OLD | NEW |
1 /* | 1 /* |
2 ** 2001 September 15 | 2 ** 2001 September 15 |
3 ** | 3 ** |
4 ** The author disclaims copyright to this source code. In place of | 4 ** The author disclaims copyright to this source code. In place of |
5 ** a legal notice, here is a blessing: | 5 ** a legal notice, here is a blessing: |
6 ** | 6 ** |
7 ** May you do good and not evil. | 7 ** May you do good and not evil. |
8 ** May you find forgiveness for yourself and forgive others. | 8 ** May you find forgiveness for yourself and forgive others. |
9 ** May you share freely, never taking more than you give. | 9 ** May you share freely, never taking more than you give. |
10 ** | 10 ** |
11 ************************************************************************* | 11 ************************************************************************* |
12 ** The code in this file implements execution method of the | 12 ** The code in this file implements the function that runs the |
13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") | 13 ** bytecode of a prepared statement. |
14 ** handles housekeeping details such as creating and deleting | |
15 ** VDBE instances. This file is solely interested in executing | |
16 ** the VDBE program. | |
17 ** | |
18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer | |
19 ** to a VDBE. | |
20 ** | |
21 ** The SQL parser generates a program which is then executed by | |
22 ** the VDBE to do the work of the SQL statement. VDBE programs are | |
23 ** similar in form to assembly language. The program consists of | |
24 ** a linear sequence of operations. Each operation has an opcode | |
25 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4 | |
26 ** is a null-terminated string. Operand P5 is an unsigned character. | |
27 ** Few opcodes use all 5 operands. | |
28 ** | |
29 ** Computation results are stored on a set of registers numbered beginning | |
30 ** with 1 and going up to Vdbe.nMem. Each register can store | |
31 ** either an integer, a null-terminated string, a floating point | |
32 ** number, or the SQL "NULL" value. An implicit conversion from one | |
33 ** type to the other occurs as necessary. | |
34 ** | |
35 ** Most of the code in this file is taken up by the sqlite3VdbeExec() | |
36 ** function which does the work of interpreting a VDBE program. | |
37 ** But other routines are also provided to help in building up | |
38 ** a program instruction by instruction. | |
39 ** | 14 ** |
40 ** Various scripts scan this source file in order to generate HTML | 15 ** Various scripts scan this source file in order to generate HTML |
41 ** documentation, headers files, or other derived files. The formatting | 16 ** documentation, headers files, or other derived files. The formatting |
42 ** of the code in this file is, therefore, important. See other comments | 17 ** of the code in this file is, therefore, important. See other comments |
43 ** in this file for details. If in doubt, do not deviate from existing | 18 ** in this file for details. If in doubt, do not deviate from existing |
44 ** commenting and indentation practices when changing or adding code. | 19 ** commenting and indentation practices when changing or adding code. |
45 */ | 20 */ |
46 #include "sqliteInt.h" | 21 #include "sqliteInt.h" |
47 #include "vdbeInt.h" | 22 #include "vdbeInt.h" |
48 | 23 |
49 /* | 24 /* |
50 ** Invoke this macro on memory cells just prior to changing the | 25 ** Invoke this macro on memory cells just prior to changing the |
51 ** value of the cell. This macro verifies that shallow copies are | 26 ** value of the cell. This macro verifies that shallow copies are |
52 ** not misused. | 27 ** not misused. A shallow copy of a string or blob just copies a |
| 28 ** pointer to the string or blob, not the content. If the original |
| 29 ** is changed while the copy is still in use, the string or blob might |
| 30 ** be changed out from under the copy. This macro verifies that nothing |
| 31 ** like that ever happens. |
53 */ | 32 */ |
54 #ifdef SQLITE_DEBUG | 33 #ifdef SQLITE_DEBUG |
55 # define memAboutToChange(P,M) sqlite3VdbeMemPrepareToChange(P,M) | 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) |
56 #else | 35 #else |
57 # define memAboutToChange(P,M) | 36 # define memAboutToChange(P,M) |
58 #endif | 37 #endif |
59 | 38 |
60 /* | 39 /* |
61 ** The following global variable is incremented every time a cursor | 40 ** The following global variable is incremented every time a cursor |
62 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test | 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test |
63 ** procedures use this information to make sure that indices are | 42 ** procedures use this information to make sure that indices are |
64 ** working correctly. This variable has no function other than to | 43 ** working correctly. This variable has no function other than to |
65 ** help verify the correct operation of the library. | 44 ** help verify the correct operation of the library. |
66 */ | 45 */ |
67 #ifdef SQLITE_TEST | 46 #ifdef SQLITE_TEST |
68 int sqlite3_search_count = 0; | 47 int sqlite3_search_count = 0; |
69 #endif | 48 #endif |
70 | 49 |
71 /* | 50 /* |
72 ** When this global variable is positive, it gets decremented once before | 51 ** When this global variable is positive, it gets decremented once before |
73 ** each instruction in the VDBE. When reaches zero, the u1.isInterrupted | 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted |
74 ** field of the sqlite3 structure is set in order to simulate and interrupt. | 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. |
75 ** | 54 ** |
76 ** This facility is used for testing purposes only. It does not function | 55 ** This facility is used for testing purposes only. It does not function |
77 ** in an ordinary build. | 56 ** in an ordinary build. |
78 */ | 57 */ |
79 #ifdef SQLITE_TEST | 58 #ifdef SQLITE_TEST |
80 int sqlite3_interrupt_count = 0; | 59 int sqlite3_interrupt_count = 0; |
81 #endif | 60 #endif |
82 | 61 |
83 /* | 62 /* |
84 ** The next global variable is incremented each type the OP_Sort opcode | 63 ** The next global variable is incremented each type the OP_Sort opcode |
(...skipping 16 matching lines...) Expand all Loading... |
101 #ifdef SQLITE_TEST | 80 #ifdef SQLITE_TEST |
102 int sqlite3_max_blobsize = 0; | 81 int sqlite3_max_blobsize = 0; |
103 static void updateMaxBlobsize(Mem *p){ | 82 static void updateMaxBlobsize(Mem *p){ |
104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ | 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ |
105 sqlite3_max_blobsize = p->n; | 84 sqlite3_max_blobsize = p->n; |
106 } | 85 } |
107 } | 86 } |
108 #endif | 87 #endif |
109 | 88 |
110 /* | 89 /* |
111 ** The next global variable is incremented each type the OP_Found opcode | 90 ** The next global variable is incremented each time the OP_Found opcode |
112 ** is executed. This is used to test whether or not the foreign key | 91 ** is executed. This is used to test whether or not the foreign key |
113 ** operation implemented using OP_FkIsZero is working. This variable | 92 ** operation implemented using OP_FkIsZero is working. This variable |
114 ** has no function other than to help verify the correct operation of the | 93 ** has no function other than to help verify the correct operation of the |
115 ** library. | 94 ** library. |
116 */ | 95 */ |
117 #ifdef SQLITE_TEST | 96 #ifdef SQLITE_TEST |
118 int sqlite3_found_count = 0; | 97 int sqlite3_found_count = 0; |
119 #endif | 98 #endif |
120 | 99 |
121 /* | 100 /* |
122 ** Test a register to see if it exceeds the current maximum blob size. | 101 ** Test a register to see if it exceeds the current maximum blob size. |
123 ** If it does, record the new maximum blob size. | 102 ** If it does, record the new maximum blob size. |
124 */ | 103 */ |
125 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) | 104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) |
126 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) | 105 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) |
127 #else | 106 #else |
128 # define UPDATE_MAX_BLOBSIZE(P) | 107 # define UPDATE_MAX_BLOBSIZE(P) |
129 #endif | 108 #endif |
130 | 109 |
131 /* | 110 /* |
| 111 ** Invoke the VDBE coverage callback, if that callback is defined. This |
| 112 ** feature is used for test suite validation only and does not appear an |
| 113 ** production builds. |
| 114 ** |
| 115 ** M is an integer, 2 or 3, that indices how many different ways the |
| 116 ** branch can go. It is usually 2. "I" is the direction the branch |
| 117 ** goes. 0 means falls through. 1 means branch is taken. 2 means the |
| 118 ** second alternative branch is taken. |
| 119 ** |
| 120 ** iSrcLine is the source code line (from the __LINE__ macro) that |
| 121 ** generated the VDBE instruction. This instrumentation assumes that all |
| 122 ** source code is in a single file (the amalgamation). Special values 1 |
| 123 ** and 2 for the iSrcLine parameter mean that this particular branch is |
| 124 ** always taken or never taken, respectively. |
| 125 */ |
| 126 #if !defined(SQLITE_VDBE_COVERAGE) |
| 127 # define VdbeBranchTaken(I,M) |
| 128 #else |
| 129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) |
| 130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ |
| 131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ |
| 132 M = iSrcLine; |
| 133 /* Assert the truth of VdbeCoverageAlwaysTaken() and |
| 134 ** VdbeCoverageNeverTaken() */ |
| 135 assert( (M & I)==I ); |
| 136 }else{ |
| 137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ |
| 138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, |
| 139 iSrcLine,I,M); |
| 140 } |
| 141 } |
| 142 #endif |
| 143 |
| 144 /* |
132 ** Convert the given register into a string if it isn't one | 145 ** Convert the given register into a string if it isn't one |
133 ** already. Return non-zero if a malloc() fails. | 146 ** already. Return non-zero if a malloc() fails. |
134 */ | 147 */ |
135 #define Stringify(P, enc) \ | 148 #define Stringify(P, enc) \ |
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ | 149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ |
137 { goto no_mem; } | 150 { goto no_mem; } |
138 | 151 |
139 /* | 152 /* |
140 ** An ephemeral string value (signified by the MEM_Ephem flag) contains | 153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains |
141 ** a pointer to a dynamically allocated string where some other entity | 154 ** a pointer to a dynamically allocated string where some other entity |
142 ** is responsible for deallocating that string. Because the register | 155 ** is responsible for deallocating that string. Because the register |
143 ** does not control the string, it might be deleted without the register | 156 ** does not control the string, it might be deleted without the register |
144 ** knowing it. | 157 ** knowing it. |
145 ** | 158 ** |
146 ** This routine converts an ephemeral string into a dynamically allocated | 159 ** This routine converts an ephemeral string into a dynamically allocated |
147 ** string that the register itself controls. In other words, it | 160 ** string that the register itself controls. In other words, it |
148 ** converts an MEM_Ephem string into an MEM_Dyn string. | 161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. |
149 */ | 162 */ |
150 #define Deephemeralize(P) \ | 163 #define Deephemeralize(P) \ |
151 if( ((P)->flags&MEM_Ephem)!=0 \ | 164 if( ((P)->flags&MEM_Ephem)!=0 \ |
152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} | 165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} |
153 | 166 |
154 /* | 167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ |
155 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) | 168 #define isSorter(x) ((x)->pSorter!=0) |
156 ** P if required. | |
157 */ | |
158 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) | |
159 | |
160 /* | |
161 ** Argument pMem points at a register that will be passed to a | |
162 ** user-defined function or returned to the user as the result of a query. | |
163 ** This routine sets the pMem->type variable used by the sqlite3_value_*() | |
164 ** routines. | |
165 */ | |
166 void sqlite3VdbeMemStoreType(Mem *pMem){ | |
167 int flags = pMem->flags; | |
168 if( flags & MEM_Null ){ | |
169 pMem->type = SQLITE_NULL; | |
170 } | |
171 else if( flags & MEM_Int ){ | |
172 pMem->type = SQLITE_INTEGER; | |
173 } | |
174 else if( flags & MEM_Real ){ | |
175 pMem->type = SQLITE_FLOAT; | |
176 } | |
177 else if( flags & MEM_Str ){ | |
178 pMem->type = SQLITE_TEXT; | |
179 }else{ | |
180 pMem->type = SQLITE_BLOB; | |
181 } | |
182 } | |
183 | 169 |
184 /* | 170 /* |
185 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL | 171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL |
186 ** if we run out of memory. | 172 ** if we run out of memory. |
187 */ | 173 */ |
188 static VdbeCursor *allocateCursor( | 174 static VdbeCursor *allocateCursor( |
189 Vdbe *p, /* The virtual machine */ | 175 Vdbe *p, /* The virtual machine */ |
190 int iCur, /* Index of the new VdbeCursor */ | 176 int iCur, /* Index of the new VdbeCursor */ |
191 int nField, /* Number of fields in the table or index */ | 177 int nField, /* Number of fields in the table or index */ |
192 int iDb, /* When database the cursor belongs to, or -1 */ | 178 int iDb, /* Database the cursor belongs to, or -1 */ |
193 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ | 179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ |
194 ){ | 180 ){ |
195 /* Find the memory cell that will be used to store the blob of memory | 181 /* Find the memory cell that will be used to store the blob of memory |
196 ** required for this VdbeCursor structure. It is convenient to use a | 182 ** required for this VdbeCursor structure. It is convenient to use a |
197 ** vdbe memory cell to manage the memory allocation required for a | 183 ** vdbe memory cell to manage the memory allocation required for a |
198 ** VdbeCursor structure for the following reasons: | 184 ** VdbeCursor structure for the following reasons: |
199 ** | 185 ** |
200 ** * Sometimes cursor numbers are used for a couple of different | 186 ** * Sometimes cursor numbers are used for a couple of different |
201 ** purposes in a vdbe program. The different uses might require | 187 ** purposes in a vdbe program. The different uses might require |
202 ** different sized allocations. Memory cells provide growable | 188 ** different sized allocations. Memory cells provide growable |
203 ** allocations. | 189 ** allocations. |
204 ** | 190 ** |
205 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can | 191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can |
206 ** be freed lazily via the sqlite3_release_memory() API. This | 192 ** be freed lazily via the sqlite3_release_memory() API. This |
207 ** minimizes the number of malloc calls made by the system. | 193 ** minimizes the number of malloc calls made by the system. |
208 ** | 194 ** |
209 ** Memory cells for cursors are allocated at the top of the address | 195 ** Memory cells for cursors are allocated at the top of the address |
210 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for | 196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for |
211 ** cursor 1 is managed by memory cell (p->nMem-1), etc. | 197 ** cursor 1 is managed by memory cell (p->nMem-1), etc. |
212 */ | 198 */ |
213 Mem *pMem = &p->aMem[p->nMem-iCur]; | 199 Mem *pMem = &p->aMem[p->nMem-iCur]; |
214 | 200 |
215 int nByte; | 201 int nByte; |
216 VdbeCursor *pCx = 0; | 202 VdbeCursor *pCx = 0; |
217 nByte = | 203 nByte = |
218 ROUND8(sizeof(VdbeCursor)) + | 204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + |
219 (isBtreeCursor?sqlite3BtreeCursorSize():0) + | 205 (isBtreeCursor?sqlite3BtreeCursorSize():0); |
220 2*nField*sizeof(u32); | |
221 | 206 |
222 assert( iCur<p->nCursor ); | 207 assert( iCur<p->nCursor ); |
223 if( p->apCsr[iCur] ){ | 208 if( p->apCsr[iCur] ){ |
224 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); | 209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); |
225 p->apCsr[iCur] = 0; | 210 p->apCsr[iCur] = 0; |
226 } | 211 } |
227 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){ | 212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ |
228 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; | 213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; |
229 memset(pCx, 0, sizeof(VdbeCursor)); | 214 memset(pCx, 0, sizeof(VdbeCursor)); |
230 pCx->iDb = iDb; | 215 pCx->iDb = iDb; |
231 pCx->nField = nField; | 216 pCx->nField = nField; |
232 if( nField ){ | 217 pCx->aOffset = &pCx->aType[nField]; |
233 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))]; | |
234 } | |
235 if( isBtreeCursor ){ | 218 if( isBtreeCursor ){ |
236 pCx->pCursor = (BtCursor*) | 219 pCx->pCursor = (BtCursor*) |
237 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)]; | 220 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; |
238 sqlite3BtreeCursorZero(pCx->pCursor); | 221 sqlite3BtreeCursorZero(pCx->pCursor); |
239 } | 222 } |
240 } | 223 } |
241 return pCx; | 224 return pCx; |
242 } | 225 } |
243 | 226 |
244 /* | 227 /* |
245 ** Try to convert a value into a numeric representation if we can | 228 ** Try to convert a value into a numeric representation if we can |
246 ** do so without loss of information. In other words, if the string | 229 ** do so without loss of information. In other words, if the string |
247 ** looks like a number, convert it into a number. If it does not | 230 ** looks like a number, convert it into a number. If it does not |
248 ** look like a number, leave it alone. | 231 ** look like a number, leave it alone. |
| 232 ** |
| 233 ** If the bTryForInt flag is true, then extra effort is made to give |
| 234 ** an integer representation. Strings that look like floating point |
| 235 ** values but which have no fractional component (example: '48.00') |
| 236 ** will have a MEM_Int representation when bTryForInt is true. |
| 237 ** |
| 238 ** If bTryForInt is false, then if the input string contains a decimal |
| 239 ** point or exponential notation, the result is only MEM_Real, even |
| 240 ** if there is an exact integer representation of the quantity. |
249 */ | 241 */ |
250 static void applyNumericAffinity(Mem *pRec){ | 242 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ |
251 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){ | 243 double rValue; |
252 double rValue; | 244 i64 iValue; |
253 i64 iValue; | 245 u8 enc = pRec->enc; |
254 u8 enc = pRec->enc; | 246 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); |
255 if( (pRec->flags&MEM_Str)==0 ) return; | 247 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; |
256 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; | 248 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ |
257 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ | 249 pRec->u.i = iValue; |
258 pRec->u.i = iValue; | 250 pRec->flags |= MEM_Int; |
259 pRec->flags |= MEM_Int; | 251 }else{ |
260 }else{ | 252 pRec->u.r = rValue; |
261 pRec->r = rValue; | 253 pRec->flags |= MEM_Real; |
262 pRec->flags |= MEM_Real; | 254 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); |
263 } | |
264 } | 255 } |
265 } | 256 } |
266 | 257 |
267 /* | 258 /* |
268 ** Processing is determine by the affinity parameter: | 259 ** Processing is determine by the affinity parameter: |
269 ** | 260 ** |
270 ** SQLITE_AFF_INTEGER: | 261 ** SQLITE_AFF_INTEGER: |
271 ** SQLITE_AFF_REAL: | 262 ** SQLITE_AFF_REAL: |
272 ** SQLITE_AFF_NUMERIC: | 263 ** SQLITE_AFF_NUMERIC: |
273 ** Try to convert pRec to an integer representation or a | 264 ** Try to convert pRec to an integer representation or a |
274 ** floating-point representation if an integer representation | 265 ** floating-point representation if an integer representation |
275 ** is not possible. Note that the integer representation is | 266 ** is not possible. Note that the integer representation is |
276 ** always preferred, even if the affinity is REAL, because | 267 ** always preferred, even if the affinity is REAL, because |
277 ** an integer representation is more space efficient on disk. | 268 ** an integer representation is more space efficient on disk. |
278 ** | 269 ** |
279 ** SQLITE_AFF_TEXT: | 270 ** SQLITE_AFF_TEXT: |
280 ** Convert pRec to a text representation. | 271 ** Convert pRec to a text representation. |
281 ** | 272 ** |
282 ** SQLITE_AFF_NONE: | 273 ** SQLITE_AFF_NONE: |
283 ** No-op. pRec is unchanged. | 274 ** No-op. pRec is unchanged. |
284 */ | 275 */ |
285 static void applyAffinity( | 276 static void applyAffinity( |
286 Mem *pRec, /* The value to apply affinity to */ | 277 Mem *pRec, /* The value to apply affinity to */ |
287 char affinity, /* The affinity to be applied */ | 278 char affinity, /* The affinity to be applied */ |
288 u8 enc /* Use this text encoding */ | 279 u8 enc /* Use this text encoding */ |
289 ){ | 280 ){ |
290 if( affinity==SQLITE_AFF_TEXT ){ | 281 if( affinity>=SQLITE_AFF_NUMERIC ){ |
| 282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL |
| 283 || affinity==SQLITE_AFF_NUMERIC ); |
| 284 if( (pRec->flags & MEM_Int)==0 ){ |
| 285 if( (pRec->flags & MEM_Real)==0 ){ |
| 286 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); |
| 287 }else{ |
| 288 sqlite3VdbeIntegerAffinity(pRec); |
| 289 } |
| 290 } |
| 291 }else if( affinity==SQLITE_AFF_TEXT ){ |
291 /* Only attempt the conversion to TEXT if there is an integer or real | 292 /* Only attempt the conversion to TEXT if there is an integer or real |
292 ** representation (blob and NULL do not get converted) but no string | 293 ** representation (blob and NULL do not get converted) but no string |
293 ** representation. | 294 ** representation. |
294 */ | 295 */ |
295 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ | 296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ |
296 sqlite3VdbeMemStringify(pRec, enc); | 297 sqlite3VdbeMemStringify(pRec, enc, 1); |
297 } | |
298 pRec->flags &= ~(MEM_Real|MEM_Int); | |
299 }else if( affinity!=SQLITE_AFF_NONE ){ | |
300 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL | |
301 || affinity==SQLITE_AFF_NUMERIC ); | |
302 applyNumericAffinity(pRec); | |
303 if( pRec->flags & MEM_Real ){ | |
304 sqlite3VdbeIntegerAffinity(pRec); | |
305 } | 298 } |
306 } | 299 } |
307 } | 300 } |
308 | 301 |
309 /* | 302 /* |
310 ** Try to convert the type of a function argument or a result column | 303 ** Try to convert the type of a function argument or a result column |
311 ** into a numeric representation. Use either INTEGER or REAL whichever | 304 ** into a numeric representation. Use either INTEGER or REAL whichever |
312 ** is appropriate. But only do the conversion if it is possible without | 305 ** is appropriate. But only do the conversion if it is possible without |
313 ** loss of information and return the revised type of the argument. | 306 ** loss of information and return the revised type of the argument. |
314 */ | 307 */ |
315 int sqlite3_value_numeric_type(sqlite3_value *pVal){ | 308 int sqlite3_value_numeric_type(sqlite3_value *pVal){ |
316 Mem *pMem = (Mem*)pVal; | 309 int eType = sqlite3_value_type(pVal); |
317 if( pMem->type==SQLITE_TEXT ){ | 310 if( eType==SQLITE_TEXT ){ |
318 applyNumericAffinity(pMem); | 311 Mem *pMem = (Mem*)pVal; |
319 sqlite3VdbeMemStoreType(pMem); | 312 applyNumericAffinity(pMem, 0); |
| 313 eType = sqlite3_value_type(pVal); |
320 } | 314 } |
321 return pMem->type; | 315 return eType; |
322 } | 316 } |
323 | 317 |
324 /* | 318 /* |
325 ** Exported version of applyAffinity(). This one works on sqlite3_value*, | 319 ** Exported version of applyAffinity(). This one works on sqlite3_value*, |
326 ** not the internal Mem* type. | 320 ** not the internal Mem* type. |
327 */ | 321 */ |
328 void sqlite3ValueApplyAffinity( | 322 void sqlite3ValueApplyAffinity( |
329 sqlite3_value *pVal, | 323 sqlite3_value *pVal, |
330 u8 affinity, | 324 u8 affinity, |
331 u8 enc | 325 u8 enc |
332 ){ | 326 ){ |
333 applyAffinity((Mem *)pVal, affinity, enc); | 327 applyAffinity((Mem *)pVal, affinity, enc); |
334 } | 328 } |
335 | 329 |
| 330 /* |
| 331 ** pMem currently only holds a string type (or maybe a BLOB that we can |
| 332 ** interpret as a string if we want to). Compute its corresponding |
| 333 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields |
| 334 ** accordingly. |
| 335 */ |
| 336 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ |
| 337 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); |
| 338 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); |
| 339 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ |
| 340 return 0; |
| 341 } |
| 342 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){ |
| 343 return MEM_Int; |
| 344 } |
| 345 return MEM_Real; |
| 346 } |
| 347 |
| 348 /* |
| 349 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or |
| 350 ** none. |
| 351 ** |
| 352 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. |
| 353 ** But it does set pMem->u.r and pMem->u.i appropriately. |
| 354 */ |
| 355 static u16 numericType(Mem *pMem){ |
| 356 if( pMem->flags & (MEM_Int|MEM_Real) ){ |
| 357 return pMem->flags & (MEM_Int|MEM_Real); |
| 358 } |
| 359 if( pMem->flags & (MEM_Str|MEM_Blob) ){ |
| 360 return computeNumericType(pMem); |
| 361 } |
| 362 return 0; |
| 363 } |
| 364 |
336 #ifdef SQLITE_DEBUG | 365 #ifdef SQLITE_DEBUG |
337 /* | 366 /* |
338 ** Write a nice string representation of the contents of cell pMem | 367 ** Write a nice string representation of the contents of cell pMem |
339 ** into buffer zBuf, length nBuf. | 368 ** into buffer zBuf, length nBuf. |
340 */ | 369 */ |
341 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ | 370 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ |
342 char *zCsr = zBuf; | 371 char *zCsr = zBuf; |
343 int f = pMem->flags; | 372 int f = pMem->flags; |
344 | 373 |
345 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; | 374 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; |
(...skipping 67 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
413 k += sqlite3Strlen30(&zBuf[k]); | 442 k += sqlite3Strlen30(&zBuf[k]); |
414 zBuf[k++] = 0; | 443 zBuf[k++] = 0; |
415 } | 444 } |
416 } | 445 } |
417 #endif | 446 #endif |
418 | 447 |
419 #ifdef SQLITE_DEBUG | 448 #ifdef SQLITE_DEBUG |
420 /* | 449 /* |
421 ** Print the value of a register for tracing purposes: | 450 ** Print the value of a register for tracing purposes: |
422 */ | 451 */ |
423 static void memTracePrint(FILE *out, Mem *p){ | 452 static void memTracePrint(Mem *p){ |
424 if( p->flags & MEM_Null ){ | 453 if( p->flags & MEM_Undefined ){ |
425 fprintf(out, " NULL"); | 454 printf(" undefined"); |
| 455 }else if( p->flags & MEM_Null ){ |
| 456 printf(" NULL"); |
426 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ | 457 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ |
427 fprintf(out, " si:%lld", p->u.i); | 458 printf(" si:%lld", p->u.i); |
428 }else if( p->flags & MEM_Int ){ | 459 }else if( p->flags & MEM_Int ){ |
429 fprintf(out, " i:%lld", p->u.i); | 460 printf(" i:%lld", p->u.i); |
430 #ifndef SQLITE_OMIT_FLOATING_POINT | 461 #ifndef SQLITE_OMIT_FLOATING_POINT |
431 }else if( p->flags & MEM_Real ){ | 462 }else if( p->flags & MEM_Real ){ |
432 fprintf(out, " r:%g", p->r); | 463 printf(" r:%g", p->u.r); |
433 #endif | 464 #endif |
434 }else if( p->flags & MEM_RowSet ){ | 465 }else if( p->flags & MEM_RowSet ){ |
435 fprintf(out, " (rowset)"); | 466 printf(" (rowset)"); |
436 }else{ | 467 }else{ |
437 char zBuf[200]; | 468 char zBuf[200]; |
438 sqlite3VdbeMemPrettyPrint(p, zBuf); | 469 sqlite3VdbeMemPrettyPrint(p, zBuf); |
439 fprintf(out, " "); | 470 printf(" %s", zBuf); |
440 fprintf(out, "%s", zBuf); | |
441 } | 471 } |
442 } | 472 } |
443 static void registerTrace(FILE *out, int iReg, Mem *p){ | 473 static void registerTrace(int iReg, Mem *p){ |
444 fprintf(out, "REG[%d] = ", iReg); | 474 printf("REG[%d] = ", iReg); |
445 memTracePrint(out, p); | 475 memTracePrint(p); |
446 fprintf(out, "\n"); | 476 printf("\n"); |
447 } | 477 } |
448 #endif | 478 #endif |
449 | 479 |
450 #ifdef SQLITE_DEBUG | 480 #ifdef SQLITE_DEBUG |
451 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M) | 481 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) |
452 #else | 482 #else |
453 # define REGISTER_TRACE(R,M) | 483 # define REGISTER_TRACE(R,M) |
454 #endif | 484 #endif |
455 | 485 |
456 | 486 |
457 #ifdef VDBE_PROFILE | 487 #ifdef VDBE_PROFILE |
458 | 488 |
459 /* | 489 /* |
460 ** hwtime.h contains inline assembler code for implementing | 490 ** hwtime.h contains inline assembler code for implementing |
461 ** high-performance timing routines. | 491 ** high-performance timing routines. |
462 */ | 492 */ |
463 #include "hwtime.h" | 493 #include "hwtime.h" |
464 | 494 |
465 #endif | 495 #endif |
466 | 496 |
467 /* | |
468 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the | |
469 ** sqlite3_interrupt() routine has been called. If it has been, then | |
470 ** processing of the VDBE program is interrupted. | |
471 ** | |
472 ** This macro added to every instruction that does a jump in order to | |
473 ** implement a loop. This test used to be on every single instruction, | |
474 ** but that meant we more testing that we needed. By only testing the | |
475 ** flag on jump instructions, we get a (small) speed improvement. | |
476 */ | |
477 #define CHECK_FOR_INTERRUPT \ | |
478 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; | |
479 | |
480 | |
481 #ifndef NDEBUG | 497 #ifndef NDEBUG |
482 /* | 498 /* |
483 ** This function is only called from within an assert() expression. It | 499 ** This function is only called from within an assert() expression. It |
484 ** checks that the sqlite3.nTransaction variable is correctly set to | 500 ** checks that the sqlite3.nTransaction variable is correctly set to |
485 ** the number of non-transaction savepoints currently in the | 501 ** the number of non-transaction savepoints currently in the |
486 ** linked list starting at sqlite3.pSavepoint. | 502 ** linked list starting at sqlite3.pSavepoint. |
487 ** | 503 ** |
488 ** Usage: | 504 ** Usage: |
489 ** | 505 ** |
490 ** assert( checkSavepointCount(db) ); | 506 ** assert( checkSavepointCount(db) ); |
491 */ | 507 */ |
492 static int checkSavepointCount(sqlite3 *db){ | 508 static int checkSavepointCount(sqlite3 *db){ |
493 int n = 0; | 509 int n = 0; |
494 Savepoint *p; | 510 Savepoint *p; |
495 for(p=db->pSavepoint; p; p=p->pNext) n++; | 511 for(p=db->pSavepoint; p; p=p->pNext) n++; |
496 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); | 512 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); |
497 return 1; | 513 return 1; |
498 } | 514 } |
499 #endif | 515 #endif |
500 | 516 |
501 /* | |
502 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored | |
503 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored | |
504 ** in memory obtained from sqlite3DbMalloc). | |
505 */ | |
506 static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){ | |
507 sqlite3 *db = p->db; | |
508 sqlite3DbFree(db, p->zErrMsg); | |
509 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); | |
510 sqlite3_free(pVtab->zErrMsg); | |
511 pVtab->zErrMsg = 0; | |
512 } | |
513 | |
514 | 517 |
515 /* | 518 /* |
516 ** Execute as much of a VDBE program as we can then return. | 519 ** Execute as much of a VDBE program as we can. |
517 ** | 520 ** This is the core of sqlite3_step(). |
518 ** sqlite3VdbeMakeReady() must be called before this routine in order to | |
519 ** close the program with a final OP_Halt and to set up the callbacks | |
520 ** and the error message pointer. | |
521 ** | |
522 ** Whenever a row or result data is available, this routine will either | |
523 ** invoke the result callback (if there is one) or return with | |
524 ** SQLITE_ROW. | |
525 ** | |
526 ** If an attempt is made to open a locked database, then this routine | |
527 ** will either invoke the busy callback (if there is one) or it will | |
528 ** return SQLITE_BUSY. | |
529 ** | |
530 ** If an error occurs, an error message is written to memory obtained | |
531 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory. | |
532 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR. | |
533 ** | |
534 ** If the callback ever returns non-zero, then the program exits | |
535 ** immediately. There will be no error message but the p->rc field is | |
536 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. | |
537 ** | |
538 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this | |
539 ** routine to return SQLITE_ERROR. | |
540 ** | |
541 ** Other fatal errors return SQLITE_ERROR. | |
542 ** | |
543 ** After this routine has finished, sqlite3VdbeFinalize() should be | |
544 ** used to clean up the mess that was left behind. | |
545 */ | 521 */ |
546 int sqlite3VdbeExec( | 522 int sqlite3VdbeExec( |
547 Vdbe *p /* The VDBE */ | 523 Vdbe *p /* The VDBE */ |
548 ){ | 524 ){ |
549 int pc=0; /* The program counter */ | 525 int pc=0; /* The program counter */ |
550 Op *aOp = p->aOp; /* Copy of p->aOp */ | 526 Op *aOp = p->aOp; /* Copy of p->aOp */ |
551 Op *pOp; /* Current operation */ | 527 Op *pOp; /* Current operation */ |
552 int rc = SQLITE_OK; /* Value to return */ | 528 int rc = SQLITE_OK; /* Value to return */ |
553 sqlite3 *db = p->db; /* The database */ | 529 sqlite3 *db = p->db; /* The database */ |
554 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ | 530 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ |
555 u8 encoding = ENC(db); /* The database encoding */ | 531 u8 encoding = ENC(db); /* The database encoding */ |
| 532 int iCompare = 0; /* Result of last OP_Compare operation */ |
| 533 unsigned nVmStep = 0; /* Number of virtual machine steps */ |
556 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK | 534 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
557 int checkProgress; /* True if progress callbacks are enabled */ | 535 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ |
558 int nProgressOps = 0; /* Opcodes executed since progress callback. */ | |
559 #endif | 536 #endif |
560 Mem *aMem = p->aMem; /* Copy of p->aMem */ | 537 Mem *aMem = p->aMem; /* Copy of p->aMem */ |
561 Mem *pIn1 = 0; /* 1st input operand */ | 538 Mem *pIn1 = 0; /* 1st input operand */ |
562 Mem *pIn2 = 0; /* 2nd input operand */ | 539 Mem *pIn2 = 0; /* 2nd input operand */ |
563 Mem *pIn3 = 0; /* 3rd input operand */ | 540 Mem *pIn3 = 0; /* 3rd input operand */ |
564 Mem *pOut = 0; /* Output operand */ | 541 Mem *pOut = 0; /* Output operand */ |
565 int iCompare = 0; /* Result of last OP_Compare operation */ | |
566 int *aPermute = 0; /* Permutation of columns for OP_Compare */ | 542 int *aPermute = 0; /* Permutation of columns for OP_Compare */ |
| 543 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ |
567 #ifdef VDBE_PROFILE | 544 #ifdef VDBE_PROFILE |
568 u64 start; /* CPU clock count at start of opcode */ | 545 u64 start; /* CPU clock count at start of opcode */ |
569 int origPc; /* Program counter at start of opcode */ | |
570 #endif | 546 #endif |
571 /*** INSERT STACK UNION HERE ***/ | 547 /*** INSERT STACK UNION HERE ***/ |
572 | 548 |
573 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ | 549 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ |
574 sqlite3VdbeEnter(p); | 550 sqlite3VdbeEnter(p); |
575 if( p->rc==SQLITE_NOMEM ){ | 551 if( p->rc==SQLITE_NOMEM ){ |
576 /* This happens if a malloc() inside a call to sqlite3_column_text() or | 552 /* This happens if a malloc() inside a call to sqlite3_column_text() or |
577 ** sqlite3_column_text16() failed. */ | 553 ** sqlite3_column_text16() failed. */ |
578 goto no_mem; | 554 goto no_mem; |
579 } | 555 } |
580 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); | 556 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); |
| 557 assert( p->bIsReader || p->readOnly!=0 ); |
581 p->rc = SQLITE_OK; | 558 p->rc = SQLITE_OK; |
| 559 p->iCurrentTime = 0; |
582 assert( p->explain==0 ); | 560 assert( p->explain==0 ); |
583 p->pResultSet = 0; | 561 p->pResultSet = 0; |
584 db->busyHandler.nBusy = 0; | 562 db->busyHandler.nBusy = 0; |
585 CHECK_FOR_INTERRUPT; | 563 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; |
586 sqlite3VdbeIOTraceSql(p); | 564 sqlite3VdbeIOTraceSql(p); |
587 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK | 565 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
588 checkProgress = db->xProgress!=0; | 566 if( db->xProgress ){ |
| 567 assert( 0 < db->nProgressOps ); |
| 568 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; |
| 569 if( nProgressLimit==0 ){ |
| 570 nProgressLimit = db->nProgressOps; |
| 571 }else{ |
| 572 nProgressLimit %= (unsigned)db->nProgressOps; |
| 573 } |
| 574 } |
589 #endif | 575 #endif |
590 #ifdef SQLITE_DEBUG | 576 #ifdef SQLITE_DEBUG |
591 sqlite3BeginBenignMalloc(); | 577 sqlite3BeginBenignMalloc(); |
592 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){ | 578 if( p->pc==0 |
