 1919 ** required, as an xSync() callback may add an attached database
1714 ** to the transaction. 1920 ** to the transaction.
1715 */ 1921 */
1716 rc = sqlite3VtabSync(db, &p->zErrMsg); 1922 rc = sqlite3VtabSync(db, p);
1717 1923
1718 /* This loop determines (a) if the commit hook should be invoked and 1924 /* This loop determines (a) if the commit hook should be invoked and
1719 ** (b) how many database files have open write transactions, not 1925 ** (b) how many database files have open write transactions, not
1720 ** including the temp database. (b) is important because if more than 1926 ** including the temp database. (b) is important because if more than
1721 ** one database file has an open write transaction, a master journal 1927 ** one database file has an open write transaction, a master journal
1722 ** file is required for an atomic commit. 1928 ** file is required for an atomic commit.
1723 */ 1929 */
1724 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 1930 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1725 Btree *pBt = db->aDb[i].pBt; 1931 Btree *pBt = db->aDb[i].pBt;
1726 if( sqlite3BtreeIsInTrans(pBt) ){ 1932 if( sqlite3BtreeIsInTrans(pBt) ){
1727 needXcommit = 1; 1933 needXcommit = 1;
1728 if( i!=1 ) nTrans++; 1934 if( i!=1 ) nTrans++;
1935 sqlite3BtreeEnter(pBt);
1729 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); 1936 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
1937 sqlite3BtreeLeave(pBt);
1730 } 1938 }
1731 } 1939 }
1732 if( rc!=SQLITE_OK ){ 1940 if( rc!=SQLITE_OK ){
1733 return rc; 1941 return rc;
1734 } 1942 }
1735 1943
1736 /* If there are any write-transactions at all, invoke the commit hook */ 1944 /* If there are any write-transactions at all, invoke the commit hook */
1737 if( needXcommit && db->xCommitCallback ){ 1945 if( needXcommit && db->xCommitCallback ){
1738 rc = db->xCommitCallback(db->pCommitArg); 1946 rc = db->xCommitCallback(db->pCommitArg);
1739 if( rc ){ 1947 if( rc ){
1740 return SQLITE_CONSTRAINT; 1948 return SQLITE_CONSTRAINT_COMMITHOOK;
1741 } 1949 }
1742 } 1950 }
1743 1951
1744 /* The simple case - no more than one database file (not counting the 1952 /* The simple case - no more than one database file (not counting the
1745 ** TEMP database) has a transaction active. There is no need for the 1953 ** TEMP database) has a transaction active. There is no need for the
1746 ** master-journal. 1954 ** master-journal.
1747 ** 1955 **
1748 ** If the return value of sqlite3BtreeGetFilename() is a zero length 1956 ** If the return value of sqlite3BtreeGetFilename() is a zero length
1749 ** string, it means the main database is :memory: or a temp file. In 1957 ** string, it means the main database is :memory: or a temp file. In
1750 ** that case we do not support atomic multi-file commits, so use the 1958 ** that case we do not support atomic multi-file commits, so use the
(...skipping 20 matching lines...) Expand all
1771 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 1979 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
1772 } 1980 }
1773 } 1981 }
1774 if( rc==SQLITE_OK ){ 1982 if( rc==SQLITE_OK ){
1775 sqlite3VtabCommit(db); 1983 sqlite3VtabCommit(db);
1776 } 1984 }
1777 } 1985 }
1778 1986
1779 /* The complex case - There is a multi-file write-transaction active. 1987 /* The complex case - There is a multi-file write-transaction active.
1780 ** This requires a master journal file to ensure the transaction is 1988 ** This requires a master journal file to ensure the transaction is
1781 ** committed atomicly. 1989 ** committed atomically.
1782 */ 1990 */
1783 #ifndef SQLITE_OMIT_DISKIO 1991 #ifndef SQLITE_OMIT_DISKIO
1784 else{ 1992 else{
1785 sqlite3_vfs *pVfs = db->pVfs; 1993 sqlite3_vfs *pVfs = db->pVfs;
1786 int needSync = 0; 1994 int needSync = 0;
1787 char *zMaster = 0; /* File-name for the master journal */ 1995 char *zMaster = 0; /* File-name for the master journal */
1788 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 1996 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
1789 sqlite3_file *pMaster = 0; 1997 sqlite3_file *pMaster = 0;
1790 i64 offset = 0; 1998 i64 offset = 0;
1791 int res; 1999 int res;
2000 int retryCount = 0;
2001 int nMainFile;
1792 2002
1793 /* Select a master journal file name */ 2003 /* Select a master journal file name */
2004 nMainFile = sqlite3Strlen30(zMainFile);
2005 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2006 if( zMaster==0 ) return SQLITE_NOMEM;
1794 do { 2007 do {
1795 u32 iRandom; 2008 u32 iRandom;
1796 sqlite3DbFree(db, zMaster); 2009 if( retryCount ){
2010 if( retryCount>100 ){
2011 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2012 sqlite3OsDelete(pVfs, zMaster, 0);
2013 break;
2014 }else if( retryCount==1 ){
2015 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2016 }
2017 }
2018 retryCount++;
1797 sqlite3_randomness(sizeof(iRandom), &iRandom); 2019 sqlite3_randomness(sizeof(iRandom), &iRandom);
1798 zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff); 2020 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
1799 if( !zMaster ){ 2021 (iRandom>>8)&0xffffff, iRandom&0xff);
1800 return SQLITE_NOMEM; 2022 /* The antipenultimate character of the master journal name must
1801 } 2023 ** be "9" to avoid name collisions when using 8+3 filenames. */
2024 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2025 sqlite3FileSuffix3(zMainFile, zMaster);
1802 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2026 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
1803 }while( rc==SQLITE_OK && res ); 2027 }while( rc==SQLITE_OK && res );
1804 if( rc==SQLITE_OK ){ 2028 if( rc==SQLITE_OK ){
1805 /* Open the master journal. */ 2029 /* Open the master journal. */
1806 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2030 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
1807 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2031 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
1808 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2032 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
1809 ); 2033 );
1810 } 2034 }
1811 if( rc!=SQLITE_OK ){ 2035 if( rc!=SQLITE_OK ){
(...skipping 95 matching lines...) Expand 10 before | Expand all | Expand 10 after
1907 enable_simulated_io_errors(); 2131 enable_simulated_io_errors();
1908 2132
1909 sqlite3VtabCommit(db); 2133 sqlite3VtabCommit(db);
1910 } 2134 }
1911 #endif 2135 #endif
1912 2136
1913 return rc; 2137 return rc;
1914 } 2138 }
1915 2139
1916 /* 2140 /*
1917 ** This routine checks that the sqlite3.activeVdbeCnt count variable 2141 ** This routine checks that the sqlite3.nVdbeActive count variable
1918 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2142 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
1919 ** currently active. An assertion fails if the two counts do not match. 2143 ** currently active. An assertion fails if the two counts do not match.
1920 ** This is an internal self-check only - it is not an essential processing 2144 ** This is an internal self-check only - it is not an essential processing
1921 ** step. 2145 ** step.
1922 ** 2146 **
1923 ** This is a no-op if NDEBUG is defined. 2147 ** This is a no-op if NDEBUG is defined.
1924 */ 2148 */
1925 #ifndef NDEBUG 2149 #ifndef NDEBUG
1926 static void checkActiveVdbeCnt(sqlite3 *db){ 2150 static void checkActiveVdbeCnt(sqlite3 *db){
1927 Vdbe *p; 2151 Vdbe *p;
1928 int cnt = 0; 2152 int cnt = 0;
1929 int nWrite = 0; 2153 int nWrite = 0;
2154 int nRead = 0;
1930 p = db->pVdbe; 2155 p = db->pVdbe;
1931 while( p ){ 2156 while( p ){
1932 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ 2157 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
1933 cnt++; 2158 cnt++;
1934 if( p->readOnly==0 ) nWrite++; 2159 if( p->readOnly==0 ) nWrite++;
2160 if( p->bIsReader ) nRead++;
1935 } 2161 }
1936 p = p->pNext; 2162 p = p->pNext;
1937 } 2163 }
1938 assert( cnt==db->activeVdbeCnt ); 2164 assert( cnt==db->nVdbeActive );
1939 assert( nWrite==db->writeVdbeCnt ); 2165 assert( nWrite==db->nVdbeWrite );
2166 assert( nRead==db->nVdbeRead );
1940 } 2167 }
1941 #else 2168 #else
1942 #define checkActiveVdbeCnt(x) 2169 #define checkActiveVdbeCnt(x)
1943 #endif 2170 #endif
1944 2171
1945 /* 2172 /*
1946 ** For every Btree that in database connection db which
1947 ** has been modified, "trip" or invalidate each cursor in
1948 ** that Btree might have been modified so that the cursor
1949 ** can never be used again. This happens when a rollback
1950 *** occurs. We have to trip all the other cursors, even
1951 ** cursor from other VMs in different database connections,
1952 ** so that none of them try to use the data at which they
1953 ** were pointing and which now may have been changed due
1954 ** to the rollback.
1955 **
1956 ** Remember that a rollback can delete tables complete and
1957 ** reorder rootpages. So it is not sufficient just to save
1958 ** the state of the cursor. We have to invalidate the cursor
1959 ** so that it is never used again.
1960 */
1961 static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
1962 int i;
1963 for(i=0; i<db->nDb; i++){
1964 Btree *p = db->aDb[i].pBt;
1965 if( p && sqlite3BtreeIsInTrans(p) ){
1966 sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
1967 }
1968 }
1969 }
1970
1971 /*
1972 ** If the Vdbe passed as the first argument opened a statement-transaction, 2173 ** If the Vdbe passed as the first argument opened a statement-transaction,
1973 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2174 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
1974 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2175 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
1975 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2176 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
1976 ** statement transaction is commtted. 2177 ** statement transaction is committed.
1977 ** 2178 **
1978 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2179 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
1979 ** Otherwise SQLITE_OK. 2180 ** Otherwise SQLITE_OK.
1980 */ 2181 */
1981 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2182 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
1982 sqlite3 *const db = p->db; 2183 sqlite3 *const db = p->db;
1983 int rc = SQLITE_OK; 2184 int rc = SQLITE_OK;
1984 2185
1985 /* If p->iStatement is greater than zero, then this Vdbe opened a 2186 /* If p->iStatement is greater than zero, then this Vdbe opened a
1986 ** statement transaction that should be closed here. The only exception 2187 ** statement transaction that should be closed here. The only exception
1987 ** is that an IO error may have occured, causing an emergency rollback. 2188 ** is that an IO error may have occurred, causing an emergency rollback.
1988 ** In this case (db->nStatement==0), and there is nothing to do. 2189 ** In this case (db->nStatement==0), and there is nothing to do.
1989 */ 2190 */
1990 if( db->nStatement && p->iStatement ){ 2191 if( db->nStatement && p->iStatement ){
1991 int i; 2192 int i;
1992 const int iSavepoint = p->iStatement-1; 2193 const int iSavepoint = p->iStatement-1;
1993 2194
1994 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2195 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
1995 assert( db->nStatement>0 ); 2196 assert( db->nStatement>0 );
1996 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2197 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
1997 2198
1998 for(i=0; i<db->nDb; i++){ 2199 for(i=0; i<db->nDb; i++){
1999 int rc2 = SQLITE_OK; 2200 int rc2 = SQLITE_OK;
2000 Btree *pBt = db->aDb[i].pBt; 2201 Btree *pBt = db->aDb[i].pBt;
2001 if( pBt ){ 2202 if( pBt ){
2002 if( eOp==SAVEPOINT_ROLLBACK ){ 2203 if( eOp==SAVEPOINT_ROLLBACK ){
2003 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2204 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2004 } 2205 }
2005 if( rc2==SQLITE_OK ){ 2206 if( rc2==SQLITE_OK ){
2006 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2207 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2007 } 2208 }
2008 if( rc==SQLITE_OK ){ 2209 if( rc==SQLITE_OK ){
2009 rc = rc2; 2210 rc = rc2;
2010 } 2211 }
2011 } 2212 }
2012 } 2213 }
2013 db->nStatement--; 2214 db->nStatement--;
2014 p->iStatement = 0; 2215 p->iStatement = 0;
2015 2216
2217 if( rc==SQLITE_OK ){
2218 if( eOp==SAVEPOINT_ROLLBACK ){
2219 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2220 }
2221 if( rc==SQLITE_OK ){
2222 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2223 }
2224 }
2225
2016 /* If the statement transaction is being rolled back, also restore the 2226 /* If the statement transaction is being rolled back, also restore the
2017 ** database handles deferred constraint counter to the value it had when 2227 ** database handles deferred constraint counter to the value it had when
2018 ** the statement transaction was opened. */ 2228 ** the statement transaction was opened. */
2019 if( eOp==SAVEPOINT_ROLLBACK ){ 2229 if( eOp==SAVEPOINT_ROLLBACK ){
2020 db->nDeferredCons = p->nStmtDefCons; 2230 db->nDeferredCons = p->nStmtDefCons;
2231 db->nDeferredImmCons = p->nStmtDefImmCons;
2021 } 2232 }
2022 } 2233 }
2023 return rc; 2234 return rc;
2024 } 2235 }
2025 2236
2026 /* 2237 /*
2027 ** This function is called when a transaction opened by the database 2238 ** This function is called when a transaction opened by the database
2028 ** handle associated with the VM passed as an argument is about to be 2239 ** handle associated with the VM passed as an argument is about to be
2029 ** committed. If there are outstanding deferred foreign key constraint 2240 ** committed. If there are outstanding deferred foreign key constraint
2030 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2241 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2031 ** 2242 **
2032 ** If there are outstanding FK violations and this function returns 2243 ** If there are outstanding FK violations and this function returns
2033 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write 2244 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2034 ** an error message to it. Then return SQLITE_ERROR. 2245 ** and write an error message to it. Then return SQLITE_ERROR.
2035 */ 2246 */
2036 #ifndef SQLITE_OMIT_FOREIGN_KEY 2247 #ifndef SQLITE_OMIT_FOREIGN_KEY
2037 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2248 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2038 sqlite3 *db = p->db; 2249 sqlite3 *db = p->db;
2039 if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){ 2250 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2040 p->rc = SQLITE_CONSTRAINT; 2251 || (!deferred && p->nFkConstraint>0)
2252 ){
2253 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2041 p->errorAction = OE_Abort; 2254 p->errorAction = OE_Abort;
2042 sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed"); 2255 sqlite3SetString(&p->zErrMsg, db, "FOREIGN KEY constraint failed");
2043 return SQLITE_ERROR; 2256 return SQLITE_ERROR;
2044 } 2257 }
2045 return SQLITE_OK; 2258 return SQLITE_OK;
2046 } 2259 }
2047 #endif 2260 #endif
2048 2261
2049 /* 2262 /*
2050 ** This routine is called the when a VDBE tries to halt. If the VDBE 2263 ** This routine is called the when a VDBE tries to halt. If the VDBE
2051 ** has made changes and is in autocommit mode, then commit those 2264 ** has made changes and is in autocommit mode, then commit those
2052 ** changes. If a rollback is needed, then do the rollback. 2265 ** changes. If a rollback is needed, then do the rollback.
(...skipping 22 matching lines...) Expand all
2075 ** SQLITE_INTERRUPT 2288 ** SQLITE_INTERRUPT
2076 ** 2289 **
2077 ** Then the internal cache might have been left in an inconsistent 2290 ** Then the internal cache might have been left in an inconsistent
2078 ** state. We need to rollback the statement transaction, if there is 2291 ** state. We need to rollback the statement transaction, if there is
2079 ** one, or the complete transaction if there is no statement transaction. 2292 ** one, or the complete transaction if there is no statement transaction.
2080 */ 2293 */
2081 2294
2082 if( p->db->mallocFailed ){ 2295 if( p->db->mallocFailed ){
2083 p->rc = SQLITE_NOMEM; 2296 p->rc = SQLITE_NOMEM;
2084 } 2297 }
2298 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
2085 closeAllCursors(p); 2299 closeAllCursors(p);
2086 if( p->magic!=VDBE_MAGIC_RUN ){ 2300 if( p->magic!=VDBE_MAGIC_RUN ){
2087 return SQLITE_OK; 2301 return SQLITE_OK;
2088 } 2302 }
2089 checkActiveVdbeCnt(db); 2303 checkActiveVdbeCnt(db);
2090 2304
2091 /* No commit or rollback needed if the program never started */ 2305 /* No commit or rollback needed if the program never started or if the
2092 if( p->pc>=0 ){ 2306 ** SQL statement does not read or write a database file. */
2307 if( p->pc>=0 && p->bIsReader ){
2093 int mrc; /* Primary error code from p->rc */ 2308 int mrc; /* Primary error code from p->rc */
2094 int eStatementOp = 0; 2309 int eStatementOp = 0;
2095 int isSpecialError; /* Set to true if a 'special' error */ 2310 int isSpecialError; /* Set to true if a 'special' error */
2096 2311
2097 /* Lock all btrees used by the statement */ 2312 /* Lock all btrees used by the statement */
2098 sqlite3VdbeEnter(p); 2313 sqlite3VdbeEnter(p);
2099 2314
2100 /* Check for one of the special errors */ 2315 /* Check for one of the special errors */
2101 mrc = p->rc & 0xff; 2316 mrc = p->rc & 0xff;
2102 assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */
2103 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2317 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2104 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2318 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2105 if( isSpecialError ){ 2319 if( isSpecialError ){
2106 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2320 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2107 ** no rollback is necessary. Otherwise, at least a savepoint 2321 ** no rollback is necessary. Otherwise, at least a savepoint
2108 ** transaction must be rolled back to restore the database to a 2322 ** transaction must be rolled back to restore the database to a
2109 ** consistent state. 2323 ** consistent state.
2110 ** 2324 **
2111 ** Even if the statement is read-only, it is important to perform 2325 ** Even if the statement is read-only, it is important to perform
2112 ** a statement or transaction rollback operation. If the error 2326 ** a statement or transaction rollback operation. If the error
2113 ** occured while writing to the journal, sub-journal or database 2327 ** occurred while writing to the journal, sub-journal or database
2114 ** file as part of an effort to free up cache space (see function 2328 ** file as part of an effort to free up cache space (see function
2115 ** pagerStress() in pager.c), the rollback is required to restore 2329 ** pagerStress() in pager.c), the rollback is required to restore
2116 ** the pager to a consistent state. 2330 ** the pager to a consistent state.
2117 */ 2331 */
2118 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2332 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2119 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2333 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2120 eStatementOp = SAVEPOINT_ROLLBACK; 2334 eStatementOp = SAVEPOINT_ROLLBACK;
2121 }else{ 2335 }else{
2122 /* We are forced to roll back the active transaction. Before doing 2336 /* We are forced to roll back the active transaction. Before doing
2123 ** so, abort any other statements this handle currently has active. 2337 ** so, abort any other statements this handle currently has active.
2124 */ 2338 */
2125 invalidateCursorsOnModifiedBtrees(db); 2339 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2126 sqlite3RollbackAll(db);
2127 sqlite3CloseSavepoints(db); 2340 sqlite3CloseSavepoints(db);
2128 db->autoCommit = 1; 2341 db->autoCommit = 1;
2129 } 2342 }
2130 } 2343 }
2131 } 2344 }
2132 2345
2133 /* Check for immediate foreign key violations. */ 2346 /* Check for immediate foreign key violations. */
2134 if( p->rc==SQLITE_OK ){ 2347 if( p->rc==SQLITE_OK ){
2135 sqlite3VdbeCheckFk(p, 0); 2348 sqlite3VdbeCheckFk(p, 0);
2136 } 2349 }
2137 2350
2138 /* If the auto-commit flag is set and this is the only active writer 2351 /* If the auto-commit flag is set and this is the only active writer
2139 ** VM, then we do either a commit or rollback of the current transaction. 2352 ** VM, then we do either a commit or rollback of the current transaction.
2140 ** 2353 **
2141 ** Note: This block also runs if one of the special errors handled 2354 ** Note: This block also runs if one of the special errors handled
2142 ** above has occurred. 2355 ** above has occurred.
2143 */ 2356 */
2144 if( !sqlite3VtabInSync(db) 2357 if( !sqlite3VtabInSync(db)
2145 && db->autoCommit 2358 && db->autoCommit
2146 && db->writeVdbeCnt==(p->readOnly==0) 2359 && db->nVdbeWrite==(p->readOnly==0)
2147 ){ 2360 ){
2148 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2361 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2149 rc = sqlite3VdbeCheckFk(p, 1); 2362 rc = sqlite3VdbeCheckFk(p, 1);
2150 if( rc!=SQLITE_OK ){ 2363 if( rc!=SQLITE_OK ){
2151 if( NEVER(p->readOnly) ){ 2364 if( NEVER(p->readOnly) ){
2152 sqlite3VdbeLeave(p); 2365 sqlite3VdbeLeave(p);
2153 return SQLITE_ERROR; 2366 return SQLITE_ERROR;
2154 } 2367 }
2155 rc = SQLITE_CONSTRAINT; 2368 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2156 }else{ 2369 }else{
2157 /* The auto-commit flag is true, the vdbe program was successful 2370 /* The auto-commit flag is true, the vdbe program was successful
2158 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2371 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2159 ** key constraints to hold up the transaction. This means a commit 2372 ** key constraints to hold up the transaction. This means a commit
2160 ** is required. */ 2373 ** is required. */
2161 rc = vdbeCommit(db, p); 2374 rc = vdbeCommit(db, p);
2162 } 2375 }
2163 if( rc==SQLITE_BUSY && p->readOnly ){ 2376 if( rc==SQLITE_BUSY && p->readOnly ){
2164 sqlite3VdbeLeave(p); 2377 sqlite3VdbeLeave(p);
2165 return SQLITE_BUSY; 2378 return SQLITE_BUSY;
2166 }else if( rc!=SQLITE_OK ){ 2379 }else if( rc!=SQLITE_OK ){
2167 p->rc = rc; 2380 p->rc = rc;
2168 sqlite3RollbackAll(db); 2381 sqlite3RollbackAll(db, SQLITE_OK);
2169 }else{ 2382 }else{
2170 db->nDeferredCons = 0; 2383 db->nDeferredCons = 0;
2384 db->nDeferredImmCons = 0;
2385 db->flags &= ~SQLITE_DeferFKs;
2171 sqlite3CommitInternalChanges(db); 2386 sqlite3CommitInternalChanges(db);
2172 } 2387 }
2173 }else{ 2388 }else{
2174 sqlite3RollbackAll(db); 2389 sqlite3RollbackAll(db, SQLITE_OK);
2175 } 2390 }
2176 db->nStatement = 0; 2391 db->nStatement = 0;
2177 }else if( eStatementOp==0 ){ 2392 }else if( eStatementOp==0 ){
2178 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2393 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2179 eStatementOp = SAVEPOINT_RELEASE; 2394 eStatementOp = SAVEPOINT_RELEASE;
2180 }else if( p->errorAction==OE_Abort ){ 2395 }else if( p->errorAction==OE_Abort ){
2181 eStatementOp = SAVEPOINT_ROLLBACK; 2396 eStatementOp = SAVEPOINT_ROLLBACK;
2182 }else{ 2397 }else{
2183 invalidateCursorsOnModifiedBtrees(db); 2398 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2184 sqlite3RollbackAll(db);
2185 sqlite3CloseSavepoints(db); 2399 sqlite3CloseSavepoints(db);
2186 db->autoCommit = 1; 2400 db->autoCommit = 1;
2187 } 2401 }
2188 } 2402 }
2189 2403
2190 /* If eStatementOp is non-zero, then a statement transaction needs to 2404 /* If eStatementOp is non-zero, then a statement transaction needs to
2191 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2405 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2192 ** do so. If this operation returns an error, and the current statement 2406 ** do so. If this operation returns an error, and the current statement
2193 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2407 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2194 ** current statement error code. 2408 ** current statement error code.
2195 **
2196 ** Note that sqlite3VdbeCloseStatement() can only fail if eStatementOp
2197 ** is SAVEPOINT_ROLLBACK. But if p->rc==SQLITE_OK then eStatementOp
2198 ** must be SAVEPOINT_RELEASE. Hence the NEVER(p->rc==SQLITE_OK) in
2199 ** the following code.
2200 */ 2409 */
2201 if( eStatementOp ){ 2410 if( eStatementOp ){
2202 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2411 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2203 if( rc ){ 2412 if( rc ){
2204 assert( eStatementOp==SAVEPOINT_ROLLBACK ); 2413 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2205 if( NEVER(p->rc==SQLITE_OK) || p->rc==SQLITE_CONSTRAINT ){
2206 p->rc = rc; 2414 p->rc = rc;
2207 sqlite3DbFree(db, p->zErrMsg); 2415 sqlite3DbFree(db, p->zErrMsg);
2208 p->zErrMsg = 0; 2416 p->zErrMsg = 0;
2209 } 2417 }
2210 invalidateCursorsOnModifiedBtrees(db); 2418 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2211 sqlite3RollbackAll(db);
2212 sqlite3CloseSavepoints(db); 2419 sqlite3CloseSavepoints(db);
2213 db->autoCommit = 1; 2420 db->autoCommit = 1;
2214 } 2421 }
2215 } 2422 }
2216 2423
2217 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2424 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2218 ** has been rolled back, update the database connection change-counter. 2425 ** has been rolled back, update the database connection change-counter.
2219 */ 2426 */
2220 if( p->changeCntOn ){ 2427 if( p->changeCntOn ){
2221 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2428 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2222 sqlite3VdbeSetChanges(db, p->nChange); 2429 sqlite3VdbeSetChanges(db, p->nChange);
2223 }else{ 2430 }else{
2224 sqlite3VdbeSetChanges(db, 0); 2431 sqlite3VdbeSetChanges(db, 0);
2225 } 2432 }
2226 p->nChange = 0; 2433 p->nChange = 0;
2227 } 2434 }
2228
2229 /* Rollback or commit any schema changes that occurred. */
2230 if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
2231 sqlite3ResetInternalSchema(db, -1);
2232 db->flags = (db->flags | SQLITE_InternChanges);
2233 }
2234 2435
2235 /* Release the locks */ 2436 /* Release the locks */
2236 sqlite3VdbeLeave(p); 2437 sqlite3VdbeLeave(p);
2237 } 2438 }
2238 2439
2239 /* We have successfully halted and closed the VM. Record this fact. */ 2440 /* We have successfully halted and closed the VM. Record this fact. */
2240 if( p->pc>=0 ){ 2441 if( p->pc>=0 ){
2241 db->activeVdbeCnt--; 2442 db->nVdbeActive--;
2242 if( !p->readOnly ){ 2443 if( !p->readOnly ) db->nVdbeWrite--;
2243 db->writeVdbeCnt--; 2444 if( p->bIsReader ) db->nVdbeRead--;
2244 } 2445 assert( db->nVdbeActive>=db->nVdbeRead );
2245 assert( db->activeVdbeCnt>=db->writeVdbeCnt ); 2446 assert( db->nVdbeRead>=db->nVdbeWrite );
2447 assert( db->nVdbeWrite>=0 );
2246 } 2448 }
2247 p->magic = VDBE_MAGIC_HALT; 2449 p->magic = VDBE_MAGIC_HALT;
2248 checkActiveVdbeCnt(db); 2450 checkActiveVdbeCnt(db);
2249 if( p->db->mallocFailed ){ 2451 if( p->db->mallocFailed ){
2250 p->rc = SQLITE_NOMEM; 2452 p->rc = SQLITE_NOMEM;
2251 } 2453 }
2252 2454
2253 /* If the auto-commit flag is set to true, then any locks that were held 2455 /* If the auto-commit flag is set to true, then any locks that were held
2254 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2456 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2255 ** to invoke any required unlock-notify callbacks. 2457 ** to invoke any required unlock-notify callbacks.