| 579 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 |
| 580 ){ |
593 int i; | 581 int i; |
594 printf("VDBE Program Listing:\n"); | 582 int once = 1; |
595 sqlite3VdbePrintSql(p); | 583 sqlite3VdbePrintSql(p); |
596 for(i=0; i<p->nOp; i++){ | 584 if( p->db->flags & SQLITE_VdbeListing ){ |
597 sqlite3VdbePrintOp(stdout, i, &aOp[i]); | 585 printf("VDBE Program Listing:\n"); |
| 586 for(i=0; i<p->nOp; i++){ |
| 587 sqlite3VdbePrintOp(stdout, i, &aOp[i]); |
| 588 } |
598 } | 589 } |
| 590 if( p->db->flags & SQLITE_VdbeEQP ){ |
| 591 for(i=0; i<p->nOp; i++){ |
| 592 if( aOp[i].opcode==OP_Explain ){ |
| 593 if( once ) printf("VDBE Query Plan:\n"); |
| 594 printf("%s\n", aOp[i].p4.z); |
| 595 once = 0; |
| 596 } |
| 597 } |
| 598 } |
| 599 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); |
599 } | 600 } |
600 sqlite3EndBenignMalloc(); | 601 sqlite3EndBenignMalloc(); |
601 #endif | 602 #endif |
602 for(pc=p->pc; rc==SQLITE_OK; pc++){ | 603 for(pc=p->pc; rc==SQLITE_OK; pc++){ |
603 assert( pc>=0 && pc<p->nOp ); | 604 assert( pc>=0 && pc<p->nOp ); |
604 if( db->mallocFailed ) goto no_mem; | 605 if( db->mallocFailed ) goto no_mem; |
605 #ifdef VDBE_PROFILE | 606 #ifdef VDBE_PROFILE |
606 origPc = pc; | |
607 start = sqlite3Hwtime(); | 607 start = sqlite3Hwtime(); |
608 #endif | 608 #endif |
| 609 nVmStep++; |
609 pOp = &aOp[pc]; | 610 pOp = &aOp[pc]; |
610 | 611 |
611 /* Only allow tracing if SQLITE_DEBUG is defined. | 612 /* Only allow tracing if SQLITE_DEBUG is defined. |
612 */ | 613 */ |
613 #ifdef SQLITE_DEBUG | 614 #ifdef SQLITE_DEBUG |
614 if( p->trace ){ | 615 if( db->flags & SQLITE_VdbeTrace ){ |
615 if( pc==0 ){ | 616 sqlite3VdbePrintOp(stdout, pc, pOp); |
616 printf("VDBE Execution Trace:\n"); | |
617 sqlite3VdbePrintSql(p); | |
618 } | |
619 sqlite3VdbePrintOp(p->trace, pc, pOp); | |
620 } | 617 } |
621 #endif | 618 #endif |
622 | 619 |
623 | 620 |
624 /* Check to see if we need to simulate an interrupt. This only happens | 621 /* Check to see if we need to simulate an interrupt. This only happens |
625 ** if we have a special test build. | 622 ** if we have a special test build. |
626 */ | 623 */ |
627 #ifdef SQLITE_TEST | 624 #ifdef SQLITE_TEST |
628 if( sqlite3_interrupt_count>0 ){ | 625 if( sqlite3_interrupt_count>0 ){ |
629 sqlite3_interrupt_count--; | 626 sqlite3_interrupt_count--; |
630 if( sqlite3_interrupt_count==0 ){ | 627 if( sqlite3_interrupt_count==0 ){ |
631 sqlite3_interrupt(db); | 628 sqlite3_interrupt(db); |
632 } | 629 } |
633 } | 630 } |
634 #endif | 631 #endif |
635 | 632 |
636 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK | 633 /* On any opcode with the "out2-prerelease" tag, free any |
637 /* Call the progress callback if it is configured and the required number | |
638 ** of VDBE ops have been executed (either since this invocation of | |
639 ** sqlite3VdbeExec() or since last time the progress callback was called). | |
640 ** If the progress callback returns non-zero, exit the virtual machine with | |
641 ** a return code SQLITE_ABORT. | |
642 */ | |
643 if( checkProgress ){ | |
644 if( db->nProgressOps==nProgressOps ){ | |
645 int prc; | |
646 prc = db->xProgress(db->pProgressArg); | |
647 if( prc!=0 ){ | |
648 rc = SQLITE_INTERRUPT; | |
649 goto vdbe_error_halt; | |
650 } | |
651 nProgressOps = 0; | |
652 } | |
653 nProgressOps++; | |
654 } | |
655 #endif | |
656 | |
657 /* On any opcode with the "out2-prerelase" tag, free any | |
658 ** external allocations out of mem[p2] and set mem[p2] to be | 634 ** external allocations out of mem[p2] and set mem[p2] to be |
659 ** an undefined integer. Opcodes will either fill in the integer | 635 ** an undefined integer. Opcodes will either fill in the integer |
660 ** value or convert mem[p2] to a different type. | 636 ** value or convert mem[p2] to a different type. |
661 */ | 637 */ |
662 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); | 638 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); |
663 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ | 639 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ |
664 assert( pOp->p2>0 ); | 640 assert( pOp->p2>0 ); |
665 assert( pOp->p2<=p->nMem ); | 641 assert( pOp->p2<=(p->nMem-p->nCursor) ); |
666 pOut = &aMem[pOp->p2]; | 642 pOut = &aMem[pOp->p2]; |
667 memAboutToChange(p, pOut); | 643 memAboutToChange(p, pOut); |
668 sqlite3VdbeMemReleaseExternal(pOut); | 644 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); |
669 pOut->flags = MEM_Int; | 645 pOut->flags = MEM_Int; |
670 } | 646 } |
671 | 647 |
672 /* Sanity checking on other operands */ | 648 /* Sanity checking on other operands */ |
673 #ifdef SQLITE_DEBUG | 649 #ifdef SQLITE_DEBUG |
674 if( (pOp->opflags & OPFLG_IN1)!=0 ){ | 650 if( (pOp->opflags & OPFLG_IN1)!=0 ){ |
675 assert( pOp->p1>0 ); | 651 assert( pOp->p1>0 ); |
676 assert( pOp->p1<=p->nMem ); | 652 assert( pOp->p1<=(p->nMem-p->nCursor) ); |
677 assert( memIsValid(&aMem[pOp->p1]) ); | 653 assert( memIsValid(&aMem[pOp->p1]) ); |
| 654 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); |
678 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); | 655 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); |
679 } | 656 } |
680 if( (pOp->opflags & OPFLG_IN2)!=0 ){ | 657 if( (pOp->opflags & OPFLG_IN2)!=0 ){ |
681 assert( pOp->p2>0 ); | 658 assert( pOp->p2>0 ); |
682 assert( pOp->p2<=p->nMem ); | 659 assert( pOp->p2<=(p->nMem-p->nCursor) ); |
683 assert( memIsValid(&aMem[pOp->p2]) ); | 660 assert( memIsValid(&aMem[pOp->p2]) ); |
| 661 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); |
684 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); | 662 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); |
685 } | 663 } |
686 if( (pOp->opflags & OPFLG_IN3)!=0 ){ | 664 if( (pOp->opflags & OPFLG_IN3)!=0 ){ |
687 assert( pOp->p3>0 ); | 665 assert( pOp->p3>0 ); |
688 assert( pOp->p3<=p->nMem ); | 666 assert( pOp->p3<=(p->nMem-p->nCursor) ); |
689 assert( memIsValid(&aMem[pOp->p3]) ); | 667 assert( memIsValid(&aMem[pOp->p3]) ); |
| 668 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); |
690 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); | 669 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); |
691 } | 670 } |
692 if( (pOp->opflags & OPFLG_OUT2)!=0 ){ | 671 if( (pOp->opflags & OPFLG_OUT2)!=0 ){ |
693 assert( pOp->p2>0 ); | 672 assert( pOp->p2>0 ); |
694 assert( pOp->p2<=p->nMem ); | 673 assert( pOp->p2<=(p->nMem-p->nCursor) ); |
695 memAboutToChange(p, &aMem[pOp->p2]); | 674 memAboutToChange(p, &aMem[pOp->p2]); |
696 } | 675 } |
697 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ | 676 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ |
698 assert( pOp->p3>0 ); | 677 assert( pOp->p3>0 ); |
699 assert( pOp->p3<=p->nMem ); | 678 assert( pOp->p3<=(p->nMem-p->nCursor) ); |
700 memAboutToChange(p, &aMem[pOp->p3]); | 679 memAboutToChange(p, &aMem[pOp->p3]); |
701 } | 680 } |
702 #endif | 681 #endif |
703 | 682 |
704 switch( pOp->opcode ){ | 683 switch( pOp->opcode ){ |
705 | 684 |
706 /***************************************************************************** | 685 /***************************************************************************** |
707 ** What follows is a massive switch statement where each case implements a | 686 ** What follows is a massive switch statement where each case implements a |
708 ** separate instruction in the virtual machine. If we follow the usual | 687 ** separate instruction in the virtual machine. If we follow the usual |
709 ** indentation conventions, each case should be indented by 6 spaces. But | 688 ** indentation conventions, each case should be indented by 6 spaces. But |
(...skipping 27 matching lines...) Expand all Loading... |
737 ** Do not deviate from the formatting style currently in use. | 716 ** Do not deviate from the formatting style currently in use. |
738 ** | 717 ** |
739 *****************************************************************************/ | 718 *****************************************************************************/ |
740 | 719 |
741 /* Opcode: Goto * P2 * * * | 720 /* Opcode: Goto * P2 * * * |
742 ** | 721 ** |
743 ** An unconditional jump to address P2. | 722 ** An unconditional jump to address P2. |
744 ** The next instruction executed will be | 723 ** The next instruction executed will be |
745 ** the one at index P2 from the beginning of | 724 ** the one at index P2 from the beginning of |
746 ** the program. | 725 ** the program. |
| 726 ** |
| 727 ** The P1 parameter is not actually used by this opcode. However, it |
| 728 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell |
| 729 ** that this Goto is the bottom of a loop and that the lines from P2 down |
| 730 ** to the current line should be indented for EXPLAIN output. |
747 */ | 731 */ |
748 case OP_Goto: { /* jump */ | 732 case OP_Goto: { /* jump */ |
749 CHECK_FOR_INTERRUPT; | |
750 pc = pOp->p2 - 1; | 733 pc = pOp->p2 - 1; |
| 734 |
| 735 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, |
| 736 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon |
| 737 ** completion. Check to see if sqlite3_interrupt() has been called |
| 738 ** or if the progress callback needs to be invoked. |
| 739 ** |
| 740 ** This code uses unstructured "goto" statements and does not look clean. |
| 741 ** But that is not due to sloppy coding habits. The code is written this |
| 742 ** way for performance, to avoid having to run the interrupt and progress |
| 743 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% |
| 744 ** faster according to "valgrind --tool=cachegrind" */ |
| 745 check_for_interrupt: |
| 746 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; |
| 747 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
| 748 /* Call the progress callback if it is configured and the required number |
| 749 ** of VDBE ops have been executed (either since this invocation of |
| 750 ** sqlite3VdbeExec() or since last time the progress callback was called). |
| 751 ** If the progress callback returns non-zero, exit the virtual machine with |
| 752 ** a return code SQLITE_ABORT. |
| 753 */ |
| 754 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){ |
| 755 assert( db->nProgressOps!=0 ); |
| 756 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); |
| 757 if( db->xProgress(db->pProgressArg) ){ |
| 758 rc = SQLITE_INTERRUPT; |
| 759 goto vdbe_error_halt; |
| 760 } |
| 761 } |
| 762 #endif |
| 763 |
751 break; | 764 break; |
752 } | 765 } |
753 | 766 |
754 /* Opcode: Gosub P1 P2 * * * | 767 /* Opcode: Gosub P1 P2 * * * |
755 ** | 768 ** |
756 ** Write the current address onto register P1 | 769 ** Write the current address onto register P1 |
757 ** and then jump to address P2. | 770 ** and then jump to address P2. |
758 */ | 771 */ |
759 case OP_Gosub: { /* jump, in1 */ | 772 case OP_Gosub: { /* jump */ |
| 773 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); |
760 pIn1 = &aMem[pOp->p1]; | 774 pIn1 = &aMem[pOp->p1]; |
761 assert( (pIn1->flags & MEM_Dyn)==0 ); | 775 assert( VdbeMemDynamic(pIn1)==0 ); |
762 memAboutToChange(p, pIn1); | 776 memAboutToChange(p, pIn1); |
763 pIn1->flags = MEM_Int; | 777 pIn1->flags = MEM_Int; |
764 pIn1->u.i = pc; | 778 pIn1->u.i = pc; |
765 REGISTER_TRACE(pOp->p1, pIn1); | 779 REGISTER_TRACE(pOp->p1, pIn1); |
766 pc = pOp->p2 - 1; | 780 pc = pOp->p2 - 1; |
767 break; | 781 break; |
768 } | 782 } |
769 | 783 |
770 /* Opcode: Return P1 * * * * | 784 /* Opcode: Return P1 * * * * |
771 ** | 785 ** |
772 ** Jump to the next instruction after the address in register P1. | 786 ** Jump to the next instruction after the address in register P1. After |
| 787 ** the jump, register P1 becomes undefined. |
773 */ | 788 */ |
774 case OP_Return: { /* in1 */ | 789 case OP_Return: { /* in1 */ |
775 pIn1 = &aMem[pOp->p1]; | 790 pIn1 = &aMem[pOp->p1]; |
776 assert( pIn1->flags & MEM_Int ); | 791 assert( pIn1->flags==MEM_Int ); |
777 pc = (int)pIn1->u.i; | 792 pc = (int)pIn1->u.i; |
| 793 pIn1->flags = MEM_Undefined; |
778 break; | 794 break; |
779 } | 795 } |
780 | 796 |
781 /* Opcode: Yield P1 * * * * | 797 /* Opcode: InitCoroutine P1 P2 P3 * * |
782 ** | 798 ** |
783 ** Swap the program counter with the value in register P1. | 799 ** Set up register P1 so that it will Yield to the coroutine |
| 800 ** located at address P3. |
| 801 ** |
| 802 ** If P2!=0 then the coroutine implementation immediately follows |
| 803 ** this opcode. So jump over the coroutine implementation to |
| 804 ** address P2. |
| 805 ** |
| 806 ** See also: EndCoroutine |
784 */ | 807 */ |
785 case OP_Yield: { /* in1 */ | 808 case OP_InitCoroutine: { /* jump */ |
| 809 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); |
| 810 assert( pOp->p2>=0 && pOp->p2<p->nOp ); |
| 811 assert( pOp->p3>=0 && pOp->p3<p->nOp ); |
| 812 pOut = &aMem[pOp->p1]; |
| 813 assert( !VdbeMemDynamic(pOut) ); |
| 814 pOut->u.i = pOp->p3 - 1; |
| 815 pOut->flags = MEM_Int; |
| 816 if( pOp->p2 ) pc = pOp->p2 - 1; |
| 817 break; |
| 818 } |
| 819 |
| 820 /* Opcode: EndCoroutine P1 * * * * |
| 821 ** |
| 822 ** The instruction at the address in register P1 is a Yield. |
| 823 ** Jump to the P2 parameter of that Yield. |
| 824 ** After the jump, register P1 becomes undefined. |
| 825 ** |
| 826 ** See also: InitCoroutine |
| 827 */ |
| 828 case OP_EndCoroutine: { /* in1 */ |
| 829 VdbeOp *pCaller; |
| 830 pIn1 = &aMem[pOp->p1]; |
| 831 assert( pIn1->flags==MEM_Int ); |
| 832 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); |
| 833 pCaller = &aOp[pIn1->u.i]; |
| 834 assert( pCaller->opcode==OP_Yield ); |
| 835 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); |
| 836 pc = pCaller->p2 - 1; |
| 837 pIn1->flags = MEM_Undefined; |
| 838 break; |
| 839 } |
| 840 |
| 841 /* Opcode: Yield P1 P2 * * * |
| 842 ** |
| 843 ** Swap the program counter with the value in register P1. This |
| 844 ** has the effect of yielding to a coroutine. |
| 845 ** |
| 846 ** If the coroutine that is launched by this instruction ends with |
| 847 ** Yield or Return then continue to the next instruction. But if |
| 848 ** the coroutine launched by this instruction ends with |
| 849 ** EndCoroutine, then jump to P2 rather than continuing with the |
| 850 ** next instruction. |
| 851 ** |
| 852 ** See also: InitCoroutine |
| 853 */ |
| 854 case OP_Yield: { /* in1, jump */ |
786 int pcDest; | 855 int pcDest; |
787 pIn1 = &aMem[pOp->p1]; | 856 pIn1 = &aMem[pOp->p1]; |
788 assert( (pIn1->flags & MEM_Dyn)==0 ); | 857 assert( VdbeMemDynamic(pIn1)==0 ); |
789 pIn1->flags = MEM_Int; | 858 pIn1->flags = MEM_Int; |
790 pcDest = (int)pIn1->u.i; | 859 pcDest = (int)pIn1->u.i; |
791 pIn1->u.i = pc; | 860 pIn1->u.i = pc; |
792 REGISTER_TRACE(pOp->p1, pIn1); | 861 REGISTER_TRACE(pOp->p1, pIn1); |
793 pc = pcDest; | 862 pc = pcDest; |
794 break; | 863 break; |
795 } | 864 } |
796 | 865 |
797 /* Opcode: HaltIfNull P1 P2 P3 P4 * | 866 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 |
| 867 ** Synopsis: if r[P3]=null halt |
798 ** | 868 ** |
799 ** Check the value in register P3. If is is NULL then Halt using | 869 ** Check the value in register P3. If it is NULL then Halt using |
800 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the | 870 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the |
801 ** value in register P3 is not NULL, then this routine is a no-op. | 871 ** value in register P3 is not NULL, then this routine is a no-op. |
| 872 ** The P5 parameter should be 1. |
802 */ | 873 */ |
803 case OP_HaltIfNull: { /* in3 */ | 874 case OP_HaltIfNull: { /* in3 */ |
804 pIn3 = &aMem[pOp->p3]; | 875 pIn3 = &aMem[pOp->p3]; |
805 if( (pIn3->flags & MEM_Null)==0 ) break; | 876 if( (pIn3->flags & MEM_Null)==0 ) break; |
806 /* Fall through into OP_Halt */ | 877 /* Fall through into OP_Halt */ |
807 } | 878 } |
808 | 879 |
809 /* Opcode: Halt P1 P2 * P4 * | 880 /* Opcode: Halt P1 P2 * P4 P5 |
810 ** | 881 ** |
811 ** Exit immediately. All open cursors, etc are closed | 882 ** Exit immediately. All open cursors, etc are closed |
812 ** automatically. | 883 ** automatically. |
813 ** | 884 ** |
814 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), | 885 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), |
815 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). | 886 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). |
816 ** For errors, it can be some other value. If P1!=0 then P2 will determine | 887 ** For errors, it can be some other value. If P1!=0 then P2 will determine |
817 ** whether or not to rollback the current transaction. Do not rollback | 888 ** whether or not to rollback the current transaction. Do not rollback |
818 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, | 889 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, |
819 ** then back out all changes that have occurred during this execution of the | 890 ** then back out all changes that have occurred during this execution of the |
820 ** VDBE, but do not rollback the transaction. | 891 ** VDBE, but do not rollback the transaction. |
821 ** | 892 ** |
822 ** If P4 is not null then it is an error message string. | 893 ** If P4 is not null then it is an error message string. |
823 ** | 894 ** |
| 895 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. |
| 896 ** |
| 897 ** 0: (no change) |
| 898 ** 1: NOT NULL contraint failed: P4 |
| 899 ** 2: UNIQUE constraint failed: P4 |
| 900 ** 3: CHECK constraint failed: P4 |
| 901 ** 4: FOREIGN KEY constraint failed: P4 |
| 902 ** |
| 903 ** If P5 is not zero and P4 is NULL, then everything after the ":" is |
| 904 ** omitted. |
| 905 ** |
824 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of | 906 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of |
825 ** every program. So a jump past the last instruction of the program | 907 ** every program. So a jump past the last instruction of the program |
826 ** is the same as executing Halt. | 908 ** is the same as executing Halt. |
827 */ | 909 */ |
828 case OP_Halt: { | 910 case OP_Halt: { |
| 911 const char *zType; |
| 912 const char *zLogFmt; |
| 913 |
829 if( pOp->p1==SQLITE_OK && p->pFrame ){ | 914 if( pOp->p1==SQLITE_OK && p->pFrame ){ |
830 /* Halt the sub-program. Return control to the parent frame. */ | 915 /* Halt the sub-program. Return control to the parent frame. */ |
831 VdbeFrame *pFrame = p->pFrame; | 916 VdbeFrame *pFrame = p->pFrame; |
832 p->pFrame = pFrame->pParent; | 917 p->pFrame = pFrame->pParent; |
833 p->nFrame--; | 918 p->nFrame--; |
834 sqlite3VdbeSetChanges(db, p->nChange); | 919 sqlite3VdbeSetChanges(db, p->nChange); |
835 pc = sqlite3VdbeFrameRestore(pFrame); | 920 pc = sqlite3VdbeFrameRestore(pFrame); |
| 921 lastRowid = db->lastRowid; |
836 if( pOp->p2==OE_Ignore ){ | 922 if( pOp->p2==OE_Ignore ){ |
837 /* Instruction pc is the OP_Program that invoked the sub-program | 923 /* Instruction pc is the OP_Program that invoked the sub-program |
838 ** currently being halted. If the p2 instruction of this OP_Halt | 924 ** currently being halted. If the p2 instruction of this OP_Halt |
839 ** instruction is set to OE_Ignore, then the sub-program is throwing | 925 ** instruction is set to OE_Ignore, then the sub-program is throwing |
840 ** an IGNORE exception. In this case jump to the address specified | 926 ** an IGNORE exception. In this case jump to the address specified |
841 ** as the p2 of the calling OP_Program. */ | 927 ** as the p2 of the calling OP_Program. */ |
842 pc = p->aOp[pc].p2-1; | 928 pc = p->aOp[pc].p2-1; |
843 } | 929 } |
844 aOp = p->aOp; | 930 aOp = p->aOp; |
845 aMem = p->aMem; | 931 aMem = p->aMem; |
846 break; | 932 break; |
847 } | 933 } |
848 | |
849 p->rc = pOp->p1; | 934 p->rc = pOp->p1; |
850 p->errorAction = (u8)pOp->p2; | 935 p->errorAction = (u8)pOp->p2; |
851 p->pc = pc; | 936 p->pc = pc; |
852 if( pOp->p4.z ){ | 937 if( p->rc ){ |
853 assert( p->rc!=SQLITE_OK ); | 938 if( pOp->p5 ){ |
854 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); | 939 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", |
855 testcase( sqlite3GlobalConfig.xLog!=0 ); | 940 "FOREIGN KEY" }; |
856 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z); | 941 assert( pOp->p5>=1 && pOp->p5<=4 ); |
857 }else if( p->rc ){ | 942 testcase( pOp->p5==1 ); |
858 testcase( sqlite3GlobalConfig.xLog!=0 ); | 943 testcase( pOp->p5==2 ); |
859 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql); | 944 testcase( pOp->p5==3 ); |
| 945 testcase( pOp->p5==4 ); |
| 946 zType = azType[pOp->p5-1]; |
| 947 }else{ |
| 948 zType = 0; |
| 949 } |
| 950 assert( zType!=0 || pOp->p4.z!=0 ); |
| 951 zLogFmt = "abort at %d in [%s]: %s"; |
| 952 if( zType && pOp->p4.z ){ |
| 953 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s", |
| 954 zType, pOp->p4.z); |
| 955 }else if( pOp->p4.z ){ |
| 956 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); |
| 957 }else{ |
| 958 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType); |
| 959 } |
| 960 sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg); |
860 } | 961 } |
861 rc = sqlite3VdbeHalt(p); | 962 rc = sqlite3VdbeHalt(p); |
862 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); | 963 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); |
863 if( rc==SQLITE_BUSY ){ | 964 if( rc==SQLITE_BUSY ){ |
864 p->rc = rc = SQLITE_BUSY; | 965 p->rc = rc = SQLITE_BUSY; |
865 }else{ | 966 }else{ |
866 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT ); | 967 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); |
867 assert( rc==SQLITE_OK || db->nDeferredCons>0 ); | 968 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); |
868 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; | 969 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; |
869 } | 970 } |
870 goto vdbe_return; | 971 goto vdbe_return; |
871 } | 972 } |
872 | 973 |
873 /* Opcode: Integer P1 P2 * * * | 974 /* Opcode: Integer P1 P2 * * * |
| 975 ** Synopsis: r[P2]=P1 |
874 ** | 976 ** |
875 ** The 32-bit integer value P1 is written into register P2. | 977 ** The 32-bit integer value P1 is written into register P2. |
876 */ | 978 */ |
877 case OP_Integer: { /* out2-prerelease */ | 979 case OP_Integer: { /* out2-prerelease */ |
878 pOut->u.i = pOp->p1; | 980 pOut->u.i = pOp->p1; |
879 break; | 981 break; |
880 } | 982 } |
881 | 983 |
882 /* Opcode: Int64 * P2 * P4 * | 984 /* Opcode: Int64 * P2 * P4 * |
| 985 ** Synopsis: r[P2]=P4 |
883 ** | 986 ** |
884 ** P4 is a pointer to a 64-bit integer value. | 987 ** P4 is a pointer to a 64-bit integer value. |
885 ** Write that value into register P2. | 988 ** Write that value into register P2. |
886 */ | 989 */ |
887 case OP_Int64: { /* out2-prerelease */ | 990 case OP_Int64: { /* out2-prerelease */ |
888 assert( pOp->p4.pI64!=0 ); | 991 assert( pOp->p4.pI64!=0 ); |
889 pOut->u.i = *pOp->p4.pI64; | 992 pOut->u.i = *pOp->p4.pI64; |
890 break; | 993 break; |
891 } | 994 } |
892 | 995 |
893 #ifndef SQLITE_OMIT_FLOATING_POINT | 996 #ifndef SQLITE_OMIT_FLOATING_POINT |
894 /* Opcode: Real * P2 * P4 * | 997 /* Opcode: Real * P2 * P4 * |
| 998 ** Synopsis: r[P2]=P4 |
895 ** | 999 ** |
896 ** P4 is a pointer to a 64-bit floating point value. | 1000 ** P4 is a pointer to a 64-bit floating point value. |
897 ** Write that value into register P2. | 1001 ** Write that value into register P2. |
898 */ | 1002 */ |
899 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ | 1003 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ |
900 pOut->flags = MEM_Real; | 1004 pOut->flags = MEM_Real; |
901 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); | 1005 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); |
902 pOut->r = *pOp->p4.pReal; | 1006 pOut->u.r = *pOp->p4.pReal; |
903 break; | 1007 break; |
904 } | 1008 } |
905 #endif | 1009 #endif |
906 | 1010 |
907 /* Opcode: String8 * P2 * P4 * | 1011 /* Opcode: String8 * P2 * P4 * |
| 1012 ** Synopsis: r[P2]='P4' |
908 ** | 1013 ** |
909 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed | 1014 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed |
910 ** into an OP_String before it is executed for the first time. | 1015 ** into a String before it is executed for the first time. During |
| 1016 ** this transformation, the length of string P4 is computed and stored |
| 1017 ** as the P1 parameter. |
911 */ | 1018 */ |
912 case OP_String8: { /* same as TK_STRING, out2-prerelease */ | 1019 case OP_String8: { /* same as TK_STRING, out2-prerelease */ |
913 assert( pOp->p4.z!=0 ); | 1020 assert( pOp->p4.z!=0 ); |
914 pOp->opcode = OP_String; | 1021 pOp->opcode = OP_String; |
915 pOp->p1 = sqlite3Strlen30(pOp->p4.z); | 1022 pOp->p1 = sqlite3Strlen30(pOp->p4.z); |
916 | 1023 |
917 #ifndef SQLITE_OMIT_UTF16 | 1024 #ifndef SQLITE_OMIT_UTF16 |
918 if( encoding!=SQLITE_UTF8 ){ | 1025 if( encoding!=SQLITE_UTF8 ){ |
919 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); | 1026 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); |
920 if( rc==SQLITE_TOOBIG ) goto too_big; | 1027 if( rc==SQLITE_TOOBIG ) goto too_big; |
921 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; | 1028 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; |
922 assert( pOut->zMalloc==pOut->z ); | 1029 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); |
923 assert( pOut->flags & MEM_Dyn ); | 1030 assert( VdbeMemDynamic(pOut)==0 ); |
924 pOut->zMalloc = 0; | 1031 pOut->szMalloc = 0; |
925 pOut->flags |= MEM_Static; | 1032 pOut->flags |= MEM_Static; |
926 pOut->flags &= ~MEM_Dyn; | |
927 if( pOp->p4type==P4_DYNAMIC ){ | 1033 if( pOp->p4type==P4_DYNAMIC ){ |
928 sqlite3DbFree(db, pOp->p4.z); | 1034 sqlite3DbFree(db, pOp->p4.z); |
929 } | 1035 } |
930 pOp->p4type = P4_DYNAMIC; | 1036 pOp->p4type = P4_DYNAMIC; |
931 pOp->p4.z = pOut->z; | 1037 pOp->p4.z = pOut->z; |
932 pOp->p1 = pOut->n; | 1038 pOp->p1 = pOut->n; |
933 } | 1039 } |
934 #endif | 1040 #endif |
935 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ | 1041 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
936 goto too_big; | 1042 goto too_big; |
937 } | 1043 } |
938 /* Fall through to the next case, OP_String */ | 1044 /* Fall through to the next case, OP_String */ |
939 } | 1045 } |
940 | 1046 |
941 /* Opcode: String P1 P2 * P4 * | 1047 /* Opcode: String P1 P2 * P4 * |
| 1048 ** Synopsis: r[P2]='P4' (len=P1) |
942 ** | 1049 ** |
943 ** The string value P4 of length P1 (bytes) is stored in register P2. | 1050 ** The string value P4 of length P1 (bytes) is stored in register P2. |
944 */ | 1051 */ |
945 case OP_String: { /* out2-prerelease */ | 1052 case OP_String: { /* out2-prerelease */ |
946 assert( pOp->p4.z!=0 ); | 1053 assert( pOp->p4.z!=0 ); |
947 pOut->flags = MEM_Str|MEM_Static|MEM_Term; | 1054 pOut->flags = MEM_Str|MEM_Static|MEM_Term; |
948 pOut->z = pOp->p4.z; | 1055 pOut->z = pOp->p4.z; |
949 pOut->n = pOp->p1; | 1056 pOut->n = pOp->p1; |
950 pOut->enc = encoding; | 1057 pOut->enc = encoding; |
951 UPDATE_MAX_BLOBSIZE(pOut); | 1058 UPDATE_MAX_BLOBSIZE(pOut); |
952 break; | 1059 break; |
953 } | 1060 } |
954 | 1061 |
955 /* Opcode: Null * P2 * * * | 1062 /* Opcode: Null P1 P2 P3 * * |
| 1063 ** Synopsis: r[P2..P3]=NULL |
956 ** | 1064 ** |
957 ** Write a NULL into register P2. | 1065 ** Write a NULL into registers P2. If P3 greater than P2, then also write |
| 1066 ** NULL into register P3 and every register in between P2 and P3. If P3 |
| 1067 ** is less than P2 (typically P3 is zero) then only register P2 is |
| 1068 ** set to NULL. |
| 1069 ** |
| 1070 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that |
| 1071 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on |
| 1072 ** OP_Ne or OP_Eq. |
958 */ | 1073 */ |
959 case OP_Null: { /* out2-prerelease */ | 1074 case OP_Null: { /* out2-prerelease */ |
960 pOut->flags = MEM_Null; | 1075 int cnt; |
| 1076 u16 nullFlag; |
| 1077 cnt = pOp->p3-pOp->p2; |
| 1078 assert( pOp->p3<=(p->nMem-p->nCursor) ); |
| 1079 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; |
| 1080 while( cnt>0 ){ |
| 1081 pOut++; |
| 1082 memAboutToChange(p, pOut); |
| 1083 sqlite3VdbeMemSetNull(pOut); |
| 1084 pOut->flags = nullFlag; |
| 1085 cnt--; |
| 1086 } |
961 break; | 1087 break; |
962 } | 1088 } |
963 | 1089 |
| 1090 /* Opcode: SoftNull P1 * * * * |
| 1091 ** Synopsis: r[P1]=NULL |
| 1092 ** |
| 1093 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord |
| 1094 ** instruction, but do not free any string or blob memory associated with |
| 1095 ** the register, so that if the value was a string or blob that was |
| 1096 ** previously copied using OP_SCopy, the copies will continue to be valid. |
| 1097 */ |
| 1098 case OP_SoftNull: { |
| 1099 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); |
| 1100 pOut = &aMem[pOp->p1]; |
| 1101 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; |
| 1102 break; |
| 1103 } |
964 | 1104 |
965 /* Opcode: Blob P1 P2 * P4 | 1105 /* Opcode: Blob P1 P2 * P4 * |
| 1106 ** Synopsis: r[P2]=P4 (len=P1) |
966 ** | 1107 ** |
967 ** P4 points to a blob of data P1 bytes long. Store this | 1108 ** P4 points to a blob of data P1 bytes long. Store this |
968 ** blob in register P2. | 1109 ** blob in register P2. |
969 */ | 1110 */ |
970 case OP_Blob: { /* out2-prerelease */ | 1111 case OP_Blob: { /* out2-prerelease */ |
971 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); | 1112 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); |
972 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); | 1113 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); |
973 pOut->enc = encoding; | 1114 pOut->enc = encoding; |
974 UPDATE_MAX_BLOBSIZE(pOut); | 1115 UPDATE_MAX_BLOBSIZE(pOut); |
975 break; | 1116 break; |
976 } | 1117 } |
977 | 1118 |
978 /* Opcode: Variable P1 P2 * P4 * | 1119 /* Opcode: Variable P1 P2 * P4 * |
| 1120 ** Synopsis: r[P2]=parameter(P1,P4) |
979 ** | 1121 ** |
980 ** Transfer the values of bound parameter P1 into register P2 | 1122 ** Transfer the values of bound parameter P1 into register P2 |
981 ** | 1123 ** |
982 ** If the parameter is named, then its name appears in P4 and P3==1. | 1124 ** If the parameter is named, then its name appears in P4. |
983 ** The P4 value is used by sqlite3_bind_parameter_name(). | 1125 ** The P4 value is used by sqlite3_bind_parameter_name(). |
984 */ | 1126 */ |
985 case OP_Variable: { /* out2-prerelease */ | 1127 case OP_Variable: { /* out2-prerelease */ |
986 Mem *pVar; /* Value being transferred */ | 1128 Mem *pVar; /* Value being transferred */ |
987 | 1129 |
988 assert( pOp->p1>0 && pOp->p1<=p->nVar ); | 1130 assert( pOp->p1>0 && pOp->p1<=p->nVar ); |
| 1131 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); |
989 pVar = &p->aVar[pOp->p1 - 1]; | 1132 pVar = &p->aVar[pOp->p1 - 1]; |
990 if( sqlite3VdbeMemTooBig(pVar) ){ | 1133 if( sqlite3VdbeMemTooBig(pVar) ){ |
991 goto too_big; | 1134 goto too_big; |
992 } | 1135 } |
993 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); | 1136 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); |
994 UPDATE_MAX_BLOBSIZE(pOut); | 1137 UPDATE_MAX_BLOBSIZE(pOut); |
995 break; | 1138 break; |
996 } | 1139 } |
997 | 1140 |
998 /* Opcode: Move P1 P2 P3 * * | 1141 /* Opcode: Move P1 P2 P3 * * |
| 1142 ** Synopsis: r[P2@P3]=r[P1@P3] |
999 ** | 1143 ** |
1000 ** Move the values in register P1..P1+P3-1 over into | 1144 ** Move the P3 values in register P1..P1+P3-1 over into |
1001 ** registers P2..P2+P3-1. Registers P1..P1+P1-1 are | 1145 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are |
1002 ** left holding a NULL. It is an error for register ranges | 1146 ** left holding a NULL. It is an error for register ranges |
1003 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. | 1147 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error |
| 1148 ** for P3 to be less than 1. |
1004 */ | 1149 */ |
1005 case OP_Move: { | 1150 case OP_Move: { |
1006 char *zMalloc; /* Holding variable for allocated memory */ | |
1007 int n; /* Number of registers left to copy */ | 1151 int n; /* Number of registers left to copy */ |
1008 int p1; /* Register to copy from */ | 1152 int p1; /* Register to copy from */ |
1009 int p2; /* Register to copy to */ | 1153 int p2; /* Register to copy to */ |
1010 | 1154 |
1011 n = pOp->p3; | 1155 n = pOp->p3; |
1012 p1 = pOp->p1; | 1156 p1 = pOp->p1; |
1013 p2 = pOp->p2; | 1157 p2 = pOp->p2; |
1014 assert( n>0 && p1>0 && p2>0 ); | 1158 assert( n>0 && p1>0 && p2>0 ); |
1015 assert( p1+n<=p2 || p2+n<=p1 ); | 1159 assert( p1+n<=p2 || p2+n<=p1 ); |
1016 | 1160 |
1017 pIn1 = &aMem[p1]; | 1161 pIn1 = &aMem[p1]; |
1018 pOut = &aMem[p2]; | 1162 pOut = &aMem[p2]; |
1019 while( n-- ){ | 1163 do{ |
1020 assert( pOut<=&aMem[p->nMem] ); | 1164 assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); |
1021 assert( pIn1<=&aMem[p->nMem] ); | 1165 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); |
1022 assert( memIsValid(pIn1) ); | 1166 assert( memIsValid(pIn1) ); |
1023 memAboutToChange(p, pOut); | 1167 memAboutToChange(p, pOut); |
1024 zMalloc = pOut->zMalloc; | |
1025 pOut->zMalloc = 0; | |
1026 sqlite3VdbeMemMove(pOut, pIn1); | 1168 sqlite3VdbeMemMove(pOut, pIn1); |
1027 pIn1->zMalloc = zMalloc; | 1169 #ifdef SQLITE_DEBUG |
| 1170 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){ |
| 1171 pOut->pScopyFrom += p1 - pOp->p2; |
| 1172 } |
| 1173 #endif |
1028 REGISTER_TRACE(p2++, pOut); | 1174 REGISTER_TRACE(p2++, pOut); |
1029 pIn1++; | 1175 pIn1++; |
1030 pOut++; | 1176 pOut++; |
| 1177 }while( --n ); |
| 1178 break; |
| 1179 } |
| 1180 |
| 1181 /* Opcode: Copy P1 P2 P3 * * |
| 1182 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] |
| 1183 ** |
| 1184 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. |
| 1185 ** |
| 1186 ** This instruction makes a deep copy of the value. A duplicate |
| 1187 ** is made of any string or blob constant. See also OP_SCopy. |
| 1188 */ |
| 1189 case OP_Copy: { |
| 1190 int n; |
| 1191 |
| 1192 n = pOp->p3; |
| 1193 pIn1 = &aMem[pOp->p1]; |
| 1194 pOut = &aMem[pOp->p2]; |
| 1195 assert( pOut!=pIn1 ); |
| 1196 while( 1 ){ |
| 1197 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); |
| 1198 Deephemeralize(pOut); |
| 1199 #ifdef SQLITE_DEBUG |
| 1200 pOut->pScopyFrom = 0; |
| 1201 #endif |
| 1202 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); |
| 1203 if( (n--)==0 ) break; |
| 1204 pOut++; |
| 1205 pIn1++; |
1031 } | 1206 } |
1032 break; | 1207 break; |
1033 } | 1208 } |
1034 | 1209 |
1035 /* Opcode: Copy P1 P2 * * * | |
1036 ** | |
1037 ** Make a copy of register P1 into register P2. | |
1038 ** | |
1039 ** This instruction makes a deep copy of the value. A duplicate | |
1040 ** is made of any string or blob constant. See also OP_SCopy. | |
1041 */ | |
1042 case OP_Copy: { /* in1, out2 */ | |
1043 pIn1 = &aMem[pOp->p1]; | |
1044 pOut = &aMem[pOp->p2]; | |
1045 assert( pOut!=pIn1 ); | |
1046 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); | |
1047 Deephemeralize(pOut); | |
1048 REGISTER_TRACE(pOp->p2, pOut); | |
1049 break; | |
1050 } | |
1051 | |
1052 /* Opcode: SCopy P1 P2 * * * | 1210 /* Opcode: SCopy P1 P2 * * * |
| 1211 ** Synopsis: r[P2]=r[P1] |
1053 ** | 1212 ** |
1054 ** Make a shallow copy of register P1 into register P2. | 1213 ** Make a shallow copy of register P1 into register P2. |
1055 ** | 1214 ** |
1056 ** This instruction makes a shallow copy of the value. If the value | 1215 ** This instruction makes a shallow copy of the value. If the value |
1057 ** is a string or blob, then the copy is only a pointer to the | 1216 ** is a string or blob, then the copy is only a pointer to the |
1058 ** original and hence if the original changes so will the copy. | 1217 ** original and hence if the original changes so will the copy. |
1059 ** Worse, if the original is deallocated, the copy becomes invalid. | 1218 ** Worse, if the original is deallocated, the copy becomes invalid. |
1060 ** Thus the program must guarantee that the original will not change | 1219 ** Thus the program must guarantee that the original will not change |
1061 ** during the lifetime of the copy. Use OP_Copy to make a complete | 1220 ** during the lifetime of the copy. Use OP_Copy to make a complete |
1062 ** copy. | 1221 ** copy. |
1063 */ | 1222 */ |
1064 case OP_SCopy: { /* in1, out2 */ | 1223 case OP_SCopy: { /* out2 */ |
1065 pIn1 = &aMem[pOp->p1]; | 1224 pIn1 = &aMem[pOp->p1]; |
1066 pOut = &aMem[pOp->p2]; | 1225 pOut = &aMem[pOp->p2]; |
1067 assert( pOut!=pIn1 ); | 1226 assert( pOut!=pIn1 ); |
1068 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); | 1227 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); |
1069 #ifdef SQLITE_DEBUG | 1228 #ifdef SQLITE_DEBUG |
1070 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; | 1229 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; |
1071 #endif | 1230 #endif |
1072 REGISTER_TRACE(pOp->p2, pOut); | |
1073 break; | 1231 break; |
1074 } | 1232 } |
1075 | 1233 |
1076 /* Opcode: ResultRow P1 P2 * * * | 1234 /* Opcode: ResultRow P1 P2 * * * |
| 1235 ** Synopsis: output=r[P1@P2] |
1077 ** | 1236 ** |
1078 ** The registers P1 through P1+P2-1 contain a single row of | 1237 ** The registers P1 through P1+P2-1 contain a single row of |