2256 */ 2458 */
2257 if( db->autoCommit ){ 2459 if( db->autoCommit ){
2258 sqlite3ConnectionUnlocked(db); 2460 sqlite3ConnectionUnlocked(db);
2259 } 2461 }
2260 2462
2261 assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 ); 2463 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2262 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2464 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2263 } 2465 }
2264 2466
2265 2467
2266 /* 2468 /*
2267 ** Each VDBE holds the result of the most recent sqlite3_step() call 2469 ** Each VDBE holds the result of the most recent sqlite3_step() call
2268 ** in p->rc. This routine sets that result back to SQLITE_OK. 2470 ** in p->rc. This routine sets that result back to SQLITE_OK.
2269 */ 2471 */
2270 void sqlite3VdbeResetStepResult(Vdbe *p){ 2472 void sqlite3VdbeResetStepResult(Vdbe *p){
2271 p->rc = SQLITE_OK; 2473 p->rc = SQLITE_OK;
2272 } 2474 }
2273 2475
2274 /* 2476 /*
2477 ** Copy the error code and error message belonging to the VDBE passed
2478 ** as the first argument to its database handle (so that they will be
2479 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2480 **
2481 ** This function does not clear the VDBE error code or message, just
2482 ** copies them to the database handle.
2483 */
2484 int sqlite3VdbeTransferError(Vdbe *p){
2485 sqlite3 *db = p->db;
2486 int rc = p->rc;
2487 if( p->zErrMsg ){
2488 u8 mallocFailed = db->mallocFailed;
2489 sqlite3BeginBenignMalloc();
2490 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2491 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2492 sqlite3EndBenignMalloc();
2493 db->mallocFailed = mallocFailed;
2494 db->errCode = rc;
2495 }else{
2496 sqlite3Error(db, rc);
2497 }
2498 return rc;
2499 }
2500
2501 #ifdef SQLITE_ENABLE_SQLLOG
2502 /*
2503 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2504 ** invoke it.
2505 */
2506 static void vdbeInvokeSqllog(Vdbe *v){
2507 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2508 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2509 assert( v->db->init.busy==0 );
2510 if( zExpanded ){
2511 sqlite3GlobalConfig.xSqllog(
2512 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2513 );
2514 sqlite3DbFree(v->db, zExpanded);
2515 }
2516 }
2517 }
2518 #else
2519 # define vdbeInvokeSqllog(x)
2520 #endif
2521
2522 /*
2275 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2523 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2276 ** Write any error messages into *pzErrMsg. Return the result code. 2524 ** Write any error messages into *pzErrMsg. Return the result code.
2277 ** 2525 **
2278 ** After this routine is run, the VDBE should be ready to be executed 2526 ** After this routine is run, the VDBE should be ready to be executed
2279 ** again. 2527 ** again.
2280 ** 2528 **
2281 ** To look at it another way, this routine resets the state of the 2529 ** To look at it another way, this routine resets the state of the
2282 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2530 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2283 ** VDBE_MAGIC_INIT. 2531 ** VDBE_MAGIC_INIT.
2284 */ 2532 */
2285 int sqlite3VdbeReset(Vdbe *p){ 2533 int sqlite3VdbeReset(Vdbe *p){
2286 sqlite3 *db; 2534 sqlite3 *db;
2287 db = p->db; 2535 db = p->db;
2288 2536
2289 /* If the VM did not run to completion or if it encountered an 2537 /* If the VM did not run to completion or if it encountered an
2290 ** error, then it might not have been halted properly. So halt 2538 ** error, then it might not have been halted properly. So halt
2291 ** it now. 2539 ** it now.
2292 */ 2540 */
2293 sqlite3VdbeHalt(p); 2541 sqlite3VdbeHalt(p);
2294 2542
2295 /* If the VDBE has be run even partially, then transfer the error code 2543 /* If the VDBE has be run even partially, then transfer the error code
2296 ** and error message from the VDBE into the main database structure. But 2544 ** and error message from the VDBE into the main database structure. But
2297 ** if the VDBE has just been set to run but has not actually executed any 2545 ** if the VDBE has just been set to run but has not actually executed any
2298 ** instructions yet, leave the main database error information unchanged. 2546 ** instructions yet, leave the main database error information unchanged.
2299 */ 2547 */
2300 if( p->pc>=0 ){ 2548 if( p->pc>=0 ){
2301 if( p->zErrMsg ){ 2549 vdbeInvokeSqllog(p);
2302 sqlite3BeginBenignMalloc(); 2550 sqlite3VdbeTransferError(p);
2303 sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT); 2551 sqlite3DbFree(db, p->zErrMsg);
2304 sqlite3EndBenignMalloc(); 2552 p->zErrMsg = 0;
2305 db->errCode = p->rc;
2306 sqlite3DbFree(db, p->zErrMsg);
2307 p->zErrMsg = 0;
2308 }else if( p->rc ){
2309 sqlite3Error(db, p->rc, 0);
2310 }else{
2311 sqlite3Error(db, SQLITE_OK, 0);
2312 }
2313 if( p->runOnlyOnce ) p->expired = 1; 2553 if( p->runOnlyOnce ) p->expired = 1;
2314 }else if( p->rc && p->expired ){ 2554 }else if( p->rc && p->expired ){
2315 /* The expired flag was set on the VDBE before the first call 2555 /* The expired flag was set on the VDBE before the first call
2316 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2556 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2317 ** called), set the database error in this case as well. 2557 ** called), set the database error in this case as well.
2318 */ 2558 */
2319 sqlite3Error(db, p->rc, 0); 2559 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2320 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2321 sqlite3DbFree(db, p->zErrMsg); 2560 sqlite3DbFree(db, p->zErrMsg);
2322 p->zErrMsg = 0; 2561 p->zErrMsg = 0;
2323 } 2562 }
2324 2563
2325 /* Reclaim all memory used by the VDBE 2564 /* Reclaim all memory used by the VDBE
2326 */ 2565 */
2327 Cleanup(p); 2566 Cleanup(p);
2328 2567
2329 /* Save profiling information from this VDBE run. 2568 /* Save profiling information from this VDBE run.
2330 */ 2569 */
2331 #ifdef VDBE_PROFILE 2570 #ifdef VDBE_PROFILE
2332 { 2571 {
2333 FILE *out = fopen("vdbe_profile.out", "a"); 2572 FILE *out = fopen("vdbe_profile.out", "a");
2334 if( out ){ 2573 if( out ){
2335 int i; 2574 int i;
2336 fprintf(out, "---- "); 2575 fprintf(out, "---- ");
2337 for(i=0; i<p->nOp; i++){ 2576 for(i=0; i<p->nOp; i++){
2338 fprintf(out, "%02x", p->aOp[i].opcode); 2577 fprintf(out, "%02x", p->aOp[i].opcode);
2339 } 2578 }
2340 fprintf(out, "\n"); 2579 fprintf(out, "\n");
2580 if( p->zSql ){
2581 char c, pc = 0;
2582 fprintf(out, "-- ");
2583 for(i=0; (c = p->zSql[i])!=0; i++){
2584 if( pc=='\n' ) fprintf(out, "-- ");
2585 putc(c, out);
2586 pc = c;
2587 }
2588 if( pc!='\n' ) fprintf(out, "\n");
2589 }
2341 for(i=0; i<p->nOp; i++){ 2590 for(i=0; i<p->nOp; i++){
2342 fprintf(out, "%6d %10lld %8lld ", 2591 char zHdr[100];
2592 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2343 p->aOp[i].cnt, 2593 p->aOp[i].cnt,
2344 p->aOp[i].cycles, 2594 p->aOp[i].cycles,
2345 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2595 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2346 ); 2596 );
2597 fprintf(out, "%s", zHdr);
2347 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2598 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2348 } 2599 }
2349 fclose(out); 2600 fclose(out);
2350 } 2601 }
2351 } 2602 }
2352 #endif 2603 #endif
2604 p->iCurrentTime = 0;
2353 p->magic = VDBE_MAGIC_INIT; 2605 p->magic = VDBE_MAGIC_INIT;
2354 return p->rc & db->errMask; 2606 return p->rc & db->errMask;
2355 } 2607 }
2356 2608
2357 /* 2609 /*
2358 ** Clean up and delete a VDBE after execution. Return an integer which is 2610 ** Clean up and delete a VDBE after execution. Return an integer which is
2359 ** the result code. Write any error message text into *pzErrMsg. 2611 ** the result code. Write any error message text into *pzErrMsg.
2360 */ 2612 */
2361 int sqlite3VdbeFinalize(Vdbe *p){ 2613 int sqlite3VdbeFinalize(Vdbe *p){
2362 int rc = SQLITE_OK; 2614 int rc = SQLITE_OK;
2363 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2615 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2364 rc = sqlite3VdbeReset(p); 2616 rc = sqlite3VdbeReset(p);
2365 assert( (rc & p->db->errMask)==rc ); 2617 assert( (rc & p->db->errMask)==rc );
2366 } 2618 }
2367 sqlite3VdbeDelete(p); 2619 sqlite3VdbeDelete(p);
2368 return rc; 2620 return rc;
2369 } 2621 }
2370 2622
2371 /* 2623 /*
2372 ** Call the destructor for each auxdata entry in pVdbeFunc for which 2624 ** If parameter iOp is less than zero, then invoke the destructor for
2373 ** the corresponding bit in mask is clear. Auxdata entries beyond 31 2625 ** all auxiliary data pointers currently cached by the VM passed as
2374 ** are always destroyed. To destroy all auxdata entries, call this 2626 ** the first argument.
2375 ** routine with mask==0. 2627 **
2628 ** Or, if iOp is greater than or equal to zero, then the destructor is
2629 ** only invoked for those auxiliary data pointers created by the user
2630 ** function invoked by the OP_Function opcode at instruction iOp of
2631 ** VM pVdbe, and only then if:
2632 **
2633 ** * the associated function parameter is the 32nd or later (counting
2634 ** from left to right), or
2635 **
2636 ** * the corresponding bit in argument mask is clear (where the first
2637 ** function parameter corresponds to bit 0 etc.).
2376 */ 2638 */
2377 void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ 2639 void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
2378 int i; 2640 AuxData **pp = &pVdbe->pAuxData;
2379 for(i=0; i<pVdbeFunc->nAux; i++){ 2641 while( *pp ){
2380 struct AuxData *pAux = &pVdbeFunc->apAux[i]; 2642 AuxData *pAux = *pp;
2381 if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){ 2643 if( (iOp<0)
2644 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
2645 ){
2646 testcase( pAux->iArg==31 );
2382 if( pAux->xDelete ){ 2647 if( pAux->xDelete ){
2383 pAux->xDelete(pAux->pAux); 2648 pAux->xDelete(pAux->pAux);
2384 } 2649 }
2385 pAux->pAux = 0; 2650 *pp = pAux->pNext;
2651 sqlite3DbFree(pVdbe->db, pAux);
2652 }else{
2653 pp= &pAux->pNext;
2386 } 2654 }
2387 } 2655 }
2388 } 2656 }
2389 2657
2390 /* 2658 /*
2391 ** Free all memory associated with the Vdbe passed as the second argument. 2659 ** Free all memory associated with the Vdbe passed as the second argument,
2660 ** except for object itself, which is preserved.
2661 **
2392 ** The difference between this function and sqlite3VdbeDelete() is that 2662 ** The difference between this function and sqlite3VdbeDelete() is that
2393 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2663 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
2394 ** the database connection. 2664 ** the database connection and frees the object itself.
2395 */ 2665 */
2396 void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){ 2666 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
2397 SubProgram *pSub, *pNext; 2667 SubProgram *pSub, *pNext;
2668 int i;
2398 assert( p->db==0 || p->db==db ); 2669 assert( p->db==0 || p->db==db );
2399 releaseMemArray(p->aVar, p->nVar); 2670 releaseMemArray(p->aVar, p->nVar);
2400 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2671 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2401 for(pSub=p->pProgram; pSub; pSub=pNext){ 2672 for(pSub=p->pProgram; pSub; pSub=pNext){
2402 pNext = pSub->pNext; 2673 pNext = pSub->pNext;
2403 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 2674 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2404 sqlite3DbFree(db, pSub); 2675 sqlite3DbFree(db, pSub);
2405 } 2676 }
2677 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
2406 vdbeFreeOpArray(db, p->aOp, p->nOp); 2678 vdbeFreeOpArray(db, p->aOp, p->nOp);
2407 sqlite3DbFree(db, p->aLabel);
2408 sqlite3DbFree(db, p->aColName); 2679 sqlite3DbFree(db, p->aColName);
2409 sqlite3DbFree(db, p->zSql); 2680 sqlite3DbFree(db, p->zSql);
2410 sqlite3DbFree(db, p->pFree); 2681 sqlite3DbFree(db, p->pFree);
2411 sqlite3DbFree(db, p);
2412 } 2682 }
2413 2683
2414 /* 2684 /*
2415 ** Delete an entire VDBE. 2685 ** Delete an entire VDBE.
2416 */ 2686 */
2417 void sqlite3VdbeDelete(Vdbe *p){ 2687 void sqlite3VdbeDelete(Vdbe *p){
2418 sqlite3 *db; 2688 sqlite3 *db;
2419 2689
2420 if( NEVER(p==0) ) return; 2690 if( NEVER(p==0) ) return;
2421 db = p->db; 2691 db = p->db;
2692 assert( sqlite3_mutex_held(db->mutex) );
2693 sqlite3VdbeClearObject(db, p);
2422 if( p->pPrev ){ 2694 if( p->pPrev ){
2423 p->pPrev->pNext = p->pNext; 2695 p->pPrev->pNext = p->pNext;
2424 }else{ 2696 }else{
2425 assert( db->pVdbe==p ); 2697 assert( db->pVdbe==p );
2426 db->pVdbe = p->pNext; 2698 db->pVdbe = p->pNext;
2427 } 2699 }
2428 if( p->pNext ){ 2700 if( p->pNext ){
2429 p->pNext->pPrev = p->pPrev; 2701 p->pNext->pPrev = p->pPrev;
2430 } 2702 }
2431 p->magic = VDBE_MAGIC_DEAD; 2703 p->magic = VDBE_MAGIC_DEAD;
2432 p->db = 0; 2704 p->db = 0;
2433 sqlite3VdbeDeleteObject(db, p); 2705 sqlite3DbFree(db, p);
2434 } 2706 }
2435 2707
2436 /* 2708 /*
2709 ** The cursor "p" has a pending seek operation that has not yet been
2710 ** carried out. Seek the cursor now. If an error occurs, return
2711 ** the appropriate error code.
2712 */
2713 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
2714 int res, rc;
2715 #ifdef SQLITE_TEST
2716 extern int sqlite3_search_count;
2717 #endif
2718 assert( p->deferredMoveto );
2719 assert( p->isTable );
2720 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
2721 if( rc ) return rc;
2722 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
2723 #ifdef SQLITE_TEST
2724 sqlite3_search_count++;
2725 #endif
2726 p->deferredMoveto = 0;
2727 p->cacheStatus = CACHE_STALE;
2728 return SQLITE_OK;
2729 }
2730
2731 /*
2732 ** Something has moved cursor "p" out of place. Maybe the row it was
2733 ** pointed to was deleted out from under it. Or maybe the btree was
2734 ** rebalanced. Whatever the cause, try to restore "p" to the place it
2735 ** is supposed to be pointing. If the row was deleted out from under the
2736 ** cursor, set the cursor to point to a NULL row.
2737 */
2738 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
2739 int isDifferentRow, rc;
2740 assert( p->pCursor!=0 );
2741 assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
2742 rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
2743 p->cacheStatus = CACHE_STALE;
2744 if( isDifferentRow ) p->nullRow = 1;
2745 return rc;
2746 }
2747
2748 /*
2749 ** Check to ensure that the cursor is valid. Restore the cursor
2750 ** if need be. Return any I/O error from the restore operation.
2751 */
2752 int sqlite3VdbeCursorRestore(VdbeCursor *p){
2753 if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
2754 return handleMovedCursor(p);
2755 }
2756 return SQLITE_OK;
2757 }
2758
2759 /*
2437 ** Make sure the cursor p is ready to read or write the row to which it 2760 ** Make sure the cursor p is ready to read or write the row to which it
2438 ** was last positioned. Return an error code if an OOM fault or I/O error 2761 ** was last positioned. Return an error code if an OOM fault or I/O error
2439 ** prevents us from positioning the cursor to its correct position. 2762 ** prevents us from positioning the cursor to its correct position.
2440 ** 2763 **
2441 ** If a MoveTo operation is pending on the given cursor, then do that 2764 ** If a MoveTo operation is pending on the given cursor, then do that
2442 ** MoveTo now. If no move is pending, check to see if the row has been 2765 ** MoveTo now. If no move is pending, check to see if the row has been
2443 ** deleted out from under the cursor and if it has, mark the row as 2766 ** deleted out from under the cursor and if it has, mark the row as
2444 ** a NULL row. 2767 ** a NULL row.
2445 ** 2768 **
2446 ** If the cursor is already pointing to the correct row and that row has 2769 ** If the cursor is already pointing to the correct row and that row has
2447 ** not been deleted out from under the cursor, then this routine is a no-op. 2770 ** not been deleted out from under the cursor, then this routine is a no-op.
2448 */ 2771 */
2449 int sqlite3VdbeCursorMoveto(VdbeCursor *p){ 2772 int sqlite3VdbeCursorMoveto(VdbeCursor *p){
2450 if( p->deferredMoveto ){ 2773 if( p->deferredMoveto ){
2451 int res, rc; 2774 return handleDeferredMoveto(p);
2452 #ifdef SQLITE_TEST 2775 }
2453 extern int sqlite3_search_count; 2776 if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){
2454 #endif 2777 return handleMovedCursor(p);
2455 assert( p->isTable );
2456 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
2457 if( rc ) return rc;
2458 p->lastRowid = p->movetoTarget;
2459 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
2460 p->rowidIsValid = 1;
2461 #ifdef SQLITE_TEST
2462 sqlite3_search_count++;
2463 #endif
2464 p->deferredMoveto = 0;
2465 p->cacheStatus = CACHE_STALE;
2466 }else if( ALWAYS(p->pCursor) ){
2467 int hasMoved;
2468 int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
2469 if( rc ) return rc;
2470 if( hasMoved ){
2471 p->cacheStatus = CACHE_STALE;
2472 p->nullRow = 1;
2473 }
2474 } 2778 }
2475 return SQLITE_OK; 2779 return SQLITE_OK;
2476 } 2780 }
2477 2781
2478 /* 2782 /*
2479 ** The following functions: 2783 ** The following functions:
2480 ** 2784 **
2481 ** sqlite3VdbeSerialType() 2785 ** sqlite3VdbeSerialType()
2482 ** sqlite3VdbeSerialTypeLen() 2786 ** sqlite3VdbeSerialTypeLen()
2483 ** sqlite3VdbeSerialLen() 2787 ** sqlite3VdbeSerialLen()
2484 ** sqlite3VdbeSerialPut() 2788 ** sqlite3VdbeSerialPut()
2485 ** sqlite3VdbeSerialGet() 2789 ** sqlite3VdbeSerialGet()
2486 ** 2790 **
2487 ** encapsulate the code that serializes values for storage in SQLite 2791 ** encapsulate the code that serializes values for storage in SQLite
2488 ** data and index records. Each serialized value consists of a 2792 ** data and index records. Each serialized value consists of a
2489 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 2793 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
2490 ** integer, stored as a varint. 2794 ** integer, stored as a varint.
2491 ** 2795 **
2492 ** In an SQLite index record, the serial type is stored directly before 2796 ** In an SQLite index record, the serial type is stored directly before
2493 ** the blob of data that it corresponds to. In a table record, all serial 2797 ** the blob of data that it corresponds to. In a table record, all serial
2494 ** types are stored at the start of the record, and the blobs of data at 2798 ** types are stored at the start of the record, and the blobs of data at
2495 ** the end. Hence these functions allow the caller to handle the 2799 ** the end. Hence these functions allow the caller to handle the
2496 ** serial-type and data blob seperately. 2800 ** serial-type and data blob separately.
2497 ** 2801 **
2498 ** The following table describes the various storage classes for data: 2802 ** The following table describes the various storage classes for data:
2499 ** 2803 **
2500 ** serial type bytes of data type 2804 ** serial type bytes of data type
2501 ** -------------- --------------- --------------- 2805 ** -------------- --------------- ---------------
2502 ** 0 0 NULL 2806 ** 0 0 NULL
2503 ** 1 1 signed integer 2807 ** 1 1 signed integer
2504 ** 2 2 signed integer 2808 ** 2 2 signed integer
2505 ** 3 3 signed integer 2809 ** 3 3 signed integer
2506 ** 4 4 signed integer 2810 ** 4 4 signed integer
2507 ** 5 6 signed integer 2811 ** 5 6 signed integer
2508 ** 6 8 signed integer 2812 ** 6 8 signed integer
2509 ** 7 8 IEEE float 2813 ** 7 8 IEEE float
2510 ** 8 0 Integer constant 0 2814 ** 8 0 Integer constant 0
2511 ** 9 0 Integer constant 1 2815 ** 9 0 Integer constant 1
2512 ** 10,11 reserved for expansion 2816 ** 10,11 reserved for expansion
2513 ** N>=12 and even (N-12)/2 BLOB 2817 ** N>=12 and even (N-12)/2 BLOB
2514 ** N>=13 and odd (N-13)/2 text 2818 ** N>=13 and odd (N-13)/2 text
2515 ** 2819 **
2516 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 2820 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
2517 ** of SQLite will not understand those serial types. 2821 ** of SQLite will not understand those serial types.
2518 */ 2822 */
2519 2823
2520 /* 2824 /*
2521 ** Return the serial-type for the value stored in pMem. 2825 ** Return the serial-type for the value stored in pMem.
2522 */ 2826 */
2523 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ 2827 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
2524 int flags = pMem->flags; 2828 int flags = pMem->flags;
2525 int n; 2829 u32 n;
2526 2830
2527 if( flags&MEM_Null ){ 2831 if( flags&MEM_Null ){
2528 return 0; 2832 return 0;
2529 } 2833 }
2530 if( flags&MEM_Int ){ 2834 if( flags&MEM_Int ){
2531 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 2835 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
2532 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 2836 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
2533 i64 i = pMem->u.i; 2837 i64 i = pMem->u.i;
2534 u64 u; 2838 u64 u;
2535 if( file_format>=4 && (i&1)==i ){
2536 return 8+(u32)i;
2537 }
2538 if( i<0 ){ 2839 if( i<0 ){
2539 if( i<(-MAX_6BYTE) ) return 6; 2840 if( i<(-MAX_6BYTE) ) return 6;
2540 /* Previous test prevents: u = -(-9223372036854775808) */ 2841 /* Previous test prevents: u = -(-9223372036854775808) */
2541 u = -i; 2842 u = -i;
2542 }else{ 2843 }else{
2543 u = i; 2844 u = i;
2544 } 2845 }
2545 if( u<=127 ) return 1; 2846 if( u<=127 ){
2847 return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
2848 }
2546 if( u<=32767 ) return 2; 2849 if( u<=32767 ) return 2;
2547 if( u<=8388607 ) return 3; 2850 if( u<=8388607 ) return 3;
2548 if( u<=2147483647 ) return 4; 2851 if( u<=2147483647 ) return 4;
2549 if( u<=MAX_6BYTE ) return 5; 2852 if( u<=MAX_6BYTE ) return 5;
2550 return 6; 2853 return 6;
2551 } 2854 }
2552 if( flags&MEM_Real ){ 2855 if( flags&MEM_Real ){
2553 return 7; 2856 return 7;
2554 } 2857 }
2555 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 2858 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
2556 n = pMem->n; 2859 assert( pMem->n>=0 );
2860 n = (u32)pMem->n;
2557 if( flags & MEM_Zero ){ 2861 if( flags & MEM_Zero ){
2558 n += pMem->u.nZero; 2862 n += pMem->u.nZero;
2559 } 2863 }
2560 assert( n>=0 );
2561 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 2864 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
2562 } 2865 }
2563 2866
2564 /* 2867 /*
2565 ** Return the length of the data corresponding to the supplied serial-type. 2868 ** Return the length of the data corresponding to the supplied serial-type.
2566 */ 2869 */
2567 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 2870 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
2568 if( serial_type>=12 ){ 2871 if( serial_type>=12 ){
2569 return (serial_type-12)/2; 2872 return (serial_type-12)/2;
2570 }else{ 2873 }else{
(...skipping 53 matching lines...) Expand 10 before | Expand all | Expand 10 after
2624 # define swapMixedEndianFloat(X) X = floatSwap(X) 2927 # define swapMixedEndianFloat(X) X = floatSwap(X)
2625 #else 2928 #else
2626 # define swapMixedEndianFloat(X) 2929 # define swapMixedEndianFloat(X)
2627 #endif 2930 #endif
2628 2931
2629 /* 2932 /*
2630 ** Write the serialized data blob for the value stored in pMem into 2933 ** Write the serialized data blob for the value stored in pMem into
2631 ** buf. It is assumed that the caller has allocated sufficient space. 2934 ** buf. It is assumed that the caller has allocated sufficient space.
2632 ** Return the number of bytes written. 2935 ** Return the number of bytes written.
2633 ** 2936 **
2634 ** nBuf is the amount of space left in buf[]. nBuf must always be 2937 ** nBuf is the amount of space left in buf[]. The caller is responsible
2635 ** large enough to hold the entire field. Except, if the field is 2938 ** for allocating enough space to buf[] to hold the entire field, exclusive
2636 ** a blob with a zero-filled tail, then buf[] might be just the right 2939 ** of the pMem->u.nZero bytes for a MEM_Zero value.
2637 ** size to hold everything except for the zero-filled tail. If buf[]
2638 ** is only big enough to hold the non-zero prefix, then only write that
2639 ** prefix into buf[]. But if buf[] is large enough to hold both the
2640 ** prefix and the tail then write the prefix and set the tail to all
2641 ** zeros.