1079 ** results. This opcode causes the sqlite3_step() call to terminate | 1238 ** results. This opcode causes the sqlite3_step() call to terminate |
1080 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt | 1239 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt |
1081 ** structure to provide access to the top P1 values as the result | 1240 ** structure to provide access to the r(P1)..r(P1+P2-1) values as |
1082 ** row. | 1241 ** the result row. |
1083 */ | 1242 */ |
1084 case OP_ResultRow: { | 1243 case OP_ResultRow: { |
1085 Mem *pMem; | 1244 Mem *pMem; |
1086 int i; | 1245 int i; |
1087 assert( p->nResColumn==pOp->p2 ); | 1246 assert( p->nResColumn==pOp->p2 ); |
1088 assert( pOp->p1>0 ); | 1247 assert( pOp->p1>0 ); |
1089 assert( pOp->p1+pOp->p2<=p->nMem+1 ); | 1248 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 ); |
| 1249 |
| 1250 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
| 1251 /* Run the progress counter just before returning. |
| 1252 */ |
| 1253 if( db->xProgress!=0 |
| 1254 && nVmStep>=nProgressLimit |
| 1255 && db->xProgress(db->pProgressArg)!=0 |
| 1256 ){ |
| 1257 rc = SQLITE_INTERRUPT; |
| 1258 goto vdbe_error_halt; |
| 1259 } |
| 1260 #endif |
1090 | 1261 |
1091 /* If this statement has violated immediate foreign key constraints, do | 1262 /* If this statement has violated immediate foreign key constraints, do |
1092 ** not return the number of rows modified. And do not RELEASE the statement | 1263 ** not return the number of rows modified. And do not RELEASE the statement |
1093 ** transaction. It needs to be rolled back. */ | 1264 ** transaction. It needs to be rolled back. */ |
1094 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ | 1265 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ |
1095 assert( db->flags&SQLITE_CountRows ); | 1266 assert( db->flags&SQLITE_CountRows ); |
1096 assert( p->usesStmtJournal ); | 1267 assert( p->usesStmtJournal ); |
1097 break; | 1268 break; |
1098 } | 1269 } |
1099 | 1270 |
(...skipping 16 matching lines...) Expand all Loading... |
1116 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); | 1287 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); |
1117 if( NEVER(rc!=SQLITE_OK) ){ | 1288 if( NEVER(rc!=SQLITE_OK) ){ |
1118 break; | 1289 break; |
1119 } | 1290 } |
1120 | 1291 |
1121 /* Invalidate all ephemeral cursor row caches */ | 1292 /* Invalidate all ephemeral cursor row caches */ |
1122 p->cacheCtr = (p->cacheCtr + 2)|1; | 1293 p->cacheCtr = (p->cacheCtr + 2)|1; |
1123 | 1294 |
1124 /* Make sure the results of the current row are \000 terminated | 1295 /* Make sure the results of the current row are \000 terminated |
1125 ** and have an assigned type. The results are de-ephemeralized as | 1296 ** and have an assigned type. The results are de-ephemeralized as |
1126 ** as side effect. | 1297 ** a side effect. |
1127 */ | 1298 */ |
1128 pMem = p->pResultSet = &aMem[pOp->p1]; | 1299 pMem = p->pResultSet = &aMem[pOp->p1]; |
1129 for(i=0; i<pOp->p2; i++){ | 1300 for(i=0; i<pOp->p2; i++){ |
1130 assert( memIsValid(&pMem[i]) ); | 1301 assert( memIsValid(&pMem[i]) ); |
1131 Deephemeralize(&pMem[i]); | 1302 Deephemeralize(&pMem[i]); |
1132 assert( (pMem[i].flags & MEM_Ephem)==0 | 1303 assert( (pMem[i].flags & MEM_Ephem)==0 |
1133 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); | 1304 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); |
1134 sqlite3VdbeMemNulTerminate(&pMem[i]); | 1305 sqlite3VdbeMemNulTerminate(&pMem[i]); |
1135 sqlite3VdbeMemStoreType(&pMem[i]); | |
1136 REGISTER_TRACE(pOp->p1+i, &pMem[i]); | 1306 REGISTER_TRACE(pOp->p1+i, &pMem[i]); |
1137 } | 1307 } |
1138 if( db->mallocFailed ) goto no_mem; | 1308 if( db->mallocFailed ) goto no_mem; |
1139 | 1309 |
1140 /* Return SQLITE_ROW | 1310 /* Return SQLITE_ROW |
1141 */ | 1311 */ |
1142 p->pc = pc + 1; | 1312 p->pc = pc + 1; |
1143 rc = SQLITE_ROW; | 1313 rc = SQLITE_ROW; |
1144 goto vdbe_return; | 1314 goto vdbe_return; |
1145 } | 1315 } |
1146 | 1316 |
1147 /* Opcode: Concat P1 P2 P3 * * | 1317 /* Opcode: Concat P1 P2 P3 * * |
| 1318 ** Synopsis: r[P3]=r[P2]+r[P1] |
1148 ** | 1319 ** |
1149 ** Add the text in register P1 onto the end of the text in | 1320 ** Add the text in register P1 onto the end of the text in |
1150 ** register P2 and store the result in register P3. | 1321 ** register P2 and store the result in register P3. |
1151 ** If either the P1 or P2 text are NULL then store NULL in P3. | 1322 ** If either the P1 or P2 text are NULL then store NULL in P3. |
1152 ** | 1323 ** |
1153 ** P3 = P2 || P1 | 1324 ** P3 = P2 || P1 |
1154 ** | 1325 ** |
1155 ** It is illegal for P1 and P3 to be the same register. Sometimes, | 1326 ** It is illegal for P1 and P3 to be the same register. Sometimes, |
1156 ** if P3 is the same register as P2, the implementation is able | 1327 ** if P3 is the same register as P2, the implementation is able |
1157 ** to avoid a memcpy(). | 1328 ** to avoid a memcpy(). |
1158 */ | 1329 */ |
1159 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ | 1330 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ |
1160 i64 nByte; | 1331 i64 nByte; |
1161 | 1332 |
1162 pIn1 = &aMem[pOp->p1]; | 1333 pIn1 = &aMem[pOp->p1]; |
1163 pIn2 = &aMem[pOp->p2]; | 1334 pIn2 = &aMem[pOp->p2]; |
1164 pOut = &aMem[pOp->p3]; | 1335 pOut = &aMem[pOp->p3]; |
1165 assert( pIn1!=pOut ); | 1336 assert( pIn1!=pOut ); |
1166 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ | 1337 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ |
1167 sqlite3VdbeMemSetNull(pOut); | 1338 sqlite3VdbeMemSetNull(pOut); |
1168 break; | 1339 break; |
1169 } | 1340 } |
1170 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; | 1341 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; |
1171 Stringify(pIn1, encoding); | 1342 Stringify(pIn1, encoding); |
1172 Stringify(pIn2, encoding); | 1343 Stringify(pIn2, encoding); |
1173 nByte = pIn1->n + pIn2->n; | 1344 nByte = pIn1->n + pIn2->n; |
1174 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ | 1345 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
1175 goto too_big; | 1346 goto too_big; |
1176 } | 1347 } |
1177 MemSetTypeFlag(pOut, MEM_Str); | |
1178 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ | 1348 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ |
1179 goto no_mem; | 1349 goto no_mem; |
1180 } | 1350 } |
| 1351 MemSetTypeFlag(pOut, MEM_Str); |
1181 if( pOut!=pIn2 ){ | 1352 if( pOut!=pIn2 ){ |
1182 memcpy(pOut->z, pIn2->z, pIn2->n); | 1353 memcpy(pOut->z, pIn2->z, pIn2->n); |
1183 } | 1354 } |
1184 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); | 1355 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); |
1185 pOut->z[nByte] = 0; | 1356 pOut->z[nByte]=0; |
1186 pOut->z[nByte+1] = 0; | 1357 pOut->z[nByte+1] = 0; |
1187 pOut->flags |= MEM_Term; | 1358 pOut->flags |= MEM_Term; |
1188 pOut->n = (int)nByte; | 1359 pOut->n = (int)nByte; |
1189 pOut->enc = encoding; | 1360 pOut->enc = encoding; |
1190 UPDATE_MAX_BLOBSIZE(pOut); | 1361 UPDATE_MAX_BLOBSIZE(pOut); |
1191 break; | 1362 break; |
1192 } | 1363 } |
1193 | 1364 |
1194 /* Opcode: Add P1 P2 P3 * * | 1365 /* Opcode: Add P1 P2 P3 * * |
| 1366 ** Synopsis: r[P3]=r[P1]+r[P2] |
1195 ** | 1367 ** |
1196 ** Add the value in register P1 to the value in register P2 | 1368 ** Add the value in register P1 to the value in register P2 |
1197 ** and store the result in register P3. | 1369 ** and store the result in register P3. |
1198 ** If either input is NULL, the result is NULL. | 1370 ** If either input is NULL, the result is NULL. |
1199 */ | 1371 */ |
1200 /* Opcode: Multiply P1 P2 P3 * * | 1372 /* Opcode: Multiply P1 P2 P3 * * |
| 1373 ** Synopsis: r[P3]=r[P1]*r[P2] |
1201 ** | 1374 ** |
1202 ** | 1375 ** |
1203 ** Multiply the value in register P1 by the value in register P2 | 1376 ** Multiply the value in register P1 by the value in register P2 |
1204 ** and store the result in register P3. | 1377 ** and store the result in register P3. |
1205 ** If either input is NULL, the result is NULL. | 1378 ** If either input is NULL, the result is NULL. |
1206 */ | 1379 */ |
1207 /* Opcode: Subtract P1 P2 P3 * * | 1380 /* Opcode: Subtract P1 P2 P3 * * |
| 1381 ** Synopsis: r[P3]=r[P2]-r[P1] |
1208 ** | 1382 ** |
1209 ** Subtract the value in register P1 from the value in register P2 | 1383 ** Subtract the value in register P1 from the value in register P2 |
1210 ** and store the result in register P3. | 1384 ** and store the result in register P3. |
1211 ** If either input is NULL, the result is NULL. | 1385 ** If either input is NULL, the result is NULL. |
1212 */ | 1386 */ |
1213 /* Opcode: Divide P1 P2 P3 * * | 1387 /* Opcode: Divide P1 P2 P3 * * |
| 1388 ** Synopsis: r[P3]=r[P2]/r[P1] |
1214 ** | 1389 ** |
1215 ** Divide the value in register P1 by the value in register P2 | 1390 ** Divide the value in register P1 by the value in register P2 |
1216 ** and store the result in register P3 (P3=P2/P1). If the value in | 1391 ** and store the result in register P3 (P3=P2/P1). If the value in |
1217 ** register P1 is zero, then the result is NULL. If either input is | 1392 ** register P1 is zero, then the result is NULL. If either input is |
1218 ** NULL, the result is NULL. | 1393 ** NULL, the result is NULL. |
1219 */ | 1394 */ |
1220 /* Opcode: Remainder P1 P2 P3 * * | 1395 /* Opcode: Remainder P1 P2 P3 * * |
| 1396 ** Synopsis: r[P3]=r[P2]%r[P1] |
1221 ** | 1397 ** |
1222 ** Compute the remainder after integer division of the value in | 1398 ** Compute the remainder after integer register P2 is divided by |
1223 ** register P1 by the value in register P2 and store the result in P3. | 1399 ** register P1 and store the result in register P3. |
1224 ** If the value in register P2 is zero the result is NULL. | 1400 ** If the value in register P1 is zero the result is NULL. |
1225 ** If either operand is NULL, the result is NULL. | 1401 ** If either operand is NULL, the result is NULL. |
1226 */ | 1402 */ |
1227 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ | 1403 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ |
1228 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ | 1404 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ |
1229 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ | 1405 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ |
1230 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ | 1406 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ |
1231 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ | 1407 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ |
1232 int flags; /* Combined MEM_* flags from both inputs */ | 1408 char bIntint; /* Started out as two integer operands */ |
| 1409 u16 flags; /* Combined MEM_* flags from both inputs */ |
| 1410 u16 type1; /* Numeric type of left operand */ |
| 1411 u16 type2; /* Numeric type of right operand */ |
1233 i64 iA; /* Integer value of left operand */ | 1412 i64 iA; /* Integer value of left operand */ |
1234 i64 iB; /* Integer value of right operand */ | 1413 i64 iB; /* Integer value of right operand */ |
1235 double rA; /* Real value of left operand */ | 1414 double rA; /* Real value of left operand */ |
1236 double rB; /* Real value of right operand */ | 1415 double rB; /* Real value of right operand */ |
1237 | 1416 |
1238 pIn1 = &aMem[pOp->p1]; | 1417 pIn1 = &aMem[pOp->p1]; |
1239 applyNumericAffinity(pIn1); | 1418 type1 = numericType(pIn1); |
1240 pIn2 = &aMem[pOp->p2]; | 1419 pIn2 = &aMem[pOp->p2]; |
1241 applyNumericAffinity(pIn2); | 1420 type2 = numericType(pIn2); |
1242 pOut = &aMem[pOp->p3]; | 1421 pOut = &aMem[pOp->p3]; |
1243 flags = pIn1->flags | pIn2->flags; | 1422 flags = pIn1->flags | pIn2->flags; |
1244 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; | 1423 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; |
1245 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){ | 1424 if( (type1 & type2 & MEM_Int)!=0 ){ |
1246 iA = pIn1->u.i; | 1425 iA = pIn1->u.i; |
1247 iB = pIn2->u.i; | 1426 iB = pIn2->u.i; |
| 1427 bIntint = 1; |
1248 switch( pOp->opcode ){ | 1428 switch( pOp->opcode ){ |
1249 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; | 1429 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; |
1250 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; | 1430 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; |
1251 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; | 1431 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; |
1252 case OP_Divide: { | 1432 case OP_Divide: { |
1253 if( iA==0 ) goto arithmetic_result_is_null; | 1433 if( iA==0 ) goto arithmetic_result_is_null; |
1254 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; | 1434 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; |
1255 iB /= iA; | 1435 iB /= iA; |
1256 break; | 1436 break; |
1257 } | 1437 } |
1258 default: { | 1438 default: { |
1259 if( iA==0 ) goto arithmetic_result_is_null; | 1439 if( iA==0 ) goto arithmetic_result_is_null; |
1260 if( iA==-1 ) iA = 1; | 1440 if( iA==-1 ) iA = 1; |
1261 iB %= iA; | 1441 iB %= iA; |
1262 break; | 1442 break; |
1263 } | 1443 } |
1264 } | 1444 } |
1265 pOut->u.i = iB; | 1445 pOut->u.i = iB; |
1266 MemSetTypeFlag(pOut, MEM_Int); | 1446 MemSetTypeFlag(pOut, MEM_Int); |
1267 }else{ | 1447 }else{ |
| 1448 bIntint = 0; |
1268 fp_math: | 1449 fp_math: |
1269 rA = sqlite3VdbeRealValue(pIn1); | 1450 rA = sqlite3VdbeRealValue(pIn1); |
1270 rB = sqlite3VdbeRealValue(pIn2); | 1451 rB = sqlite3VdbeRealValue(pIn2); |
1271 switch( pOp->opcode ){ | 1452 switch( pOp->opcode ){ |
1272 case OP_Add: rB += rA; break; | 1453 case OP_Add: rB += rA; break; |
1273 case OP_Subtract: rB -= rA; break; | 1454 case OP_Subtract: rB -= rA; break; |
1274 case OP_Multiply: rB *= rA; break; | 1455 case OP_Multiply: rB *= rA; break; |
1275 case OP_Divide: { | 1456 case OP_Divide: { |
1276 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ | 1457 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
1277 if( rA==(double)0 ) goto arithmetic_result_is_null; | 1458 if( rA==(double)0 ) goto arithmetic_result_is_null; |
1278 rB /= rA; | 1459 rB /= rA; |
1279 break; | 1460 break; |
1280 } | 1461 } |
1281 default: { | 1462 default: { |
1282 iA = (i64)rA; | 1463 iA = (i64)rA; |
1283 iB = (i64)rB; | 1464 iB = (i64)rB; |
1284 if( iA==0 ) goto arithmetic_result_is_null; | 1465 if( iA==0 ) goto arithmetic_result_is_null; |
1285 if( iA==-1 ) iA = 1; | 1466 if( iA==-1 ) iA = 1; |
1286 rB = (double)(iB % iA); | 1467 rB = (double)(iB % iA); |
1287 break; | 1468 break; |
1288 } | 1469 } |
1289 } | 1470 } |
1290 #ifdef SQLITE_OMIT_FLOATING_POINT | 1471 #ifdef SQLITE_OMIT_FLOATING_POINT |
1291 pOut->u.i = rB; | 1472 pOut->u.i = rB; |
1292 MemSetTypeFlag(pOut, MEM_Int); | 1473 MemSetTypeFlag(pOut, MEM_Int); |
1293 #else | 1474 #else |
1294 if( sqlite3IsNaN(rB) ){ | 1475 if( sqlite3IsNaN(rB) ){ |
1295 goto arithmetic_result_is_null; | 1476 goto arithmetic_result_is_null; |
1296 } | 1477 } |
1297 pOut->r = rB; | 1478 pOut->u.r = rB; |
1298 MemSetTypeFlag(pOut, MEM_Real); | 1479 MemSetTypeFlag(pOut, MEM_Real); |
1299 if( (flags & MEM_Real)==0 ){ | 1480 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ |
1300 sqlite3VdbeIntegerAffinity(pOut); | 1481 sqlite3VdbeIntegerAffinity(pOut); |
1301 } | 1482 } |
1302 #endif | 1483 #endif |
1303 } | 1484 } |
1304 break; | 1485 break; |
1305 | 1486 |
1306 arithmetic_result_is_null: | 1487 arithmetic_result_is_null: |
1307 sqlite3VdbeMemSetNull(pOut); | 1488 sqlite3VdbeMemSetNull(pOut); |
1308 break; | 1489 break; |
1309 } | 1490 } |
1310 | 1491 |
1311 /* Opcode: CollSeq * * P4 | 1492 /* Opcode: CollSeq P1 * * P4 |
1312 ** | 1493 ** |
1313 ** P4 is a pointer to a CollSeq struct. If the next call to a user function | 1494 ** P4 is a pointer to a CollSeq struct. If the next call to a user function |
1314 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will | 1495 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will |
1315 ** be returned. This is used by the built-in min(), max() and nullif() | 1496 ** be returned. This is used by the built-in min(), max() and nullif() |
1316 ** functions. | 1497 ** functions. |
1317 ** | 1498 ** |
| 1499 ** If P1 is not zero, then it is a register that a subsequent min() or |
| 1500 ** max() aggregate will set to 1 if the current row is not the minimum or |
| 1501 ** maximum. The P1 register is initialized to 0 by this instruction. |
| 1502 ** |
1318 ** The interface used by the implementation of the aforementioned functions | 1503 ** The interface used by the implementation of the aforementioned functions |
1319 ** to retrieve the collation sequence set by this opcode is not available | 1504 ** to retrieve the collation sequence set by this opcode is not available |
1320 ** publicly, only to user functions defined in func.c. | 1505 ** publicly, only to user functions defined in func.c. |
1321 */ | 1506 */ |
1322 case OP_CollSeq: { | 1507 case OP_CollSeq: { |
1323 assert( pOp->p4type==P4_COLLSEQ ); | 1508 assert( pOp->p4type==P4_COLLSEQ ); |
| 1509 if( pOp->p1 ){ |
| 1510 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); |
| 1511 } |
1324 break; | 1512 break; |
1325 } | 1513 } |
1326 | 1514 |
1327 /* Opcode: Function P1 P2 P3 P4 P5 | 1515 /* Opcode: Function P1 P2 P3 P4 P5 |
| 1516 ** Synopsis: r[P3]=func(r[P2@P5]) |
1328 ** | 1517 ** |
1329 ** Invoke a user function (P4 is a pointer to a Function structure that | 1518 ** Invoke a user function (P4 is a pointer to a Function structure that |
1330 ** defines the function) with P5 arguments taken from register P2 and | 1519 ** defines the function) with P5 arguments taken from register P2 and |
1331 ** successors. The result of the function is stored in register P3. | 1520 ** successors. The result of the function is stored in register P3. |
1332 ** Register P3 must not be one of the function inputs. | 1521 ** Register P3 must not be one of the function inputs. |
1333 ** | 1522 ** |
1334 ** P1 is a 32-bit bitmask indicating whether or not each argument to the | 1523 ** P1 is a 32-bit bitmask indicating whether or not each argument to the |
1335 ** function was determined to be constant at compile time. If the first | 1524 ** function was determined to be constant at compile time. If the first |
1336 ** argument was constant then bit 0 of P1 is set. This is used to determine | 1525 ** argument was constant then bit 0 of P1 is set. This is used to determine |
1337 ** whether meta data associated with a user function argument using the | 1526 ** whether meta data associated with a user function argument using the |
1338 ** sqlite3_set_auxdata() API may be safely retained until the next | 1527 ** sqlite3_set_auxdata() API may be safely retained until the next |
1339 ** invocation of this opcode. | 1528 ** invocation of this opcode. |
1340 ** | 1529 ** |
1341 ** See also: AggStep and AggFinal | 1530 ** See also: AggStep and AggFinal |
1342 */ | 1531 */ |
1343 case OP_Function: { | 1532 case OP_Function: { |
1344 int i; | 1533 int i; |
1345 Mem *pArg; | 1534 Mem *pArg; |
1346 sqlite3_context ctx; | 1535 sqlite3_context ctx; |
1347 sqlite3_value **apVal; | 1536 sqlite3_value **apVal; |
1348 int n; | 1537 int n; |
1349 | 1538 |
1350 n = pOp->p5; | 1539 n = pOp->p5; |
1351 apVal = p->apArg; | 1540 apVal = p->apArg; |
1352 assert( apVal || n==0 ); | 1541 assert( apVal || n==0 ); |
1353 assert( pOp->p3>0 && pOp->p3<=p->nMem ); | 1542 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
1354 pOut = &aMem[pOp->p3]; | 1543 ctx.pOut = &aMem[pOp->p3]; |
1355 memAboutToChange(p, pOut); | 1544 memAboutToChange(p, ctx.pOut); |
1356 | 1545 |
1357 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) ); | 1546 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); |
1358 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); | 1547 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); |
1359 pArg = &aMem[pOp->p2]; | 1548 pArg = &aMem[pOp->p2]; |
1360 for(i=0; i<n; i++, pArg++){ | 1549 for(i=0; i<n; i++, pArg++){ |
1361 assert( memIsValid(pArg) ); | 1550 assert( memIsValid(pArg) ); |
1362 apVal[i] = pArg; | 1551 apVal[i] = pArg; |
1363 Deephemeralize(pArg); | 1552 Deephemeralize(pArg); |
1364 sqlite3VdbeMemStoreType(pArg); | |
1365 REGISTER_TRACE(pOp->p2+i, pArg); | 1553 REGISTER_TRACE(pOp->p2+i, pArg); |
1366 } | 1554 } |
1367 | 1555 |
1368 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); | 1556 assert( pOp->p4type==P4_FUNCDEF ); |
1369 if( pOp->p4type==P4_FUNCDEF ){ | 1557 ctx.pFunc = pOp->p4.pFunc; |
1370 ctx.pFunc = pOp->p4.pFunc; | 1558 ctx.iOp = pc; |
1371 ctx.pVdbeFunc = 0; | 1559 ctx.pVdbe = p; |
1372 }else{ | 1560 MemSetTypeFlag(ctx.pOut, MEM_Null); |
1373 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; | 1561 ctx.fErrorOrAux = 0; |
1374 ctx.pFunc = ctx.pVdbeFunc->pFunc; | 1562 db->lastRowid = lastRowid; |
1375 } | |
1376 | |
1377 ctx.s.flags = MEM_Null; | |
1378 ctx.s.db = db; | |
1379 ctx.s.xDel = 0; | |
1380 ctx.s.zMalloc = 0; | |
1381 | |
1382 /* The output cell may already have a buffer allocated. Move | |
1383 ** the pointer to ctx.s so in case the user-function can use | |
1384 ** the already allocated buffer instead of allocating a new one. | |
1385 */ | |
1386 sqlite3VdbeMemMove(&ctx.s, pOut); | |
1387 MemSetTypeFlag(&ctx.s, MEM_Null); | |
1388 | |
1389 ctx.isError = 0; | |
1390 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ | |
1391 assert( pOp>aOp ); | |
1392 assert( pOp[-1].p4type==P4_COLLSEQ ); | |
1393 assert( pOp[-1].opcode==OP_CollSeq ); | |
1394 ctx.pColl = pOp[-1].p4.pColl; | |
1395 } | |
1396 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ | 1563 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ |
1397 if( db->mallocFailed ){ | 1564 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */ |
1398 /* Even though a malloc() has failed, the implementation of the | |
1399 ** user function may have called an sqlite3_result_XXX() function | |
1400 ** to return a value. The following call releases any resources | |
1401 ** associated with such a value. | |
1402 */ | |
1403 sqlite3VdbeMemRelease(&ctx.s); | |
1404 goto no_mem; | |
1405 } | |
1406 | |
1407 /* If any auxiliary data functions have been called by this user function, | |
1408 ** immediately call the destructor for any non-static values. | |
1409 */ | |
1410 if( ctx.pVdbeFunc ){ | |
1411 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1); | |
1412 pOp->p4.pVdbeFunc = ctx.pVdbeFunc; | |
1413 pOp->p4type = P4_VDBEFUNC; | |
1414 } | |
1415 | 1565 |
1416 /* If the function returned an error, throw an exception */ | 1566 /* If the function returned an error, throw an exception */ |
1417 if( ctx.isError ){ | 1567 if( ctx.fErrorOrAux ){ |
1418 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); | 1568 if( ctx.isError ){ |
1419 rc = ctx.isError; | 1569 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut)); |
| 1570 rc = ctx.isError; |
| 1571 } |
| 1572 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1); |
1420 } | 1573 } |
1421 | 1574 |
1422 /* Copy the result of the function into register P3 */ | 1575 /* Copy the result of the function into register P3 */ |
1423 sqlite3VdbeChangeEncoding(&ctx.s, encoding); | 1576 sqlite3VdbeChangeEncoding(ctx.pOut, encoding); |
1424 sqlite3VdbeMemMove(pOut, &ctx.s); | 1577 if( sqlite3VdbeMemTooBig(ctx.pOut) ){ |
1425 if( sqlite3VdbeMemTooBig(pOut) ){ | |
1426 goto too_big; | 1578 goto too_big; |
1427 } | 1579 } |
1428 | 1580 |
1429 #if 0 | 1581 REGISTER_TRACE(pOp->p3, ctx.pOut); |
1430 /* The app-defined function has done something that as caused this | 1582 UPDATE_MAX_BLOBSIZE(ctx.pOut); |
1431 ** statement to expire. (Perhaps the function called sqlite3_exec() | |
1432 ** with a CREATE TABLE statement.) | |
1433 */ | |
1434 if( p->expired ) rc = SQLITE_ABORT; | |
1435 #endif | |
1436 | |
1437 REGISTER_TRACE(pOp->p3, pOut); | |
1438 UPDATE_MAX_BLOBSIZE(pOut); | |
1439 break; | 1583 break; |
1440 } | 1584 } |
1441 | 1585 |
1442 /* Opcode: BitAnd P1 P2 P3 * * | 1586 /* Opcode: BitAnd P1 P2 P3 * * |
| 1587 ** Synopsis: r[P3]=r[P1]&r[P2] |
1443 ** | 1588 ** |
1444 ** Take the bit-wise AND of the values in register P1 and P2 and | 1589 ** Take the bit-wise AND of the values in register P1 and P2 and |
1445 ** store the result in register P3. | 1590 ** store the result in register P3. |
1446 ** If either input is NULL, the result is NULL. | 1591 ** If either input is NULL, the result is NULL. |
1447 */ | 1592 */ |
1448 /* Opcode: BitOr P1 P2 P3 * * | 1593 /* Opcode: BitOr P1 P2 P3 * * |
| 1594 ** Synopsis: r[P3]=r[P1]|r[P2] |
1449 ** | 1595 ** |
1450 ** Take the bit-wise OR of the values in register P1 and P2 and | 1596 ** Take the bit-wise OR of the values in register P1 and P2 and |
1451 ** store the result in register P3. | 1597 ** store the result in register P3. |
1452 ** If either input is NULL, the result is NULL. | 1598 ** If either input is NULL, the result is NULL. |
1453 */ | 1599 */ |
1454 /* Opcode: ShiftLeft P1 P2 P3 * * | 1600 /* Opcode: ShiftLeft P1 P2 P3 * * |
| 1601 ** Synopsis: r[P3]=r[P2]<<r[P1] |
1455 ** | 1602 ** |
1456 ** Shift the integer value in register P2 to the left by the | 1603 ** Shift the integer value in register P2 to the left by the |
1457 ** number of bits specified by the integer in register P1. | 1604 ** number of bits specified by the integer in register P1. |
1458 ** Store the result in register P3. | 1605 ** Store the result in register P3. |
1459 ** If either input is NULL, the result is NULL. | 1606 ** If either input is NULL, the result is NULL. |
1460 */ | 1607 */ |
1461 /* Opcode: ShiftRight P1 P2 P3 * * | 1608 /* Opcode: ShiftRight P1 P2 P3 * * |
| 1609 ** Synopsis: r[P3]=r[P2]>>r[P1] |
1462 ** | 1610 ** |
1463 ** Shift the integer value in register P2 to the right by the | 1611 ** Shift the integer value in register P2 to the right by the |
1464 ** number of bits specified by the integer in register P1. | 1612 ** number of bits specified by the integer in register P1. |
1465 ** Store the result in register P3. | 1613 ** Store the result in register P3. |
1466 ** If either input is NULL, the result is NULL. | 1614 ** If either input is NULL, the result is NULL. |
1467 */ | 1615 */ |
1468 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ | 1616 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ |
1469 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ | 1617 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ |
1470 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ | 1618 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ |
1471 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ | 1619 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ |
(...skipping 39 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1511 } | 1659 } |
1512 memcpy(&iA, &uA, sizeof(iA)); | 1660 memcpy(&iA, &uA, sizeof(iA)); |
1513 } | 1661 } |
1514 } | 1662 } |
1515 pOut->u.i = iA; | 1663 pOut->u.i = iA; |
1516 MemSetTypeFlag(pOut, MEM_Int); | 1664 MemSetTypeFlag(pOut, MEM_Int); |
1517 break; | 1665 break; |
1518 } | 1666 } |
1519 | 1667 |
1520 /* Opcode: AddImm P1 P2 * * * | 1668 /* Opcode: AddImm P1 P2 * * * |
| 1669 ** Synopsis: r[P1]=r[P1]+P2 |
1521 ** | 1670 ** |
1522 ** Add the constant P2 to the value in register P1. | 1671 ** Add the constant P2 to the value in register P1. |
1523 ** The result is always an integer. | 1672 ** The result is always an integer. |
1524 ** | 1673 ** |
1525 ** To force any register to be an integer, just add 0. | 1674 ** To force any register to be an integer, just add 0. |
1526 */ | 1675 */ |
1527 case OP_AddImm: { /* in1 */ | 1676 case OP_AddImm: { /* in1 */ |
1528 pIn1 = &aMem[pOp->p1]; | 1677 pIn1 = &aMem[pOp->p1]; |
1529 memAboutToChange(p, pIn1); | 1678 memAboutToChange(p, pIn1); |
1530 sqlite3VdbeMemIntegerify(pIn1); | 1679 sqlite3VdbeMemIntegerify(pIn1); |
1531 pIn1->u.i += pOp->p2; | 1680 pIn1->u.i += pOp->p2; |
1532 break; | 1681 break; |
1533 } | 1682 } |
1534 | 1683 |
1535 /* Opcode: MustBeInt P1 P2 * * * | 1684 /* Opcode: MustBeInt P1 P2 * * * |
1536 ** | 1685 ** |
1537 ** Force the value in register P1 to be an integer. If the value | 1686 ** Force the value in register P1 to be an integer. If the value |
1538 ** in P1 is not an integer and cannot be converted into an integer | 1687 ** in P1 is not an integer and cannot be converted into an integer |
1539 ** without data loss, then jump immediately to P2, or if P2==0 | 1688 ** without data loss, then jump immediately to P2, or if P2==0 |
1540 ** raise an SQLITE_MISMATCH exception. | 1689 ** raise an SQLITE_MISMATCH exception. |
1541 */ | 1690 */ |
1542 case OP_MustBeInt: { /* jump, in1 */ | 1691 case OP_MustBeInt: { /* jump, in1 */ |
1543 pIn1 = &aMem[pOp->p1]; | 1692 pIn1 = &aMem[pOp->p1]; |
1544 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); | |
1545 if( (pIn1->flags & MEM_Int)==0 ){ | 1693 if( (pIn1->flags & MEM_Int)==0 ){ |
1546 if( pOp->p2==0 ){ | 1694 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); |
1547 rc = SQLITE_MISMATCH; | 1695 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); |
1548 goto abort_due_to_error; | 1696 if( (pIn1->flags & MEM_Int)==0 ){ |
1549 }else{ | 1697 if( pOp->p2==0 ){ |
1550 pc = pOp->p2 - 1; | 1698 rc = SQLITE_MISMATCH; |
| 1699 goto abort_due_to_error; |
| 1700 }else{ |
| 1701 pc = pOp->p2 - 1; |
| 1702 break; |
| 1703 } |
1551 } | 1704 } |
1552 }else{ | |
1553 MemSetTypeFlag(pIn1, MEM_Int); | |
1554 } | 1705 } |
| 1706 MemSetTypeFlag(pIn1, MEM_Int); |
1555 break; | 1707 break; |
1556 } | 1708 } |
1557 | 1709 |
1558 #ifndef SQLITE_OMIT_FLOATING_POINT | 1710 #ifndef SQLITE_OMIT_FLOATING_POINT |
1559 /* Opcode: RealAffinity P1 * * * * | 1711 /* Opcode: RealAffinity P1 * * * * |
1560 ** | 1712 ** |
1561 ** If register P1 holds an integer convert it to a real value. | 1713 ** If register P1 holds an integer convert it to a real value. |
1562 ** | 1714 ** |
1563 ** This opcode is used when extracting information from a column that | 1715 ** This opcode is used when extracting information from a column that |
1564 ** has REAL affinity. Such column values may still be stored as | 1716 ** has REAL affinity. Such column values may still be stored as |
1565 ** integers, for space efficiency, but after extraction we want them | 1717 ** integers, for space efficiency, but after extraction we want them |
1566 ** to have only a real value. | 1718 ** to have only a real value. |
1567 */ | 1719 */ |
1568 case OP_RealAffinity: { /* in1 */ | 1720 case OP_RealAffinity: { /* in1 */ |
1569 pIn1 = &aMem[pOp->p1]; | 1721 pIn1 = &aMem[pOp->p1]; |
1570 if( pIn1->flags & MEM_Int ){ | 1722 if( pIn1->flags & MEM_Int ){ |
1571 sqlite3VdbeMemRealify(pIn1); | 1723 sqlite3VdbeMemRealify(pIn1); |
1572 } | 1724 } |
1573 break; | 1725 break; |
1574 } | 1726 } |
1575 #endif | 1727 #endif |
1576 | 1728 |
1577 #ifndef SQLITE_OMIT_CAST | 1729 #ifndef SQLITE_OMIT_CAST |
1578 /* Opcode: ToText P1 * * * * | 1730 /* Opcode: Cast P1 P2 * * * |
| 1731 ** Synopsis: affinity(r[P1]) |
1579 ** | 1732 ** |
1580 ** Force the value in register P1 to be text. | 1733 ** Force the value in register P1 to be the type defined by P2. |
1581 ** If the value is numeric, convert it to a string using the | 1734 ** |
1582 ** equivalent of printf(). Blob values are unchanged and | 1735 ** <ul> |
1583 ** are afterwards simply interpreted as text. | 1736 ** <li value="97"> TEXT |
| 1737 ** <li value="98"> BLOB |
| 1738 ** <li value="99"> NUMERIC |
| 1739 ** <li value="100"> INTEGER |
| 1740 ** <li value="101"> REAL |
| 1741 ** </ul> |
1584 ** | 1742 ** |
1585 ** A NULL value is not changed by this routine. It remains NULL. | 1743 ** A NULL value is not changed by this routine. It remains NULL. |
1586 */ | 1744 */ |
1587 case OP_ToText: { /* same as TK_TO_TEXT, in1 */ | 1745 case OP_Cast: { /* in1 */ |
| 1746 assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL ); |
| 1747 testcase( pOp->p2==SQLITE_AFF_TEXT ); |
| 1748 testcase( pOp->p2==SQLITE_AFF_NONE ); |
| 1749 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); |
| 1750 testcase( pOp->p2==SQLITE_AFF_INTEGER ); |
| 1751 testcase( pOp->p2==SQLITE_AFF_REAL ); |
1588 pIn1 = &aMem[pOp->p1]; | 1752 pIn1 = &aMem[pOp->p1]; |
1589 memAboutToChange(p, pIn1); | 1753 memAboutToChange(p, pIn1); |
1590 if( pIn1->flags & MEM_Null ) break; | |
1591 assert( MEM_Str==(MEM_Blob>>3) ); | |
1592 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; | |
1593 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); | |
1594 rc = ExpandBlob(pIn1); | 1754 rc = ExpandBlob(pIn1); |
1595 assert( pIn1->flags & MEM_Str || db->mallocFailed ); | 1755 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); |
1596 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); | |
1597 UPDATE_MAX_BLOBSIZE(pIn1); | 1756 UPDATE_MAX_BLOBSIZE(pIn1); |
1598 break; | 1757 break; |
1599 } | 1758 } |
1600 | |
1601 /* Opcode: ToBlob P1 * * * * | |
1602 ** | |
1603 ** Force the value in register P1 to be a BLOB. | |
1604 ** If the value is numeric, convert it to a string first. | |
1605 ** Strings are simply reinterpreted as blobs with no change | |
1606 ** to the underlying data. | |
1607 ** | |
1608 ** A NULL value is not changed by this routine. It remains NULL. | |
1609 */ | |
1610 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ | |
1611 pIn1 = &aMem[pOp->p1]; | |
1612 if( pIn1->flags & MEM_Null ) break; | |
1613 if( (pIn1->flags & MEM_Blob)==0 ){ | |
1614 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); | |
1615 assert( pIn1->flags & MEM_Str || db->mallocFailed ); | |
1616 MemSetTypeFlag(pIn1, MEM_Blob); | |
1617 }else{ | |
1618 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob); | |
1619 } | |
1620 UPDATE_MAX_BLOBSIZE(pIn1); | |
1621 break; | |
1622 } | |
1623 | |
1624 /* Opcode: ToNumeric P1 * * * * | |
1625 ** | |
1626 ** Force the value in register P1 to be numeric (either an | |
1627 ** integer or a floating-point number.) | |
1628 ** If the value is text or blob, try to convert it to an using the | |
1629 ** equivalent of atoi() or atof() and store 0 if no such conversion | |
1630 ** is possible. | |
1631 ** | |
1632 ** A NULL value is not changed by this routine. It remains NULL. | |
1633 */ | |
1634 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ | |
1635 pIn1 = &aMem[pOp->p1]; | |
1636 sqlite3VdbeMemNumerify(pIn1); | |
1637 break; | |
1638 } | |
1639 #endif /* SQLITE_OMIT_CAST */ | 1759 #endif /* SQLITE_OMIT_CAST */ |
1640 | 1760 |
1641 /* Opcode: ToInt P1 * * * * | |
1642 ** | |
1643 ** Force the value in register P1 to be an integer. If | |
1644 ** The value is currently a real number, drop its fractional part. | |
1645 ** If the value is text or blob, try to convert it to an integer using the | |
1646 ** equivalent of atoi() and store 0 if no such conversion is possible. | |
1647 ** | |
1648 ** A NULL value is not changed by this routine. It remains NULL. | |
1649 */ | |
1650 case OP_ToInt: { /* same as TK_TO_INT, in1 */ | |
1651 pIn1 = &aMem[pOp->p1]; | |
1652 if( (pIn1->flags & MEM_Null)==0 ){ | |
1653 sqlite3VdbeMemIntegerify(pIn1); | |
1654 } | |
1655 break; | |
1656 } | |
1657 | |
1658 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) | |
1659 /* Opcode: ToReal P1 * * * * | |
1660 ** | |
1661 ** Force the value in register P1 to be a floating point number. | |
1662 ** If The value is currently an integer, convert it. | |
1663 ** If the value is text or blob, try to convert it to an integer using the | |
1664 ** equivalent of atoi() and store 0.0 if no such conversion is possible. | |
1665 ** | |
1666 ** A NULL value is not changed by this routine. It remains NULL. | |
1667 */ | |
1668 case OP_ToReal: { /* same as TK_TO_REAL, in1 */ | |
1669 pIn1 = &aMem[pOp->p1]; | |
1670 memAboutToChange(p, pIn1); | |
1671 if( (pIn1->flags & MEM_Null)==0 ){ | |
1672 sqlite3VdbeMemRealify(pIn1); | |
1673 } | |
1674 break; | |
1675 } | |
1676 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */ | |
1677 | |
1678 /* Opcode: Lt P1 P2 P3 P4 P5 | 1761 /* Opcode: Lt P1 P2 P3 P4 P5 |
| 1762 ** Synopsis: if r[P1]<r[P3] goto P2 |
1679 ** | 1763 ** |
1680 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then | 1764 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then |
1681 ** jump to address P2. | 1765 ** jump to address P2. |
1682 ** | 1766 ** |
1683 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or | 1767 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or |
1684 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL | 1768 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL |
1685 ** bit is clear then fall through if either operand is NULL. | 1769 ** bit is clear then fall through if either operand is NULL. |
1686 ** | 1770 ** |
1687 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - | 1771 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - |
1688 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made | 1772 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made |
1689 ** to coerce both inputs according to this affinity before the | 1773 ** to coerce both inputs according to this affinity before the |