2642 ** 2940 **
2643 ** Return the number of bytes actually written into buf[]. The number 2941 ** Return the number of bytes actually written into buf[]. The number
2644 ** of bytes in the zero-filled tail is included in the return value only 2942 ** of bytes in the zero-filled tail is included in the return value only
2645 ** if those bytes were zeroed in buf[]. 2943 ** if those bytes were zeroed in buf[].
2646 */ 2944 */
2647 u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ 2945 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
2648 u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
2649 u32 len; 2946 u32 len;
2650 2947
2651 /* Integer and Real */ 2948 /* Integer and Real */
2652 if( serial_type<=7 && serial_type>0 ){ 2949 if( serial_type<=7 && serial_type>0 ){
2653 u64 v; 2950 u64 v;
2654 u32 i; 2951 u32 i;
2655 if( serial_type==7 ){ 2952 if( serial_type==7 ){
2656 assert( sizeof(v)==sizeof(pMem->r) ); 2953 assert( sizeof(v)==sizeof(pMem->u.r) );
2657 memcpy(&v, &pMem->r, sizeof(v)); 2954 memcpy(&v, &pMem->u.r, sizeof(v));
2658 swapMixedEndianFloat(v); 2955 swapMixedEndianFloat(v);
2659 }else{ 2956 }else{
2660 v = pMem->u.i; 2957 v = pMem->u.i;
2661 } 2958 }
2662 len = i = sqlite3VdbeSerialTypeLen(serial_type); 2959 len = i = sqlite3VdbeSerialTypeLen(serial_type);
2663 assert( len<=(u32)nBuf ); 2960 assert( i>0 );
2664 while( i-- ){ 2961 do{
2665 buf[i] = (u8)(v&0xFF); 2962 buf[--i] = (u8)(v&0xFF);
2666 v >>= 8; 2963 v >>= 8;
2667 } 2964 }while( i );
2668 return len; 2965 return len;
2669 } 2966 }
2670 2967
2671 /* String or blob */ 2968 /* String or blob */
2672 if( serial_type>=12 ){ 2969 if( serial_type>=12 ){
2673 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 2970 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
2674 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 2971 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
2675 assert( pMem->n<=nBuf );
2676 len = pMem->n; 2972 len = pMem->n;
2677 memcpy(buf, pMem->z, len); 2973 memcpy(buf, pMem->z, len);
2678 if( pMem->flags & MEM_Zero ){
2679 len += pMem->u.nZero;
2680 assert( nBuf>=0 );
2681 if( len > (u32)nBuf ){
2682 len = (u32)nBuf;
2683 }
2684 memset(&buf[pMem->n], 0, len-pMem->n);
2685 }
2686 return len; 2974 return len;
2687 } 2975 }
2688 2976
2689 /* NULL or constants 0 or 1 */ 2977 /* NULL or constants 0 or 1 */
2690 return 0; 2978 return 0;
2691 } 2979 }
2692 2980
2981 /* Input "x" is a sequence of unsigned characters that represent a
2982 ** big-endian integer. Return the equivalent native integer
2983 */
2984 #define ONE_BYTE_INT(x) ((i8)(x)[0])
2985 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
2986 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
2987 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
2988 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
2989
2693 /* 2990 /*
2694 ** Deserialize the data blob pointed to by buf as serial type serial_type 2991 ** Deserialize the data blob pointed to by buf as serial type serial_type
2695 ** and store the result in pMem. Return the number of bytes read. 2992 ** and store the result in pMem. Return the number of bytes read.
2993 **
2994 ** This function is implemented as two separate routines for performance.
2995 ** The few cases that require local variables are broken out into a separate
2996 ** routine so that in most cases the overhead of moving the stack pointer
2997 ** is avoided.
2696 */ 2998 */
2999 static u32 SQLITE_NOINLINE serialGet(
3000 const unsigned char *buf, /* Buffer to deserialize from */
3001 u32 serial_type, /* Serial type to deserialize */
3002 Mem *pMem /* Memory cell to write value into */
3003 ){
3004 u64 x = FOUR_BYTE_UINT(buf);
3005 u32 y = FOUR_BYTE_UINT(buf+4);
3006 x = (x<<32) + y;
3007 if( serial_type==6 ){
3008 pMem->u.i = *(i64*)&x;
3009 pMem->flags = MEM_Int;
3010 testcase( pMem->u.i<0 );
3011 }else{
3012 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3013 /* Verify that integers and floating point values use the same
3014 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3015 ** defined that 64-bit floating point values really are mixed
3016 ** endian.
3017 */
3018 static const u64 t1 = ((u64)0x3ff00000)<<32;
3019 static const double r1 = 1.0;
3020 u64 t2 = t1;
3021 swapMixedEndianFloat(t2);
3022 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3023 #endif
3024 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3025 swapMixedEndianFloat(x);
3026 memcpy(&pMem->u.r, &x, sizeof(x));
3027 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3028 }
3029 return 8;
3030 }
2697 u32 sqlite3VdbeSerialGet( 3031 u32 sqlite3VdbeSerialGet(
2698 const unsigned char *buf, /* Buffer to deserialize from */ 3032 const unsigned char *buf, /* Buffer to deserialize from */
2699 u32 serial_type, /* Serial type to deserialize */ 3033 u32 serial_type, /* Serial type to deserialize */
2700 Mem *pMem /* Memory cell to write value into */ 3034 Mem *pMem /* Memory cell to write value into */
2701 ){ 3035 ){
2702 switch( serial_type ){ 3036 switch( serial_type ){
2703 case 10: /* Reserved for future use */ 3037 case 10: /* Reserved for future use */
2704 case 11: /* Reserved for future use */ 3038 case 11: /* Reserved for future use */
2705 case 0: { /* NULL */ 3039 case 0: { /* NULL */
2706 pMem->flags = MEM_Null; 3040 pMem->flags = MEM_Null;
2707 break; 3041 break;
2708 } 3042 }
2709 case 1: { /* 1-byte signed integer */ 3043 case 1: { /* 1-byte signed integer */
2710 pMem->u.i = (signed char)buf[0]; 3044 pMem->u.i = ONE_BYTE_INT(buf);
2711 pMem->flags = MEM_Int; 3045 pMem->flags = MEM_Int;
3046 testcase( pMem->u.i<0 );
2712 return 1; 3047 return 1;
2713 } 3048 }
2714 case 2: { /* 2-byte signed integer */ 3049 case 2: { /* 2-byte signed integer */
2715 pMem->u.i = (((signed char)buf[0])<<8) | buf[1]; 3050 pMem->u.i = TWO_BYTE_INT(buf);
2716 pMem->flags = MEM_Int; 3051 pMem->flags = MEM_Int;
3052 testcase( pMem->u.i<0 );
2717 return 2; 3053 return 2;
2718 } 3054 }
2719 case 3: { /* 3-byte signed integer */ 3055 case 3: { /* 3-byte signed integer */
2720 pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2]; 3056 pMem->u.i = THREE_BYTE_INT(buf);
2721 pMem->flags = MEM_Int; 3057 pMem->flags = MEM_Int;
3058 testcase( pMem->u.i<0 );
2722 return 3; 3059 return 3;
2723 } 3060 }
2724 case 4: { /* 4-byte signed integer */ 3061 case 4: { /* 4-byte signed integer */
2725 pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; 3062 pMem->u.i = FOUR_BYTE_INT(buf);
2726 pMem->flags = MEM_Int; 3063 pMem->flags = MEM_Int;
3064 testcase( pMem->u.i<0 );
2727 return 4; 3065 return 4;
2728 } 3066 }
2729 case 5: { /* 6-byte signed integer */ 3067 case 5: { /* 6-byte signed integer */
2730 u64 x = (((signed char)buf[0])<<8) | buf[1]; 3068 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
2731 u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
2732 x = (x<<32) | y;
2733 pMem->u.i = *(i64*)&x;
2734 pMem->flags = MEM_Int; 3069 pMem->flags = MEM_Int;
3070 testcase( pMem->u.i<0 );
2735 return 6; 3071 return 6;
2736 } 3072 }
2737 case 6: /* 8-byte signed integer */ 3073 case 6: /* 8-byte signed integer */
2738 case 7: { /* IEEE floating point */ 3074 case 7: { /* IEEE floating point */
2739 u64 x; 3075 /* These use local variables, so do them in a separate routine
2740 u32 y; 3076 ** to avoid having to move the frame pointer in the common case */
2741 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3077 return serialGet(buf,serial_type,pMem);
2742 /* Verify that integers and floating point values use the same
2743 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
2744 ** defined that 64-bit floating point values really are mixed
2745 ** endian.
2746 */
2747 static const u64 t1 = ((u64)0x3ff00000)<<32;
2748 static const double r1 = 1.0;
2749 u64 t2 = t1;
2750 swapMixedEndianFloat(t2);
2751 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
2752 #endif
2753
2754 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2755 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
2756 x = (x<<32) | y;
2757 if( serial_type==6 ){
2758 pMem->u.i = *(i64*)&x;
2759 pMem->flags = MEM_Int;
2760 }else{
2761 assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
2762 swapMixedEndianFloat(x);
2763 memcpy(&pMem->r, &x, sizeof(x));
2764 pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
2765 }
2766 return 8;
2767 } 3078 }
2768 case 8: /* Integer 0 */ 3079 case 8: /* Integer 0 */
2769 case 9: { /* Integer 1 */ 3080 case 9: { /* Integer 1 */
2770 pMem->u.i = serial_type-8; 3081 pMem->u.i = serial_type-8;
2771 pMem->flags = MEM_Int; 3082 pMem->flags = MEM_Int;
2772 return 0; 3083 return 0;
2773 } 3084 }
2774 default: { 3085 default: {
2775 u32 len = (serial_type-12)/2; 3086 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
2776 pMem->z = (char *)buf; 3087 pMem->z = (char *)buf;
2777 pMem->n = len; 3088 pMem->n = (serial_type-12)/2;
2778 pMem->xDel = 0; 3089 pMem->flags = aFlag[serial_type&1];
2779 if( serial_type&0x01 ){ 3090 return pMem->n;
2780 pMem->flags = MEM_Str | MEM_Ephem;
2781 }else{
2782 pMem->flags = MEM_Blob | MEM_Ephem;
2783 }
2784 return len;
2785 } 3091 }
2786 } 3092 }
2787 return 0; 3093 return 0;
2788 } 3094 }
3095 /*
3096 ** This routine is used to allocate sufficient space for an UnpackedRecord
3097 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3098 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3099 **
3100 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3101 ** the unaligned buffer passed via the second and third arguments (presumably
3102 ** stack space). If the former, then *ppFree is set to a pointer that should
3103 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3104 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3105 ** before returning.
3106 **
3107 ** If an OOM error occurs, NULL is returned.
3108 */
3109 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3110 KeyInfo *pKeyInfo, /* Description of the record */
3111 char *pSpace, /* Unaligned space available */
3112 int szSpace, /* Size of pSpace[] in bytes */
3113 char **ppFree /* OUT: Caller should free this pointer */
3114 ){
3115 UnpackedRecord *p; /* Unpacked record to return */
3116 int nOff; /* Increment pSpace by nOff to align it */
3117 int nByte; /* Number of bytes required for *p */
2789 3118
2790 3119 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
2791 /*
2792 ** Given the nKey-byte encoding of a record in pKey[], parse the
2793 ** record into a UnpackedRecord structure. Return a pointer to
2794 ** that structure.
2795 **
2796 ** The calling function might provide szSpace bytes of memory
2797 ** space at pSpace. This space can be used to hold the returned
2798 ** VDbeParsedRecord structure if it is large enough. If it is
2799 ** not big enough, space is obtained from sqlite3_malloc().
2800 **
2801 ** The returned structure should be closed by a call to
2802 ** sqlite3VdbeDeleteUnpackedRecord().
2803 */
2804 UnpackedRecord *sqlite3VdbeRecordUnpack(
2805 KeyInfo *pKeyInfo, /* Information about the record format */
2806 int nKey, /* Size of the binary record */
2807 const void *pKey, /* The binary record */
2808 char *pSpace, /* Unaligned space available to hold the object */
2809 int szSpace /* Size of pSpace[] in bytes */
2810 ){
2811 const unsigned char *aKey = (const unsigned char *)pKey;
2812 UnpackedRecord *p; /* The unpacked record that we will return */
2813 int nByte; /* Memory space needed to hold p, in bytes */
2814 int d;
2815 u32 idx;
2816 u16 u; /* Unsigned loop counter */
2817 u32 szHdr;
2818 Mem *pMem;
2819 int nOff; /* Increase pSpace by this much to 8-byte align it */
2820
2821 /*
2822 ** We want to shift the pointer pSpace up such that it is 8-byte aligned.
2823 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 3120 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
2824 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. 3121 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
2825 */ 3122 */
2826 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; 3123 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
2827 pSpace += nOff;
2828 szSpace -= nOff;
2829 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 3124 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
2830 if( nByte>szSpace ){ 3125 if( nByte>szSpace+nOff ){
2831 p = sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3126 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
2832 if( p==0 ) return 0; 3127 *ppFree = (char *)p;
2833 p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY; 3128 if( !p ) return 0;
2834 }else{ 3129 }else{
2835 p = (UnpackedRecord*)pSpace; 3130 p = (UnpackedRecord*)&pSpace[nOff];
2836 p->flags = UNPACKED_NEED_DESTROY; 3131 *ppFree = 0;
2837 } 3132 }
3133
3134 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3135 assert( pKeyInfo->aSortOrder!=0 );
2838 p->pKeyInfo = pKeyInfo; 3136 p->pKeyInfo = pKeyInfo;
2839 p->nField = pKeyInfo->nField + 1; 3137 p->nField = pKeyInfo->nField + 1;
2840 p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3138 return p;
3139 }
3140
3141 /*
3142 ** Given the nKey-byte encoding of a record in pKey[], populate the
3143 ** UnpackedRecord structure indicated by the fourth argument with the
3144 ** contents of the decoded record.