1690 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric | 1774 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric |
1691 ** affinity is used. Note that the affinity conversions are stored | 1775 ** affinity is used. Note that the affinity conversions are stored |
1692 ** back into the input registers P1 and P3. So this opcode can cause | 1776 ** back into the input registers P1 and P3. So this opcode can cause |
1693 ** persistent changes to registers P1 and P3. | 1777 ** persistent changes to registers P1 and P3. |
1694 ** | 1778 ** |
1695 ** Once any conversions have taken place, and neither value is NULL, | 1779 ** Once any conversions have taken place, and neither value is NULL, |
1696 ** the values are compared. If both values are blobs then memcmp() is | 1780 ** the values are compared. If both values are blobs then memcmp() is |
1697 ** used to determine the results of the comparison. If both values | 1781 ** used to determine the results of the comparison. If both values |
1698 ** are text, then the appropriate collating function specified in | 1782 ** are text, then the appropriate collating function specified in |
1699 ** P4 is used to do the comparison. If P4 is not specified then | 1783 ** P4 is used to do the comparison. If P4 is not specified then |
1700 ** memcmp() is used to compare text string. If both values are | 1784 ** memcmp() is used to compare text string. If both values are |
1701 ** numeric, then a numeric comparison is used. If the two values | 1785 ** numeric, then a numeric comparison is used. If the two values |
1702 ** are of different types, then numbers are considered less than | 1786 ** are of different types, then numbers are considered less than |
1703 ** strings and strings are considered less than blobs. | 1787 ** strings and strings are considered less than blobs. |
1704 ** | 1788 ** |
1705 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, | 1789 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, |
1706 ** store a boolean result (either 0, or 1, or NULL) in register P2. | 1790 ** store a boolean result (either 0, or 1, or NULL) in register P2. |
| 1791 ** |
| 1792 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered |
| 1793 ** equal to one another, provided that they do not have their MEM_Cleared |
| 1794 ** bit set. |
1707 */ | 1795 */ |
1708 /* Opcode: Ne P1 P2 P3 P4 P5 | 1796 /* Opcode: Ne P1 P2 P3 P4 P5 |
| 1797 ** Synopsis: if r[P1]!=r[P3] goto P2 |
1709 ** | 1798 ** |
1710 ** This works just like the Lt opcode except that the jump is taken if | 1799 ** This works just like the Lt opcode except that the jump is taken if |
1711 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for | 1800 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for |
1712 ** additional information. | 1801 ** additional information. |
1713 ** | 1802 ** |
1714 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either | 1803 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either |
1715 ** true or false and is never NULL. If both operands are NULL then the result | 1804 ** true or false and is never NULL. If both operands are NULL then the result |
1716 ** of comparison is false. If either operand is NULL then the result is true. | 1805 ** of comparison is false. If either operand is NULL then the result is true. |
1717 ** If neither operand is NULL the the result is the same as it would be if | 1806 ** If neither operand is NULL the result is the same as it would be if |
1718 ** the SQLITE_NULLEQ flag were omitted from P5. | 1807 ** the SQLITE_NULLEQ flag were omitted from P5. |
1719 */ | 1808 */ |
1720 /* Opcode: Eq P1 P2 P3 P4 P5 | 1809 /* Opcode: Eq P1 P2 P3 P4 P5 |
| 1810 ** Synopsis: if r[P1]==r[P3] goto P2 |
1721 ** | 1811 ** |
1722 ** This works just like the Lt opcode except that the jump is taken if | 1812 ** This works just like the Lt opcode except that the jump is taken if |
1723 ** the operands in registers P1 and P3 are equal. | 1813 ** the operands in registers P1 and P3 are equal. |
1724 ** See the Lt opcode for additional information. | 1814 ** See the Lt opcode for additional information. |
1725 ** | 1815 ** |
1726 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either | 1816 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either |
1727 ** true or false and is never NULL. If both operands are NULL then the result | 1817 ** true or false and is never NULL. If both operands are NULL then the result |
1728 ** of comparison is true. If either operand is NULL then the result is false. | 1818 ** of comparison is true. If either operand is NULL then the result is false. |
1729 ** If neither operand is NULL the the result is the same as it would be if | 1819 ** If neither operand is NULL the result is the same as it would be if |
1730 ** the SQLITE_NULLEQ flag were omitted from P5. | 1820 ** the SQLITE_NULLEQ flag were omitted from P5. |
1731 */ | 1821 */ |
1732 /* Opcode: Le P1 P2 P3 P4 P5 | 1822 /* Opcode: Le P1 P2 P3 P4 P5 |
| 1823 ** Synopsis: if r[P1]<=r[P3] goto P2 |
1733 ** | 1824 ** |
1734 ** This works just like the Lt opcode except that the jump is taken if | 1825 ** This works just like the Lt opcode except that the jump is taken if |
1735 ** the content of register P3 is less than or equal to the content of | 1826 ** the content of register P3 is less than or equal to the content of |
1736 ** register P1. See the Lt opcode for additional information. | 1827 ** register P1. See the Lt opcode for additional information. |
1737 */ | 1828 */ |
1738 /* Opcode: Gt P1 P2 P3 P4 P5 | 1829 /* Opcode: Gt P1 P2 P3 P4 P5 |
| 1830 ** Synopsis: if r[P1]>r[P3] goto P2 |
1739 ** | 1831 ** |
1740 ** This works just like the Lt opcode except that the jump is taken if | 1832 ** This works just like the Lt opcode except that the jump is taken if |
1741 ** the content of register P3 is greater than the content of | 1833 ** the content of register P3 is greater than the content of |
1742 ** register P1. See the Lt opcode for additional information. | 1834 ** register P1. See the Lt opcode for additional information. |
1743 */ | 1835 */ |
1744 /* Opcode: Ge P1 P2 P3 P4 P5 | 1836 /* Opcode: Ge P1 P2 P3 P4 P5 |
| 1837 ** Synopsis: if r[P1]>=r[P3] goto P2 |
1745 ** | 1838 ** |
1746 ** This works just like the Lt opcode except that the jump is taken if | 1839 ** This works just like the Lt opcode except that the jump is taken if |
1747 ** the content of register P3 is greater than or equal to the content of | 1840 ** the content of register P3 is greater than or equal to the content of |
1748 ** register P1. See the Lt opcode for additional information. | 1841 ** register P1. See the Lt opcode for additional information. |
1749 */ | 1842 */ |
1750 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ | 1843 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ |
1751 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ | 1844 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ |
1752 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ | 1845 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ |
1753 case OP_Le: /* same as TK_LE, jump, in1, in3 */ | 1846 case OP_Le: /* same as TK_LE, jump, in1, in3 */ |
1754 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ | 1847 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ |
1755 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ | 1848 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ |
1756 int res; /* Result of the comparison of pIn1 against pIn3 */ | 1849 int res; /* Result of the comparison of pIn1 against pIn3 */ |
1757 char affinity; /* Affinity to use for comparison */ | 1850 char affinity; /* Affinity to use for comparison */ |
1758 u16 flags1; /* Copy of initial value of pIn1->flags */ | 1851 u16 flags1; /* Copy of initial value of pIn1->flags */ |
1759 u16 flags3; /* Copy of initial value of pIn3->flags */ | 1852 u16 flags3; /* Copy of initial value of pIn3->flags */ |
1760 | 1853 |
1761 pIn1 = &aMem[pOp->p1]; | 1854 pIn1 = &aMem[pOp->p1]; |
1762 pIn3 = &aMem[pOp->p3]; | 1855 pIn3 = &aMem[pOp->p3]; |
1763 flags1 = pIn1->flags; | 1856 flags1 = pIn1->flags; |
1764 flags3 = pIn3->flags; | 1857 flags3 = pIn3->flags; |
1765 if( (pIn1->flags | pIn3->flags)&MEM_Null ){ | 1858 if( (flags1 | flags3)&MEM_Null ){ |
1766 /* One or both operands are NULL */ | 1859 /* One or both operands are NULL */ |
1767 if( pOp->p5 & SQLITE_NULLEQ ){ | 1860 if( pOp->p5 & SQLITE_NULLEQ ){ |
1768 /* If SQLITE_NULLEQ is set (which will only happen if the operator is | 1861 /* If SQLITE_NULLEQ is set (which will only happen if the operator is |
1769 ** OP_Eq or OP_Ne) then take the jump or not depending on whether | 1862 ** OP_Eq or OP_Ne) then take the jump or not depending on whether |
1770 ** or not both operands are null. | 1863 ** or not both operands are null. |
1771 */ | 1864 */ |
1772 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); | 1865 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); |
1773 res = (pIn1->flags & pIn3->flags & MEM_Null)==0; | 1866 assert( (flags1 & MEM_Cleared)==0 ); |
| 1867 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); |
| 1868 if( (flags1&MEM_Null)!=0 |
| 1869 && (flags3&MEM_Null)!=0 |
| 1870 && (flags3&MEM_Cleared)==0 |
| 1871 ){ |
| 1872 res = 0; /* Results are equal */ |
| 1873 }else{ |
| 1874 res = 1; /* Results are not equal */ |
| 1875 } |
1774 }else{ | 1876 }else{ |
1775 /* SQLITE_NULLEQ is clear and at least one operand is NULL, | 1877 /* SQLITE_NULLEQ is clear and at least one operand is NULL, |
1776 ** then the result is always NULL. | 1878 ** then the result is always NULL. |
1777 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. | 1879 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. |
1778 */ | 1880 */ |
1779 if( pOp->p5 & SQLITE_STOREP2 ){ | 1881 if( pOp->p5 & SQLITE_STOREP2 ){ |
1780 pOut = &aMem[pOp->p2]; | 1882 pOut = &aMem[pOp->p2]; |
1781 MemSetTypeFlag(pOut, MEM_Null); | 1883 MemSetTypeFlag(pOut, MEM_Null); |
1782 REGISTER_TRACE(pOp->p2, pOut); | 1884 REGISTER_TRACE(pOp->p2, pOut); |
1783 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){ | 1885 }else{ |
1784 pc = pOp->p2-1; | 1886 VdbeBranchTaken(2,3); |
| 1887 if( pOp->p5 & SQLITE_JUMPIFNULL ){ |
| 1888 pc = pOp->p2-1; |
| 1889 } |
1785 } | 1890 } |
1786 break; | 1891 break; |
1787 } | 1892 } |
1788 }else{ | 1893 }else{ |
1789 /* Neither operand is NULL. Do a comparison. */ | 1894 /* Neither operand is NULL. Do a comparison. */ |
1790 affinity = pOp->p5 & SQLITE_AFF_MASK; | 1895 affinity = pOp->p5 & SQLITE_AFF_MASK; |
1791 if( affinity ){ | 1896 if( affinity>=SQLITE_AFF_NUMERIC ){ |
1792 applyAffinity(pIn1, affinity, encoding); | 1897 if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ |
1793 applyAffinity(pIn3, affinity, encoding); | 1898 applyNumericAffinity(pIn1,0); |
1794 if( db->mallocFailed ) goto no_mem; | 1899 } |
| 1900 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ |
| 1901 applyNumericAffinity(pIn3,0); |
| 1902 } |
| 1903 }else if( affinity==SQLITE_AFF_TEXT ){ |
| 1904 if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){ |
| 1905 testcase( pIn1->flags & MEM_Int ); |
| 1906 testcase( pIn1->flags & MEM_Real ); |
| 1907 sqlite3VdbeMemStringify(pIn1, encoding, 1); |
| 1908 } |
| 1909 if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){ |
| 1910 testcase( pIn3->flags & MEM_Int ); |
| 1911 testcase( pIn3->flags & MEM_Real ); |
| 1912 sqlite3VdbeMemStringify(pIn3, encoding, 1); |
| 1913 } |
1795 } | 1914 } |
1796 | |
1797 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); | 1915 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); |
1798 ExpandBlob(pIn1); | 1916 if( pIn1->flags & MEM_Zero ){ |
1799 ExpandBlob(pIn3); | 1917 sqlite3VdbeMemExpandBlob(pIn1); |
| 1918 flags1 &= ~MEM_Zero; |
| 1919 } |
| 1920 if( pIn3->flags & MEM_Zero ){ |
| 1921 sqlite3VdbeMemExpandBlob(pIn3); |
| 1922 flags3 &= ~MEM_Zero; |
| 1923 } |
| 1924 if( db->mallocFailed ) goto no_mem; |
1800 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); | 1925 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); |
1801 } | 1926 } |
1802 switch( pOp->opcode ){ | 1927 switch( pOp->opcode ){ |
1803 case OP_Eq: res = res==0; break; | 1928 case OP_Eq: res = res==0; break; |
1804 case OP_Ne: res = res!=0; break; | 1929 case OP_Ne: res = res!=0; break; |
1805 case OP_Lt: res = res<0; break; | 1930 case OP_Lt: res = res<0; break; |
1806 case OP_Le: res = res<=0; break; | 1931 case OP_Le: res = res<=0; break; |
1807 case OP_Gt: res = res>0; break; | 1932 case OP_Gt: res = res>0; break; |
1808 default: res = res>=0; break; | 1933 default: res = res>=0; break; |
1809 } | 1934 } |
1810 | 1935 |
1811 if( pOp->p5 & SQLITE_STOREP2 ){ | 1936 if( pOp->p5 & SQLITE_STOREP2 ){ |
1812 pOut = &aMem[pOp->p2]; | 1937 pOut = &aMem[pOp->p2]; |
1813 memAboutToChange(p, pOut); | 1938 memAboutToChange(p, pOut); |
1814 MemSetTypeFlag(pOut, MEM_Int); | 1939 MemSetTypeFlag(pOut, MEM_Int); |
1815 pOut->u.i = res; | 1940 pOut->u.i = res; |
1816 REGISTER_TRACE(pOp->p2, pOut); | 1941 REGISTER_TRACE(pOp->p2, pOut); |
1817 }else if( res ){ | 1942 }else{ |
1818 pc = pOp->p2-1; | 1943 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); |
| 1944 if( res ){ |
| 1945 pc = pOp->p2-1; |
| 1946 } |
1819 } | 1947 } |
1820 | |
1821 /* Undo any changes made by applyAffinity() to the input registers. */ | 1948 /* Undo any changes made by applyAffinity() to the input registers. */ |
1822 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask); | 1949 pIn1->flags = flags1; |
1823 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask); | 1950 pIn3->flags = flags3; |
1824 break; | 1951 break; |
1825 } | 1952 } |
1826 | 1953 |
1827 /* Opcode: Permutation * * * P4 * | 1954 /* Opcode: Permutation * * * P4 * |
1828 ** | 1955 ** |
1829 ** Set the permutation used by the OP_Compare operator to be the array | 1956 ** Set the permutation used by the OP_Compare operator to be the array |
1830 ** of integers in P4. | 1957 ** of integers in P4. |
1831 ** | 1958 ** |
1832 ** The permutation is only valid until the next OP_Permutation, OP_Compare, | 1959 ** The permutation is only valid until the next OP_Compare that has |
1833 ** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur | 1960 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should |
1834 ** immediately prior to the OP_Compare. | 1961 ** occur immediately prior to the OP_Compare. |
1835 */ | 1962 */ |
1836 case OP_Permutation: { | 1963 case OP_Permutation: { |
1837 assert( pOp->p4type==P4_INTARRAY ); | 1964 assert( pOp->p4type==P4_INTARRAY ); |
1838 assert( pOp->p4.ai ); | 1965 assert( pOp->p4.ai ); |
1839 aPermute = pOp->p4.ai; | 1966 aPermute = pOp->p4.ai; |
1840 break; | 1967 break; |
1841 } | 1968 } |
1842 | 1969 |
1843 /* Opcode: Compare P1 P2 P3 P4 * | 1970 /* Opcode: Compare P1 P2 P3 P4 P5 |
| 1971 ** Synopsis: r[P1@P3] <-> r[P2@P3] |
1844 ** | 1972 ** |
1845 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this | 1973 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this |
1846 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of | 1974 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of |
1847 ** the comparison for use by the next OP_Jump instruct. | 1975 ** the comparison for use by the next OP_Jump instruct. |
1848 ** | 1976 ** |
| 1977 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is |
| 1978 ** determined by the most recent OP_Permutation operator. If the |
| 1979 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential |
| 1980 ** order. |
| 1981 ** |
1849 ** P4 is a KeyInfo structure that defines collating sequences and sort | 1982 ** P4 is a KeyInfo structure that defines collating sequences and sort |
1850 ** orders for the comparison. The permutation applies to registers | 1983 ** orders for the comparison. The permutation applies to registers |
1851 ** only. The KeyInfo elements are used sequentially. | 1984 ** only. The KeyInfo elements are used sequentially. |
1852 ** | 1985 ** |
1853 ** The comparison is a sort comparison, so NULLs compare equal, | 1986 ** The comparison is a sort comparison, so NULLs compare equal, |
1854 ** NULLs are less than numbers, numbers are less than strings, | 1987 ** NULLs are less than numbers, numbers are less than strings, |
1855 ** and strings are less than blobs. | 1988 ** and strings are less than blobs. |
1856 */ | 1989 */ |
1857 case OP_Compare: { | 1990 case OP_Compare: { |
1858 int n; | 1991 int n; |
1859 int i; | 1992 int i; |
1860 int p1; | 1993 int p1; |
1861 int p2; | 1994 int p2; |
1862 const KeyInfo *pKeyInfo; | 1995 const KeyInfo *pKeyInfo; |
1863 int idx; | 1996 int idx; |
1864 CollSeq *pColl; /* Collating sequence to use on this term */ | 1997 CollSeq *pColl; /* Collating sequence to use on this term */ |
1865 int bRev; /* True for DESCENDING sort order */ | 1998 int bRev; /* True for DESCENDING sort order */ |
1866 | 1999 |
| 2000 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; |
1867 n = pOp->p3; | 2001 n = pOp->p3; |
1868 pKeyInfo = pOp->p4.pKeyInfo; | 2002 pKeyInfo = pOp->p4.pKeyInfo; |
1869 assert( n>0 ); | 2003 assert( n>0 ); |
1870 assert( pKeyInfo!=0 ); | 2004 assert( pKeyInfo!=0 ); |
1871 p1 = pOp->p1; | 2005 p1 = pOp->p1; |
1872 p2 = pOp->p2; | 2006 p2 = pOp->p2; |
1873 #if SQLITE_DEBUG | 2007 #if SQLITE_DEBUG |
1874 if( aPermute ){ | 2008 if( aPermute ){ |
1875 int k, mx = 0; | 2009 int k, mx = 0; |
1876 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; | 2010 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; |
1877 assert( p1>0 && p1+mx<=p->nMem+1 ); | 2011 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 ); |
1878 assert( p2>0 && p2+mx<=p->nMem+1 ); | 2012 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 ); |
1879 }else{ | 2013 }else{ |
1880 assert( p1>0 && p1+n<=p->nMem+1 ); | 2014 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 ); |
1881 assert( p2>0 && p2+n<=p->nMem+1 ); | 2015 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 ); |
1882 } | 2016 } |
1883 #endif /* SQLITE_DEBUG */ | 2017 #endif /* SQLITE_DEBUG */ |
1884 for(i=0; i<n; i++){ | 2018 for(i=0; i<n; i++){ |
1885 idx = aPermute ? aPermute[i] : i; | 2019 idx = aPermute ? aPermute[i] : i; |
1886 assert( memIsValid(&aMem[p1+idx]) ); | 2020 assert( memIsValid(&aMem[p1+idx]) ); |
1887 assert( memIsValid(&aMem[p2+idx]) ); | 2021 assert( memIsValid(&aMem[p2+idx]) ); |
1888 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); | 2022 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); |
1889 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); | 2023 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); |
1890 assert( i<pKeyInfo->nField ); | 2024 assert( i<pKeyInfo->nField ); |
1891 pColl = pKeyInfo->aColl[i]; | 2025 pColl = pKeyInfo->aColl[i]; |
1892 bRev = pKeyInfo->aSortOrder[i]; | 2026 bRev = pKeyInfo->aSortOrder[i]; |
1893 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); | 2027 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); |
1894 if( iCompare ){ | 2028 if( iCompare ){ |
1895 if( bRev ) iCompare = -iCompare; | 2029 if( bRev ) iCompare = -iCompare; |
1896 break; | 2030 break; |
1897 } | 2031 } |
1898 } | 2032 } |
1899 aPermute = 0; | 2033 aPermute = 0; |
1900 break; | 2034 break; |
1901 } | 2035 } |
1902 | 2036 |
1903 /* Opcode: Jump P1 P2 P3 * * | 2037 /* Opcode: Jump P1 P2 P3 * * |
1904 ** | 2038 ** |
1905 ** Jump to the instruction at address P1, P2, or P3 depending on whether | 2039 ** Jump to the instruction at address P1, P2, or P3 depending on whether |
1906 ** in the most recent OP_Compare instruction the P1 vector was less than | 2040 ** in the most recent OP_Compare instruction the P1 vector was less than |
1907 ** equal to, or greater than the P2 vector, respectively. | 2041 ** equal to, or greater than the P2 vector, respectively. |
1908 */ | 2042 */ |
1909 case OP_Jump: { /* jump */ | 2043 case OP_Jump: { /* jump */ |
1910 if( iCompare<0 ){ | 2044 if( iCompare<0 ){ |
1911 pc = pOp->p1 - 1; | 2045 pc = pOp->p1 - 1; VdbeBranchTaken(0,3); |
1912 }else if( iCompare==0 ){ | 2046 }else if( iCompare==0 ){ |
1913 pc = pOp->p2 - 1; | 2047 pc = pOp->p2 - 1; VdbeBranchTaken(1,3); |
1914 }else{ | 2048 }else{ |
1915 pc = pOp->p3 - 1; | 2049 pc = pOp->p3 - 1; VdbeBranchTaken(2,3); |
1916 } | 2050 } |
1917 break; | 2051 break; |
1918 } | 2052 } |
1919 | 2053 |
1920 /* Opcode: And P1 P2 P3 * * | 2054 /* Opcode: And P1 P2 P3 * * |
| 2055 ** Synopsis: r[P3]=(r[P1] && r[P2]) |
1921 ** | 2056 ** |
1922 ** Take the logical AND of the values in registers P1 and P2 and | 2057 ** Take the logical AND of the values in registers P1 and P2 and |
1923 ** write the result into register P3. | 2058 ** write the result into register P3. |
1924 ** | 2059 ** |
1925 ** If either P1 or P2 is 0 (false) then the result is 0 even if | 2060 ** If either P1 or P2 is 0 (false) then the result is 0 even if |
1926 ** the other input is NULL. A NULL and true or two NULLs give | 2061 ** the other input is NULL. A NULL and true or two NULLs give |
1927 ** a NULL output. | 2062 ** a NULL output. |
1928 */ | 2063 */ |
1929 /* Opcode: Or P1 P2 P3 * * | 2064 /* Opcode: Or P1 P2 P3 * * |
| 2065 ** Synopsis: r[P3]=(r[P1] || r[P2]) |
1930 ** | 2066 ** |
1931 ** Take the logical OR of the values in register P1 and P2 and | 2067 ** Take the logical OR of the values in register P1 and P2 and |
1932 ** store the answer in register P3. | 2068 ** store the answer in register P3. |
1933 ** | 2069 ** |
1934 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) | 2070 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) |
1935 ** even if the other input is NULL. A NULL and false or two NULLs | 2071 ** even if the other input is NULL. A NULL and false or two NULLs |
1936 ** give a NULL output. | 2072 ** give a NULL output. |
1937 */ | 2073 */ |
1938 case OP_And: /* same as TK_AND, in1, in2, out3 */ | 2074 case OP_And: /* same as TK_AND, in1, in2, out3 */ |
1939 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ | 2075 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ |
(...skipping 23 matching lines...) Expand all Loading... |
1963 if( v1==2 ){ | 2099 if( v1==2 ){ |
1964 MemSetTypeFlag(pOut, MEM_Null); | 2100 MemSetTypeFlag(pOut, MEM_Null); |
1965 }else{ | 2101 }else{ |
1966 pOut->u.i = v1; | 2102 pOut->u.i = v1; |
1967 MemSetTypeFlag(pOut, MEM_Int); | 2103 MemSetTypeFlag(pOut, MEM_Int); |
1968 } | 2104 } |
1969 break; | 2105 break; |
1970 } | 2106 } |
1971 | 2107 |
1972 /* Opcode: Not P1 P2 * * * | 2108 /* Opcode: Not P1 P2 * * * |
| 2109 ** Synopsis: r[P2]= !r[P1] |
1973 ** | 2110 ** |
1974 ** Interpret the value in register P1 as a boolean value. Store the | 2111 ** Interpret the value in register P1 as a boolean value. Store the |
1975 ** boolean complement in register P2. If the value in register P1 is | 2112 ** boolean complement in register P2. If the value in register P1 is |
1976 ** NULL, then a NULL is stored in P2. | 2113 ** NULL, then a NULL is stored in P2. |
1977 */ | 2114 */ |
1978 case OP_Not: { /* same as TK_NOT, in1, out2 */ | 2115 case OP_Not: { /* same as TK_NOT, in1, out2 */ |
1979 pIn1 = &aMem[pOp->p1]; | 2116 pIn1 = &aMem[pOp->p1]; |
1980 pOut = &aMem[pOp->p2]; | 2117 pOut = &aMem[pOp->p2]; |
1981 if( pIn1->flags & MEM_Null ){ | 2118 sqlite3VdbeMemSetNull(pOut); |
1982 sqlite3VdbeMemSetNull(pOut); | 2119 if( (pIn1->flags & MEM_Null)==0 ){ |
1983 }else{ | 2120 pOut->flags = MEM_Int; |
1984 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1)); | 2121 pOut->u.i = !sqlite3VdbeIntValue(pIn1); |
1985 } | 2122 } |
1986 break; | 2123 break; |
1987 } | 2124 } |
1988 | 2125 |
1989 /* Opcode: BitNot P1 P2 * * * | 2126 /* Opcode: BitNot P1 P2 * * * |
| 2127 ** Synopsis: r[P1]= ~r[P1] |
1990 ** | 2128 ** |
1991 ** Interpret the content of register P1 as an integer. Store the | 2129 ** Interpret the content of register P1 as an integer. Store the |
1992 ** ones-complement of the P1 value into register P2. If P1 holds | 2130 ** ones-complement of the P1 value into register P2. If P1 holds |
1993 ** a NULL then store a NULL in P2. | 2131 ** a NULL then store a NULL in P2. |
1994 */ | 2132 */ |
1995 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ | 2133 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ |
1996 pIn1 = &aMem[pOp->p1]; | 2134 pIn1 = &aMem[pOp->p1]; |
1997 pOut = &aMem[pOp->p2]; | 2135 pOut = &aMem[pOp->p2]; |
1998 if( pIn1->flags & MEM_Null ){ | 2136 sqlite3VdbeMemSetNull(pOut); |
1999 sqlite3VdbeMemSetNull(pOut); | 2137 if( (pIn1->flags & MEM_Null)==0 ){ |
| 2138 pOut->flags = MEM_Int; |
| 2139 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); |
| 2140 } |
| 2141 break; |
| 2142 } |
| 2143 |
| 2144 /* Opcode: Once P1 P2 * * * |
| 2145 ** |
| 2146 ** Check the "once" flag number P1. If it is set, jump to instruction P2. |
| 2147 ** Otherwise, set the flag and fall through to the next instruction. |
| 2148 ** In other words, this opcode causes all following opcodes up through P2 |
| 2149 ** (but not including P2) to run just once and to be skipped on subsequent |
| 2150 ** times through the loop. |
| 2151 ** |
| 2152 ** All "once" flags are initially cleared whenever a prepared statement |
| 2153 ** first begins to run. |
| 2154 */ |
| 2155 case OP_Once: { /* jump */ |
| 2156 assert( pOp->p1<p->nOnceFlag ); |
| 2157 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); |
| 2158 if( p->aOnceFlag[pOp->p1] ){ |
| 2159 pc = pOp->p2-1; |
2000 }else{ | 2160 }else{ |
2001 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1)); | 2161 p->aOnceFlag[pOp->p1] = 1; |
2002 } | 2162 } |
2003 break; | 2163 break; |
2004 } | 2164 } |
2005 | 2165 |
2006 /* Opcode: If P1 P2 P3 * * | 2166 /* Opcode: If P1 P2 P3 * * |
2007 ** | 2167 ** |
2008 ** Jump to P2 if the value in register P1 is true. The value is | 2168 ** Jump to P2 if the value in register P1 is true. The value |
2009 ** is considered true if it is numeric and non-zero. If the value | 2169 ** is considered true if it is numeric and non-zero. If the value |
2010 ** in P1 is NULL then take the jump if P3 is true. | 2170 ** in P1 is NULL then take the jump if and only if P3 is non-zero. |
2011 */ | 2171 */ |
2012 /* Opcode: IfNot P1 P2 P3 * * | 2172 /* Opcode: IfNot P1 P2 P3 * * |
2013 ** | 2173 ** |
2014 ** Jump to P2 if the value in register P1 is False. The value is | 2174 ** Jump to P2 if the value in register P1 is False. The value |
2015 ** is considered true if it has a numeric value of zero. If the value | 2175 ** is considered false if it has a numeric value of zero. If the value |
2016 ** in P1 is NULL then take the jump if P3 is true. | 2176 ** in P1 is NULL then take the jump if and only if P3 is non-zero. |
2017 */ | 2177 */ |
2018 case OP_If: /* jump, in1 */ | 2178 case OP_If: /* jump, in1 */ |
2019 case OP_IfNot: { /* jump, in1 */ | 2179 case OP_IfNot: { /* jump, in1 */ |
2020 int c; | 2180 int c; |
2021 pIn1 = &aMem[pOp->p1]; | 2181 pIn1 = &aMem[pOp->p1]; |
2022 if( pIn1->flags & MEM_Null ){ | 2182 if( pIn1->flags & MEM_Null ){ |
2023 c = pOp->p3; | 2183 c = pOp->p3; |
2024 }else{ | 2184 }else{ |
2025 #ifdef SQLITE_OMIT_FLOATING_POINT | 2185 #ifdef SQLITE_OMIT_FLOATING_POINT |
2026 c = sqlite3VdbeIntValue(pIn1)!=0; | 2186 c = sqlite3VdbeIntValue(pIn1)!=0; |
2027 #else | 2187 #else |
2028 c = sqlite3VdbeRealValue(pIn1)!=0.0; | 2188 c = sqlite3VdbeRealValue(pIn1)!=0.0; |
2029 #endif | 2189 #endif |
2030 if( pOp->opcode==OP_IfNot ) c = !c; | 2190 if( pOp->opcode==OP_IfNot ) c = !c; |
2031 } | 2191 } |
| 2192 VdbeBranchTaken(c!=0, 2); |
2032 if( c ){ | 2193 if( c ){ |
2033 pc = pOp->p2-1; | 2194 pc = pOp->p2-1; |
2034 } | 2195 } |
2035 break; | 2196 break; |
2036 } | 2197 } |
2037 | 2198 |
2038 /* Opcode: IsNull P1 P2 * * * | 2199 /* Opcode: IsNull P1 P2 * * * |
| 2200 ** Synopsis: if r[P1]==NULL goto P2 |
2039 ** | 2201 ** |
2040 ** Jump to P2 if the value in register P1 is NULL. | 2202 ** Jump to P2 if the value in register P1 is NULL. |
2041 */ | 2203 */ |
2042 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ | 2204 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ |
2043 pIn1 = &aMem[pOp->p1]; | 2205 pIn1 = &aMem[pOp->p1]; |
| 2206 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); |
2044 if( (pIn1->flags & MEM_Null)!=0 ){ | 2207 if( (pIn1->flags & MEM_Null)!=0 ){ |
2045 pc = pOp->p2 - 1; | 2208 pc = pOp->p2 - 1; |
2046 } | 2209 } |
2047 break; | 2210 break; |
2048 } | 2211 } |
2049 | 2212 |
2050 /* Opcode: NotNull P1 P2 * * * | 2213 /* Opcode: NotNull P1 P2 * * * |
| 2214 ** Synopsis: if r[P1]!=NULL goto P2 |
2051 ** | 2215 ** |
2052 ** Jump to P2 if the value in register P1 is not NULL. | 2216 ** Jump to P2 if the value in register P1 is not NULL. |
2053 */ | 2217 */ |
2054 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ | 2218 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ |
2055 pIn1 = &aMem[pOp->p1]; | 2219 pIn1 = &aMem[pOp->p1]; |
| 2220 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); |
2056 if( (pIn1->flags & MEM_Null)==0 ){ | 2221 if( (pIn1->flags & MEM_Null)==0 ){ |
2057 pc = pOp->p2 - 1; | 2222 pc = pOp->p2 - 1; |
2058 } | 2223 } |
2059 break; | 2224 break; |
2060 } | 2225 } |
2061 | 2226 |
2062 /* Opcode: Column P1 P2 P3 P4 P5 | 2227 /* Opcode: Column P1 P2 P3 P4 P5 |
| 2228 ** Synopsis: r[P3]=PX |
2063 ** | 2229 ** |
2064 ** Interpret the data that cursor P1 points to as a structure built using | 2230 ** Interpret the data that cursor P1 points to as a structure built using |
2065 ** the MakeRecord instruction. (See the MakeRecord opcode for additional | 2231 ** the MakeRecord instruction. (See the MakeRecord opcode for additional |
2066 ** information about the format of the data.) Extract the P2-th column | 2232 ** information about the format of the data.) Extract the P2-th column |
2067 ** from this record. If there are less that (P2+1) | 2233 ** from this record. If there are less that (P2+1) |
2068 ** values in the record, extract a NULL. | 2234 ** values in the record, extract a NULL. |
2069 ** | 2235 ** |
2070 ** The value extracted is stored in register P3. | 2236 ** The value extracted is stored in register P3. |
2071 ** | 2237 ** |
2072 ** If the column contains fewer than P2 fields, then extract a NULL. Or, | 2238 ** If the column contains fewer than P2 fields, then extract a NULL. Or, |
2073 ** if the P4 argument is a P4_MEM use the value of the P4 argument as | 2239 ** if the P4 argument is a P4_MEM use the value of the P4 argument as |
2074 ** the result. | 2240 ** the result. |
2075 ** | 2241 ** |
2076 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, | 2242 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, |
2077 ** then the cache of the cursor is reset prior to extracting the column. | 2243 ** then the cache of the cursor is reset prior to extracting the column. |
2078 ** The first OP_Column against a pseudo-table after the value of the content | 2244 ** The first OP_Column against a pseudo-table after the value of the content |
2079 ** register has changed should have this bit set. | 2245 ** register has changed should have this bit set. |
| 2246 ** |
| 2247 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when |
| 2248 ** the result is guaranteed to only be used as the argument of a length() |
| 2249 ** or typeof() function, respectively. The loading of large blobs can be |
| 2250 ** skipped for length() and all content loading can be skipped for typeof(). |
2080 */ | 2251 */ |
2081 case OP_Column: { | 2252 case OP_Column: { |
2082 u32 payloadSize; /* Number of bytes in the record */ | |
2083 i64 payloadSize64; /* Number of bytes in the record */ | 2253 i64 payloadSize64; /* Number of bytes in the record */ |
2084 int p1; /* P1 value of the opcode */ | |
2085 int p2; /* column number to retrieve */ | 2254 int p2; /* column number to retrieve */ |
2086 VdbeCursor *pC; /* The VDBE cursor */ | 2255 VdbeCursor *pC; /* The VDBE cursor */ |
2087 char *zRec; /* Pointer to complete record-data */ | |
2088 BtCursor *pCrsr; /* The BTree cursor */ | 2256 BtCursor *pCrsr; /* The BTree cursor */ |
2089 u32 *aType; /* aType[i] holds the numeric type of the i-th column */ | |
2090 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ | 2257 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ |
2091 int nField; /* number of fields in the record */ | |
2092 int len; /* The length of the serialized data for the column */ | 2258 int len; /* The length of the serialized data for the column */ |
2093 int i; /* Loop counter */ | 2259 int i; /* Loop counter */ |
2094 char *zData; /* Part of the record being decoded */ | |
2095 Mem *pDest; /* Where to write the extracted value */ | 2260 Mem *pDest; /* Where to write the extracted value */ |
2096 Mem sMem; /* For storing the record being decoded */ | 2261 Mem sMem; /* For storing the record being decoded */ |
2097 u8 *zIdx; /* Index into header */ | 2262 const u8 *zData; /* Part of the record being decoded */ |
2098 u8 *zEndHdr; /* Pointer to first byte after the header */ | 2263 const u8 *zHdr; /* Next unparsed byte of the header */ |
| 2264 const u8 *zEndHdr; /* Pointer to first byte after the header */ |
2099 u32 offset; /* Offset into the data */ | 2265 u32 offset; /* Offset into the data */ |
2100 u32 szField; /* Number of bytes in the content of a field */ | 2266 u32 szField; /* Number of bytes in the content of a field */ |
2101 int szHdr; /* Size of the header size field at start of record */ | 2267 u32 avail; /* Number of bytes of available data */ |
2102 int avail; /* Number of bytes of available data */ | 2268 u32 t; /* A type code from the record header */ |
| 2269 u16 fx; /* pDest->flags value */ |
2103 Mem *pReg; /* PseudoTable input register */ | 2270 Mem *pReg; /* PseudoTable input register */ |
2104 | 2271 |
2105 | |
2106 p1 = pOp->p1; | |
2107 p2 = pOp->p2; | 2272 p2 = pOp->p2; |
2108 pC = 0; | 2273 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
2109 memset(&sMem, 0, sizeof(sMem)); | |
2110 assert( p1<p->nCursor ); | |
2111 assert( pOp->p3>0 && pOp->p3<=p->nMem ); | |
2112 pDest = &aMem[pOp->p3]; | 2274 pDest = &aMem[pOp->p3]; |
2113 memAboutToChange(p, pDest); | 2275 memAboutToChange(p, pDest); |
2114 MemSetTypeFlag(pDest, MEM_Null); | 2276 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
2115 zRec = 0; | 2277 pC = p->apCsr[pOp->p1]; |
2116 | |
2117 /* This block sets the variable payloadSize to be the total number of | |
2118 ** bytes in the record. | |
2119 ** | |
2120 ** zRec is set to be the complete text of the record if it is available. | |
2121 ** The complete record text is always available for pseudo-tables | |
2122 ** If the record is stored in a cursor, the complete record text | |
2123 ** might be available in the pC->aRow cache. Or it might not be. | |
2124 ** If the data is unavailable, zRec is set to NULL. | |
2125 ** | |
2126 ** We also compute the number of columns in the record. For cursors, | |
2127 ** the number of columns is stored in the VdbeCursor.nField element. | |
2128 */ | |
2129 pC = p->apCsr[p1]; | |
2130 assert( pC!=0 ); | 2278 assert( pC!=0 ); |
| 2279 assert( p2<pC->nField ); |
| 2280 aOffset = pC->aOffset; |
2131 #ifndef SQLITE_OMIT_VIRTUALTABLE | 2281 #ifndef SQLITE_OMIT_VIRTUALTABLE |
2132 assert( pC->pVtabCursor==0 ); | 2282 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */ |
2133 #endif | 2283 #endif |
2134 pCrsr = pC->pCursor; | 2284 pCrsr = pC->pCursor; |
2135 if( pCrsr!=0 ){ | 2285 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */ |
2136 /* The record is stored in a B-Tree */ | 2286 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */ |
2137 rc = sqlite3VdbeCursorMoveto(pC); | 2287 |
2138 if( rc ) goto abort_due_to_error; | 2288 /* If the cursor cache is stale, bring it up-to-date */ |
| 2289 rc = sqlite3VdbeCursorMoveto(pC); |
| 2290 if( rc ) goto abort_due_to_error; |
| 2291 if( pC->cacheStatus!=p->cacheCtr ){ |
2139 if( pC->nullRow ){ | 2292 if( pC->nullRow ){ |
2140 payloadSize = 0; | 2293 if( pCrsr==0 ){ |
2141 }else if( pC->cacheStatus==p->cacheCtr ){ | 2294 assert( pC->pseudoTableReg>0 ); |
2142 payloadSize = pC->payloadSize; | 2295 pReg = &aMem[pC->pseudoTableReg]; |
2143 zRec = (char*)pC->aRow; | 2296 assert( pReg->flags & MEM_Blob ); |
2144 }else if( pC->isIndex ){ | 2297 assert( memIsValid(pReg) ); |
2145 assert( sqlite3BtreeCursorIsValid(pCrsr) ); | 2298 pC->payloadSize = pC->szRow = avail = pReg->n; |
2146 rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64); | 2299 pC->aRow = (u8*)pReg->z; |
2147 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ | 2300 }else{ |
2148 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the | 2301 sqlite3VdbeMemSetNull(pDest); |
2149 ** payload size, so it is impossible for payloadSize64 to be | 2302 goto op_column_out; |
2150 ** larger than 32 bits. */ | 2303 } |
2151 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); | |
2152 payloadSize = (u32)payloadSize64; | |
2153 }else{ | 2304 }else{ |
2154 assert( sqlite3BtreeCursorIsValid(pCrsr) ); | 2305 assert( pCrsr ); |
2155 rc = sqlite3BtreeDataSize(pCrsr, &payloadSize); | 2306 if( pC->isTable==0 ){ |
2156 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ | 2307 assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
2157 } | 2308 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); |
2158 }else if( pC->pseudoTableReg>0 ){ | 2309 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ |
2159 pReg = &aMem[pC->pseudoTableReg]; | 2310 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the |
2160 assert( pReg->flags & MEM_Blob ); | 2311 ** payload size, so it is impossible for payloadSize64 to be |
2161 assert( memIsValid(pReg) ); | 2312 ** larger than 32 bits. */ |
2162 payloadSize = pReg->n; | 2313 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); |
2163 zRec = pReg->z; | 2314 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail); |
2164 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr; | 2315 pC->payloadSize = (u32)payloadSize64; |
2165 assert( payloadSize==0 || zRec!=0 ); | |
2166 }else{ | |
2167 /* Consider the row to be NULL */ | |
2168 payloadSize = 0; | |
2169 } | |
2170 | |
2171 /* If payloadSize is 0, then just store a NULL */ | |
2172 if( payloadSize==0 ){ | |
2173 assert( pDest->flags&MEM_Null ); | |
2174 goto op_column_out; | |
2175 } | |
2176 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 ); | |
2177 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ | |
2178 goto too_big; | |
2179 } | |
2180 | |
2181 nField = pC->nField; | |
2182 assert( p2<nField ); | |
2183 | |
2184 /* Read and parse the table header. Store the results of the parse | |
2185 ** into the record header cache fields of the cursor. | |
2186 */ | |
2187 aType = pC->aType; | |
2188 if( pC->cacheStatus==p->cacheCtr ){ | |
2189 aOffset = pC->aOffset; | |
2190 }else{ | |
2191 assert(aType); | |
2192 avail = 0; | |
2193 pC->aOffset = aOffset = &aType[nField]; | |
2194 pC->payloadSize = payloadSize; | |
2195 pC->cacheStatus = p->cacheCtr; | |
2196 | |
2197 /* Figure out how many bytes are in the header */ | |
2198 if( zRec ){ | |
2199 zData = zRec; | |
2200 }else{ | |
2201 if( pC->isIndex ){ | |
2202 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail); | |
2203 }else{ | 2316 }else{ |
2204 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail); | 2317 assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
| 2318 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize); |
| 2319 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ |
| 2320 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail); |
2205 } | 2321 } |
2206 /* If KeyFetch()/DataFetch() managed to get the entire payload, | 2322 assert( avail<=65536 ); /* Maximum page size is 64KiB */ |
2207 ** save the payload in the pC->aRow cache. That will save us from | 2323 if( pC->payloadSize <= (u32)avail ){ |
2208 ** having to make additional calls to fetch the content portion of | 2324 pC->szRow = pC->payloadSize; |
2209 ** the record. | |
2210 */ | |
2211 assert( avail>=0 ); | |
2212 if( payloadSize <= (u32)avail ){ | |
2213 zRec = zData; | |
2214 pC->aRow = (u8*)zData; | |
2215 }else{ | 2325 }else{ |
2216 pC->aRow = 0; | 2326 pC->szRow = avail; |
| 2327 } |
| 2328 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 2329 goto too_big; |
2217 } | 2330 } |
2218 } | 2331 } |
2219 /* The following assert is true in all cases accept when | 2332 pC->cacheStatus = p->cacheCtr; |
2220 ** the database file has been corrupted externally. | 2333 pC->iHdrOffset = getVarint32(pC->aRow, offset); |
2221 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */ | 2334 pC->nHdrParsed = 0; |
2222 szHdr = getVarint32((u8*)zData, offset); | 2335 aOffset[0] = offset; |
2223 | 2336 |
2224 /* Make sure a corrupt database has not given us an oversize header. | 2337 /* Make sure a corrupt database has not given us an oversize header. |
2225 ** Do this now to avoid an oversize memory allocation. | 2338 ** Do this now to avoid an oversize memory allocation. |
2226 ** | 2339 ** |
2227 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte | 2340 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte |
2228 ** types use so much data space that there can only be 4096 and 32 of | 2341 ** types use so much data space that there can only be 4096 and 32 of |
2229 ** them, respectively. So the maximum header length results from a | 2342 ** them, respectively. So the maximum header length results from a |
2230 ** 3-byte type for each of the maximum of 32768 columns plus three | 2343 ** 3-byte type for each of the maximum of 32768 columns plus three |
2231 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. | 2344 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. |
2232 */ | 2345 */ |
2233 if( offset > 98307 ){ | 2346 if( offset > 98307 || offset > pC->payloadSize ){ |
2234 rc = SQLITE_CORRUPT_BKPT; | 2347 rc = SQLITE_CORRUPT_BKPT; |
2235 goto op_column_out; | 2348 goto op_column_error; |
2236 } | 2349 } |
2237 | 2350 |
2238 /* Compute in len the number of bytes of data we need to read in order | 2351 if( avail<offset ){ |
2239 ** to get nField type values. offset is an upper bound on this. But | 2352 /* pC->aRow does not have to hold the entire row, but it does at least |
2240 ** nField might be significantly less than the true number of columns | 2353 ** need to cover the header of the record. If pC->aRow does not contain |
2241 ** in the table, and in that case, 5*nField+3 might be smaller than offset. | 2354 ** the complete header, then set it to zero, forcing the header to be |
2242 ** We want to minimize len in order to limit the size of the memory | 2355 ** dynamically allocated. */ |
2243 ** allocation, especially if a corrupt database file has caused offset | 2356 pC->aRow = 0; |
2244 ** to be oversized. Offset is limited to 98307 above. But 98307 might | 2357 pC->szRow = 0; |
2245 ** still exceed Robson memory allocation limits on some configurations. | 2358 } |
2246 ** On systems that cannot tolerate large memory allocations, nField*5+3 | 2359 |
2247 ** will likely be much smaller since nField will likely be less than | 2360 /* The following goto is an optimization. It can be omitted and |
2248 ** 20 or so. This insures that Robson memory allocation limits are | 2361 ** everything will still work. But OP_Column is measurably faster |
2249 ** not exceeded even for corrupt database files. | 2362 ** by skipping the subsequent conditional, which is always true. |
2250 */ | 2363 */ |
2251 len = nField*5 + 3; | 2364 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ |
2252 if( len > (int)offset ) len = (int)offset; | 2365 goto op_column_read_header; |
| 2366 } |
2253 | 2367 |
2254 /* The KeyFetch() or DataFetch() above are fast and will get the entire | 2368 /* Make sure at least the first p2+1 entries of the header have been |
2255 ** record header in most cases. But they will fail to get the complete | 2369 ** parsed and valid information is in aOffset[] and pC->aType[]. |
2256 ** record header if the record header does not fit on a single page | 2370 */ |
2257 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to | 2371 if( pC->nHdrParsed<=p2 ){ |
2258 ** acquire the complete header text. | 2372 /* If there is more header available for parsing in the record, try |
| 2373 ** to extract additional fields up through the p2+1-th field |
2259 */ | 2374 */ |
2260 if( !zRec && avail<len ){ | 2375 op_column_read_header: |
2261 sMem.flags = 0; | 2376 if( pC->iHdrOffset<aOffset[0] ){ |
2262 sMem.db = 0; | 2377 /* Make sure zData points to enough of the record to cover the header. */ |
2263 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem); | 2378 if( pC->aRow==0 ){ |
2264 if( rc!=SQLITE_OK ){ | 2379 memset(&sMem, 0, sizeof(sMem)); |
2265 goto op_column_out; | 2380 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], |
| 2381 !pC->isTable, &sMem); |
| 2382 if( rc!=SQLITE_OK ){ |
| 2383 goto op_column_error; |
| 2384 } |
| 2385 zData = (u8*)sMem.z; |
| 2386 }else{ |
| 2387 zData = pC->aRow; |
2266 } | 2388 } |
2267 zData = sMem.z; | 2389 |
2268 } | 2390 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ |
2269 zEndHdr = (u8 *)&zData[len]; | 2391 i = pC->nHdrParsed; |
2270 zIdx = (u8 *)&zData[szHdr]; | 2392 offset = aOffset[i]; |
2271 | 2393 zHdr = zData + pC->iHdrOffset; |
2272 /* Scan the header and use it to fill in the aType[] and aOffset[] | 2394 zEndHdr = zData + aOffset[0]; |
2273 ** arrays. aType[i] will contain the type integer for the i-th | 2395 assert( i<=p2 && zHdr<zEndHdr ); |
2274 ** column and aOffset[i] will contain the offset from the beginning | 2396 do{ |
2275 ** of the record to the start of the data for the i-th column | 2397 if( zHdr[0]<0x80 ){ |
2276 */ | 2398 t = zHdr[0]; |
2277 for(i=0; i<nField; i++){ | 2399 zHdr++; |
2278 if( zIdx<zEndHdr ){ | 2400 }else{ |
2279 aOffset[i] = offset; | 2401 zHdr += sqlite3GetVarint32(zHdr, &t); |
2280 zIdx += getVarint32(zIdx, aType[i]); | 2402 } |
2281 szField = sqlite3VdbeSerialTypeLen(aType[i]); | 2403 pC->aType[i] = t; |
| 2404 szField = sqlite3VdbeSerialTypeLen(t); |
2282 offset += szField; | 2405 offset += szField; |
2283 if( offset<szField ){ /* True if offset overflows */ | 2406 if( offset<szField ){ /* True if offset overflows */ |
2284 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ | 2407 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ |
2285 break; | 2408 break; |
2286 } | 2409 } |
2287 }else{ | 2410 i++; |
2288 /* If i is less that nField, then there are less fields in this | 2411 aOffset[i] = offset; |
2289 ** record than SetNumColumns indicated there are columns in the | 2412 }while( i<=p2 && zHdr<zEndHdr ); |
2290 ** table. Set the offset for any extra columns not present in | 2413 pC->nHdrParsed = i; |
2291 ** the record to 0. This tells code below to store a NULL | 2414 pC->iHdrOffset = (u32)(zHdr - zData); |
2292 ** instead of deserializing a value from the record. | 2415 if( pC->aRow==0 ){ |
2293 */ | 2416 sqlite3VdbeMemRelease(&sMem); |
2294 aOffset[i] = 0; | 2417 sMem.flags = MEM_Null; |
| 2418 } |
| 2419 |
| 2420 /* The record is corrupt if any of the following are true: |
| 2421 ** (1) the bytes of the header extend past the declared header size |
| 2422 ** (zHdr>zEndHdr) |
| 2423 ** (2) the entire header was used but not all data was used |
| 2424 ** (zHdr==zEndHdr && offset!=pC->payloadSize) |
| 2425 ** (3) the end of the data extends beyond the end of the record. |
| 2426 ** (offset > pC->payloadSize) |
| 2427 */ |
| 2428 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize)) |
| 2429 || (offset > pC->payloadSize) |
| 2430 ){ |
| 2431 rc = SQLITE_CORRUPT_BKPT; |
| 2432 goto op_column_error; |
2295 } | 2433 } |
2296 } | 2434 } |
2297 sqlite3VdbeMemRelease(&sMem); | |
2298 sMem.flags = MEM_Null; | |
2299 | 2435 |
2300 /* If we have read more header data than was contained in the header, | 2436 /* If after trying to extra new entries from the header, nHdrParsed is |
2301 ** or if the end of the last field appears to be past the end of the | 2437 ** still not up to p2, that means that the record has fewer than p2 |
2302 ** record, or if the end of the last field appears to be before the end | 2438 ** columns. So the result will be either the default value or a NULL. |
2303 ** of the record (when all fields present), then we must be dealing | |
2304 ** with a corrupt database. | |
2305 */ | 2439 */ |
2306 if( (zIdx > zEndHdr) || (offset > payloadSize) | 2440 if( pC->nHdrParsed<=p2 ){ |
2307 || (zIdx==zEndHdr && offset!=payloadSize) ){ | 2441 if( pOp->p4type==P4_MEM ){ |
2308 rc = SQLITE_CORRUPT_BKPT; | 2442 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); |
| 2443 }else{ |
| 2444 sqlite3VdbeMemSetNull(pDest); |
| 2445 } |
2309 goto op_column_out; | 2446 goto op_column_out; |
2310 } | 2447 } |
2311 } | 2448 } |
2312 | 2449 |
2313 /* Get the column information. If aOffset[p2] is non-zero, then | 2450 /* Extract the content for the p2+1-th column. Control can only |
2314 ** deserialize the value from the record. If aOffset[p2] is zero, | 2451 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are |
2315 ** then there are not enough fields in the record to satisfy the | 2452 ** all valid. |
2316 ** request. In this case, set the value NULL or to P4 if P4 is | |
2317 ** a pointer to a Mem object. | |
2318 */ | 2453 */ |
2319 if( aOffset[p2] ){ | 2454 assert( p2<pC->nHdrParsed ); |
2320 assert( rc==SQLITE_OK ); | 2455 assert( rc==SQLITE_OK ); |
2321 if( zRec ){ | 2456 assert( sqlite3VdbeCheckMemInvariants(pDest) ); |
2322 sqlite3VdbeMemReleaseExternal(pDest); | 2457 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest); |
2323 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest); | 2458 t = pC->aType[p2]; |
| 2459 if( pC->szRow>=aOffset[p2+1] ){ |
| 2460 /* This is the common case where the desired content fits on the original |
| 2461 ** page - where the content is not on an overflow page */ |
| 2462 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest); |
| 2463 }else{ |
| 2464 /* This branch happens only when content is on overflow pages */ |
| 2465 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 |
| 2466 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) |
| 2467 || (len = sqlite3VdbeSerialTypeLen(t))==0 |
| 2468 ){ |
| 2469 /* Content is irrelevant for |
| 2470 ** 1. the typeof() function, |
| 2471 ** 2. the length(X) function if X is a blob, and |
| 2472 ** 3. if the content length is zero. |
| 2473 ** So we might as well use bogus content rather than reading |
| 2474 ** content from disk. NULL will work for the value for strings |
| 2475 ** and blobs and whatever is in the payloadSize64 variable |
| 2476 ** will work for everything else. */ |
| 2477 sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest); |
2324 }else{ | 2478 }else{ |
2325 len = sqlite3VdbeSerialTypeLen(aType[p2]); | 2479 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable, |
2326 sqlite3VdbeMemMove(&sMem, pDest); | 2480 pDest); |
2327 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem); | |
2328 if( rc!=SQLITE_OK ){ | 2481 if( rc!=SQLITE_OK ){ |
2329 goto op_column_out; | 2482 goto op_column_error; |
2330 } | 2483 } |
2331 zData = sMem.z; | 2484 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); |
2332 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest); | 2485 pDest->flags &= ~MEM_Ephem; |
2333 } | |
2334 pDest->enc = encoding; | |
2335 }else{ | |
2336 if( pOp->p4type==P4_MEM ){ | |
2337 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); | |
2338 }else{ | |
2339 assert( pDest->flags&MEM_Null ); | |
2340 } | 2486 } |
2341 } | 2487 } |
2342 | 2488 pDest->enc = encoding; |
2343 /* If we dynamically allocated space to hold the data (in the | |
2344 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that | |
2345 ** dynamically allocated space over to the pDest structure. | |
2346 ** This prevents a memory copy. | |
2347 */ | |
2348 if( sMem.zMalloc ){ | |
2349 assert( sMem.z==sMem.zMalloc ); | |
2350 assert( !(pDest->flags & MEM_Dyn) ); | |
2351 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z ); | |
2352 pDest->flags &= ~(MEM_Ephem|MEM_Static); | |
2353 pDest->flags |= MEM_Term; | |
2354 pDest->z = sMem.z; | |
2355 pDest->zMalloc = sMem.zMalloc; | |
2356 } | |
2357 | |
2358 rc = sqlite3VdbeMemMakeWriteable(pDest); | |
2359 | 2489 |
2360 op_column_out: | 2490 op_column_out: |
| 2491 /* If the column value is an ephemeral string, go ahead and persist |
| 2492 ** that string in case the cursor moves before the column value is |
| 2493 ** used. The following code does the equivalent of Deephemeralize() |
| 2494 ** but does it faster. */ |
| 2495 if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){ |
| 2496 fx = pDest->flags & (MEM_Str|MEM_Blob); |
| 2497 assert( fx!=0 ); |
| 2498 zData = (const u8*)pDest->z; |
| 2499 len = pDest->n; |
| 2500 if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem; |
| 2501 memcpy(pDest->z, zData, len); |
| 2502 pDest->z[len] = 0; |
| 2503 pDest->z[len+1] = 0; |
| 2504 pDest->flags = fx|MEM_Term; |
| 2505 } |
| 2506 op_column_error: |
2361 UPDATE_MAX_BLOBSIZE(pDest); | 2507 UPDATE_MAX_BLOBSIZE(pDest); |
2362 REGISTER_TRACE(pOp->p3, pDest); | 2508 REGISTER_TRACE(pOp->p3, pDest); |
2363 break; | 2509 break; |
2364 } | 2510 } |
2365 | 2511 |
2366 /* Opcode: Affinity P1 P2 * P4 * | 2512 /* Opcode: Affinity P1 P2 * P4 * |
| 2513 ** Synopsis: affinity(r[P1@P2]) |
2367 ** | 2514 ** |
2368 ** Apply affinities to a range of P2 registers starting with P1. | 2515 ** Apply affinities to a range of P2 registers starting with P1. |
2369 ** | 2516 ** |
2370 ** P4 is a string that is P2 characters long. The nth character of the | 2517 ** P4 is a string that is P2 characters long. The nth character of the |
2371 ** string indicates the column affinity that should be used for the nth | 2518 ** string indicates the column affinity that should be used for the nth |
2372 ** memory cell in the range. | 2519 ** memory cell in the range. |
2373 */ | 2520 */ |
2374 case OP_Affinity: { | 2521 case OP_Affinity: { |
2375 const char *zAffinity; /* The affinity to be applied */ | 2522 const char *zAffinity; /* The affinity to be applied */ |
2376 char cAff; /* A single character of affinity */ | 2523 char cAff; /* A single character of affinity */ |
2377 | 2524 |
2378 zAffinity = pOp->p4.z; | 2525 zAffinity = pOp->p4.z; |
2379 assert( zAffinity!=0 ); | 2526 assert( zAffinity!=0 ); |
2380 assert( zAffinity[pOp->p2]==0 ); | 2527 assert( zAffinity[pOp->p2]==0 ); |
2381 pIn1 = &aMem[pOp->p1]; | 2528 pIn1 = &aMem[pOp->p1]; |
2382 while( (cAff = *(zAffinity++))!=0 ){ | 2529 while( (cAff = *(zAffinity++))!=0 ){ |
2383 assert( pIn1 <= &p->aMem[p->nMem] ); | 2530 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] ); |
2384 assert( memIsValid(pIn1) ); | 2531 assert( memIsValid(pIn1) ); |
2385 ExpandBlob(pIn1); | |
2386 applyAffinity(pIn1, cAff, encoding); | 2532 applyAffinity(pIn1, cAff, encoding); |
2387 pIn1++; | 2533 pIn1++; |
2388 } | 2534 } |
2389 break; | 2535 break; |
2390 } | 2536 } |
2391 | 2537 |
2392 /* Opcode: MakeRecord P1 P2 P3 P4 * | 2538 /* Opcode: MakeRecord P1 P2 P3 P4 * |
| 2539 ** Synopsis: r[P3]=mkrec(r[P1@P2]) |
2393 ** | 2540 ** |
2394 ** Convert P2 registers beginning with P1 into the [record format] | 2541 ** Convert P2 registers beginning with P1 into the [record format] |
2395 ** use as a data record in a database table or as a key | 2542 ** use as a data record in a database table or as a key |
2396 ** in an index. The OP_Column opcode can decode the record later. | 2543 ** in an index. The OP_Column opcode can decode the record later. |
2397 ** | 2544 ** |
2398 ** P4 may be a string that is P2 characters long. The nth character of the | 2545 ** P4 may be a string that is P2 characters long. The nth character of the |
2399 ** string indicates the column affinity that should be used for the nth | 2546 ** string indicates the column affinity that should be used for the nth |
2400 ** field of the index key. | 2547 ** field of the index key. |
2401 ** | 2548 ** |
2402 ** The mapping from character to affinity is given by the SQLITE_AFF_ | 2549 ** The mapping from character to affinity is given by the SQLITE_AFF_ |
2403 ** macros defined in sqliteInt.h. | 2550 ** macros defined in sqliteInt.h. |
2404 ** | 2551 ** |
2405 ** If P4 is NULL then all index fields have the affinity NONE. | 2552 ** If P4 is NULL then all index fields have the affinity NONE. |
2406 */ | 2553 */ |
2407 case OP_MakeRecord: { | 2554 case OP_MakeRecord: { |
2408 u8 *zNewRecord; /* A buffer to hold the data for the new record */ | 2555 u8 *zNewRecord; /* A buffer to hold the data for the new record */ |
2409 Mem *pRec; /* The new record */ | 2556 Mem *pRec; /* The new record */ |
2410 u64 nData; /* Number of bytes of data space */ | 2557 u64 nData; /* Number of bytes of data space */ |
2411 int nHdr; /* Number of bytes of header space */ | 2558 int nHdr; /* Number of bytes of header space */ |
2412 i64 nByte; /* Data space required for this record */ | 2559 i64 nByte; /* Data space required for this record */ |
2413 int nZero; /* Number of zero bytes at the end of the record */ | 2560 int nZero; /* Number of zero bytes at the end of the record */ |
2414 int nVarint; /* Number of bytes in a varint */ | 2561 int nVarint; /* Number of bytes in a varint */ |
2415 u32 serial_type; /* Type field */ | 2562 u32 serial_type; /* Type field */ |
2416 Mem *pData0; /* First field to be combined into the record */ | 2563 Mem *pData0; /* First field to be combined into the record */ |
2417 Mem *pLast; /* Last field of the record */ | 2564 Mem *pLast; /* Last field of the record */ |
2418 int nField; /* Number of fields in the record */ | 2565 int nField; /* Number of fields in the record */ |
2419 char *zAffinity; /* The affinity string for the record */ | 2566 char *zAffinity; /* The affinity string for the record */ |
2420 int file_format; /* File format to use for encoding */ | 2567 int file_format; /* File format to use for encoding */ |
2421 int i; /* Space used in zNewRecord[] */ | 2568 int i; /* Space used in zNewRecord[] header */ |
| 2569 int j; /* Space used in zNewRecord[] content */ |
2422 int len; /* Length of a field */ | 2570 int len; /* Length of a field */ |
2423 | 2571 |
2424 /* Assuming the record contains N fields, the record format looks | 2572 /* Assuming the record contains N fields, the record format looks |
2425 ** like this: | 2573 ** like this: |
2426 ** | 2574 ** |
2427 ** ------------------------------------------------------------------------ | 2575 ** ------------------------------------------------------------------------ |
2428 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | | 2576 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | |
2429 ** ------------------------------------------------------------------------ | 2577 ** ------------------------------------------------------------------------ |
2430 ** | 2578 ** |
2431 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 | 2579 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 |
2432 ** and so froth. | 2580 ** and so forth. |
2433 ** | 2581 ** |
2434 ** Each type field is a varint representing the serial type of the | 2582 ** Each type field is a varint representing the serial type of the |
2435 ** corresponding data element (see sqlite3VdbeSerialType()). The | 2583 ** corresponding data element (see sqlite3VdbeSerialType()). The |
2436 ** hdr-size field is also a varint which is the offset from the beginning | 2584 ** hdr-size field is also a varint which is the offset from the beginning |
2437 ** of the record to data0. | 2585 ** of the record to data0. |
2438 */ | 2586 */ |
2439 nData = 0; /* Number of bytes of data space */ | 2587 nData = 0; /* Number of bytes of data space */ |
2440 nHdr = 0; /* Number of bytes of header space */ | 2588 nHdr = 0; /* Number of bytes of header space */ |
2441 nZero = 0; /* Number of zero bytes at the end of the record */ | 2589 nZero = 0; /* Number of zero bytes at the end of the record */ |
2442 nField = pOp->p1; | 2590 nField = pOp->p1; |
2443 zAffinity = pOp->p4.z; | 2591 zAffinity = pOp->p4.z; |
2444 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 ); | 2592 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 ); |
2445 pData0 = &aMem[nField]; | 2593 pData0 = &aMem[nField]; |
2446 nField = pOp->p2; | 2594 nField = pOp->p2; |
2447 pLast = &pData0[nField-1]; | 2595 pLast = &pData0[nField-1]; |
2448 file_format = p->minWriteFileFormat; | 2596 file_format = p->minWriteFileFormat; |
2449 | 2597 |
2450 /* Identify the output register */ | 2598 /* Identify the output register */ |
2451 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); | 2599 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); |
2452 pOut = &aMem[pOp->p3]; | 2600 pOut = &aMem[pOp->p3]; |
2453 memAboutToChange(p, pOut); | 2601 memAboutToChange(p, pOut); |
2454 | 2602 |
| 2603 /* Apply the requested affinity to all inputs |
| 2604 */ |
| 2605 assert( pData0<=pLast ); |
| 2606 if( zAffinity ){ |
| 2607 pRec = pData0; |
| 2608 do{ |
| 2609 applyAffinity(pRec++, *(zAffinity++), encoding); |
| 2610 assert( zAffinity[0]==0 || pRec<=pLast ); |
| 2611 }while( zAffinity[0] ); |
| 2612 } |
| 2613 |
2455 /* Loop through the elements that will make up the record to figure | 2614 /* Loop through the elements that will make up the record to figure |
2456 ** out how much space is required for the new record. | 2615 ** out how much space is required for the new record. |
2457 */ | 2616 */ |
2458 for(pRec=pData0; pRec<=pLast; pRec++){ | 2617 pRec = pLast; |
| 2618 do{ |
2459 assert( memIsValid(pRec) ); | 2619 assert( memIsValid(pRec) ); |
2460 if( zAffinity ){ | 2620 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format); |
2461 applyAffinity(pRec, zAffinity[pRec-pData0], encoding); | 2621 len = sqlite3VdbeSerialTypeLen(serial_type); |
| 2622 if( pRec->flags & MEM_Zero ){ |
| 2623 if( nData ){ |
| 2624 sqlite3VdbeMemExpandBlob(pRec); |
| 2625 }else{ |
| 2626 nZero += pRec->u.nZero; |
| 2627 len -= pRec->u.nZero; |
| 2628 } |
2462 } | 2629 } |
2463 if( pRec->flags&MEM_Zero && pRec->n>0 ){ | |
2464 sqlite3VdbeMemExpandBlob(pRec); | |
2465 } | |
2466 serial_type = sqlite3VdbeSerialType(pRec, file_format); | |
2467 len = sqlite3VdbeSerialTypeLen(serial_type); | |
2468 nData += len; | 2630 nData += len; |
2469 nHdr += sqlite3VarintLen(serial_type); | 2631 testcase( serial_type==127 ); |
2470 if( pRec->flags & MEM_Zero ){ | 2632 testcase( serial_type==128 ); |
2471 /* Only pure zero-filled BLOBs can be input to this Opcode. | 2633 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); |
2472 ** We do not allow blobs with a prefix and a zero-filled tail. */ | 2634 }while( (--pRec)>=pData0 ); |
2473 nZero += pRec->u.nZero; | |
2474 }else if( len ){ | |
2475 nZero = 0; | |
2476 } | |
2477 } | |
2478 | 2635 |
2479 /* Add the initial header varint and total the size */ | 2636 /* Add the initial header varint and total the size */ |
2480 nHdr += nVarint = sqlite3VarintLen(nHdr); | 2637 testcase( nHdr==126 ); |
2481 if( nVarint<sqlite3VarintLen(nHdr) ){ | 2638 testcase( nHdr==127 ); |
2482 nHdr++; | 2639 if( nHdr<=126 ){ |
| 2640 /* The common case */ |
| 2641 nHdr += 1; |
| 2642 }else{ |
| 2643 /* Rare case of a really large header */ |
| 2644 nVarint = sqlite3VarintLen(nHdr); |
| 2645 nHdr += nVarint; |
| 2646 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; |
2483 } | 2647 } |
2484 nByte = nHdr+nData-nZero; | 2648 nByte = nHdr+nData; |
2485 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ | 2649 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
2486 goto too_big; | 2650 goto too_big; |
2487 } | 2651 } |
2488 | 2652 |
2489 /* Make sure the output register has a buffer large enough to store | 2653 /* Make sure the output register has a buffer large enough to store |
2490 ** the new record. The output register (pOp->p3) is not allowed to | 2654 ** the new record. The output register (pOp->p3) is not allowed to |
2491 ** be one of the input registers (because the following call to | 2655 ** be one of the input registers (because the following call to |
2492 ** sqlite3VdbeMemGrow() could clobber the value before it is used). | 2656 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). |
2493 */ | 2657 */ |
2494 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){ | 2658 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ |
2495 goto no_mem; | 2659 goto no_mem; |
2496 } | 2660 } |
2497 zNewRecord = (u8 *)pOut->z; | 2661 zNewRecord = (u8 *)pOut->z; |
2498 | 2662 |
2499 /* Write the record */ | 2663 /* Write the record */ |
2500 i = putVarint32(zNewRecord, nHdr); | 2664 i = putVarint32(zNewRecord, nHdr); |
2501 for(pRec=pData0; pRec<=pLast; pRec++){ | 2665 j = nHdr; |
2502 serial_type = sqlite3VdbeSerialType(pRec, file_format); | 2666 assert( pData0<=pLast ); |
2503 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ | 2667 pRec = pData0; |
2504 } | 2668 do{ |
2505 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */ | 2669 serial_type = pRec->uTemp; |
2506 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format); | 2670 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ |
2507 } | 2671 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ |
2508 assert( i==nByte ); | 2672 }while( (++pRec)<=pLast ); |
| 2673 assert( i==nHdr ); |
| 2674 assert( j==nByte ); |
2509 | 2675 |
2510 assert( pOp->p3>0 && pOp->p3<=p->nMem ); | 2676 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
2511 pOut->n = (int)nByte; | 2677 pOut->n = (int)nByte; |
2512 pOut->flags = MEM_Blob | MEM_Dyn; | 2678 pOut->flags = MEM_Blob; |
2513 pOut->xDel = 0; | |
2514 if( nZero ){ | 2679 if( nZero ){ |
2515 pOut->u.nZero = nZero; | 2680 pOut->u.nZero = nZero; |
2516 pOut->flags |= MEM_Zero; | 2681 pOut->flags |= MEM_Zero; |
2517 } | 2682 } |
2518 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ | 2683 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ |
2519 REGISTER_TRACE(pOp->p3, pOut); | 2684 REGISTER_TRACE(pOp->p3, pOut); |
2520 UPDATE_MAX_BLOBSIZE(pOut); | 2685 UPDATE_MAX_BLOBSIZE(pOut); |
2521 break; | 2686 break; |
2522 } | 2687 } |
2523 | 2688 |
2524 /* Opcode: Count P1 P2 * * * | 2689 /* Opcode: Count P1 P2 * * * |
| 2690 ** Synopsis: r[P2]=count() |
2525 ** | 2691 ** |
2526 ** Store the number of entries (an integer value) in the table or index | 2692 ** Store the number of entries (an integer value) in the table or index |
2527 ** opened by cursor P1 in register P2 | 2693 ** opened by cursor P1 in register P2 |
2528 */ | 2694 */ |
2529 #ifndef SQLITE_OMIT_BTREECOUNT | 2695 #ifndef SQLITE_OMIT_BTREECOUNT |
2530 case OP_Count: { /* out2-prerelease */ | 2696 case OP_Count: { /* out2-prerelease */ |
2531 i64 nEntry; | 2697 i64 nEntry; |
2532 BtCursor *pCrsr; | 2698 BtCursor *pCrsr; |
2533 | 2699 |
2534 pCrsr = p->apCsr[pOp->p1]->pCursor; | 2700 pCrsr = p->apCsr[pOp->p1]->pCursor; |
2535 if( pCrsr ){ | 2701 assert( pCrsr ); |
2536 rc = sqlite3BtreeCount(pCrsr, &nEntry); | 2702 nEntry = 0; /* Not needed. Only used to silence a warning. */ |
2537 }else{ | 2703 rc = sqlite3BtreeCount(pCrsr, &nEntry); |
2538 nEntry = 0; | |
2539 } | |
2540 pOut->u.i = nEntry; | 2704 pOut->u.i = nEntry; |
2541 break; | 2705 break; |
2542 } | 2706 } |
2543 #endif | 2707 #endif |
2544 | 2708 |
2545 /* Opcode: Savepoint P1 * * P4 * | 2709 /* Opcode: Savepoint P1 * * P4 * |
2546 ** | 2710 ** |
2547 ** Open, release or rollback the savepoint named by parameter P4, depending | 2711 ** Open, release or rollback the savepoint named by parameter P4, depending |
2548 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an | 2712 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an |
2549 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. | 2713 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. |
(...skipping 11 matching lines...) Expand all Loading... |
2561 p1 = pOp->p1; | 2725 p1 = pOp->p1; |
2562 zName = pOp->p4.z; | 2726 zName = pOp->p4.z; |
2563 | 2727 |
2564 /* Assert that the p1 parameter is valid. Also that if there is no open | 2728 /* Assert that the p1 parameter is valid. Also that if there is no open |
2565 ** transaction, then there cannot be any savepoints. | 2729 ** transaction, then there cannot be any savepoints. |
2566 */ | 2730 */ |
2567 assert( db->pSavepoint==0 || db->autoCommit==0 ); | 2731 assert( db->pSavepoint==0 || db->autoCommit==0 ); |
2568 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); | 2732 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); |
2569 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); | 2733 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); |
2570 assert( checkSavepointCount(db) ); | 2734 assert( checkSavepointCount(db) ); |
| 2735 assert( p->bIsReader ); |
2571 | 2736 |
2572 if( p1==SAVEPOINT_BEGIN ){ | 2737 if( p1==SAVEPOINT_BEGIN ){ |
2573 if( db->writeVdbeCnt>0 ){ | 2738 if( db->nVdbeWrite>0 ){ |
2574 /* A new savepoint cannot be created if there are active write | 2739 /* A new savepoint cannot be created if there are active write |
2575 ** statements (i.e. open read/write incremental blob handles). | 2740 ** statements (i.e. open read/write incremental blob handles). |
2576 */ | 2741 */ |
2577 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " | 2742 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " |
2578 "SQL statements in progress"); | 2743 "SQL statements in progress"); |
2579 rc = SQLITE_BUSY; | 2744 rc = SQLITE_BUSY; |
2580 }else{ | 2745 }else{ |
2581 nName = sqlite3Strlen30(zName); | 2746 nName = sqlite3Strlen30(zName); |
2582 | 2747 |
| 2748 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2749 /* This call is Ok even if this savepoint is actually a transaction |
| 2750 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. |
| 2751 ** If this is a transaction savepoint being opened, it is guaranteed |
| 2752 ** that the db->aVTrans[] array is empty. */ |
| 2753 assert( db->autoCommit==0 || db->nVTrans==0 ); |
| 2754 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, |
| 2755 db->nStatement+db->nSavepoint); |
| 2756 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 2757 #endif |
| 2758 |
2583 /* Create a new savepoint structure. */ | 2759 /* Create a new savepoint structure. */ |
2584 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); | 2760 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); |
2585 if( pNew ){ | 2761 if( pNew ){ |
2586 pNew->zName = (char *)&pNew[1]; | 2762 pNew->zName = (char *)&pNew[1]; |
2587 memcpy(pNew->zName, zName, nName+1); | 2763 memcpy(pNew->zName, zName, nName+1); |
2588 | 2764 |
2589 /* If there is no open transaction, then mark this as a special | 2765 /* If there is no open transaction, then mark this as a special |
2590 ** "transaction savepoint". */ | 2766 ** "transaction savepoint". */ |
2591 if( db->autoCommit ){ | 2767 if( db->autoCommit ){ |
2592 db->autoCommit = 0; | 2768 db->autoCommit = 0; |
2593 db->isTransactionSavepoint = 1; | 2769 db->isTransactionSavepoint = 1; |
2594 }else{ | 2770 }else{ |
2595 db->nSavepoint++; | 2771 db->nSavepoint++; |
2596 } | 2772 } |
2597 | 2773 |
2598 /* Link the new savepoint into the database handle's list. */ | 2774 /* Link the new savepoint into the database handle's list. */ |
2599 pNew->pNext = db->pSavepoint; | 2775 pNew->pNext = db->pSavepoint; |
2600 db->pSavepoint = pNew; | 2776 db->pSavepoint = pNew; |
2601 pNew->nDeferredCons = db->nDeferredCons; | 2777 pNew->nDeferredCons = db->nDeferredCons; |
| 2778 pNew->nDeferredImmCons = db->nDeferredImmCons; |
2602 } | 2779 } |
2603 } | 2780 } |
2604 }else{ | 2781 }else{ |
2605 iSavepoint = 0; | 2782 iSavepoint = 0; |
2606 | 2783 |
2607 /* Find the named savepoint. If there is no such savepoint, then an | 2784 /* Find the named savepoint. If there is no such savepoint, then an |
2608 ** an error is returned to the user. */ | 2785 ** an error is returned to the user. */ |
2609 for( | 2786 for( |
2610 pSavepoint = db->pSavepoint; | 2787 pSavepoint = db->pSavepoint; |
2611 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); | 2788 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); |
2612 pSavepoint = pSavepoint->pNext | 2789 pSavepoint = pSavepoint->pNext |
2613 ){ | 2790 ){ |
2614 iSavepoint++; | 2791 iSavepoint++; |
2615 } | 2792 } |
2616 if( !pSavepoint ){ | 2793 if( !pSavepoint ){ |
2617 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); | 2794 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); |
2618 rc = SQLITE_ERROR; | 2795 rc = SQLITE_ERROR; |
2619 }else if( | 2796 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ |
2620 db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1) | |
2621 ){ | |
2622 /* It is not possible to release (commit) a savepoint if there are | 2797 /* It is not possible to release (commit) a savepoint if there are |
2623 ** active write statements. It is not possible to rollback a savepoint | 2798 ** active write statements. |
2624 ** if there are any active statements at all. | |
2625 */ | 2799 */ |
2626 sqlite3SetString(&p->zErrMsg, db, | 2800 sqlite3SetString(&p->zErrMsg, db, |
2627 "cannot %s savepoint - SQL statements in progress", | 2801 "cannot release savepoint - SQL statements in progress" |
2628 (p1==SAVEPOINT_ROLLBACK ? "rollback": "release") | |
2629 ); | 2802 ); |
2630 rc = SQLITE_BUSY; | 2803 rc = SQLITE_BUSY; |
2631 }else{ | 2804 }else{ |
2632 | 2805 |
2633 /* Determine whether or not this is a transaction savepoint. If so, | 2806 /* Determine whether or not this is a transaction savepoint. If so, |
2634 ** and this is a RELEASE command, then the current transaction | 2807 ** and this is a RELEASE command, then the current transaction |
2635 ** is committed. | 2808 ** is committed. |
2636 */ | 2809 */ |
2637 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; | 2810 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; |
2638 if( isTransaction && p1==SAVEPOINT_RELEASE ){ | 2811 if( isTransaction && p1==SAVEPOINT_RELEASE ){ |
2639 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ | 2812 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ |
2640 goto vdbe_return; | 2813 goto vdbe_return; |
2641 } | 2814 } |