3145 */
3146 void sqlite3VdbeRecordUnpack(
3147 KeyInfo *pKeyInfo, /* Information about the record format */
3148 int nKey, /* Size of the binary record */
3149 const void *pKey, /* The binary record */
3150 UnpackedRecord *p /* Populate this structure before returning. */
3151 ){
3152 const unsigned char *aKey = (const unsigned char *)pKey;
3153 int d;
3154 u32 idx; /* Offset in aKey[] to read from */
3155 u16 u; /* Unsigned loop counter */
3156 u32 szHdr;
3157 Mem *pMem = p->aMem;
3158
3159 p->default_rc = 0;
2841 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3160 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
2842 idx = getVarint32(aKey, szHdr); 3161 idx = getVarint32(aKey, szHdr);
2843 d = szHdr; 3162 d = szHdr;
2844 u = 0; 3163 u = 0;
2845 while( idx<szHdr && u<p->nField && d<=nKey ){ 3164 while( idx<szHdr && d<=nKey ){
2846 u32 serial_type; 3165 u32 serial_type;
2847 3166
2848 idx += getVarint32(&aKey[idx], serial_type); 3167 idx += getVarint32(&aKey[idx], serial_type);
2849 pMem->enc = pKeyInfo->enc; 3168 pMem->enc = pKeyInfo->enc;
2850 pMem->db = pKeyInfo->db; 3169 pMem->db = pKeyInfo->db;
2851 pMem->flags = 0; 3170 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
2852 pMem->zMalloc = 0; 3171 pMem->szMalloc = 0;
2853 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3172 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
2854 pMem++; 3173 pMem++;
2855 u++; 3174 if( (++u)>=p->nField ) break;
2856 } 3175 }
2857 assert( u<=pKeyInfo->nField + 1 ); 3176 assert( u<=pKeyInfo->nField + 1 );
2858 p->nField = u; 3177 p->nField = u;
2859 return (void*)p;
2860 } 3178 }
2861 3179
3180 #if SQLITE_DEBUG
2862 /* 3181 /*
2863 ** This routine destroys a UnpackedRecord object. 3182 ** This function compares two index or table record keys in the same way
3183 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3184 ** this function deserializes and compares values using the
3185 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3186 ** in assert() statements to ensure that the optimized code in
3187 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3188 **
3189 ** Return true if the result of comparison is equivalent to desiredResult.
3190 ** Return false if there is a disagreement.
2864 */ 3191 */
2865 void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){ 3192 static int vdbeRecordCompareDebug(
2866 int i;
2867 Mem *pMem;
2868
2869 assert( p!=0 );
2870 assert( p->flags & UNPACKED_NEED_DESTROY );
2871 for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
2872 /* The unpacked record is always constructed by the
2873 ** sqlite3VdbeUnpackRecord() function above, which makes all
2874 ** strings and blobs static. And none of the elements are
2875 ** ever transformed, so there is never anything to delete.
2876 */
2877 if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem);
2878 }
2879 if( p->flags & UNPACKED_NEED_FREE ){
2880 sqlite3DbFree(p->pKeyInfo->db, p);
2881 }
2882 }
2883
2884 /*
2885 ** This function compares the two table rows or index records
2886 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
2887 ** or positive integer if key1 is less than, equal to or
2888 ** greater than key2. The {nKey1, pKey1} key must be a blob
2889 ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
2890 ** key must be a parsed key such as obtained from
2891 ** sqlite3VdbeParseRecord.
2892 **
2893 ** Key1 and Key2 do not have to contain the same number of fields.
2894 ** The key with fewer fields is usually compares less than the
2895 ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
2896 ** and the common prefixes are equal, then key1 is less than key2.
2897 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
2898 ** equal, then the keys are considered to be equal and
2899 ** the parts beyond the common prefix are ignored.
2900 **
2901 ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
2902 ** the header of pKey1 is ignored. It is assumed that pKey1 is
2903 ** an index key, and thus ends with a rowid value. The last byte
2904 ** of the header will therefore be the serial type of the rowid:
2905 ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
2906 ** The serial type of the final rowid will always be a single byte.
2907 ** By ignoring this last byte of the header, we force the comparison
2908 ** to ignore the rowid at the end of key1.
2909 */
2910 int sqlite3VdbeRecordCompare(
2911 int nKey1, const void *pKey1, /* Left key */ 3193 int nKey1, const void *pKey1, /* Left key */
2912 UnpackedRecord *pPKey2 /* Right key */ 3194 const UnpackedRecord *pPKey2, /* Right key */
3195 int desiredResult /* Correct answer */
2913 ){ 3196 ){
2914 int d1; /* Offset into aKey[] of next data element */ 3197 u32 d1; /* Offset into aKey[] of next data element */
2915 u32 idx1; /* Offset into aKey[] of next header element */ 3198 u32 idx1; /* Offset into aKey[] of next header element */
2916 u32 szHdr1; /* Number of bytes in header */ 3199 u32 szHdr1; /* Number of bytes in header */
2917 int i = 0; 3200 int i = 0;
2918 int nField;
2919 int rc = 0; 3201 int rc = 0;
2920 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3202 const unsigned char *aKey1 = (const unsigned char *)pKey1;
2921 KeyInfo *pKeyInfo; 3203 KeyInfo *pKeyInfo;
2922 Mem mem1; 3204 Mem mem1;
2923 3205
2924 pKeyInfo = pPKey2->pKeyInfo; 3206 pKeyInfo = pPKey2->pKeyInfo;
3207 if( pKeyInfo->db==0 ) return 1;
2925 mem1.enc = pKeyInfo->enc; 3208 mem1.enc = pKeyInfo->enc;
2926 mem1.db = pKeyInfo->db; 3209 mem1.db = pKeyInfo->db;
2927 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3210 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
2928 VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */ 3211 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
2929 3212
2930 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3213 /* Compilers may complain that mem1.u.i is potentially uninitialized.
2931 ** We could initialize it, as shown here, to silence those complaints. 3214 ** We could initialize it, as shown here, to silence those complaints.
2932 ** But in fact, mem1.u.i will never actually be used initialized, and doing 3215 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
2933 ** the unnecessary initialization has a measurable negative performance 3216 ** the unnecessary initialization has a measurable negative performance
2934 ** impact, since this routine is a very high runner. And so, we choose 3217 ** impact, since this routine is a very high runner. And so, we choose
2935 ** to ignore the compiler warnings and leave this variable uninitialized. 3218 ** to ignore the compiler warnings and leave this variable uninitialized.
2936 */ 3219 */
2937 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3220 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
2938 3221
2939 idx1 = getVarint32(aKey1, szHdr1); 3222 idx1 = getVarint32(aKey1, szHdr1);
2940 d1 = szHdr1; 3223 d1 = szHdr1;
2941 if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){ 3224 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
2942 szHdr1--; 3225 assert( pKeyInfo->aSortOrder!=0 );
2943 } 3226 assert( pKeyInfo->nField>0 );
2944 nField = pKeyInfo->nField; 3227 assert( idx1<=szHdr1 || CORRUPT_DB );
2945 while( idx1<szHdr1 && i<pPKey2->nField ){ 3228 do{
2946 u32 serial_type1; 3229 u32 serial_type1;
2947 3230
2948 /* Read the serial types for the next element in each key. */ 3231 /* Read the serial types for the next element in each key. */
2949 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3232 idx1 += getVarint32( aKey1+idx1, serial_type1 );
2950 if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; 3233
3234 /* Verify that there is enough key space remaining to avoid
3235 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3236 ** always be greater than or equal to the amount of required key space.
3237 ** Use that approximation to avoid the more expensive call to
3238 ** sqlite3VdbeSerialTypeLen() in the common case.
3239 */
3240 if( d1+serial_type1+2>(u32)nKey1
3241 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3242 ){
3243 break;
3244 }
2951 3245
2952 /* Extract the values to be compared. 3246 /* Extract the values to be compared.
2953 */ 3247 */
2954 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3248 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
2955 3249
2956 /* Do the comparison 3250 /* Do the comparison
2957 */ 3251 */
2958 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 3252 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
2959 i<nField ? pKeyInfo->aColl[i] : 0);
2960 if( rc!=0 ){ 3253 if( rc!=0 ){
2961 assert( mem1.zMalloc==0 ); /* See comment below */ 3254 assert( mem1.szMalloc==0 ); /* See comment below */
2962 3255 if( pKeyInfo->aSortOrder[i] ){
2963 /* Invert the result if we are using DESC sort order. */ 3256 rc = -rc; /* Invert the result for DESC sort order. */
2964 if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){
2965 rc = -rc;
2966 } 3257 }
2967 3258 goto debugCompareEnd;
2968 /* If the PREFIX_SEARCH flag is set and all fields except the final
2969 ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
2970 ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
2971 ** This is used by the OP_IsUnique opcode.
2972 */
2973 if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
2974 assert( idx1==szHdr1 && rc );
2975 assert( mem1.flags & MEM_Int );
2976 pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
2977 pPKey2->rowid = mem1.u.i;
2978 }
2979
2980 return rc;
2981 } 3259 }
2982 i++; 3260 i++;
2983 } 3261 }while( idx1<szHdr1 && i<pPKey2->nField );
2984 3262
2985 /* No memory allocation is ever used on mem1. Prove this using 3263 /* No memory allocation is ever used on mem1. Prove this using
2986 ** the following assert(). If the assert() fails, it indicates a 3264 ** the following assert(). If the assert() fails, it indicates a
2987 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3265 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
2988 */ 3266 */
2989 assert( mem1.zMalloc==0 ); 3267 assert( mem1.szMalloc==0 );
2990 3268
2991 /* rc==0 here means that one of the keys ran out of fields and 3269 /* rc==0 here means that one of the keys ran out of fields and
2992 ** all the fields up to that point were equal. If the UNPACKED_INCRKEY 3270 ** all the fields up to that point were equal. Return the default_rc
2993 ** flag is set, then break the tie by treating key2 as larger. 3271 ** value. */
2994 ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes 3272 rc = pPKey2->default_rc;
2995 ** are considered to be equal. Otherwise, the longer key is the 3273
2996 ** larger. As it happens, the pPKey2 will always be the longer 3274 debugCompareEnd:
2997 ** if there is a difference. 3275 if( desiredResult==0 && rc==0 ) return 1;
3276 if( desiredResult<0 && rc<0 ) return 1;
3277 if( desiredResult>0 && rc>0 ) return 1;
3278 if( CORRUPT_DB ) return 1;
3279 if( pKeyInfo->db->mallocFailed ) return 1;
3280 return 0;
3281 }
3282 #endif
3283
3284 /*
3285 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3286 ** using the collation sequence pColl. As usual, return a negative , zero
3287 ** or positive value if *pMem1 is less than, equal to or greater than
3288 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3289 */
3290 static int vdbeCompareMemString(
3291 const Mem *pMem1,
3292 const Mem *pMem2,
3293 const CollSeq *pColl,
3294 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
3295 ){
3296 if( pMem1->enc==pColl->enc ){
3297 /* The strings are already in the correct encoding. Call the
3298 ** comparison function directly */
3299 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3300 }else{
3301 int rc;
3302 const void *v1, *v2;
3303 int n1, n2;
3304 Mem c1;
3305 Mem c2;
3306 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3307 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3308 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3309 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3310 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3311 n1 = v1==0 ? 0 : c1.n;
3312 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3313 n2 = v2==0 ? 0 : c2.n;
3314 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3315 sqlite3VdbeMemRelease(&c1);
3316 sqlite3VdbeMemRelease(&c2);
3317 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
3318 return rc;
3319 }
3320 }
3321
3322 /*
3323 ** Compare two blobs. Return negative, zero, or positive if the first
3324 ** is less than, equal to, or greater than the second, respectively.
3325 ** If one blob is a prefix of the other, then the shorter is the lessor.
3326 */
3327 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3328 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
3329 if( c ) return c;
3330 return pB1->n - pB2->n;
3331 }
3332
3333
3334 /*
3335 ** Compare the values contained by the two memory cells, returning
3336 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3337 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3338 ** and reals) sorted numerically, followed by text ordered by the collating
3339 ** sequence pColl and finally blob's ordered by memcmp().
3340 **
3341 ** Two NULL values are considered equal by this function.
3342 */
3343 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3344 int f1, f2;
3345 int combined_flags;
3346
3347 f1 = pMem1->flags;
3348 f2 = pMem2->flags;
3349 combined_flags = f1|f2;
3350 assert( (combined_flags & MEM_RowSet)==0 );
3351
3352 /* If one value is NULL, it is less than the other. If both values
3353 ** are NULL, return 0.
2998 */ 3354 */
2999 assert( rc==0 ); 3355 if( combined_flags&MEM_Null ){
3000 if( pPKey2->flags & UNPACKED_INCRKEY ){ 3356 return (f2&MEM_Null) - (f1&MEM_Null);
3001 rc = -1; 3357 }
3002 }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){ 3358
3003 /* Leave rc==0 */ 3359 /* If one value is a number and the other is not, the number is less.
3004 }else if( idx1<szHdr1 ){ 3360 ** If both are numbers, compare as reals if one is a real, or as integers
3005 rc = 1; 3361 ** if both values are integers.