2642 db->autoCommit = 1; | 2815 db->autoCommit = 1; |
2643 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ | 2816 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ |
2644 p->pc = pc; | 2817 p->pc = pc; |
2645 db->autoCommit = 0; | 2818 db->autoCommit = 0; |
2646 p->rc = rc = SQLITE_BUSY; | 2819 p->rc = rc = SQLITE_BUSY; |
2647 goto vdbe_return; | 2820 goto vdbe_return; |
2648 } | 2821 } |
2649 db->isTransactionSavepoint = 0; | 2822 db->isTransactionSavepoint = 0; |
2650 rc = p->rc; | 2823 rc = p->rc; |
2651 }else{ | 2824 }else{ |
| 2825 int isSchemaChange; |
2652 iSavepoint = db->nSavepoint - iSavepoint - 1; | 2826 iSavepoint = db->nSavepoint - iSavepoint - 1; |
| 2827 if( p1==SAVEPOINT_ROLLBACK ){ |
| 2828 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0; |
| 2829 for(ii=0; ii<db->nDb; ii++){ |
| 2830 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, |
| 2831 SQLITE_ABORT_ROLLBACK, |
| 2832 isSchemaChange==0); |
| 2833 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 2834 } |
| 2835 }else{ |
| 2836 isSchemaChange = 0; |
| 2837 } |
2653 for(ii=0; ii<db->nDb; ii++){ | 2838 for(ii=0; ii<db->nDb; ii++){ |
2654 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); | 2839 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); |
2655 if( rc!=SQLITE_OK ){ | 2840 if( rc!=SQLITE_OK ){ |
2656 goto abort_due_to_error; | 2841 goto abort_due_to_error; |
2657 } | 2842 } |
2658 } | 2843 } |
2659 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ | 2844 if( isSchemaChange ){ |
2660 sqlite3ExpirePreparedStatements(db); | 2845 sqlite3ExpirePreparedStatements(db); |
2661 sqlite3ResetInternalSchema(db, -1); | 2846 sqlite3ResetAllSchemasOfConnection(db); |
2662 db->flags = (db->flags | SQLITE_InternChanges); | 2847 db->flags = (db->flags | SQLITE_InternChanges); |
2663 } | 2848 } |
2664 } | 2849 } |
2665 | 2850 |
2666 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all | 2851 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all |
2667 ** savepoints nested inside of the savepoint being operated on. */ | 2852 ** savepoints nested inside of the savepoint being operated on. */ |
2668 while( db->pSavepoint!=pSavepoint ){ | 2853 while( db->pSavepoint!=pSavepoint ){ |
2669 pTmp = db->pSavepoint; | 2854 pTmp = db->pSavepoint; |
2670 db->pSavepoint = pTmp->pNext; | 2855 db->pSavepoint = pTmp->pNext; |
2671 sqlite3DbFree(db, pTmp); | 2856 sqlite3DbFree(db, pTmp); |
2672 db->nSavepoint--; | 2857 db->nSavepoint--; |
2673 } | 2858 } |
2674 | 2859 |
2675 /* If it is a RELEASE, then destroy the savepoint being operated on | 2860 /* If it is a RELEASE, then destroy the savepoint being operated on |
2676 ** too. If it is a ROLLBACK TO, then set the number of deferred | 2861 ** too. If it is a ROLLBACK TO, then set the number of deferred |
2677 ** constraint violations present in the database to the value stored | 2862 ** constraint violations present in the database to the value stored |
2678 ** when the savepoint was created. */ | 2863 ** when the savepoint was created. */ |
2679 if( p1==SAVEPOINT_RELEASE ){ | 2864 if( p1==SAVEPOINT_RELEASE ){ |
2680 assert( pSavepoint==db->pSavepoint ); | 2865 assert( pSavepoint==db->pSavepoint ); |
2681 db->pSavepoint = pSavepoint->pNext; | 2866 db->pSavepoint = pSavepoint->pNext; |
2682 sqlite3DbFree(db, pSavepoint); | 2867 sqlite3DbFree(db, pSavepoint); |
2683 if( !isTransaction ){ | 2868 if( !isTransaction ){ |
2684 db->nSavepoint--; | 2869 db->nSavepoint--; |
2685 } | 2870 } |
2686 }else{ | 2871 }else{ |
2687 db->nDeferredCons = pSavepoint->nDeferredCons; | 2872 db->nDeferredCons = pSavepoint->nDeferredCons; |
| 2873 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; |
| 2874 } |
| 2875 |
| 2876 if( !isTransaction ){ |
| 2877 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); |
| 2878 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
2688 } | 2879 } |
2689 } | 2880 } |
2690 } | 2881 } |
2691 | 2882 |
2692 break; | 2883 break; |
2693 } | 2884 } |
2694 | 2885 |
2695 /* Opcode: AutoCommit P1 P2 * * * | 2886 /* Opcode: AutoCommit P1 P2 * * * |
2696 ** | 2887 ** |
2697 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll | 2888 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll |
2698 ** back any currently active btree transactions. If there are any active | 2889 ** back any currently active btree transactions. If there are any active |
2699 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if | 2890 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if |
2700 ** there are active writing VMs or active VMs that use shared cache. | 2891 ** there are active writing VMs or active VMs that use shared cache. |
2701 ** | 2892 ** |
2702 ** This instruction causes the VM to halt. | 2893 ** This instruction causes the VM to halt. |
2703 */ | 2894 */ |
2704 case OP_AutoCommit: { | 2895 case OP_AutoCommit: { |
2705 int desiredAutoCommit; | 2896 int desiredAutoCommit; |
2706 int iRollback; | 2897 int iRollback; |
2707 int turnOnAC; | 2898 int turnOnAC; |
2708 | 2899 |
2709 desiredAutoCommit = pOp->p1; | 2900 desiredAutoCommit = pOp->p1; |
2710 iRollback = pOp->p2; | 2901 iRollback = pOp->p2; |
2711 turnOnAC = desiredAutoCommit && !db->autoCommit; | 2902 turnOnAC = desiredAutoCommit && !db->autoCommit; |
2712 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); | 2903 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); |
2713 assert( desiredAutoCommit==1 || iRollback==0 ); | 2904 assert( desiredAutoCommit==1 || iRollback==0 ); |
2714 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ | 2905 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ |
| 2906 assert( p->bIsReader ); |
2715 | 2907 |
2716 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){ | 2908 #if 0 |
| 2909 if( turnOnAC && iRollback && db->nVdbeActive>1 ){ |
2717 /* If this instruction implements a ROLLBACK and other VMs are | 2910 /* If this instruction implements a ROLLBACK and other VMs are |
2718 ** still running, and a transaction is active, return an error indicating | 2911 ** still running, and a transaction is active, return an error indicating |
2719 ** that the other VMs must complete first. | 2912 ** that the other VMs must complete first. |
2720 */ | 2913 */ |
2721 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " | 2914 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " |
2722 "SQL statements in progress"); | 2915 "SQL statements in progress"); |
2723 rc = SQLITE_BUSY; | 2916 rc = SQLITE_BUSY; |
2724 }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){ | 2917 }else |
| 2918 #endif |
| 2919 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){ |
2725 /* If this instruction implements a COMMIT and other VMs are writing | 2920 /* If this instruction implements a COMMIT and other VMs are writing |
2726 ** return an error indicating that the other VMs must complete first. | 2921 ** return an error indicating that the other VMs must complete first. |
2727 */ | 2922 */ |
2728 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " | 2923 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " |
2729 "SQL statements in progress"); | 2924 "SQL statements in progress"); |
2730 rc = SQLITE_BUSY; | 2925 rc = SQLITE_BUSY; |
2731 }else if( desiredAutoCommit!=db->autoCommit ){ | 2926 }else if( desiredAutoCommit!=db->autoCommit ){ |
2732 if( iRollback ){ | 2927 if( iRollback ){ |
2733 assert( desiredAutoCommit==1 ); | 2928 assert( desiredAutoCommit==1 ); |
2734 sqlite3RollbackAll(db); | 2929 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
2735 db->autoCommit = 1; | 2930 db->autoCommit = 1; |
2736 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ | 2931 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ |
2737 goto vdbe_return; | 2932 goto vdbe_return; |
2738 }else{ | 2933 }else{ |
2739 db->autoCommit = (u8)desiredAutoCommit; | 2934 db->autoCommit = (u8)desiredAutoCommit; |
2740 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ | 2935 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ |
2741 p->pc = pc; | 2936 p->pc = pc; |
2742 db->autoCommit = (u8)(1-desiredAutoCommit); | 2937 db->autoCommit = (u8)(1-desiredAutoCommit); |
2743 p->rc = rc = SQLITE_BUSY; | 2938 p->rc = rc = SQLITE_BUSY; |
2744 goto vdbe_return; | 2939 goto vdbe_return; |
(...skipping 11 matching lines...) Expand all Loading... |
2756 sqlite3SetString(&p->zErrMsg, db, | 2951 sqlite3SetString(&p->zErrMsg, db, |
2757 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( | 2952 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( |
2758 (iRollback)?"cannot rollback - no transaction is active": | 2953 (iRollback)?"cannot rollback - no transaction is active": |
2759 "cannot commit - no transaction is active")); | 2954 "cannot commit - no transaction is active")); |
2760 | 2955 |
2761 rc = SQLITE_ERROR; | 2956 rc = SQLITE_ERROR; |
2762 } | 2957 } |
2763 break; | 2958 break; |
2764 } | 2959 } |
2765 | 2960 |
2766 /* Opcode: Transaction P1 P2 * * * | 2961 /* Opcode: Transaction P1 P2 P3 P4 P5 |
2767 ** | 2962 ** |
2768 ** Begin a transaction. The transaction ends when a Commit or Rollback | 2963 ** Begin a transaction on database P1 if a transaction is not already |
2769 ** opcode is encountered. Depending on the ON CONFLICT setting, the | 2964 ** active. |
2770 ** transaction might also be rolled back if an error is encountered. | 2965 ** If P2 is non-zero, then a write-transaction is started, or if a |
| 2966 ** read-transaction is already active, it is upgraded to a write-transaction. |
| 2967 ** If P2 is zero, then a read-transaction is started. |
2771 ** | 2968 ** |
2772 ** P1 is the index of the database file on which the transaction is | 2969 ** P1 is the index of the database file on which the transaction is |
2773 ** started. Index 0 is the main database file and index 1 is the | 2970 ** started. Index 0 is the main database file and index 1 is the |
2774 ** file used for temporary tables. Indices of 2 or more are used for | 2971 ** file used for temporary tables. Indices of 2 or more are used for |
2775 ** attached databases. | 2972 ** attached databases. |
2776 ** | 2973 ** |
2777 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is | |
2778 ** obtained on the database file when a write-transaction is started. No | |
2779 ** other process can start another write transaction while this transaction is | |
2780 ** underway. Starting a write transaction also creates a rollback journal. A | |
2781 ** write transaction must be started before any changes can be made to the | |
2782 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained | |
2783 ** on the file. | |
2784 ** | |
2785 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is | 2974 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is |
2786 ** true (this flag is set if the Vdbe may modify more than one row and may | 2975 ** true (this flag is set if the Vdbe may modify more than one row and may |
2787 ** throw an ABORT exception), a statement transaction may also be opened. | 2976 ** throw an ABORT exception), a statement transaction may also be opened. |
2788 ** More specifically, a statement transaction is opened iff the database | 2977 ** More specifically, a statement transaction is opened iff the database |
2789 ** connection is currently not in autocommit mode, or if there are other | 2978 ** connection is currently not in autocommit mode, or if there are other |
2790 ** active statements. A statement transaction allows the affects of this | 2979 ** active statements. A statement transaction allows the changes made by this |
2791 ** VDBE to be rolled back after an error without having to roll back the | 2980 ** VDBE to be rolled back after an error without having to roll back the |
2792 ** entire transaction. If no error is encountered, the statement transaction | 2981 ** entire transaction. If no error is encountered, the statement transaction |
2793 ** will automatically commit when the VDBE halts. | 2982 ** will automatically commit when the VDBE halts. |
2794 ** | 2983 ** |
2795 ** If P2 is zero, then a read-lock is obtained on the database file. | 2984 ** If P5!=0 then this opcode also checks the schema cookie against P3 |
| 2985 ** and the schema generation counter against P4. |
| 2986 ** The cookie changes its value whenever the database schema changes. |
| 2987 ** This operation is used to detect when that the cookie has changed |
| 2988 ** and that the current process needs to reread the schema. If the schema |
| 2989 ** cookie in P3 differs from the schema cookie in the database header or |
| 2990 ** if the schema generation counter in P4 differs from the current |
| 2991 ** generation counter, then an SQLITE_SCHEMA error is raised and execution |
| 2992 ** halts. The sqlite3_step() wrapper function might then reprepare the |
| 2993 ** statement and rerun it from the beginning. |
2796 */ | 2994 */ |
2797 case OP_Transaction: { | 2995 case OP_Transaction: { |
2798 Btree *pBt; | 2996 Btree *pBt; |
| 2997 int iMeta; |
| 2998 int iGen; |
2799 | 2999 |
| 3000 assert( p->bIsReader ); |
| 3001 assert( p->readOnly==0 || pOp->p2==0 ); |
2800 assert( pOp->p1>=0 && pOp->p1<db->nDb ); | 3002 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
2801 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); | 3003 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
| 3004 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ |
| 3005 rc = SQLITE_READONLY; |
| 3006 goto abort_due_to_error; |
| 3007 } |
2802 pBt = db->aDb[pOp->p1].pBt; | 3008 pBt = db->aDb[pOp->p1].pBt; |
2803 | 3009 |
2804 if( pBt ){ | 3010 if( pBt ){ |
2805 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); | 3011 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); |
2806 if( rc==SQLITE_BUSY ){ | 3012 if( rc==SQLITE_BUSY ){ |
2807 p->pc = pc; | 3013 p->pc = pc; |
2808 p->rc = rc = SQLITE_BUSY; | 3014 p->rc = rc = SQLITE_BUSY; |
2809 goto vdbe_return; | 3015 goto vdbe_return; |
2810 } | 3016 } |
2811 if( rc!=SQLITE_OK ){ | 3017 if( rc!=SQLITE_OK ){ |
2812 goto abort_due_to_error; | 3018 goto abort_due_to_error; |
2813 } | 3019 } |
2814 | 3020 |
2815 if( pOp->p2 && p->usesStmtJournal | 3021 if( pOp->p2 && p->usesStmtJournal |
2816 && (db->autoCommit==0 || db->activeVdbeCnt>1) | 3022 && (db->autoCommit==0 || db->nVdbeRead>1) |
2817 ){ | 3023 ){ |
2818 assert( sqlite3BtreeIsInTrans(pBt) ); | 3024 assert( sqlite3BtreeIsInTrans(pBt) ); |
2819 if( p->iStatement==0 ){ | 3025 if( p->iStatement==0 ){ |
2820 assert( db->nStatement>=0 && db->nSavepoint>=0 ); | 3026 assert( db->nStatement>=0 && db->nSavepoint>=0 ); |
2821 db->nStatement++; | 3027 db->nStatement++; |
2822 p->iStatement = db->nSavepoint + db->nStatement; | 3028 p->iStatement = db->nSavepoint + db->nStatement; |
2823 } | 3029 } |
2824 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); | 3030 |
| 3031 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); |
| 3032 if( rc==SQLITE_OK ){ |
| 3033 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); |
| 3034 } |
2825 | 3035 |
2826 /* Store the current value of the database handles deferred constraint | 3036 /* Store the current value of the database handles deferred constraint |
2827 ** counter. If the statement transaction needs to be rolled back, | 3037 ** counter. If the statement transaction needs to be rolled back, |
2828 ** the value of this counter needs to be restored too. */ | 3038 ** the value of this counter needs to be restored too. */ |
2829 p->nStmtDefCons = db->nDeferredCons; | 3039 p->nStmtDefCons = db->nDeferredCons; |
| 3040 p->nStmtDefImmCons = db->nDeferredImmCons; |
2830 } | 3041 } |
| 3042 |
| 3043 /* Gather the schema version number for checking */ |
| 3044 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); |
| 3045 iGen = db->aDb[pOp->p1].pSchema->iGeneration; |
| 3046 }else{ |
| 3047 iGen = iMeta = 0; |
| 3048 } |
| 3049 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); |
| 3050 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ |
| 3051 sqlite3DbFree(db, p->zErrMsg); |
| 3052 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); |
| 3053 /* If the schema-cookie from the database file matches the cookie |
| 3054 ** stored with the in-memory representation of the schema, do |
| 3055 ** not reload the schema from the database file. |
| 3056 ** |
| 3057 ** If virtual-tables are in use, this is not just an optimization. |
| 3058 ** Often, v-tables store their data in other SQLite tables, which |
| 3059 ** are queried from within xNext() and other v-table methods using |
| 3060 ** prepared queries. If such a query is out-of-date, we do not want to |
| 3061 ** discard the database schema, as the user code implementing the |
| 3062 ** v-table would have to be ready for the sqlite3_vtab structure itself |
| 3063 ** to be invalidated whenever sqlite3_step() is called from within |
| 3064 ** a v-table method. |
| 3065 */ |
| 3066 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ |
| 3067 sqlite3ResetOneSchema(db, pOp->p1); |
| 3068 } |
| 3069 p->expired = 1; |
| 3070 rc = SQLITE_SCHEMA; |
2831 } | 3071 } |
2832 break; | 3072 break; |
2833 } | 3073 } |
2834 | 3074 |
2835 /* Opcode: ReadCookie P1 P2 P3 * * | 3075 /* Opcode: ReadCookie P1 P2 P3 * * |
2836 ** | 3076 ** |
2837 ** Read cookie number P3 from database P1 and write it into register P2. | 3077 ** Read cookie number P3 from database P1 and write it into register P2. |
2838 ** P3==1 is the schema version. P3==2 is the database format. | 3078 ** P3==1 is the schema version. P3==2 is the database format. |
2839 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is | 3079 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is |
2840 ** the main database file and P1==1 is the database file used to store | 3080 ** the main database file and P1==1 is the database file used to store |
2841 ** temporary tables. | 3081 ** temporary tables. |
2842 ** | 3082 ** |
2843 ** There must be a read-lock on the database (either a transaction | 3083 ** There must be a read-lock on the database (either a transaction |
2844 ** must be started or there must be an open cursor) before | 3084 ** must be started or there must be an open cursor) before |
2845 ** executing this instruction. | 3085 ** executing this instruction. |
2846 */ | 3086 */ |
2847 case OP_ReadCookie: { /* out2-prerelease */ | 3087 case OP_ReadCookie: { /* out2-prerelease */ |
2848 int iMeta; | 3088 int iMeta; |
2849 int iDb; | 3089 int iDb; |
2850 int iCookie; | 3090 int iCookie; |
2851 | 3091 |
| 3092 assert( p->bIsReader ); |
2852 iDb = pOp->p1; | 3093 iDb = pOp->p1; |
2853 iCookie = pOp->p3; | 3094 iCookie = pOp->p3; |
2854 assert( pOp->p3<SQLITE_N_BTREE_META ); | 3095 assert( pOp->p3<SQLITE_N_BTREE_META ); |
2855 assert( iDb>=0 && iDb<db->nDb ); | 3096 assert( iDb>=0 && iDb<db->nDb ); |
2856 assert( db->aDb[iDb].pBt!=0 ); | 3097 assert( db->aDb[iDb].pBt!=0 ); |
2857 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); | 3098 assert( DbMaskTest(p->btreeMask, iDb) ); |
2858 | 3099 |
2859 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); | 3100 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); |
2860 pOut->u.i = iMeta; | 3101 pOut->u.i = iMeta; |
2861 break; | 3102 break; |
2862 } | 3103 } |
2863 | 3104 |
2864 /* Opcode: SetCookie P1 P2 P3 * * | 3105 /* Opcode: SetCookie P1 P2 P3 * * |
2865 ** | 3106 ** |
2866 ** Write the content of register P3 (interpreted as an integer) | 3107 ** Write the content of register P3 (interpreted as an integer) |
2867 ** into cookie number P2 of database P1. P2==1 is the schema version. | 3108 ** into cookie number P2 of database P1. P2==1 is the schema version. |
2868 ** P2==2 is the database format. P2==3 is the recommended pager cache | 3109 ** P2==2 is the database format. P2==3 is the recommended pager cache |
2869 ** size, and so forth. P1==0 is the main database file and P1==1 is the | 3110 ** size, and so forth. P1==0 is the main database file and P1==1 is the |
2870 ** database file used to store temporary tables. | 3111 ** database file used to store temporary tables. |
2871 ** | 3112 ** |
2872 ** A transaction must be started before executing this opcode. | 3113 ** A transaction must be started before executing this opcode. |
2873 */ | 3114 */ |
2874 case OP_SetCookie: { /* in3 */ | 3115 case OP_SetCookie: { /* in3 */ |
2875 Db *pDb; | 3116 Db *pDb; |
2876 assert( pOp->p2<SQLITE_N_BTREE_META ); | 3117 assert( pOp->p2<SQLITE_N_BTREE_META ); |
2877 assert( pOp->p1>=0 && pOp->p1<db->nDb ); | 3118 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
2878 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); | 3119 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
| 3120 assert( p->readOnly==0 ); |
2879 pDb = &db->aDb[pOp->p1]; | 3121 pDb = &db->aDb[pOp->p1]; |
2880 assert( pDb->pBt!=0 ); | 3122 assert( pDb->pBt!=0 ); |
2881 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); | 3123 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); |
2882 pIn3 = &aMem[pOp->p3]; | 3124 pIn3 = &aMem[pOp->p3]; |
2883 sqlite3VdbeMemIntegerify(pIn3); | 3125 sqlite3VdbeMemIntegerify(pIn3); |
2884 /* See note about index shifting on OP_ReadCookie */ | 3126 /* See note about index shifting on OP_ReadCookie */ |
2885 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); | 3127 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); |
2886 if( pOp->p2==BTREE_SCHEMA_VERSION ){ | 3128 if( pOp->p2==BTREE_SCHEMA_VERSION ){ |
2887 /* When the schema cookie changes, record the new cookie internally */ | 3129 /* When the schema cookie changes, record the new cookie internally */ |
2888 pDb->pSchema->schema_cookie = (int)pIn3->u.i; | 3130 pDb->pSchema->schema_cookie = (int)pIn3->u.i; |
2889 db->flags |= SQLITE_InternChanges; | 3131 db->flags |= SQLITE_InternChanges; |
2890 }else if( pOp->p2==BTREE_FILE_FORMAT ){ | 3132 }else if( pOp->p2==BTREE_FILE_FORMAT ){ |
2891 /* Record changes in the file format */ | 3133 /* Record changes in the file format */ |
2892 pDb->pSchema->file_format = (u8)pIn3->u.i; | 3134 pDb->pSchema->file_format = (u8)pIn3->u.i; |
2893 } | 3135 } |
2894 if( pOp->p1==1 ){ | 3136 if( pOp->p1==1 ){ |
2895 /* Invalidate all prepared statements whenever the TEMP database | 3137 /* Invalidate all prepared statements whenever the TEMP database |
2896 ** schema is changed. Ticket #1644 */ | 3138 ** schema is changed. Ticket #1644 */ |
2897 sqlite3ExpirePreparedStatements(db); | 3139 sqlite3ExpirePreparedStatements(db); |
2898 p->expired = 0; | 3140 p->expired = 0; |
2899 } | 3141 } |
2900 break; | 3142 break; |
2901 } | 3143 } |
2902 | 3144 |
2903 /* Opcode: VerifyCookie P1 P2 P3 * * | |
2904 ** | |
2905 ** Check the value of global database parameter number 0 (the | |
2906 ** schema version) and make sure it is equal to P2 and that the | |
2907 ** generation counter on the local schema parse equals P3. | |
2908 ** | |
2909 ** P1 is the database number which is 0 for the main database file | |
2910 ** and 1 for the file holding temporary tables and some higher number | |
2911 ** for auxiliary databases. | |
2912 ** | |
2913 ** The cookie changes its value whenever the database schema changes. | |
2914 ** This operation is used to detect when that the cookie has changed | |
2915 ** and that the current process needs to reread the schema. | |
2916 ** | |
2917 ** Either a transaction needs to have been started or an OP_Open needs | |
2918 ** to be executed (to establish a read lock) before this opcode is | |
2919 ** invoked. | |
2920 */ | |
2921 case OP_VerifyCookie: { | |
2922 int iMeta; | |
2923 int iGen; | |
2924 Btree *pBt; | |
2925 | |
2926 assert( pOp->p1>=0 && pOp->p1<db->nDb ); | |
2927 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); | |
2928 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); | |
2929 pBt = db->aDb[pOp->p1].pBt; | |
2930 if( pBt ){ | |
2931 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); | |
2932 iGen = db->aDb[pOp->p1].pSchema->iGeneration; | |
2933 }else{ | |
2934 iGen = iMeta = 0; | |
2935 } | |
2936 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){ | |
2937 sqlite3DbFree(db, p->zErrMsg); | |
2938 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); | |
2939 /* If the schema-cookie from the database file matches the cookie | |
2940 ** stored with the in-memory representation of the schema, do | |
2941 ** not reload the schema from the database file. | |
2942 ** | |
2943 ** If virtual-tables are in use, this is not just an optimization. | |
2944 ** Often, v-tables store their data in other SQLite tables, which | |
2945 ** are queried from within xNext() and other v-table methods using | |
2946 ** prepared queries. If such a query is out-of-date, we do not want to | |
2947 ** discard the database schema, as the user code implementing the | |
2948 ** v-table would have to be ready for the sqlite3_vtab structure itself | |
2949 ** to be invalidated whenever sqlite3_step() is called from within | |
2950 ** a v-table method. | |
2951 */ | |
2952 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ | |
2953 sqlite3ResetInternalSchema(db, pOp->p1); | |
2954 } | |
2955 | |
2956 p->expired = 1; | |
2957 rc = SQLITE_SCHEMA; | |
2958 } | |
2959 break; | |
2960 } | |
2961 | |
2962 /* Opcode: OpenRead P1 P2 P3 P4 P5 | 3145 /* Opcode: OpenRead P1 P2 P3 P4 P5 |
| 3146 ** Synopsis: root=P2 iDb=P3 |
2963 ** | 3147 ** |
2964 ** Open a read-only cursor for the database table whose root page is | 3148 ** Open a read-only cursor for the database table whose root page is |
2965 ** P2 in a database file. The database file is determined by P3. | 3149 ** P2 in a database file. The database file is determined by P3. |
2966 ** P3==0 means the main database, P3==1 means the database used for | 3150 ** P3==0 means the main database, P3==1 means the database used for |
2967 ** temporary tables, and P3>1 means used the corresponding attached | 3151 ** temporary tables, and P3>1 means used the corresponding attached |
2968 ** database. Give the new cursor an identifier of P1. The P1 | 3152 ** database. Give the new cursor an identifier of P1. The P1 |
2969 ** values need not be contiguous but all P1 values should be small integers. | 3153 ** values need not be contiguous but all P1 values should be small integers. |
2970 ** It is an error for P1 to be negative. | 3154 ** It is an error for P1 to be negative. |
2971 ** | 3155 ** |
2972 ** If P5!=0 then use the content of register P2 as the root page, not | 3156 ** If P5!=0 then use the content of register P2 as the root page, not |
2973 ** the value of P2 itself. | 3157 ** the value of P2 itself. |
2974 ** | 3158 ** |
2975 ** There will be a read lock on the database whenever there is an | 3159 ** There will be a read lock on the database whenever there is an |
2976 ** open cursor. If the database was unlocked prior to this instruction | 3160 ** open cursor. If the database was unlocked prior to this instruction |
2977 ** then a read lock is acquired as part of this instruction. A read | 3161 ** then a read lock is acquired as part of this instruction. A read |
2978 ** lock allows other processes to read the database but prohibits | 3162 ** lock allows other processes to read the database but prohibits |
2979 ** any other process from modifying the database. The read lock is | 3163 ** any other process from modifying the database. The read lock is |
2980 ** released when all cursors are closed. If this instruction attempts | 3164 ** released when all cursors are closed. If this instruction attempts |
2981 ** to get a read lock but fails, the script terminates with an | 3165 ** to get a read lock but fails, the script terminates with an |
2982 ** SQLITE_BUSY error code. | 3166 ** SQLITE_BUSY error code. |
2983 ** | 3167 ** |
2984 ** The P4 value may be either an integer (P4_INT32) or a pointer to | 3168 ** The P4 value may be either an integer (P4_INT32) or a pointer to |
2985 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo | 3169 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo |
2986 ** structure, then said structure defines the content and collating | 3170 ** structure, then said structure defines the content and collating |
2987 ** sequence of the index being opened. Otherwise, if P4 is an integer | 3171 ** sequence of the index being opened. Otherwise, if P4 is an integer |
2988 ** value, it is set to the number of columns in the table. | 3172 ** value, it is set to the number of columns in the table. |
2989 ** | 3173 ** |
2990 ** See also OpenWrite. | 3174 ** See also: OpenWrite, ReopenIdx |
| 3175 */ |
| 3176 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 |
| 3177 ** Synopsis: root=P2 iDb=P3 |
| 3178 ** |
| 3179 ** The ReopenIdx opcode works exactly like ReadOpen except that it first |
| 3180 ** checks to see if the cursor on P1 is already open with a root page |
| 3181 ** number of P2 and if it is this opcode becomes a no-op. In other words, |
| 3182 ** if the cursor is already open, do not reopen it. |
| 3183 ** |
| 3184 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being |
| 3185 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as |
| 3186 ** every other ReopenIdx or OpenRead for the same cursor number. |
| 3187 ** |
| 3188 ** See the OpenRead opcode documentation for additional information. |
2991 */ | 3189 */ |
2992 /* Opcode: OpenWrite P1 P2 P3 P4 P5 | 3190 /* Opcode: OpenWrite P1 P2 P3 P4 P5 |
| 3191 ** Synopsis: root=P2 iDb=P3 |
2993 ** | 3192 ** |
2994 ** Open a read/write cursor named P1 on the table or index whose root | 3193 ** Open a read/write cursor named P1 on the table or index whose root |
2995 ** page is P2. Or if P5!=0 use the content of register P2 to find the | 3194 ** page is P2. Or if P5!=0 use the content of register P2 to find the |
2996 ** root page. | 3195 ** root page. |
2997 ** | 3196 ** |
2998 ** The P4 value may be either an integer (P4_INT32) or a pointer to | 3197 ** The P4 value may be either an integer (P4_INT32) or a pointer to |
2999 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo | 3198 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo |
3000 ** structure, then said structure defines the content and collating | 3199 ** structure, then said structure defines the content and collating |
3001 ** sequence of the index being opened. Otherwise, if P4 is an integer | 3200 ** sequence of the index being opened. Otherwise, if P4 is an integer |
3002 ** value, it is set to the number of columns in the table, or to the | 3201 ** value, it is set to the number of columns in the table, or to the |
3003 ** largest index of any column of the table that is actually used. | 3202 ** largest index of any column of the table that is actually used. |
3004 ** | 3203 ** |
3005 ** This instruction works just like OpenRead except that it opens the cursor | 3204 ** This instruction works just like OpenRead except that it opens the cursor |
3006 ** in read/write mode. For a given table, there can be one or more read-only | 3205 ** in read/write mode. For a given table, there can be one or more read-only |
3007 ** cursors or a single read/write cursor but not both. | 3206 ** cursors or a single read/write cursor but not both. |
3008 ** | 3207 ** |
3009 ** See also OpenRead. | 3208 ** See also OpenRead. |
3010 */ | 3209 */ |
| 3210 case OP_ReopenIdx: { |
| 3211 VdbeCursor *pCur; |
| 3212 |
| 3213 assert( pOp->p5==0 ); |
| 3214 assert( pOp->p4type==P4_KEYINFO ); |
| 3215 pCur = p->apCsr[pOp->p1]; |
| 3216 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ |
| 3217 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ |
| 3218 break; |
| 3219 } |
| 3220 /* If the cursor is not currently open or is open on a different |
| 3221 ** index, then fall through into OP_OpenRead to force a reopen */ |
| 3222 } |
3011 case OP_OpenRead: | 3223 case OP_OpenRead: |
3012 case OP_OpenWrite: { | 3224 case OP_OpenWrite: { |
3013 int nField; | 3225 int nField; |
3014 KeyInfo *pKeyInfo; | 3226 KeyInfo *pKeyInfo; |
3015 int p2; | 3227 int p2; |
3016 int iDb; | 3228 int iDb; |
3017 int wrFlag; | 3229 int wrFlag; |
3018 Btree *pX; | 3230 Btree *pX; |
3019 VdbeCursor *pCur; | 3231 VdbeCursor *pCur; |
3020 Db *pDb; | 3232 Db *pDb; |
3021 | 3233 |
| 3234 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); |
| 3235 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); |
| 3236 assert( p->bIsReader ); |
| 3237 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx |
| 3238 || p->readOnly==0 ); |
| 3239 |
3022 if( p->expired ){ | 3240 if( p->expired ){ |
3023 rc = SQLITE_ABORT; | 3241 rc = SQLITE_ABORT_ROLLBACK; |
3024 break; | 3242 break; |
3025 } | 3243 } |
3026 | 3244 |
3027 nField = 0; | 3245 nField = 0; |
3028 pKeyInfo = 0; | 3246 pKeyInfo = 0; |
3029 p2 = pOp->p2; | 3247 p2 = pOp->p2; |
3030 iDb = pOp->p3; | 3248 iDb = pOp->p3; |
3031 assert( iDb>=0 && iDb<db->nDb ); | 3249 assert( iDb>=0 && iDb<db->nDb ); |
3032 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); | 3250 assert( DbMaskTest(p->btreeMask, iDb) ); |
3033 pDb = &db->aDb[iDb]; | 3251 pDb = &db->aDb[iDb]; |
3034 pX = pDb->pBt; | 3252 pX = pDb->pBt; |
3035 assert( pX!=0 ); | 3253 assert( pX!=0 ); |
3036 if( pOp->opcode==OP_OpenWrite ){ | 3254 if( pOp->opcode==OP_OpenWrite ){ |
3037 wrFlag = 1; | 3255 wrFlag = 1; |
3038 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | 3256 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
3039 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ | 3257 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ |
3040 p->minWriteFileFormat = pDb->pSchema->file_format; | 3258 p->minWriteFileFormat = pDb->pSchema->file_format; |
3041 } | 3259 } |
3042 }else{ | 3260 }else{ |
3043 wrFlag = 0; | 3261 wrFlag = 0; |
3044 } | 3262 } |
3045 if( pOp->p5 ){ | 3263 if( pOp->p5 & OPFLAG_P2ISREG ){ |
3046 assert( p2>0 ); | 3264 assert( p2>0 ); |
3047 assert( p2<=p->nMem ); | 3265 assert( p2<=(p->nMem-p->nCursor) ); |
3048 pIn2 = &aMem[p2]; | 3266 pIn2 = &aMem[p2]; |
3049 assert( memIsValid(pIn2) ); | 3267 assert( memIsValid(pIn2) ); |
3050 assert( (pIn2->flags & MEM_Int)!=0 ); | 3268 assert( (pIn2->flags & MEM_Int)!=0 ); |
3051 sqlite3VdbeMemIntegerify(pIn2); | 3269 sqlite3VdbeMemIntegerify(pIn2); |
3052 p2 = (int)pIn2->u.i; | 3270 p2 = (int)pIn2->u.i; |
3053 /* The p2 value always comes from a prior OP_CreateTable opcode and | 3271 /* The p2 value always comes from a prior OP_CreateTable opcode and |
3054 ** that opcode will always set the p2 value to 2 or more or else fail. | 3272 ** that opcode will always set the p2 value to 2 or more or else fail. |
3055 ** If there were a failure, the prepared statement would have halted | 3273 ** If there were a failure, the prepared statement would have halted |
3056 ** before reaching this instruction. */ | 3274 ** before reaching this instruction. */ |
3057 if( NEVER(p2<2) ) { | 3275 if( NEVER(p2<2) ) { |
3058 rc = SQLITE_CORRUPT_BKPT; | 3276 rc = SQLITE_CORRUPT_BKPT; |
3059 goto abort_due_to_error; | 3277 goto abort_due_to_error; |
3060 } | 3278 } |
3061 } | 3279 } |
3062 if( pOp->p4type==P4_KEYINFO ){ | 3280 if( pOp->p4type==P4_KEYINFO ){ |
3063 pKeyInfo = pOp->p4.pKeyInfo; | 3281 pKeyInfo = pOp->p4.pKeyInfo; |
3064 pKeyInfo->enc = ENC(p->db); | 3282 assert( pKeyInfo->enc==ENC(db) ); |
3065 nField = pKeyInfo->nField+1; | 3283 assert( pKeyInfo->db==db ); |
| 3284 nField = pKeyInfo->nField+pKeyInfo->nXField; |
3066 }else if( pOp->p4type==P4_INT32 ){ | 3285 }else if( pOp->p4type==P4_INT32 ){ |
3067 nField = pOp->p4.i; | 3286 nField = pOp->p4.i; |
3068 } | 3287 } |
3069 assert( pOp->p1>=0 ); | 3288 assert( pOp->p1>=0 ); |
| 3289 assert( nField>=0 ); |
| 3290 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ |
3070 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); | 3291 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); |
3071 if( pCur==0 ) goto no_mem; | 3292 if( pCur==0 ) goto no_mem; |
3072 pCur->nullRow = 1; | 3293 pCur->nullRow = 1; |
3073 pCur->isOrdered = 1; | 3294 pCur->isOrdered = 1; |
| 3295 pCur->pgnoRoot = p2; |
3074 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); | 3296 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); |
3075 pCur->pKeyInfo = pKeyInfo; | 3297 pCur->pKeyInfo = pKeyInfo; |
| 3298 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); |
| 3299 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR)); |
3076 | 3300 |
3077 /* Since it performs no memory allocation or IO, the only values that | 3301 /* Set the VdbeCursor.isTable variable. Previous versions of |
3078 ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK. | |
3079 ** SQLITE_EMPTY is only returned when attempting to open the table | |
3080 ** rooted at page 1 of a zero-byte database. */ | |
3081 assert( rc==SQLITE_EMPTY || rc==SQLITE_OK ); | |
3082 if( rc==SQLITE_EMPTY ){ | |
3083 pCur->pCursor = 0; | |
3084 rc = SQLITE_OK; | |
3085 } | |
3086 | |
3087 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of | |
3088 ** SQLite used to check if the root-page flags were sane at this point | 3302 ** SQLite used to check if the root-page flags were sane at this point |
3089 ** and report database corruption if they were not, but this check has | 3303 ** and report database corruption if they were not, but this check has |
3090 ** since moved into the btree layer. */ | 3304 ** since moved into the btree layer. */ |
3091 pCur->isTable = pOp->p4type!=P4_KEYINFO; | 3305 pCur->isTable = pOp->p4type!=P4_KEYINFO; |
3092 pCur->isIndex = !pCur->isTable; | |
3093 break; | 3306 break; |
3094 } | 3307 } |
3095 | 3308 |
3096 /* Opcode: OpenEphemeral P1 P2 * P4 * | 3309 /* Opcode: OpenEphemeral P1 P2 * P4 P5 |
| 3310 ** Synopsis: nColumn=P2 |
3097 ** | 3311 ** |
3098 ** Open a new cursor P1 to a transient table. | 3312 ** Open a new cursor P1 to a transient table. |
3099 ** The cursor is always opened read/write even if | 3313 ** The cursor is always opened read/write even if |
3100 ** the main database is read-only. The ephemeral | 3314 ** the main database is read-only. The ephemeral |
3101 ** table is deleted automatically when the cursor is closed. | 3315 ** table is deleted automatically when the cursor is closed. |
3102 ** | 3316 ** |
3103 ** P2 is the number of columns in the ephemeral table. | 3317 ** P2 is the number of columns in the ephemeral table. |
3104 ** The cursor points to a BTree table if P4==0 and to a BTree index | 3318 ** The cursor points to a BTree table if P4==0 and to a BTree index |
3105 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure | 3319 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure |
3106 ** that defines the format of keys in the index. | 3320 ** that defines the format of keys in the index. |
3107 ** | 3321 ** |
3108 ** This opcode was once called OpenTemp. But that created | 3322 ** The P5 parameter can be a mask of the BTREE_* flags defined |
3109 ** confusion because the term "temp table", might refer either | 3323 ** in btree.h. These flags control aspects of the operation of |
3110 ** to a TEMP table at the SQL level, or to a table opened by | 3324 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are |
3111 ** this opcode. Then this opcode was call OpenVirtual. But | 3325 ** added automatically. |
3112 ** that created confusion with the whole virtual-table idea. | |
3113 */ | 3326 */ |
3114 /* Opcode: OpenAutoindex P1 P2 * P4 * | 3327 /* Opcode: OpenAutoindex P1 P2 * P4 * |
| 3328 ** Synopsis: nColumn=P2 |
3115 ** | 3329 ** |
3116 ** This opcode works the same as OP_OpenEphemeral. It has a | 3330 ** This opcode works the same as OP_OpenEphemeral. It has a |
3117 ** different name to distinguish its use. Tables created using | 3331 ** different name to distinguish its use. Tables created using |
3118 ** by this opcode will be used for automatically created transient | 3332 ** by this opcode will be used for automatically created transient |
3119 ** indices in joins. | 3333 ** indices in joins. |
3120 */ | 3334 */ |
3121 case OP_OpenAutoindex: | 3335 case OP_OpenAutoindex: |
3122 case OP_OpenEphemeral: { | 3336 case OP_OpenEphemeral: { |
3123 VdbeCursor *pCx; | 3337 VdbeCursor *pCx; |
| 3338 KeyInfo *pKeyInfo; |
| 3339 |
3124 static const int vfsFlags = | 3340 static const int vfsFlags = |
3125 SQLITE_OPEN_READWRITE | | 3341 SQLITE_OPEN_READWRITE | |
3126 SQLITE_OPEN_CREATE | | 3342 SQLITE_OPEN_CREATE | |
3127 SQLITE_OPEN_EXCLUSIVE | | 3343 SQLITE_OPEN_EXCLUSIVE | |
3128 SQLITE_OPEN_DELETEONCLOSE | | 3344 SQLITE_OPEN_DELETEONCLOSE | |
3129 SQLITE_OPEN_TRANSIENT_DB; | 3345 SQLITE_OPEN_TRANSIENT_DB; |
3130 | |
3131 assert( pOp->p1>=0 ); | 3346 assert( pOp->p1>=0 ); |
| 3347 assert( pOp->p2>=0 ); |
3132 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); | 3348 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); |
3133 if( pCx==0 ) goto no_mem; | 3349 if( pCx==0 ) goto no_mem; |
3134 pCx->nullRow = 1; | 3350 pCx->nullRow = 1; |
3135 rc = sqlite3BtreeOpen(0, db, &pCx->pBt, | 3351 pCx->isEphemeral = 1; |
| 3352 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, |
3136 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); | 3353 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); |
3137 if( rc==SQLITE_OK ){ | 3354 if( rc==SQLITE_OK ){ |
3138 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); | 3355 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); |
3139 } | 3356 } |
3140 if( rc==SQLITE_OK ){ | 3357 if( rc==SQLITE_OK ){ |
3141 /* If a transient index is required, create it by calling | 3358 /* If a transient index is required, create it by calling |
3142 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before | 3359 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before |
3143 ** opening it. If a transient table is required, just use the | 3360 ** opening it. If a transient table is required, just use the |
3144 ** automatically created table with root-page 1 (an BLOB_INTKEY table). | 3361 ** automatically created table with root-page 1 (an BLOB_INTKEY table). |
3145 */ | 3362 */ |
3146 if( pOp->p4.pKeyInfo ){ | 3363 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ |
3147 int pgno; | 3364 int pgno; |
3148 assert( pOp->p4type==P4_KEYINFO ); | 3365 assert( pOp->p4type==P4_KEYINFO ); |
3149 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY); | 3366 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); |
3150 if( rc==SQLITE_OK ){ | 3367 if( rc==SQLITE_OK ){ |
3151 assert( pgno==MASTER_ROOT+1 ); | 3368 assert( pgno==MASTER_ROOT+1 ); |
3152 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, | 3369 assert( pKeyInfo->db==db ); |
3153 (KeyInfo*)pOp->p4.z, pCx->pCursor); | 3370 assert( pKeyInfo->enc==ENC(db) ); |
3154 pCx->pKeyInfo = pOp->p4.pKeyInfo; | 3371 pCx->pKeyInfo = pKeyInfo; |
3155 pCx->pKeyInfo->enc = ENC(p->db); | 3372 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor); |
3156 } | 3373 } |
3157 pCx->isTable = 0; | 3374 pCx->isTable = 0; |
3158 }else{ | 3375 }else{ |
3159 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); | 3376 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); |
3160 pCx->isTable = 1; | 3377 pCx->isTable = 1; |
3161 } | 3378 } |
3162 } | 3379 } |
3163 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); | 3380 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); |
3164 pCx->isIndex = !pCx->isTable; | 3381 break; |
| 3382 } |
| 3383 |
| 3384 /* Opcode: SorterOpen P1 P2 P3 P4 * |
| 3385 ** |
| 3386 ** This opcode works like OP_OpenEphemeral except that it opens |
| 3387 ** a transient index that is specifically designed to sort large |
| 3388 ** tables using an external merge-sort algorithm. |
| 3389 ** |
| 3390 ** If argument P3 is non-zero, then it indicates that the sorter may |
| 3391 ** assume that a stable sort considering the first P3 fields of each |
| 3392 ** key is sufficient to produce the required results. |
| 3393 */ |
| 3394 case OP_SorterOpen: { |
| 3395 VdbeCursor *pCx; |
| 3396 |
| 3397 assert( pOp->p1>=0 ); |
| 3398 assert( pOp->p2>=0 ); |
| 3399 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); |
| 3400 if( pCx==0 ) goto no_mem; |
| 3401 pCx->pKeyInfo = pOp->p4.pKeyInfo; |
| 3402 assert( pCx->pKeyInfo->db==db ); |
| 3403 assert( pCx->pKeyInfo->enc==ENC(db) ); |
| 3404 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); |
| 3405 break; |
| 3406 } |
| 3407 |
| 3408 /* Opcode: SequenceTest P1 P2 * * * |
| 3409 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 |
| 3410 ** |
| 3411 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump |
| 3412 ** to P2. Regardless of whether or not the jump is taken, increment the |
| 3413 ** the sequence value. |
| 3414 */ |
| 3415 case OP_SequenceTest: { |
| 3416 VdbeCursor *pC; |
| 3417 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 3418 pC = p->apCsr[pOp->p1]; |
| 3419 assert( pC->pSorter ); |
| 3420 if( (pC->seqCount++)==0 ){ |
| 3421 pc = pOp->p2 - 1; |
| 3422 } |
3165 break; | 3423 break; |
3166 } | 3424 } |
3167 | 3425 |
3168 /* Opcode: OpenPseudo P1 P2 P3 * * | 3426 /* Opcode: OpenPseudo P1 P2 P3 * * |
| 3427 ** Synopsis: P3 columns in r[P2] |
3169 ** | 3428 ** |
3170 ** Open a new cursor that points to a fake table that contains a single | 3429 ** Open a new cursor that points to a fake table that contains a single |
3171 ** row of data. The content of that one row in the content of memory | 3430 ** row of data. The content of that one row is the content of memory |
3172 ** register P2. In other words, cursor P1 becomes an alias for the | 3431 ** register P2. In other words, cursor P1 becomes an alias for the |
3173 ** MEM_Blob content contained in register P2. | 3432 ** MEM_Blob content contained in register P2. |
3174 ** | 3433 ** |
3175 ** A pseudo-table created by this opcode is used to hold a single | 3434 ** A pseudo-table created by this opcode is used to hold a single |
3176 ** row output from the sorter so that the row can be decomposed into | 3435 ** row output from the sorter so that the row can be decomposed into |
3177 ** individual columns using the OP_Column opcode. The OP_Column opcode | 3436 ** individual columns using the OP_Column opcode. The OP_Column opcode |
3178 ** is the only cursor opcode that works with a pseudo-table. | 3437 ** is the only cursor opcode that works with a pseudo-table. |
3179 ** | 3438 ** |
3180 ** P3 is the number of fields in the records that will be stored by | 3439 ** P3 is the number of fields in the records that will be stored by |
3181 ** the pseudo-table. | 3440 ** the pseudo-table. |
3182 */ | 3441 */ |
3183 case OP_OpenPseudo: { | 3442 case OP_OpenPseudo: { |
3184 VdbeCursor *pCx; | 3443 VdbeCursor *pCx; |
3185 | 3444 |
3186 assert( pOp->p1>=0 ); | 3445 assert( pOp->p1>=0 ); |
| 3446 assert( pOp->p3>=0 ); |
3187 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); | 3447 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); |
3188 if( pCx==0 ) goto no_mem; | 3448 if( pCx==0 ) goto no_mem; |
3189 pCx->nullRow = 1; | 3449 pCx->nullRow = 1; |
3190 pCx->pseudoTableReg = pOp->p2; | 3450 pCx->pseudoTableReg = pOp->p2; |
3191 pCx->isTable = 1; | 3451 pCx->isTable = 1; |
3192 pCx->isIndex = 0; | 3452 assert( pOp->p5==0 ); |
3193 break; | 3453 break; |
3194 } | 3454 } |
3195 | 3455 |
3196 /* Opcode: Close P1 * * * * | 3456 /* Opcode: Close P1 * * * * |
3197 ** | 3457 ** |
3198 ** Close a cursor previously opened as P1. If P1 is not | 3458 ** Close a cursor previously opened as P1. If P1 is not |
3199 ** currently open, this instruction is a no-op. | 3459 ** currently open, this instruction is a no-op. |
3200 */ | 3460 */ |
3201 case OP_Close: { | 3461 case OP_Close: { |
3202 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 3462 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3203 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); | 3463 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); |
3204 p->apCsr[pOp->p1] = 0; | 3464 p->apCsr[pOp->p1] = 0; |
3205 break; | 3465 break; |
3206 } | 3466 } |
3207 | 3467 |
3208 /* Opcode: SeekGe P1 P2 P3 P4 * | 3468 /* Opcode: SeekGE P1 P2 P3 P4 * |
| 3469 ** Synopsis: key=r[P3@P4] |
3209 ** | 3470 ** |
3210 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), | 3471 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
3211 ** use the value in register P3 as the key. If cursor P1 refers | 3472 ** use the value in register P3 as the key. If cursor P1 refers |
3212 ** to an SQL index, then P3 is the first in an array of P4 registers | 3473 ** to an SQL index, then P3 is the first in an array of P4 registers |
3213 ** that are used as an unpacked index key. | 3474 ** that are used as an unpacked index key. |
3214 ** | 3475 ** |
3215 ** Reposition cursor P1 so that it points to the smallest entry that | 3476 ** Reposition cursor P1 so that it points to the smallest entry that |
3216 ** is greater than or equal to the key value. If there are no records | 3477 ** is greater than or equal to the key value. If there are no records |
3217 ** greater than or equal to the key and P2 is not zero, then jump to P2. | 3478 ** greater than or equal to the key and P2 is not zero, then jump to P2. |
3218 ** | 3479 ** |
3219 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe | 3480 ** This opcode leaves the cursor configured to move in forward order, |
| 3481 ** from the beginning toward the end. In other words, the cursor is |
| 3482 ** configured to use Next, not Prev. |
| 3483 ** |
| 3484 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe |
3220 */ | 3485 */ |
3221 /* Opcode: SeekGt P1 P2 P3 P4 * | 3486 /* Opcode: SeekGT P1 P2 P3 P4 * |
| 3487 ** Synopsis: key=r[P3@P4] |
3222 ** | 3488 ** |
3223 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), | 3489 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
3224 ** use the value in register P3 as a key. If cursor P1 refers | 3490 ** use the value in register P3 as a key. If cursor P1 refers |
3225 ** to an SQL index, then P3 is the first in an array of P4 registers | 3491 ** to an SQL index, then P3 is the first in an array of P4 registers |
3226 ** that are used as an unpacked index key. | 3492 ** that are used as an unpacked index key. |
3227 ** | 3493 ** |
3228 ** Reposition cursor P1 so that it points to the smallest entry that | 3494 ** Reposition cursor P1 so that it points to the smallest entry that |
3229 ** is greater than the key value. If there are no records greater than | 3495 ** is greater than the key value. If there are no records greater than |
3230 ** the key and P2 is not zero, then jump to P2. | 3496 ** the key and P2 is not zero, then jump to P2. |
3231 ** | 3497 ** |
3232 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe | 3498 ** This opcode leaves the cursor configured to move in forward order, |
| 3499 ** from the beginning toward the end. In other words, the cursor is |
| 3500 ** configured to use Next, not Prev. |
| 3501 ** |
| 3502 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe |
3233 */ | 3503 */ |
3234 /* Opcode: SeekLt P1 P2 P3 P4 * | 3504 /* Opcode: SeekLT P1 P2 P3 P4 * |
| 3505 ** Synopsis: key=r[P3@P4] |
3235 ** | 3506 ** |
3236 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), | 3507 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
3237 ** use the value in register P3 as a key. If cursor P1 refers | 3508 ** use the value in register P3 as a key. If cursor P1 refers |
3238 ** to an SQL index, then P3 is the first in an array of P4 registers | 3509 ** to an SQL index, then P3 is the first in an array of P4 registers |
3239 ** that are used as an unpacked index key. | 3510 ** that are used as an unpacked index key. |
3240 ** | 3511 ** |
3241 ** Reposition cursor P1 so that it points to the largest entry that | 3512 ** Reposition cursor P1 so that it points to the largest entry that |
3242 ** is less than the key value. If there are no records less than | 3513 ** is less than the key value. If there are no records less than |
3243 ** the key and P2 is not zero, then jump to P2. | 3514 ** the key and P2 is not zero, then jump to P2. |
3244 ** | 3515 ** |
3245 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe | 3516 ** This opcode leaves the cursor configured to move in reverse order, |
| 3517 ** from the end toward the beginning. In other words, the cursor is |
| 3518 ** configured to use Prev, not Next. |
| 3519 ** |
| 3520 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe |
3246 */ | 3521 */ |
3247 /* Opcode: SeekLe P1 P2 P3 P4 * | 3522 /* Opcode: SeekLE P1 P2 P3 P4 * |
| 3523 ** Synopsis: key=r[P3@P4] |
3248 ** | 3524 ** |
3249 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), | 3525 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
3250 ** use the value in register P3 as a key. If cursor P1 refers | 3526 ** use the value in register P3 as a key. If cursor P1 refers |
3251 ** to an SQL index, then P3 is the first in an array of P4 registers | 3527 ** to an SQL index, then P3 is the first in an array of P4 registers |
3252 ** that are used as an unpacked index key. | 3528 ** that are used as an unpacked index key. |
3253 ** | 3529 ** |
3254 ** Reposition cursor P1 so that it points to the largest entry that | 3530 ** Reposition cursor P1 so that it points to the largest entry that |
3255 ** is less than or equal to the key value. If there are no records | 3531 ** is less than or equal to the key value. If there are no records |
3256 ** less than or equal to the key and P2 is not zero, then jump to P2. | 3532 ** less than or equal to the key and P2 is not zero, then jump to P2. |
3257 ** | 3533 ** |
3258 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt | 3534 ** This opcode leaves the cursor configured to move in reverse order, |
| 3535 ** from the end toward the beginning. In other words, the cursor is |
| 3536 ** configured to use Prev, not Next. |
| 3537 ** |
| 3538 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt |
3259 */ | 3539 */ |
3260 case OP_SeekLt: /* jump, in3 */ | 3540 case OP_SeekLT: /* jump, in3 */ |
3261 case OP_SeekLe: /* jump, in3 */ | 3541 case OP_SeekLE: /* jump, in3 */ |
3262 case OP_SeekGe: /* jump, in3 */ | 3542 case OP_SeekGE: /* jump, in3 */ |
3263 case OP_SeekGt: { /* jump, in3 */ | 3543 case OP_SeekGT: { /* jump, in3 */ |
3264 int res; | 3544 int res; |
3265 int oc; | 3545 int oc; |
3266 VdbeCursor *pC; | 3546 VdbeCursor *pC; |
3267 UnpackedRecord r; | 3547 UnpackedRecord r; |
3268 int nField; | 3548 int nField; |
3269 i64 iKey; /* The rowid we are to seek to */ | 3549 i64 iKey; /* The rowid we are to seek to */ |
3270 | 3550 |
3271 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 3551 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3272 assert( pOp->p2!=0 ); | 3552 assert( pOp->p2!=0 ); |
3273 pC = p->apCsr[pOp->p1]; | 3553 pC = p->apCsr[pOp->p1]; |
3274 assert( pC!=0 ); | 3554 assert( pC!=0 ); |
3275 assert( pC->pseudoTableReg==0 ); | 3555 assert( pC->pseudoTableReg==0 ); |
3276 assert( OP_SeekLe == OP_SeekLt+1 ); | 3556 assert( OP_SeekLE == OP_SeekLT+1 ); |
3277 assert( OP_SeekGe == OP_SeekLt+2 ); | 3557 assert( OP_SeekGE == OP_SeekLT+2 ); |
3278 assert( OP_SeekGt == OP_SeekLt+3 ); | 3558 assert( OP_SeekGT == OP_SeekLT+3 ); |
3279 assert( pC->isOrdered ); | 3559 assert( pC->isOrdered ); |
3280 if( pC->pCursor!=0 ){ | 3560 assert( pC->pCursor!=0 ); |
3281 oc = pOp->opcode; | 3561 oc = pOp->opcode; |
3282 pC->nullRow = 0; | 3562 pC->nullRow = 0; |
3283 if( pC->isTable ){ | 3563 #ifdef SQLITE_DEBUG |
3284 /* The input value in P3 might be of any type: integer, real, string, | 3564 pC->seekOp = pOp->opcode; |
3285 ** blob, or NULL. But it needs to be an integer before we can do | 3565 #endif |
3286 ** the seek, so covert it. */ | 3566 if( pC->isTable ){ |
3287 pIn3 = &aMem[pOp->p3]; | 3567 /* The input value in P3 might be of any type: integer, real, string, |
3288 applyNumericAffinity(pIn3); | 3568 ** blob, or NULL. But it needs to be an integer before we can do |
3289 iKey = sqlite3VdbeIntValue(pIn3); | 3569 ** the seek, so convert it. */ |
3290 pC->rowidIsValid = 0; | 3570 pIn3 = &aMem[pOp->p3]; |
| 3571 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ |
| 3572 applyNumericAffinity(pIn3, 0); |
| 3573 } |
| 3574 iKey = sqlite3VdbeIntValue(pIn3); |
3291 | 3575 |
3292 /* If the P3 value could not be converted into an integer without | 3576 /* If the P3 value could not be converted into an integer without |
3293 ** loss of information, then special processing is required... */ | 3577 ** loss of information, then special processing is required... */ |
3294 if( (pIn3->flags & MEM_Int)==0 ){ | 3578 if( (pIn3->flags & MEM_Int)==0 ){ |
3295 if( (pIn3->flags & MEM_Real)==0 ){ | 3579 if( (pIn3->flags & MEM_Real)==0 ){ |
3296 /* If the P3 value cannot be converted into any kind of a number, | 3580 /* If the P3 value cannot be converted into any kind of a number, |
3297 ** then the seek is not possible, so jump to P2 */ | 3581 ** then the seek is not possible, so jump to P2 */ |
3298 pc = pOp->p2 - 1; | 3582 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); |
3299 break; | 3583 break; |
3300 } | 3584 } |
3301 /* If we reach this point, then the P3 value must be a floating | |
3302 ** point number. */ | |
3303 assert( (pIn3->flags & MEM_Real)!=0 ); | |
3304 | 3585 |
3305 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){ | 3586 /* If the approximation iKey is larger than the actual real search |
3306 /* The P3 value is too large in magnitude to be expressed as an | 3587 ** term, substitute >= for > and < for <=. e.g. if the search term |
3307 ** integer. */ | 3588 ** is 4.9 and the integer approximation 5: |
3308 res = 1; | 3589 ** |
3309 if( pIn3->r<0 ){ | 3590 ** (x > 4.9) -> (x >= 5) |
3310 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt ); | 3591 ** (x <= 4.9) -> (x < 5) |
3311 rc = sqlite3BtreeFirst(pC->pCursor, &res); | 3592 */ |
3312 if( rc!=SQLITE_OK ) goto abort_due_to_error; | 3593 if( pIn3->u.r<(double)iKey ){ |
3313 } | 3594 assert( OP_SeekGE==(OP_SeekGT-1) ); |
3314 }else{ | 3595 assert( OP_SeekLT==(OP_SeekLE-1) ); |
3315 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe ); | 3596 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); |
3316 rc = sqlite3BtreeLast(pC->pCursor, &res); | 3597 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; |
3317 if( rc!=SQLITE_OK ) goto abort_due_to_error; | |
3318 } | |
3319 } | |
3320 if( res ){ | |
3321 pc = pOp->p2 - 1; | |
3322 } | |
3323 break; | |
3324 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){ | |
3325 /* Use the ceiling() function to convert real->int */ | |
3326 if( pIn3->r > (double)iKey ) iKey++; | |
3327 }else{ | |
3328 /* Use the floor() function to convert real->int */ | |
3329 assert( oc==OP_SeekLe || oc==OP_SeekGt ); | |
3330 if( pIn3->r < (double)iKey ) iKey--; | |
3331 } | |
3332 } | |
3333 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); | |
3334 if( rc!=SQLITE_OK ){ | |
3335 goto abort_due_to_error; | |
3336 } | 3598 } |
3337 if( res==0 ){ | 3599 |
3338 pC->rowidIsValid = 1; | 3600 /* If the approximation iKey is smaller than the actual real search |
3339 pC->lastRowid = iKey; | 3601 ** term, substitute <= for < and > for >=. */ |
| 3602 else if( pIn3->u.r>(double)iKey ){ |
| 3603 assert( OP_SeekLE==(OP_SeekLT+1) ); |
| 3604 assert( OP_SeekGT==(OP_SeekGE+1) ); |
| 3605 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); |
| 3606 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; |
3340 } | 3607 } |
3341 }else{ | 3608 } |
3342 nField = pOp->p4.i; | 3609 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); |
3343 assert( pOp->p4type==P4_INT32 ); | 3610 pC->movetoTarget = iKey; /* Used by OP_Delete */ |
3344 assert( nField>0 ); | 3611 if( rc!=SQLITE_OK ){ |
3345 r.pKeyInfo = pC->pKeyInfo; | 3612 goto abort_due_to_error; |
3346 r.nField = (u16)nField; | |
3347 | |
3348 /* The next line of code computes as follows, only faster: | |
3349 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){ | |
3350 ** r.flags = UNPACKED_INCRKEY; | |
3351 ** }else{ | |
3352 ** r.flags = 0; | |
3353 ** } | |
3354 */ | |
3355 r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt))); | |
3356 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY ); | |
3357 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY ); | |
3358 assert( oc!=OP_SeekGe || r.flags==0 ); | |
3359 assert( oc!=OP_SeekLt || r.flags==0 ); | |
3360 | |
3361 r.aMem = &aMem[pOp->p3]; | |
3362 #ifdef SQLITE_DEBUG | |
3363 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } | |
3364 #endif | |
3365 ExpandBlob(r.aMem); | |
3366 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); | |
3367 if( rc!=SQLITE_OK ){ | |
3368 goto abort_due_to_error; | |
3369 } | |
3370 pC->rowidIsValid = 0; | |
3371 } | |
3372 pC->deferredMoveto = 0; | |
3373 pC->cacheStatus = CACHE_STALE; | |
3374 #ifdef SQLITE_TEST | |
3375 sqlite3_search_count++; | |
3376 #endif | |
3377 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt ); | |
3378 if( res<0 || (res==0 && oc==OP_SeekGt) ){ | |
3379 rc = sqlite3BtreeNext(pC->pCursor, &res); | |
3380 if( rc!=SQLITE_OK ) goto abort_due_to_error; | |
3381 pC->rowidIsValid = 0; | |
3382 }else{ | |
3383 res = 0; | |
3384 } | |
3385 }else{ | |
3386 assert( oc==OP_SeekLt || oc==OP_SeekLe ); | |
3387 if( res>0 || (res==0 && oc==OP_SeekLt) ){ | |
3388 rc = sqlite3BtreePrevious(pC->pCursor, &res); | |
3389 if( rc!=SQLITE_OK ) goto abort_due_to_error; | |
3390 pC->rowidIsValid = 0; | |
3391 }else{ | |
3392 /* res might be negative because the table is empty. Check to | |
3393 ** see if this is the case. | |
3394 */ | |
3395 res = sqlite3BtreeEof(pC->pCursor); | |
3396 } | |
3397 } | |
3398 assert( pOp->p2>0 ); | |
3399 if( res ){ | |
3400 pc = pOp->p2 - 1; | |
3401 } | 3613 } |
3402 }else{ | 3614 }else{ |
3403 /* This happens when attempting to open the sqlite3_master table | 3615 nField = pOp->p4.i; |
3404 ** for read access returns SQLITE_EMPTY. In this case always | 3616 assert( pOp->p4type==P4_INT32 ); |
3405 ** take the jump (since there are no records in the table). | 3617 assert( nField>0 ); |
| 3618 r.pKeyInfo = pC->pKeyInfo; |
| 3619 r.nField = (u16)nField; |
| 3620 |
| 3621 /* The next line of code computes as follows, only faster: |
| 3622 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ |
| 3623 ** r.default_rc = -1; |
| 3624 ** }else{ |
| 3625 ** r.default_rc = +1; |
| 3626 ** } |
3406 */ | 3627 */ |
| 3628 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); |
| 3629 assert( oc!=OP_SeekGT || r.default_rc==-1 ); |
| 3630 assert( oc!=OP_SeekLE || r.default_rc==-1 ); |
| 3631 assert( oc!=OP_SeekGE || r.default_rc==+1 ); |
| 3632 assert( oc!=OP_SeekLT || r.default_rc==+1 ); |
| 3633 |
| 3634 r.aMem = &aMem[pOp->p3]; |
| 3635 #ifdef SQLITE_DEBUG |
| 3636 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
| 3637 #endif |
| 3638 ExpandBlob(r.aMem); |
| 3639 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); |
| 3640 if( rc!=SQLITE_OK ){ |
| 3641 goto abort_due_to_error; |
| 3642 } |
| 3643 } |
| 3644 pC->deferredMoveto = 0; |
| 3645 pC->cacheStatus = CACHE_STALE; |
| 3646 #ifdef SQLITE_TEST |
| 3647 sqlite3_search_count++; |
| 3648 #endif |
| 3649 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); |
| 3650 if( res<0 || (res==0 && oc==OP_SeekGT) ){ |
| 3651 res = 0; |
| 3652 rc = sqlite3BtreeNext(pC->pCursor, &res); |
| 3653 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 3654 }else{ |
| 3655 res = 0; |
| 3656 } |
| 3657 }else{ |
| 3658 assert( oc==OP_SeekLT || oc==OP_SeekLE ); |
| 3659 if( res>0 || (res==0 && oc==OP_SeekLT) ){ |
| 3660 res = 0; |
| 3661 rc = sqlite3BtreePrevious(pC->pCursor, &res); |
| 3662 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 3663 }else{ |
| 3664 /* res might be negative because the table is empty. Check to |
| 3665 ** see if this is the case. |
| 3666 */ |
| 3667 res = sqlite3BtreeEof(pC->pCursor); |
| 3668 } |
| 3669 } |
| 3670 assert( pOp->p2>0 ); |
| 3671 VdbeBranchTaken(res!=0,2); |
| 3672 if( res ){ |
3407 pc = pOp->p2 - 1; | 3673 pc = pOp->p2 - 1; |
3408 } | 3674 } |
3409 break; | 3675 break; |
3410 } | 3676 } |
3411 | 3677 |
3412 /* Opcode: Seek P1 P2 * * * | 3678 /* Opcode: Seek P1 P2 * * * |
| 3679 ** Synopsis: intkey=r[P2] |
3413 ** | 3680 ** |
3414 ** P1 is an open table cursor and P2 is a rowid integer. Arrange | 3681 ** P1 is an open table cursor and P2 is a rowid integer. Arrange |
3415 ** for P1 to move so that it points to the rowid given by P2. | 3682 ** for P1 to move so that it points to the rowid given by P2. |
3416 ** | 3683 ** |
3417 ** This is actually a deferred seek. Nothing actually happens until | 3684 ** This is actually a deferred seek. Nothing actually happens until |
3418 ** the cursor is used to read a record. That way, if no reads | 3685 ** the cursor is used to read a record. That way, if no reads |
3419 ** occur, no unnecessary I/O happens. | 3686 ** occur, no unnecessary I/O happens. |
3420 */ | 3687 */ |
3421 case OP_Seek: { /* in2 */ | 3688 case OP_Seek: { /* in2 */ |
3422 VdbeCursor *pC; | 3689 VdbeCursor *pC; |
3423 | 3690 |
3424 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 3691 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3425 pC = p->apCsr[pOp->p1]; | 3692 pC = p->apCsr[pOp->p1]; |
3426 assert( pC!=0 ); | 3693 assert( pC!=0 ); |
3427 if( ALWAYS(pC->pCursor!=0) ){ | 3694 assert( pC->pCursor!=0 ); |
3428 assert( pC->isTable ); | 3695 assert( pC->isTable ); |
3429 pC->nullRow = 0; | 3696 pC->nullRow = 0; |
3430 pIn2 = &aMem[pOp->p2]; | 3697 pIn2 = &aMem[pOp->p2]; |
3431 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); | 3698 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); |
3432 pC->rowidIsValid = 0; | 3699 pC->deferredMoveto = 1; |
3433 pC->deferredMoveto = 1; | |
3434 } | |
3435 break; | 3700 break; |
3436 } | 3701 } |
3437 | 3702 |
3438 | 3703 |
3439 /* Opcode: Found P1 P2 P3 P4 * | 3704 /* Opcode: Found P1 P2 P3 P4 * |
| 3705 ** Synopsis: key=r[P3@P4] |
3440 ** | 3706 ** |
3441 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If | 3707 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If |
3442 ** P4>0 then register P3 is the first of P4 registers that form an unpacked | 3708 ** P4>0 then register P3 is the first of P4 registers that form an unpacked |
3443 ** record. | 3709 ** record. |
3444 ** | 3710 ** |
3445 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 | 3711 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 |
3446 ** is a prefix of any entry in P1 then a jump is made to P2 and | 3712 ** is a prefix of any entry in P1 then a jump is made to P2 and |
3447 ** P1 is left pointing at the matching entry. | 3713 ** P1 is left pointing at the matching entry. |
| 3714 ** |
| 3715 ** This operation leaves the cursor in a state where it can be |
| 3716 ** advanced in the forward direction. The Next instruction will work, |
| 3717 ** but not the Prev instruction. |
| 3718 ** |
| 3719 ** See also: NotFound, NoConflict, NotExists. SeekGe |
3448 */ | 3720 */ |
3449 /* Opcode: NotFound P1 P2 P3 P4 * | 3721 /* Opcode: NotFound P1 P2 P3 P4 * |
| 3722 ** Synopsis: key=r[P3@P4] |
3450 ** | 3723 ** |
3451 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If | 3724 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If |
3452 ** P4>0 then register P3 is the first of P4 registers that form an unpacked | 3725 ** P4>0 then register P3 is the first of P4 registers that form an unpacked |
3453 ** record. | 3726 ** record. |
3454 ** | 3727 ** |
3455 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 | 3728 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 |
3456 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 | 3729 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 |
3457 ** does contain an entry whose prefix matches the P3/P4 record then control | 3730 ** does contain an entry whose prefix matches the P3/P4 record then control |
3458 ** falls through to the next instruction and P1 is left pointing at the | 3731 ** falls through to the next instruction and P1 is left pointing at the |
3459 ** matching entry. | 3732 ** matching entry. |
3460 ** | 3733 ** |
3461 ** See also: Found, NotExists, IsUnique | 3734 ** This operation leaves the cursor in a state where it cannot be |
| 3735 ** advanced in either direction. In other words, the Next and Prev |
| 3736 ** opcodes do not work after this operation. |
| 3737 ** |
| 3738 ** See also: Found, NotExists, NoConflict |
3462 */ | 3739 */ |
| 3740 /* Opcode: NoConflict P1 P2 P3 P4 * |
| 3741 ** Synopsis: key=r[P3@P4] |
| 3742 ** |
| 3743 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If |
| 3744 ** P4>0 then register P3 is the first of P4 registers that form an unpacked |
| 3745 ** record. |
| 3746 ** |
| 3747 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 |
| 3748 ** contains any NULL value, jump immediately to P2. If all terms of the |
| 3749 ** record are not-NULL then a check is done to determine if any row in the |
| 3750 ** P1 index btree has a matching key prefix. If there are no matches, jump |
| 3751 ** immediately to P2. If there is a match, fall through and leave the P1 |
| 3752 ** cursor pointing to the matching row. |
| 3753 ** |
| 3754 ** This opcode is similar to OP_NotFound with the exceptions that the |
| 3755 ** branch is always taken if any part of the search key input is NULL. |
| 3756 ** |
| 3757 ** This operation leaves the cursor in a state where it cannot be |
| 3758 ** advanced in either direction. In other words, the Next and Prev |
| 3759 ** opcodes do not work after this operation. |
| 3760 ** |
| 3761 ** See also: NotFound, Found, NotExists |
| 3762 */ |
| 3763 case OP_NoConflict: /* jump, in3 */ |
3463 case OP_NotFound: /* jump, in3 */ | 3764 case OP_NotFound: /* jump, in3 */ |
3464 case OP_Found: { /* jump, in3 */ | 3765 case OP_Found: { /* jump, in3 */ |
3465 int alreadyExists; | 3766 int alreadyExists; |
| 3767 int ii; |
3466 VdbeCursor *pC; | 3768 VdbeCursor *pC; |
3467 int res; | 3769 int res; |
| 3770 char *pFree; |
3468 UnpackedRecord *pIdxKey; | 3771 UnpackedRecord *pIdxKey; |
3469 UnpackedRecord r; | 3772 UnpackedRecord r; |
3470 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7]; | 3773 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; |
3471 | 3774 |
3472 #ifdef SQLITE_TEST | 3775 #ifdef SQLITE_TEST |
3473 sqlite3_found_count++; | 3776 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; |
3474 #endif | 3777 #endif |
3475 | 3778 |
3476 alreadyExists = 0; | |
3477 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 3779 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3478 assert( pOp->p4type==P4_INT32 ); | 3780 assert( pOp->p4type==P4_INT32 ); |
3479 pC = p->apCsr[pOp->p1]; | 3781 pC = p->apCsr[pOp->p1]; |
3480 assert( pC!=0 ); | 3782 assert( pC!=0 ); |
| 3783 #ifdef SQLITE_DEBUG |
| 3784 pC->seekOp = pOp->opcode; |
| 3785 #endif |
3481 pIn3 = &aMem[pOp->p3]; | 3786 pIn3 = &aMem[pOp->p3]; |
3482 if( ALWAYS(pC->pCursor!=0) ){ | 3787 assert( pC->pCursor!=0 ); |
3483 | 3788 assert( pC->isTable==0 ); |
3484 assert( pC->isTable==0 ); | 3789 pFree = 0; /* Not needed. Only used to suppress a compiler warning. */ |
3485 if( pOp->p4.i>0 ){ | 3790 if( pOp->p4.i>0 ){ |
3486 r.pKeyInfo = pC->pKeyInfo; | 3791 r.pKeyInfo = pC->pKeyInfo; |
3487 r.nField = (u16)pOp->p4.i; | 3792 r.nField = (u16)pOp->p4.i; |
3488 r.aMem = pIn3; | 3793 r.aMem = pIn3; |
| 3794 for(ii=0; ii<r.nField; ii++){ |
| 3795 assert( memIsValid(&r.aMem[ii]) ); |
| 3796 ExpandBlob(&r.aMem[ii]); |
3489 #ifdef SQLITE_DEBUG | 3797 #ifdef SQLITE_DEBUG |
3490 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } | 3798 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); |
3491 #endif | 3799 #endif |
3492 r.flags = UNPACKED_PREFIX_MATCH; | 3800 } |
3493 pIdxKey = &r; | 3801 pIdxKey = &r; |
3494 }else{ | 3802 }else{ |
3495 assert( pIn3->flags & MEM_Blob ); | 3803 pIdxKey = sqlite3VdbeAllocUnpackedRecord( |
3496 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ | 3804 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree |
3497 pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, | 3805 ); |
3498 aTempRec, sizeof(aTempRec)); | 3806 if( pIdxKey==0 ) goto no_mem; |
3499 if( pIdxKey==0 ){ | 3807 assert( pIn3->flags & MEM_Blob ); |
3500 goto no_mem; | 3808 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ |
| 3809 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); |
| 3810 } |
| 3811 pIdxKey->default_rc = 0; |
| 3812 if( pOp->opcode==OP_NoConflict ){ |
| 3813 /* For the OP_NoConflict opcode, take the jump if any of the |
| 3814 ** input fields are NULL, since any key with a NULL will not |
| 3815 ** conflict */ |
| 3816 for(ii=0; ii<r.nField; ii++){ |
| 3817 if( r.aMem[ii].flags & MEM_Null ){ |
| 3818 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); |
| 3819 break; |
3501 } | 3820 } |
3502 pIdxKey->flags |= UNPACKED_PREFIX_MATCH; | |
3503 } | 3821 } |
3504 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); | |
3505 if( pOp->p4.i==0 ){ | |
3506 sqlite3VdbeDeleteUnpackedRecord(pIdxKey); | |
3507 } | |
3508 if( rc!=SQLITE_OK ){ | |
3509 break; | |
3510 } | |
3511 alreadyExists = (res==0); | |
3512 pC->deferredMoveto = 0; | |
3513 pC->cacheStatus = CACHE_STALE; | |
3514 } | 3822 } |
| 3823 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); |
| 3824 if( pOp->p4.i==0 ){ |
| 3825 sqlite3DbFree(db, pFree); |
| 3826 } |
| 3827 if( rc!=SQLITE_OK ){ |
| 3828 break; |
| 3829 } |
| 3830 pC->seekResult = res; |
| 3831 alreadyExists = (res==0); |
| 3832 pC->nullRow = 1-alreadyExists; |
| 3833 pC->deferredMoveto = 0; |
| 3834 pC->cacheStatus = CACHE_STALE; |
3515 if( pOp->opcode==OP_Found ){ | 3835 if( pOp->opcode==OP_Found ){ |
| 3836 VdbeBranchTaken(alreadyExists!=0,2); |
3516 if( alreadyExists ) pc = pOp->p2 - 1; | 3837 if( alreadyExists ) pc = pOp->p2 - 1; |
3517 }else{ | 3838 }else{ |
| 3839 VdbeBranchTaken(alreadyExists==0,2); |
3518 if( !alreadyExists ) pc = pOp->p2 - 1; | 3840 if( !alreadyExists ) pc = pOp->p2 - 1; |
3519 } | 3841 } |
3520 break; | 3842 break; |
3521 } | 3843 } |
3522 | 3844 |
3523 /* Opcode: IsUnique P1 P2 P3 P4 * | 3845 /* Opcode: NotExists P1 P2 P3 * * |
| 3846 ** Synopsis: intkey=r[P3] |
3524 ** | 3847 ** |
3525 ** Cursor P1 is open on an index b-tree - that is to say, a btree which | 3848 ** P1 is the index of a cursor open on an SQL table btree (with integer |