3006 } 3362 */
3007 return rc; 3363 if( combined_flags&(MEM_Int|MEM_Real) ){
3008 } 3364 double r1, r2;
3365 if( (f1 & f2 & MEM_Int)!=0 ){
3366 if( pMem1->u.i < pMem2->u.i ) return -1;
3367 if( pMem1->u.i > pMem2->u.i ) return 1;
3368 return 0;
3369 }
3370 if( (f1&MEM_Real)!=0 ){
3371 r1 = pMem1->u.r;
3372 }else if( (f1&MEM_Int)!=0 ){
3373 r1 = (double)pMem1->u.i;
3374 }else{
3375 return 1;
3376 }
3377 if( (f2&MEM_Real)!=0 ){
3378 r2 = pMem2->u.r;
3379 }else if( (f2&MEM_Int)!=0 ){
3380 r2 = (double)pMem2->u.i;
3381 }else{
3382 return -1;
3383 }
3384 if( r1<r2 ) return -1;
3385 if( r1>r2 ) return 1;
3386 return 0;
3387 }
3388
3389 /* If one value is a string and the other is a blob, the string is less.
3390 ** If both are strings, compare using the collating functions.
3391 */
3392 if( combined_flags&MEM_Str ){
3393 if( (f1 & MEM_Str)==0 ){
3394 return 1;
3395 }
3396 if( (f2 & MEM_Str)==0 ){
3397 return -1;
3398 }
3399
3400 assert( pMem1->enc==pMem2->enc );
3401 assert( pMem1->enc==SQLITE_UTF8 ||
3402 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3403
3404 /* The collation sequence must be defined at this point, even if
3405 ** the user deletes the collation sequence after the vdbe program is
3406 ** compiled (this was not always the case).
3407 */
3408 assert( !pColl || pColl->xCmp );
3409
3410 if( pColl ){
3411 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3412 }
3413 /* If a NULL pointer was passed as the collate function, fall through
3414 ** to the blob case and use memcmp(). */
3415 }
3009 3416
3417 /* Both values must be blobs. Compare using memcmp(). */
3418 return sqlite3BlobCompare(pMem1, pMem2);
3419 }
3420
3421
3422 /*
3423 ** The first argument passed to this function is a serial-type that
3424 ** corresponds to an integer - all values between 1 and 9 inclusive
3425 ** except 7. The second points to a buffer containing an integer value
3426 ** serialized according to serial_type. This function deserializes
3427 ** and returns the value.
3428 */
3429 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3430 u32 y;
3431 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3432 switch( serial_type ){
3433 case 0:
3434 case 1:
3435 testcase( aKey[0]&0x80 );
3436 return ONE_BYTE_INT(aKey);
3437 case 2:
3438 testcase( aKey[0]&0x80 );
3439 return TWO_BYTE_INT(aKey);
3440 case 3:
3441 testcase( aKey[0]&0x80 );
3442 return THREE_BYTE_INT(aKey);
3443 case 4: {
3444 testcase( aKey[0]&0x80 );
3445 y = FOUR_BYTE_UINT(aKey);
3446 return (i64)*(int*)&y;
3447 }
3448 case 5: {
3449 testcase( aKey[0]&0x80 );
3450 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3451 }
3452 case 6: {
3453 u64 x = FOUR_BYTE_UINT(aKey);
3454 testcase( aKey[0]&0x80 );
3455 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3456 return (i64)*(i64*)&x;
3457 }
3458 }
3459
3460 return (serial_type - 8);
3461 }
3462
3463 /*
3464 ** This function compares the two table rows or index records
3465 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3466 ** or positive integer if key1 is less than, equal to or
3467 ** greater than key2. The {nKey1, pKey1} key must be a blob
3468 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
3469 ** key must be a parsed key such as obtained from
3470 ** sqlite3VdbeParseRecord.
3471 **
3472 ** If argument bSkip is non-zero, it is assumed that the caller has already
3473 ** determined that the first fields of the keys are equal.
3474 **
3475 ** Key1 and Key2 do not have to contain the same number of fields. If all
3476 ** fields that appear in both keys are equal, then pPKey2->default_rc is
3477 ** returned.
3478 **
3479 ** If database corruption is discovered, set pPKey2->errCode to
3480 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3481 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3482 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
3483 */
3484 static int vdbeRecordCompareWithSkip(
3485 int nKey1, const void *pKey1, /* Left key */
3486 UnpackedRecord *pPKey2, /* Right key */
3487 int bSkip /* If true, skip the first field */
3488 ){
3489 u32 d1; /* Offset into aKey[] of next data element */
3490 int i; /* Index of next field to compare */
3491 u32 szHdr1; /* Size of record header in bytes */
3492 u32 idx1; /* Offset of first type in header */
3493 int rc = 0; /* Return value */
3494 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
3495 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3496 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3497 Mem mem1;
3498
3499 /* If bSkip is true, then the caller has already determined that the first
3500 ** two elements in the keys are equal. Fix the various stack variables so
3501 ** that this routine begins comparing at the second field. */
3502 if( bSkip ){
3503 u32 s1;
3504 idx1 = 1 + getVarint32(&aKey1[1], s1);
3505 szHdr1 = aKey1[0];
3506 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
3507 i = 1;
3508 pRhs++;
3509 }else{
3510 idx1 = getVarint32(aKey1, szHdr1);
3511 d1 = szHdr1;
3512 if( d1>(unsigned)nKey1 ){
3513 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3514 return 0; /* Corruption */
3515 }
3516 i = 0;
3517 }
3518
3519 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3520 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
3521 || CORRUPT_DB );
3522 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3523 assert( pPKey2->pKeyInfo->nField>0 );
3524 assert( idx1<=szHdr1 || CORRUPT_DB );
3525 do{
3526 u32 serial_type;
3527
3528 /* RHS is an integer */
3529 if( pRhs->flags & MEM_Int ){
3530 serial_type = aKey1[idx1];
3531 testcase( serial_type==12 );
3532 if( serial_type>=12 ){
3533 rc = +1;
3534 }else if( serial_type==0 ){
3535 rc = -1;
3536 }else if( serial_type==7 ){
3537 double rhs = (double)pRhs->u.i;
3538 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3539 if( mem1.u.r<rhs ){
3540 rc = -1;
3541 }else if( mem1.u.r>rhs ){
3542 rc = +1;
3543 }
3544 }else{
3545 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
3546 i64 rhs = pRhs->u.i;
3547 if( lhs<rhs ){
3548 rc = -1;
3549 }else if( lhs>rhs ){
3550 rc = +1;
3551 }
3552 }
3553 }
3554
3555 /* RHS is real */
3556 else if( pRhs->flags & MEM_Real ){
3557 serial_type = aKey1[idx1];
3558 if( serial_type>=12 ){
3559 rc = +1;
3560 }else if( serial_type==0 ){
3561 rc = -1;
3562 }else{
3563 double rhs = pRhs->u.r;
3564 double lhs;
3565 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3566 if( serial_type==7 ){
3567 lhs = mem1.u.r;
3568 }else{
3569 lhs = (double)mem1.u.i;
3570 }
3571 if( lhs<rhs ){
3572 rc = -1;
3573 }else if( lhs>rhs ){
3574 rc = +1;
3575 }
3576 }
3577 }
3578
3579 /* RHS is a string */
3580 else if( pRhs->flags & MEM_Str ){
3581 getVarint32(&aKey1[idx1], serial_type);
3582 testcase( serial_type==12 );
3583 if( serial_type<12 ){
3584 rc = -1;
3585 }else if( !(serial_type & 0x01) ){
3586 rc = +1;
3587 }else{
3588 mem1.n = (serial_type - 12) / 2;
3589 testcase( (d1+mem1.n)==(unsigned)nKey1 );
3590 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
3591 if( (d1+mem1.n) > (unsigned)nKey1 ){
3592 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3593 return 0; /* Corruption */
3594 }else if( pKeyInfo->aColl[i] ){
3595 mem1.enc = pKeyInfo->enc;
3596 mem1.db = pKeyInfo->db;
3597 mem1.flags = MEM_Str;
3598 mem1.z = (char*)&aKey1[d1];
3599 rc = vdbeCompareMemString(
3600 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
3601 );
3602 }else{
3603 int nCmp = MIN(mem1.n, pRhs->n);
3604 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3605 if( rc==0 ) rc = mem1.n - pRhs->n;
3606 }
3607 }
3608 }
3609
3610 /* RHS is a blob */
3611 else if( pRhs->flags & MEM_Blob ){
3612 getVarint32(&aKey1[idx1], serial_type);
3613 testcase( serial_type==12 );
3614 if( serial_type<12 || (serial_type & 0x01) ){
3615 rc = -1;
3616 }else{
3617 int nStr = (serial_type - 12) / 2;
3618 testcase( (d1+nStr)==(unsigned)nKey1 );
3619 testcase( (d1+nStr+1)==(unsigned)nKey1 );
3620 if( (d1+nStr) > (unsigned)nKey1 ){
3621 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3622 return 0; /* Corruption */
3623 }else{
3624 int nCmp = MIN(nStr, pRhs->n);
3625 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3626 if( rc==0 ) rc = nStr - pRhs->n;
3627 }
3628 }
3629 }
3630
3631 /* RHS is null */
3632 else{
3633 serial_type = aKey1[idx1];
3634 rc = (serial_type!=0);
3635 }
3636
3637 if( rc!=0 ){
3638 if( pKeyInfo->aSortOrder[i] ){
3639 rc = -rc;
3640 }
3641 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
3642 assert( mem1.szMalloc==0 ); /* See comment below */
3643 return rc;
3644 }
3645
3646 i++;
3647 pRhs++;
3648 d1 += sqlite3VdbeSerialTypeLen(serial_type);
3649 idx1 += sqlite3VarintLen(serial_type);
3650 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
3651
3652 /* No memory allocation is ever used on mem1. Prove this using
3653 ** the following assert(). If the assert() fails, it indicates a
3654 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
3655 assert( mem1.szMalloc==0 );
3656
3657 /* rc==0 here means that one or both of the keys ran out of fields and
3658 ** all the fields up to that point were equal. Return the default_rc
3659 ** value. */
3660 assert( CORRUPT_DB
3661 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
3662 || pKeyInfo->db->mallocFailed
3663 );
3664 return pPKey2->default_rc;
3665 }
3666 int sqlite3VdbeRecordCompare(
3667 int nKey1, const void *pKey1, /* Left key */
3668 UnpackedRecord *pPKey2 /* Right key */
3669 ){
3670 return vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
3671 }
3672
3673
3674 /*
3675 ** This function is an optimized version of sqlite3VdbeRecordCompare()
3676 ** that (a) the first field of pPKey2 is an integer, and (b) the
3677 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
3678 ** byte (i.e. is less than 128).
3679 **
3680 ** To avoid concerns about buffer overreads, this routine is only used
3681 ** on schemas where the maximum valid header size is 63 bytes or less.
3682 */
3683 static int vdbeRecordCompareInt(
3684 int nKey1, const void *pKey1, /* Left key */
3685 UnpackedRecord *pPKey2 /* Right key */
3686 ){
3687 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
3688 int serial_type = ((const u8*)pKey1)[1];
3689 int res;
3690 u32 y;
3691 u64 x;
3692 i64 v = pPKey2->aMem[0].u.i;
3693 i64 lhs;
3694
3695 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
3696 switch( serial_type ){
3697 case 1: { /* 1-byte signed integer */
3698 lhs = ONE_BYTE_INT(aKey);
3699 testcase( lhs<0 );
3700 break;
3701 }
3702 case 2: { /* 2-byte signed integer */
3703 lhs = TWO_BYTE_INT(aKey);
3704 testcase( lhs<0 );
3705 break;
3706 }
3707 case 3: { /* 3-byte signed integer */
3708 lhs = THREE_BYTE_INT(aKey);
3709 testcase( lhs<0 );
3710 break;
3711 }
3712 case 4: { /* 4-byte signed integer */
3713 y = FOUR_BYTE_UINT(aKey);
3714 lhs = (i64)*(int*)&y;
3715 testcase( lhs<0 );
3716 break;
3717 }
3718 case 5: { /* 6-byte signed integer */
3719 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3720 testcase( lhs<0 );
3721 break;
3722 }
3723 case 6: { /* 8-byte signed integer */
3724 x = FOUR_BYTE_UINT(aKey);
3725 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3726 lhs = *(i64*)&x;
3727 testcase( lhs<0 );
3728 break;
3729 }
3730 case 8:
3731 lhs = 0;
3732 break;
3733 case 9:
3734 lhs = 1;
3735 break;
3736
3737 /* This case could be removed without changing the results of running
3738 ** this code. Including it causes gcc to generate a faster switch
3739 ** statement (since the range of switch targets now starts at zero and
3740 ** is contiguous) but does not cause any duplicate code to be generated
3741 ** (as gcc is clever enough to combine the two like cases). Other
3742 ** compilers might be similar. */
3743 case 0: case 7:
3744 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
3745
3746 default:
3747 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
3748 }
3749
3750 if( v>lhs ){
3751 res = pPKey2->r1;
3752 }else if( v<lhs ){
3753 res = pPKey2->r2;
3754 }else if( pPKey2->nField>1 ){
3755 /* The first fields of the two keys are equal. Compare the trailing
3756 ** fields. */
3757 res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
3758 }else{
3759 /* The first fields of the two keys are equal and there are no trailing
3760 ** fields. Return pPKey2->default_rc in this case. */
3761 res = pPKey2->default_rc;
3762 }
3763
3764 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
3765 return res;
3766 }
3767
3768 /*
3769 ** This function is an optimized version of sqlite3VdbeRecordCompare()
3770 ** that (a) the first field of pPKey2 is a string, that (b) the first field
3771 ** uses the collation sequence BINARY and (c) that the size-of-header varint
3772 ** at the start of (pKey1/nKey1) fits in a single byte.
3773 */
3774 static int vdbeRecordCompareString(
3775 int nKey1, const void *pKey1, /* Left key */
3776 UnpackedRecord *pPKey2 /* Right key */
3777 ){
3778 const u8 *aKey1 = (const u8*)pKey1;
3779 int serial_type;
3780 int res;
3781
3782 getVarint32(&aKey1[1], serial_type);
3783 if( serial_type<12 ){
3784 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
3785 }else if( !(serial_type & 0x01) ){
3786 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
3787 }else{
3788 int nCmp;
3789 int nStr;
3790 int szHdr = aKey1[0];
3791
3792 nStr = (serial_type-12) / 2;
3793 if( (szHdr + nStr) > nKey1 ){
3794 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3795 return 0; /* Corruption */
3796 }
3797 nCmp = MIN( pPKey2->aMem[0].n, nStr );
3798 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
3799
3800 if( res==0 ){
3801 res = nStr - pPKey2->aMem[0].n;
3802 if( res==0 ){
3803 if( pPKey2->nField>1 ){
3804 res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
3805 }else{
3806 res = pPKey2->default_rc;
3807 }
3808 }else if( res>0 ){
3809 res = pPKey2->r2;
3810 }else{
3811 res = pPKey2->r1;
3812 }
3813 }else if( res>0 ){
3814 res = pPKey2->r2;
3815 }else{
3816 res = pPKey2->r1;
3817 }
3818 }
3819
3820 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
3821 || CORRUPT_DB
3822 || pPKey2->pKeyInfo->db->mallocFailed
3823 );
3824 return res;
3825 }
3826
3827 /*
3828 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
3829 ** suitable for comparing serialized records to the unpacked record passed
3830 ** as the only argument.
3831 */
3832 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
3833 /* varintRecordCompareInt() and varintRecordCompareString() both assume
3834 ** that the size-of-header varint that occurs at the start of each record
3835 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
3836 ** also assumes that it is safe to overread a buffer by at least the
3837 ** maximum possible legal header size plus 8 bytes. Because there is
3838 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
3839 ** buffer passed to varintRecordCompareInt() this makes it convenient to
3840 ** limit the size of the header to 64 bytes in cases where the first field
3841 ** is an integer.
3842 **
3843 ** The easiest way to enforce this limit is to consider only records with
3844 ** 13 fields or less. If the first field is an integer, the maximum legal
3845 ** header size is (12*5 + 1 + 1) bytes. */
3846 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
3847 int flags = p->aMem[0].flags;
3848 if( p->pKeyInfo->aSortOrder[0] ){
3849 p->r1 = 1;
3850 p->r2 = -1;
3851 }else{
3852 p->r1 = -1;
3853 p->r2 = 1;
3854 }
3855 if( (flags & MEM_Int) ){
3856 return vdbeRecordCompareInt;
3857 }
3858 testcase( flags & MEM_Real );
3859 testcase( flags & MEM_Null );
3860 testcase( flags & MEM_Blob );
3861 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
3862 assert( flags & MEM_Str );
3863 return vdbeRecordCompareString;
3864 }
3865 }
3866
3867 return sqlite3VdbeRecordCompare;
3868 }
3010 3869
3011 /* 3870 /*
3012 ** pCur points at an index entry created using the OP_MakeRecord opcode. 3871 ** pCur points at an index entry created using the OP_MakeRecord opcode.
3013 ** Read the rowid (the last field in the record) and store it in *rowid. 3872 ** Read the rowid (the last field in the record) and store it in *rowid.
3014 ** Return SQLITE_OK if everything works, or an error code otherwise. 3873 ** Return SQLITE_OK if everything works, or an error code otherwise.
3015 ** 3874 **
3016 ** pCur might be pointing to text obtained from a corrupt database file. 3875 ** pCur might be pointing to text obtained from a corrupt database file.
3017 ** So the content cannot be trusted. Do appropriate checks on the content. 3876 ** So the content cannot be trusted. Do appropriate checks on the content.
3018 */ 3877 */
3019 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 3878 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
3020 i64 nCellKey = 0; 3879 i64 nCellKey = 0;
3021 int rc; 3880 int rc;
3022 u32 szHdr; /* Size of the header */ 3881 u32 szHdr; /* Size of the header */
3023 u32 typeRowid; /* Serial type of the rowid */ 3882 u32 typeRowid; /* Serial type of the rowid */
3024 u32 lenRowid; /* Size of the rowid */ 3883 u32 lenRowid; /* Size of the rowid */
3025 Mem m, v; 3884 Mem m, v;
3026 3885
3027 UNUSED_PARAMETER(db);
3028
3029 /* Get the size of the index entry. Only indices entries of less 3886 /* Get the size of the index entry. Only indices entries of less
3030 ** than 2GiB are support - anything large must be database corruption. 3887 ** than 2GiB are support - anything large must be database corruption.
3031 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 3888 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
3032 ** this code can safely assume that nCellKey is 32-bits 3889 ** this code can safely assume that nCellKey is 32-bits
3033 */ 3890 */
3034 assert( sqlite3BtreeCursorIsValid(pCur) ); 3891 assert( sqlite3BtreeCursorIsValid(pCur) );
3035 rc = sqlite3BtreeKeySize(pCur, &nCellKey); 3892 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
3036 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 3893 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
3037 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 3894 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
3038 3895
3039 /* Read in the complete content of the index entry */ 3896 /* Read in the complete content of the index entry */
3040 memset(&m, 0, sizeof(m)); 3897 sqlite3VdbeMemInit(&m, db, 0);
3041 rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m); 3898 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
3042 if( rc ){ 3899 if( rc ){
3043 return rc; 3900 return rc;
3044 } 3901 }
3045 3902
3046 /* The index entry must begin with a header size */ 3903 /* The index entry must begin with a header size */
3047 (void)getVarint32((u8*)m.z, szHdr); 3904 (void)getVarint32((u8*)m.z, szHdr);
3048 testcase( szHdr==3 ); 3905 testcase( szHdr==3 );
3049 testcase( szHdr==m.n ); 3906 testcase( szHdr==m.n );
3050 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 3907 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
3051 goto idx_rowid_corruption; 3908 goto idx_rowid_corruption;
(...skipping 21 matching lines...) Expand all
3073 3930
3074 /* Fetch the integer off the end of the index record */ 3931 /* Fetch the integer off the end of the index record */
3075 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 3932 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
3076 *rowid = v.u.i; 3933 *rowid = v.u.i;
3077 sqlite3VdbeMemRelease(&m); 3934 sqlite3VdbeMemRelease(&m);
3078 return SQLITE_OK; 3935 return SQLITE_OK;
3079 3936
3080 /* Jump here if database corruption is detected after m has been 3937 /* Jump here if database corruption is detected after m has been
3081 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 3938 ** allocated. Free the m object and return SQLITE_CORRUPT. */
3082 idx_rowid_corruption: 3939 idx_rowid_corruption:
3083 testcase( m.zMalloc!=0 ); 3940 testcase( m.szMalloc!=0 );
3084 sqlite3VdbeMemRelease(&m); 3941 sqlite3VdbeMemRelease(&m);
3085 return SQLITE_CORRUPT_BKPT; 3942 return SQLITE_CORRUPT_BKPT;
3086 } 3943 }
3087 3944
3088 /* 3945 /*
3089 ** Compare the key of the index entry that cursor pC is pointing to against 3946 ** Compare the key of the index entry that cursor pC is pointing to against
3090 ** the key string in pUnpacked. Write into *pRes a number 3947 ** the key string in pUnpacked. Write into *pRes a number
3091 ** that is negative, zero, or positive if pC is less than, equal to, 3948 ** that is negative, zero, or positive if pC is less than, equal to,
3092 ** or greater than pUnpacked. Return SQLITE_OK on success. 3949 ** or greater than pUnpacked. Return SQLITE_OK on success.
3093 ** 3950 **
3094 ** pUnpacked is either created without a rowid or is truncated so that it 3951 ** pUnpacked is either created without a rowid or is truncated so that it
3095 ** omits the rowid at the end. The rowid at the end of the index entry 3952 ** omits the rowid at the end. The rowid at the end of the index entry
3096 ** is ignored as well. Hence, this routine only compares the prefixes 3953 ** is ignored as well. Hence, this routine only compares the prefixes
3097 ** of the keys prior to the final rowid, not the entire key. 3954 ** of the keys prior to the final rowid, not the entire key.
3098 */ 3955 */
3099 int sqlite3VdbeIdxKeyCompare( 3956 int sqlite3VdbeIdxKeyCompare(
3100 VdbeCursor *pC, /* The cursor to compare against */ 3957 sqlite3 *db, /* Database connection */
3101 UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */ 3958 VdbeCursor *pC, /* The cursor to compare against */
3102 int *res /* Write the comparison result here */ 3959 UnpackedRecord *pUnpacked, /* Unpacked version of key */
3960 int *res /* Write the comparison result here */
3103 ){ 3961 ){
3104 i64 nCellKey = 0; 3962 i64 nCellKey = 0;
3105 int rc; 3963 int rc;
3106 BtCursor *pCur = pC->pCursor; 3964 BtCursor *pCur = pC->pCursor;
3107 Mem m; 3965 Mem m;
3108 3966
3109 assert( sqlite3BtreeCursorIsValid(pCur) ); 3967 assert( sqlite3BtreeCursorIsValid(pCur) );
3110 rc = sqlite3BtreeKeySize(pCur, &nCellKey); 3968 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
3111 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 3969 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
3112 /* nCellKey will always be between 0 and 0xffffffff because of the say 3970 /* nCellKey will always be between 0 and 0xffffffff because of the way
3113 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 3971 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
3114 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 3972 if( nCellKey<=0 || nCellKey>0x7fffffff ){
3115 *res = 0; 3973 *res = 0;
3116 return SQLITE_CORRUPT_BKPT; 3974 return SQLITE_CORRUPT_BKPT;
3117 } 3975 }
3118 memset(&m, 0, sizeof(m)); 3976 sqlite3VdbeMemInit(&m, db, 0);
3119 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m); 3977 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
3120 if( rc ){ 3978 if( rc ){
3121 return rc; 3979 return rc;
3122 } 3980 }
3123 assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
3124 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 3981 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
3125 sqlite3VdbeMemRelease(&m); 3982 sqlite3VdbeMemRelease(&m);
3126 return SQLITE_OK; 3983 return SQLITE_OK;
3127 } 3984 }
3128 3985
3129 /* 3986 /*
3130 ** This routine sets the value to be returned by subsequent calls to 3987 ** This routine sets the value to be returned by subsequent calls to
3131 ** sqlite3_changes() on the database handle 'db'. 3988 ** sqlite3_changes() on the database handle 'db'.
3132 */ 3989 */
3133 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 3990 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
(...skipping 35 matching lines...) Expand 10 before | Expand all | Expand 10 after
3169 } 4026 }
3170 4027
3171 /* 4028 /*
3172 ** Return a pointer to an sqlite3_value structure containing the value bound 4029 ** Return a pointer to an sqlite3_value structure containing the value bound
3173 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4030 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
3174 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4031 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
3175 ** constants) to the value before returning it. 4032 ** constants) to the value before returning it.
3176 ** 4033 **
3177 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4034 ** The returned value must be freed by the caller using sqlite3ValueFree().
3178 */ 4035 */
3179 sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){ 4036 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
3180 assert( iVar>0 ); 4037 assert( iVar>0 );
3181 if( v ){ 4038 if( v ){
3182 Mem *pMem = &v->aVar[iVar-1]; 4039 Mem *pMem = &v->aVar[iVar-1];
3183 if( 0==(pMem->flags & MEM_Null) ){ 4040 if( 0==(pMem->flags & MEM_Null) ){
3184 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4041 sqlite3_value *pRet = sqlite3ValueNew(v->db);
3185 if( pRet ){ 4042 if( pRet ){
3186 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4043 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
3187 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4044 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
3188 sqlite3VdbeMemStoreType((Mem *)pRet);
3189 } 4045 }
3190 return pRet; 4046 return pRet;
3191 } 4047 }
3192 } 4048 }
3193 return 0; 4049 return 0;
3194 } 4050 }
3195 4051
3196 /* 4052 /*
3197 ** Configure SQL variable iVar so that binding a new value to it signals 4053 ** Configure SQL variable iVar so that binding a new value to it signals
3198 ** to sqlite3_reoptimize() that re-preparing the statement may result 4054 ** to sqlite3_reoptimize() that re-preparing the statement may result
3199 ** in a better query plan. 4055 ** in a better query plan.
3200 */ 4056 */
3201 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4057 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
3202 assert( iVar>0 ); 4058 assert( iVar>0 );
3203 if( iVar>32 ){ 4059 if( iVar>32 ){
3204 v->expmask = 0xffffffff; 4060 v->expmask = 0xffffffff;
3205 }else{ 4061 }else{
3206 v->expmask |= ((u32)1 << (iVar-1)); 4062 v->expmask |= ((u32)1 << (iVar-1));
3207 } 4063 }
3208 } 4064 }
4065
4066 #ifndef SQLITE_OMIT_VIRTUALTABLE
4067 /*
4068 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4069 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4070 ** in memory obtained from sqlite3DbMalloc).
4071 */
4072 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4073 sqlite3 *db = p->db;
4074 sqlite3DbFree(db, p->zErrMsg);
4075 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4076 sqlite3_free(pVtab->zErrMsg);
4077 pVtab->zErrMsg = 0;
4078 }
4079 #endif /* SQLITE_OMIT_VIRTUALTABLE */
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3080704/src/vdbeapi.c ('k') | third_party/sqlite/sqlite-src-3080704/src/vdbeblob.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698