3526 ** no data and where the key are records generated by OP_MakeRecord with | 3849 ** keys). P3 is an integer rowid. If P1 does not contain a record with |
3527 ** the list field being the integer ROWID of the entry that the index | 3850 ** rowid P3 then jump immediately to P2. If P1 does contain a record |
3528 ** entry refers to. | 3851 ** with rowid P3 then leave the cursor pointing at that record and fall |
| 3852 ** through to the next instruction. |
3529 ** | 3853 ** |
3530 ** The P3 register contains an integer record number. Call this record | 3854 ** The OP_NotFound opcode performs the same operation on index btrees |
3531 ** number R. Register P4 is the first in a set of N contiguous registers | 3855 ** (with arbitrary multi-value keys). |
3532 ** that make up an unpacked index key that can be used with cursor P1. | |
3533 ** The value of N can be inferred from the cursor. N includes the rowid | |
3534 ** value appended to the end of the index record. This rowid value may | |
3535 ** or may not be the same as R. | |
3536 ** | 3856 ** |
3537 ** If any of the N registers beginning with register P4 contains a NULL | 3857 ** This opcode leaves the cursor in a state where it cannot be advanced |
3538 ** value, jump immediately to P2. | 3858 ** in either direction. In other words, the Next and Prev opcodes will |
| 3859 ** not work following this opcode. |
3539 ** | 3860 ** |
3540 ** Otherwise, this instruction checks if cursor P1 contains an entry | 3861 ** See also: Found, NotFound, NoConflict |
3541 ** where the first (N-1) fields match but the rowid value at the end | |
3542 ** of the index entry is not R. If there is no such entry, control jumps | |
3543 ** to instruction P2. Otherwise, the rowid of the conflicting index | |
3544 ** entry is copied to register P3 and control falls through to the next | |
3545 ** instruction. | |
3546 ** | |
3547 ** See also: NotFound, NotExists, Found | |
3548 */ | |
3549 case OP_IsUnique: { /* jump, in3 */ | |
3550 u16 ii; | |
3551 VdbeCursor *pCx; | |
3552 BtCursor *pCrsr; | |
3553 u16 nField; | |
3554 Mem *aMx; | |
3555 UnpackedRecord r; /* B-Tree index search key */ | |
3556 i64 R; /* Rowid stored in register P3 */ | |
3557 | |
3558 pIn3 = &aMem[pOp->p3]; | |
3559 aMx = &aMem[pOp->p4.i]; | |
3560 /* Assert that the values of parameters P1 and P4 are in range. */ | |
3561 assert( pOp->p4type==P4_INT32 ); | |
3562 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem ); | |
3563 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | |
3564 | |
3565 /* Find the index cursor. */ | |
3566 pCx = p->apCsr[pOp->p1]; | |
3567 assert( pCx->deferredMoveto==0 ); | |
3568 pCx->seekResult = 0; | |
3569 pCx->cacheStatus = CACHE_STALE; | |
3570 pCrsr = pCx->pCursor; | |
3571 | |
3572 /* If any of the values are NULL, take the jump. */ | |
3573 nField = pCx->pKeyInfo->nField; | |
3574 for(ii=0; ii<nField; ii++){ | |
3575 if( aMx[ii].flags & MEM_Null ){ | |
3576 pc = pOp->p2 - 1; | |
3577 pCrsr = 0; | |
3578 break; | |
3579 } | |
3580 } | |
3581 assert( (aMx[nField].flags & MEM_Null)==0 ); | |
3582 | |
3583 if( pCrsr!=0 ){ | |
3584 /* Populate the index search key. */ | |
3585 r.pKeyInfo = pCx->pKeyInfo; | |
3586 r.nField = nField + 1; | |
3587 r.flags = UNPACKED_PREFIX_SEARCH; | |
3588 r.aMem = aMx; | |
3589 #ifdef SQLITE_DEBUG | |
3590 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } | |
3591 #endif | |
3592 | |
3593 /* Extract the value of R from register P3. */ | |
3594 sqlite3VdbeMemIntegerify(pIn3); | |
3595 R = pIn3->u.i; | |
3596 | |
3597 /* Search the B-Tree index. If no conflicting record is found, jump | |
3598 ** to P2. Otherwise, copy the rowid of the conflicting record to | |
3599 ** register P3 and fall through to the next instruction. */ | |
3600 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult); | |
3601 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){ | |
3602 pc = pOp->p2 - 1; | |
3603 }else{ | |
3604 pIn3->u.i = r.rowid; | |
3605 } | |
3606 } | |
3607 break; | |
3608 } | |
3609 | |
3610 /* Opcode: NotExists P1 P2 P3 * * | |
3611 ** | |
3612 ** Use the content of register P3 as a integer key. If a record | |
3613 ** with that key does not exist in table of P1, then jump to P2. | |
3614 ** If the record does exist, then fall through. The cursor is left | |
3615 ** pointing to the record if it exists. | |
3616 ** | |
3617 ** The difference between this operation and NotFound is that this | |
3618 ** operation assumes the key is an integer and that P1 is a table whereas | |
3619 ** NotFound assumes key is a blob constructed from MakeRecord and | |
3620 ** P1 is an index. | |
3621 ** | |
3622 ** See also: Found, NotFound, IsUnique | |
3623 */ | 3862 */ |
3624 case OP_NotExists: { /* jump, in3 */ | 3863 case OP_NotExists: { /* jump, in3 */ |
3625 VdbeCursor *pC; | 3864 VdbeCursor *pC; |
3626 BtCursor *pCrsr; | 3865 BtCursor *pCrsr; |
3627 int res; | 3866 int res; |
3628 u64 iKey; | 3867 u64 iKey; |
3629 | 3868 |
3630 pIn3 = &aMem[pOp->p3]; | 3869 pIn3 = &aMem[pOp->p3]; |
3631 assert( pIn3->flags & MEM_Int ); | 3870 assert( pIn3->flags & MEM_Int ); |
3632 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 3871 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3633 pC = p->apCsr[pOp->p1]; | 3872 pC = p->apCsr[pOp->p1]; |
3634 assert( pC!=0 ); | 3873 assert( pC!=0 ); |
| 3874 #ifdef SQLITE_DEBUG |
| 3875 pC->seekOp = 0; |
| 3876 #endif |
3635 assert( pC->isTable ); | 3877 assert( pC->isTable ); |
3636 assert( pC->pseudoTableReg==0 ); | 3878 assert( pC->pseudoTableReg==0 ); |
3637 pCrsr = pC->pCursor; | 3879 pCrsr = pC->pCursor; |
3638 if( pCrsr!=0 ){ | 3880 assert( pCrsr!=0 ); |
3639 res = 0; | 3881 res = 0; |
3640 iKey = pIn3->u.i; | 3882 iKey = pIn3->u.i; |
3641 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); | 3883 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); |
3642 pC->lastRowid = pIn3->u.i; | 3884 pC->movetoTarget = iKey; /* Used by OP_Delete */ |
3643 pC->rowidIsValid = res==0 ?1:0; | 3885 pC->nullRow = 0; |
3644 pC->nullRow = 0; | 3886 pC->cacheStatus = CACHE_STALE; |
3645 pC->cacheStatus = CACHE_STALE; | 3887 pC->deferredMoveto = 0; |
3646 pC->deferredMoveto = 0; | 3888 VdbeBranchTaken(res!=0,2); |
3647 if( res!=0 ){ | 3889 if( res!=0 ){ |
3648 pc = pOp->p2 - 1; | |
3649 assert( pC->rowidIsValid==0 ); | |
3650 } | |
3651 pC->seekResult = res; | |
3652 }else{ | |
3653 /* This happens when an attempt to open a read cursor on the | |
3654 ** sqlite_master table returns SQLITE_EMPTY. | |
3655 */ | |
3656 pc = pOp->p2 - 1; | 3890 pc = pOp->p2 - 1; |
3657 assert( pC->rowidIsValid==0 ); | |
3658 pC->seekResult = 0; | |
3659 } | 3891 } |
| 3892 pC->seekResult = res; |
3660 break; | 3893 break; |
3661 } | 3894 } |
3662 | 3895 |
3663 /* Opcode: Sequence P1 P2 * * * | 3896 /* Opcode: Sequence P1 P2 * * * |
| 3897 ** Synopsis: r[P2]=cursor[P1].ctr++ |
3664 ** | 3898 ** |
3665 ** Find the next available sequence number for cursor P1. | 3899 ** Find the next available sequence number for cursor P1. |
3666 ** Write the sequence number into register P2. | 3900 ** Write the sequence number into register P2. |
3667 ** The sequence number on the cursor is incremented after this | 3901 ** The sequence number on the cursor is incremented after this |
3668 ** instruction. | 3902 ** instruction. |
3669 */ | 3903 */ |
3670 case OP_Sequence: { /* out2-prerelease */ | 3904 case OP_Sequence: { /* out2-prerelease */ |
3671 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 3905 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3672 assert( p->apCsr[pOp->p1]!=0 ); | 3906 assert( p->apCsr[pOp->p1]!=0 ); |
3673 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; | 3907 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; |
3674 break; | 3908 break; |
3675 } | 3909 } |
3676 | 3910 |
3677 | 3911 |
3678 /* Opcode: NewRowid P1 P2 P3 * * | 3912 /* Opcode: NewRowid P1 P2 P3 * * |
| 3913 ** Synopsis: r[P2]=rowid |
3679 ** | 3914 ** |
3680 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. | 3915 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. |
3681 ** The record number is not previously used as a key in the database | 3916 ** The record number is not previously used as a key in the database |
3682 ** table that cursor P1 points to. The new record number is written | 3917 ** table that cursor P1 points to. The new record number is written |
3683 ** written to register P2. | 3918 ** written to register P2. |
3684 ** | 3919 ** |
3685 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds | 3920 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds |
3686 ** the largest previously generated record number. No new record numbers are | 3921 ** the largest previously generated record number. No new record numbers are |
3687 ** allowed to be less than this value. When this value reaches its maximum, | 3922 ** allowed to be less than this value. When this value reaches its maximum, |
3688 ** a SQLITE_FULL error is generated. The P3 register is updated with the ' | 3923 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' |
3689 ** generated record number. This P3 mechanism is used to help implement the | 3924 ** generated record number. This P3 mechanism is used to help implement the |
3690 ** AUTOINCREMENT feature. | 3925 ** AUTOINCREMENT feature. |
3691 */ | 3926 */ |
3692 case OP_NewRowid: { /* out2-prerelease */ | 3927 case OP_NewRowid: { /* out2-prerelease */ |
3693 i64 v; /* The new rowid */ | 3928 i64 v; /* The new rowid */ |
3694 VdbeCursor *pC; /* Cursor of table to get the new rowid */ | 3929 VdbeCursor *pC; /* Cursor of table to get the new rowid */ |
3695 int res; /* Result of an sqlite3BtreeLast() */ | 3930 int res; /* Result of an sqlite3BtreeLast() */ |
3696 int cnt; /* Counter to limit the number of searches */ | 3931 int cnt; /* Counter to limit the number of searches */ |
3697 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ | 3932 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ |
3698 VdbeFrame *pFrame; /* Root frame of VDBE */ | 3933 VdbeFrame *pFrame; /* Root frame of VDBE */ |
(...skipping 25 matching lines...) Expand all Loading... |
3724 # define MAX_ROWID 0x7fffffff | 3959 # define MAX_ROWID 0x7fffffff |
3725 #else | 3960 #else |
3726 /* Some compilers complain about constants of the form 0x7fffffffffffffff. | 3961 /* Some compilers complain about constants of the form 0x7fffffffffffffff. |
3727 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems | 3962 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems |
3728 ** to provide the constant while making all compilers happy. | 3963 ** to provide the constant while making all compilers happy. |
3729 */ | 3964 */ |
3730 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) | 3965 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) |
3731 #endif | 3966 #endif |
3732 | 3967 |
3733 if( !pC->useRandomRowid ){ | 3968 if( !pC->useRandomRowid ){ |
3734 v = sqlite3BtreeGetCachedRowid(pC->pCursor); | 3969 rc = sqlite3BtreeLast(pC->pCursor, &res); |
3735 if( v==0 ){ | 3970 if( rc!=SQLITE_OK ){ |
3736 rc = sqlite3BtreeLast(pC->pCursor, &res); | 3971 goto abort_due_to_error; |
3737 if( rc!=SQLITE_OK ){ | 3972 } |
3738 goto abort_due_to_error; | 3973 if( res ){ |
3739 } | 3974 v = 1; /* IMP: R-61914-48074 */ |
3740 if( res ){ | 3975 }else{ |
3741 v = 1; /* IMP: R-61914-48074 */ | 3976 assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); |
| 3977 rc = sqlite3BtreeKeySize(pC->pCursor, &v); |
| 3978 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ |
| 3979 if( v>=MAX_ROWID ){ |
| 3980 pC->useRandomRowid = 1; |
3742 }else{ | 3981 }else{ |
3743 assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); | 3982 v++; /* IMP: R-29538-34987 */ |
3744 rc = sqlite3BtreeKeySize(pC->pCursor, &v); | |
3745 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ | |
3746 if( v==MAX_ROWID ){ | |
3747 pC->useRandomRowid = 1; | |
3748 }else{ | |
3749 v++; /* IMP: R-29538-34987 */ | |
3750 } | |
3751 } | 3983 } |
3752 } | 3984 } |
| 3985 } |
3753 | 3986 |
3754 #ifndef SQLITE_OMIT_AUTOINCREMENT | 3987 #ifndef SQLITE_OMIT_AUTOINCREMENT |
3755 if( pOp->p3 ){ | 3988 if( pOp->p3 ){ |
| 3989 /* Assert that P3 is a valid memory cell. */ |
| 3990 assert( pOp->p3>0 ); |
| 3991 if( p->pFrame ){ |
| 3992 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
3756 /* Assert that P3 is a valid memory cell. */ | 3993 /* Assert that P3 is a valid memory cell. */ |
3757 assert( pOp->p3>0 ); | 3994 assert( pOp->p3<=pFrame->nMem ); |
3758 if( p->pFrame ){ | 3995 pMem = &pFrame->aMem[pOp->p3]; |
3759 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); | 3996 }else{ |
3760 /* Assert that P3 is a valid memory cell. */ | 3997 /* Assert that P3 is a valid memory cell. */ |
3761 assert( pOp->p3<=pFrame->nMem ); | 3998 assert( pOp->p3<=(p->nMem-p->nCursor) ); |
3762 pMem = &pFrame->aMem[pOp->p3]; | 3999 pMem = &aMem[pOp->p3]; |
3763 }else{ | 4000 memAboutToChange(p, pMem); |
3764 /* Assert that P3 is a valid memory cell. */ | 4001 } |
3765 assert( pOp->p3<=p->nMem ); | 4002 assert( memIsValid(pMem) ); |
3766 pMem = &aMem[pOp->p3]; | |
3767 memAboutToChange(p, pMem); | |
3768 } | |
3769 assert( memIsValid(pMem) ); | |
3770 | 4003 |
3771 REGISTER_TRACE(pOp->p3, pMem); | 4004 REGISTER_TRACE(pOp->p3, pMem); |
3772 sqlite3VdbeMemIntegerify(pMem); | 4005 sqlite3VdbeMemIntegerify(pMem); |
3773 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ | 4006 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ |
3774 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ | 4007 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ |
3775 rc = SQLITE_FULL; /* IMP: R-12275-61338 */ | 4008 rc = SQLITE_FULL; /* IMP: R-12275-61338 */ |
3776 goto abort_due_to_error; | 4009 goto abort_due_to_error; |
3777 } | |
3778 if( v<pMem->u.i+1 ){ | |
3779 v = pMem->u.i + 1; | |
3780 } | |
3781 pMem->u.i = v; | |
3782 } | 4010 } |
| 4011 if( v<pMem->u.i+1 ){ |
| 4012 v = pMem->u.i + 1; |
| 4013 } |
| 4014 pMem->u.i = v; |
| 4015 } |
3783 #endif | 4016 #endif |
3784 | |
3785 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0); | |
3786 } | |
3787 if( pC->useRandomRowid ){ | 4017 if( pC->useRandomRowid ){ |
3788 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the | 4018 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the |
3789 ** largest possible integer (9223372036854775807) then the database | 4019 ** largest possible integer (9223372036854775807) then the database |
3790 ** engine starts picking positive candidate ROWIDs at random until | 4020 ** engine starts picking positive candidate ROWIDs at random until |
3791 ** it finds one that is not previously used. */ | 4021 ** it finds one that is not previously used. */ |
3792 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is | 4022 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is |
3793 ** an AUTOINCREMENT table. */ | 4023 ** an AUTOINCREMENT table. */ |
3794 /* on the first attempt, simply do one more than previous */ | |
3795 v = db->lastRowid; | |
3796 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ | |
3797 v++; /* ensure non-zero */ | |
3798 cnt = 0; | 4024 cnt = 0; |
3799 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, | 4025 do{ |
| 4026 sqlite3_randomness(sizeof(v), &v); |
| 4027 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ |
| 4028 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, |
3800 0, &res))==SQLITE_OK) | 4029 0, &res))==SQLITE_OK) |
3801 && (res==0) | 4030 && (res==0) |
3802 && (++cnt<100)){ | 4031 && (++cnt<100)); |
3803 /* collision - try another random rowid */ | |
3804 sqlite3_randomness(sizeof(v), &v); | |
3805 if( cnt<5 ){ | |
3806 /* try "small" random rowids for the initial attempts */ | |
3807 v &= 0xffffff; | |
3808 }else{ | |
3809 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ | |
3810 } | |
3811 v++; /* ensure non-zero */ | |
3812 } | |
3813 if( rc==SQLITE_OK && res==0 ){ | 4032 if( rc==SQLITE_OK && res==0 ){ |
3814 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ | 4033 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ |
3815 goto abort_due_to_error; | 4034 goto abort_due_to_error; |
3816 } | 4035 } |
3817 assert( v>0 ); /* EV: R-40812-03570 */ | 4036 assert( v>0 ); /* EV: R-40812-03570 */ |
3818 } | 4037 } |
3819 pC->rowidIsValid = 0; | |
3820 pC->deferredMoveto = 0; | 4038 pC->deferredMoveto = 0; |
3821 pC->cacheStatus = CACHE_STALE; | 4039 pC->cacheStatus = CACHE_STALE; |
3822 } | 4040 } |
3823 pOut->u.i = v; | 4041 pOut->u.i = v; |
3824 break; | 4042 break; |
3825 } | 4043 } |
3826 | 4044 |
3827 /* Opcode: Insert P1 P2 P3 P4 P5 | 4045 /* Opcode: Insert P1 P2 P3 P4 P5 |
| 4046 ** Synopsis: intkey=r[P3] data=r[P2] |
3828 ** | 4047 ** |
3829 ** Write an entry into the table of cursor P1. A new entry is | 4048 ** Write an entry into the table of cursor P1. A new entry is |
3830 ** created if it doesn't already exist or the data for an existing | 4049 ** created if it doesn't already exist or the data for an existing |
3831 ** entry is overwritten. The data is the value MEM_Blob stored in register | 4050 ** entry is overwritten. The data is the value MEM_Blob stored in register |
3832 ** number P2. The key is stored in register P3. The key must | 4051 ** number P2. The key is stored in register P3. The key must |
3833 ** be a MEM_Int. | 4052 ** be a MEM_Int. |
3834 ** | 4053 ** |
3835 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is | 4054 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is |
3836 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, | 4055 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, |
3837 ** then rowid is stored for subsequent return by the | 4056 ** then rowid is stored for subsequent return by the |
(...skipping 19 matching lines...) Expand all Loading... |
3857 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically | 4076 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically |
3858 ** allocated, then ownership of P2 is transferred to the pseudo-cursor | 4077 ** allocated, then ownership of P2 is transferred to the pseudo-cursor |
3859 ** and register P2 becomes ephemeral. If the cursor is changed, the | 4078 ** and register P2 becomes ephemeral. If the cursor is changed, the |
3860 ** value of register P2 will then change. Make sure this does not | 4079 ** value of register P2 will then change. Make sure this does not |
3861 ** cause any problems.) | 4080 ** cause any problems.) |
3862 ** | 4081 ** |
3863 ** This instruction only works on tables. The equivalent instruction | 4082 ** This instruction only works on tables. The equivalent instruction |
3864 ** for indices is OP_IdxInsert. | 4083 ** for indices is OP_IdxInsert. |
3865 */ | 4084 */ |
3866 /* Opcode: InsertInt P1 P2 P3 P4 P5 | 4085 /* Opcode: InsertInt P1 P2 P3 P4 P5 |
| 4086 ** Synopsis: intkey=P3 data=r[P2] |
3867 ** | 4087 ** |
3868 ** This works exactly like OP_Insert except that the key is the | 4088 ** This works exactly like OP_Insert except that the key is the |
3869 ** integer value P3, not the value of the integer stored in register P3. | 4089 ** integer value P3, not the value of the integer stored in register P3. |
3870 */ | 4090 */ |
3871 case OP_Insert: | 4091 case OP_Insert: |
3872 case OP_InsertInt: { | 4092 case OP_InsertInt: { |
3873 Mem *pData; /* MEM cell holding data for the record to be inserted */ | 4093 Mem *pData; /* MEM cell holding data for the record to be inserted */ |
3874 Mem *pKey; /* MEM cell holding key for the record */ | 4094 Mem *pKey; /* MEM cell holding key for the record */ |
3875 i64 iKey; /* The integer ROWID or key for the record to be inserted */ | 4095 i64 iKey; /* The integer ROWID or key for the record to be inserted */ |
3876 VdbeCursor *pC; /* Cursor to table into which insert is written */ | 4096 VdbeCursor *pC; /* Cursor to table into which insert is written */ |
(...skipping 18 matching lines...) Expand all Loading... |
3895 assert( pKey->flags & MEM_Int ); | 4115 assert( pKey->flags & MEM_Int ); |
3896 assert( memIsValid(pKey) ); | 4116 assert( memIsValid(pKey) ); |
3897 REGISTER_TRACE(pOp->p3, pKey); | 4117 REGISTER_TRACE(pOp->p3, pKey); |
3898 iKey = pKey->u.i; | 4118 iKey = pKey->u.i; |
3899 }else{ | 4119 }else{ |
3900 assert( pOp->opcode==OP_InsertInt ); | 4120 assert( pOp->opcode==OP_InsertInt ); |
3901 iKey = pOp->p3; | 4121 iKey = pOp->p3; |
3902 } | 4122 } |
3903 | 4123 |
3904 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; | 4124 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; |
3905 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = iKey; | 4125 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey; |
3906 if( pData->flags & MEM_Null ){ | 4126 if( pData->flags & MEM_Null ){ |
3907 pData->z = 0; | 4127 pData->z = 0; |
3908 pData->n = 0; | 4128 pData->n = 0; |
3909 }else{ | 4129 }else{ |
3910 assert( pData->flags & (MEM_Blob|MEM_Str) ); | 4130 assert( pData->flags & (MEM_Blob|MEM_Str) ); |
3911 } | 4131 } |
3912 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); | 4132 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); |
3913 if( pData->flags & MEM_Zero ){ | 4133 if( pData->flags & MEM_Zero ){ |
3914 nZero = pData->u.nZero; | 4134 nZero = pData->u.nZero; |
3915 }else{ | 4135 }else{ |
3916 nZero = 0; | 4136 nZero = 0; |
3917 } | 4137 } |
3918 sqlite3BtreeSetCachedRowid(pC->pCursor, 0); | |
3919 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, | 4138 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, |
3920 pData->z, pData->n, nZero, | 4139 pData->z, pData->n, nZero, |
3921 pOp->p5 & OPFLAG_APPEND, seekResult | 4140 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult |
3922 ); | 4141 ); |
3923 pC->rowidIsValid = 0; | |
3924 pC->deferredMoveto = 0; | 4142 pC->deferredMoveto = 0; |
3925 pC->cacheStatus = CACHE_STALE; | 4143 pC->cacheStatus = CACHE_STALE; |
3926 | 4144 |
3927 /* Invoke the update-hook if required. */ | 4145 /* Invoke the update-hook if required. */ |
3928 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ | 4146 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ |
3929 zDb = db->aDb[pC->iDb].zName; | 4147 zDb = db->aDb[pC->iDb].zName; |
3930 zTbl = pOp->p4.z; | 4148 zTbl = pOp->p4.z; |
3931 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); | 4149 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); |
3932 assert( pC->isTable ); | 4150 assert( pC->isTable ); |
3933 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); | 4151 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); |
3934 assert( pC->iDb>=0 ); | 4152 assert( pC->iDb>=0 ); |
3935 } | 4153 } |
3936 break; | 4154 break; |
3937 } | 4155 } |
3938 | 4156 |
3939 /* Opcode: Delete P1 P2 * P4 * | 4157 /* Opcode: Delete P1 P2 * P4 * |
3940 ** | 4158 ** |
3941 ** Delete the record at which the P1 cursor is currently pointing. | 4159 ** Delete the record at which the P1 cursor is currently pointing. |
3942 ** | 4160 ** |
3943 ** The cursor will be left pointing at either the next or the previous | 4161 ** The cursor will be left pointing at either the next or the previous |
3944 ** record in the table. If it is left pointing at the next record, then | 4162 ** record in the table. If it is left pointing at the next record, then |
3945 ** the next Next instruction will be a no-op. Hence it is OK to delete | 4163 ** the next Next instruction will be a no-op. Hence it is OK to delete |
3946 ** a record from within an Next loop. | 4164 ** a record from within a Next loop. |
3947 ** | 4165 ** |
3948 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is | 4166 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is |
3949 ** incremented (otherwise not). | 4167 ** incremented (otherwise not). |
3950 ** | 4168 ** |
3951 ** P1 must not be pseudo-table. It has to be a real table with | 4169 ** P1 must not be pseudo-table. It has to be a real table with |
3952 ** multiple rows. | 4170 ** multiple rows. |
3953 ** | 4171 ** |
3954 ** If P4 is not NULL, then it is the name of the table that P1 is | 4172 ** If P4 is not NULL, then it is the name of the table that P1 is |
3955 ** pointing to. The update hook will be invoked, if it exists. | 4173 ** pointing to. The update hook will be invoked, if it exists. |
3956 ** If P4 is not NULL then the P1 cursor must have been positioned | 4174 ** If P4 is not NULL then the P1 cursor must have been positioned |
3957 ** using OP_NotFound prior to invoking this opcode. | 4175 ** using OP_NotFound prior to invoking this opcode. |
3958 */ | 4176 */ |
3959 case OP_Delete: { | 4177 case OP_Delete: { |
3960 i64 iKey; | |
3961 VdbeCursor *pC; | 4178 VdbeCursor *pC; |
3962 | 4179 |
3963 iKey = 0; | |
3964 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4180 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3965 pC = p->apCsr[pOp->p1]; | 4181 pC = p->apCsr[pOp->p1]; |
3966 assert( pC!=0 ); | 4182 assert( pC!=0 ); |
3967 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ | 4183 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ |
| 4184 assert( pC->deferredMoveto==0 ); |
3968 | 4185 |
3969 /* If the update-hook will be invoked, set iKey to the rowid of the | 4186 #ifdef SQLITE_DEBUG |
3970 ** row being deleted. | 4187 /* The seek operation that positioned the cursor prior to OP_Delete will |
3971 */ | 4188 ** have also set the pC->movetoTarget field to the rowid of the row that |
3972 if( db->xUpdateCallback && pOp->p4.z ){ | 4189 ** is being deleted */ |
3973 assert( pC->isTable ); | 4190 if( pOp->p4.z && pC->isTable ){ |
3974 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */ | 4191 i64 iKey = 0; |
3975 iKey = pC->lastRowid; | 4192 sqlite3BtreeKeySize(pC->pCursor, &iKey); |
| 4193 assert( pC->movetoTarget==iKey ); |
3976 } | 4194 } |
3977 | 4195 #endif |
3978 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or | 4196 |
3979 ** OP_Column on the same table without any intervening operations that | |
3980 ** might move or invalidate the cursor. Hence cursor pC is always pointing | |
3981 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation | |
3982 ** below is always a no-op and cannot fail. We will run it anyhow, though, | |
3983 ** to guard against future changes to the code generator. | |
3984 **/ | |
3985 assert( pC->deferredMoveto==0 ); | |
3986 rc = sqlite3VdbeCursorMoveto(pC); | |
3987 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; | |
3988 | |
3989 sqlite3BtreeSetCachedRowid(pC->pCursor, 0); | |
3990 rc = sqlite3BtreeDelete(pC->pCursor); | 4197 rc = sqlite3BtreeDelete(pC->pCursor); |
3991 pC->cacheStatus = CACHE_STALE; | 4198 pC->cacheStatus = CACHE_STALE; |
3992 | 4199 |
3993 /* Invoke the update-hook if required. */ | 4200 /* Invoke the update-hook if required. */ |
3994 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ | 4201 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){ |
3995 const char *zDb = db->aDb[pC->iDb].zName; | 4202 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, |
3996 const char *zTbl = pOp->p4.z; | 4203 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget); |
3997 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey); | |
3998 assert( pC->iDb>=0 ); | 4204 assert( pC->iDb>=0 ); |
3999 } | 4205 } |
4000 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; | 4206 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; |
4001 break; | 4207 break; |
4002 } | 4208 } |
4003 /* Opcode: ResetCount * * * * * | 4209 /* Opcode: ResetCount * * * * * |
4004 ** | 4210 ** |
4005 ** The value of the change counter is copied to the database handle | 4211 ** The value of the change counter is copied to the database handle |
4006 ** change counter (returned by subsequent calls to sqlite3_changes()). | 4212 ** change counter (returned by subsequent calls to sqlite3_changes()). |
4007 ** Then the VMs internal change counter resets to 0. | 4213 ** Then the VMs internal change counter resets to 0. |
4008 ** This is used by trigger programs. | 4214 ** This is used by trigger programs. |
4009 */ | 4215 */ |
4010 case OP_ResetCount: { | 4216 case OP_ResetCount: { |
4011 sqlite3VdbeSetChanges(db, p->nChange); | 4217 sqlite3VdbeSetChanges(db, p->nChange); |
4012 p->nChange = 0; | 4218 p->nChange = 0; |
4013 break; | 4219 break; |
4014 } | 4220 } |
4015 | 4221 |
| 4222 /* Opcode: SorterCompare P1 P2 P3 P4 |
| 4223 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 |
| 4224 ** |
| 4225 ** P1 is a sorter cursor. This instruction compares a prefix of the |
| 4226 ** record blob in register P3 against a prefix of the entry that |
| 4227 ** the sorter cursor currently points to. Only the first P4 fields |
| 4228 ** of r[P3] and the sorter record are compared. |
| 4229 ** |
| 4230 ** If either P3 or the sorter contains a NULL in one of their significant |
| 4231 ** fields (not counting the P4 fields at the end which are ignored) then |
| 4232 ** the comparison is assumed to be equal. |
| 4233 ** |
| 4234 ** Fall through to next instruction if the two records compare equal to |
| 4235 ** each other. Jump to P2 if they are different. |
| 4236 */ |
| 4237 case OP_SorterCompare: { |
| 4238 VdbeCursor *pC; |
| 4239 int res; |
| 4240 int nKeyCol; |
| 4241 |
| 4242 pC = p->apCsr[pOp->p1]; |
| 4243 assert( isSorter(pC) ); |
| 4244 assert( pOp->p4type==P4_INT32 ); |
| 4245 pIn3 = &aMem[pOp->p3]; |
| 4246 nKeyCol = pOp->p4.i; |
| 4247 res = 0; |
| 4248 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); |
| 4249 VdbeBranchTaken(res!=0,2); |
| 4250 if( res ){ |
| 4251 pc = pOp->p2-1; |
| 4252 } |
| 4253 break; |
| 4254 }; |
| 4255 |
| 4256 /* Opcode: SorterData P1 P2 P3 * * |
| 4257 ** Synopsis: r[P2]=data |
| 4258 ** |
| 4259 ** Write into register P2 the current sorter data for sorter cursor P1. |
| 4260 ** Then clear the column header cache on cursor P3. |
| 4261 ** |
| 4262 ** This opcode is normally use to move a record out of the sorter and into |
| 4263 ** a register that is the source for a pseudo-table cursor created using |
| 4264 ** OpenPseudo. That pseudo-table cursor is the one that is identified by |
| 4265 ** parameter P3. Clearing the P3 column cache as part of this opcode saves |
| 4266 ** us from having to issue a separate NullRow instruction to clear that cache. |
| 4267 */ |
| 4268 case OP_SorterData: { |
| 4269 VdbeCursor *pC; |
| 4270 |
| 4271 pOut = &aMem[pOp->p2]; |
| 4272 pC = p->apCsr[pOp->p1]; |
| 4273 assert( isSorter(pC) ); |
| 4274 rc = sqlite3VdbeSorterRowkey(pC, pOut); |
| 4275 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); |
| 4276 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4277 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; |
| 4278 break; |
| 4279 } |
| 4280 |
4016 /* Opcode: RowData P1 P2 * * * | 4281 /* Opcode: RowData P1 P2 * * * |
| 4282 ** Synopsis: r[P2]=data |
4017 ** | 4283 ** |
4018 ** Write into register P2 the complete row data for cursor P1. | 4284 ** Write into register P2 the complete row data for cursor P1. |
4019 ** There is no interpretation of the data. | 4285 ** There is no interpretation of the data. |
4020 ** It is just copied onto the P2 register exactly as | 4286 ** It is just copied onto the P2 register exactly as |
4021 ** it is found in the database file. | 4287 ** it is found in the database file. |
4022 ** | 4288 ** |
4023 ** If the P1 cursor must be pointing to a valid row (not a NULL row) | 4289 ** If the P1 cursor must be pointing to a valid row (not a NULL row) |
4024 ** of a real table, not a pseudo-table. | 4290 ** of a real table, not a pseudo-table. |
4025 */ | 4291 */ |
4026 /* Opcode: RowKey P1 P2 * * * | 4292 /* Opcode: RowKey P1 P2 * * * |
| 4293 ** Synopsis: r[P2]=key |
4027 ** | 4294 ** |
4028 ** Write into register P2 the complete row key for cursor P1. | 4295 ** Write into register P2 the complete row key for cursor P1. |
4029 ** There is no interpretation of the data. | 4296 ** There is no interpretation of the data. |
4030 ** The key is copied onto the P3 register exactly as | 4297 ** The key is copied onto the P2 register exactly as |
4031 ** it is found in the database file. | 4298 ** it is found in the database file. |
4032 ** | 4299 ** |
4033 ** If the P1 cursor must be pointing to a valid row (not a NULL row) | 4300 ** If the P1 cursor must be pointing to a valid row (not a NULL row) |
4034 ** of a real table, not a pseudo-table. | 4301 ** of a real table, not a pseudo-table. |
4035 */ | 4302 */ |
4036 case OP_RowKey: | 4303 case OP_RowKey: |
4037 case OP_RowData: { | 4304 case OP_RowData: { |
4038 VdbeCursor *pC; | 4305 VdbeCursor *pC; |
4039 BtCursor *pCrsr; | 4306 BtCursor *pCrsr; |
4040 u32 n; | 4307 u32 n; |
4041 i64 n64; | 4308 i64 n64; |
4042 | 4309 |
4043 pOut = &aMem[pOp->p2]; | 4310 pOut = &aMem[pOp->p2]; |
4044 memAboutToChange(p, pOut); | 4311 memAboutToChange(p, pOut); |
4045 | 4312 |
4046 /* Note that RowKey and RowData are really exactly the same instruction */ | 4313 /* Note that RowKey and RowData are really exactly the same instruction */ |
4047 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4314 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4048 pC = p->apCsr[pOp->p1]; | 4315 pC = p->apCsr[pOp->p1]; |
4049 assert( pC->isTable || pOp->opcode==OP_RowKey ); | 4316 assert( isSorter(pC)==0 ); |
4050 assert( pC->isIndex || pOp->opcode==OP_RowData ); | 4317 assert( pC->isTable || pOp->opcode!=OP_RowData ); |
| 4318 assert( pC->isTable==0 || pOp->opcode==OP_RowData ); |
4051 assert( pC!=0 ); | 4319 assert( pC!=0 ); |
4052 assert( pC->nullRow==0 ); | 4320 assert( pC->nullRow==0 ); |
4053 assert( pC->pseudoTableReg==0 ); | 4321 assert( pC->pseudoTableReg==0 ); |
4054 assert( pC->pCursor!=0 ); | 4322 assert( pC->pCursor!=0 ); |
4055 pCrsr = pC->pCursor; | 4323 pCrsr = pC->pCursor; |
4056 assert( sqlite3BtreeCursorIsValid(pCrsr) ); | |
4057 | 4324 |
4058 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or | 4325 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or |
4059 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate | 4326 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate |
4060 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always | 4327 ** the cursor. If this where not the case, on of the following assert()s |
4061 ** a no-op and can never fail. But we leave it in place as a safety. | 4328 ** would fail. Should this ever change (because of changes in the code |
| 4329 ** generator) then the fix would be to insert a call to |
| 4330 ** sqlite3VdbeCursorMoveto(). |
4062 */ | 4331 */ |
4063 assert( pC->deferredMoveto==0 ); | 4332 assert( pC->deferredMoveto==0 ); |
| 4333 assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
| 4334 #if 0 /* Not required due to the previous to assert() statements */ |
4064 rc = sqlite3VdbeCursorMoveto(pC); | 4335 rc = sqlite3VdbeCursorMoveto(pC); |
4065 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; | 4336 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 4337 #endif |
4066 | 4338 |
4067 if( pC->isIndex ){ | 4339 if( pC->isTable==0 ){ |
4068 assert( !pC->isTable ); | 4340 assert( !pC->isTable ); |
4069 rc = sqlite3BtreeKeySize(pCrsr, &n64); | 4341 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64); |
4070 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ | 4342 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ |
4071 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ | 4343 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
4072 goto too_big; | 4344 goto too_big; |
4073 } | 4345 } |
4074 n = (u32)n64; | 4346 n = (u32)n64; |
4075 }else{ | 4347 }else{ |
4076 rc = sqlite3BtreeDataSize(pCrsr, &n); | 4348 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n); |
4077 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ | 4349 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ |
4078 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ | 4350 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
4079 goto too_big; | 4351 goto too_big; |
4080 } | 4352 } |
4081 } | 4353 } |
4082 if( sqlite3VdbeMemGrow(pOut, n, 0) ){ | 4354 testcase( n==0 ); |
| 4355 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){ |
4083 goto no_mem; | 4356 goto no_mem; |
4084 } | 4357 } |
4085 pOut->n = n; | 4358 pOut->n = n; |
4086 MemSetTypeFlag(pOut, MEM_Blob); | 4359 MemSetTypeFlag(pOut, MEM_Blob); |
4087 if( pC->isIndex ){ | 4360 if( pC->isTable==0 ){ |
4088 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); | 4361 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); |
4089 }else{ | 4362 }else{ |
4090 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); | 4363 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); |
4091 } | 4364 } |
4092 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ | 4365 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ |
4093 UPDATE_MAX_BLOBSIZE(pOut); | 4366 UPDATE_MAX_BLOBSIZE(pOut); |
| 4367 REGISTER_TRACE(pOp->p2, pOut); |
4094 break; | 4368 break; |
4095 } | 4369 } |
4096 | 4370 |
4097 /* Opcode: Rowid P1 P2 * * * | 4371 /* Opcode: Rowid P1 P2 * * * |
| 4372 ** Synopsis: r[P2]=rowid |
4098 ** | 4373 ** |
4099 ** Store in register P2 an integer which is the key of the table entry that | 4374 ** Store in register P2 an integer which is the key of the table entry that |
4100 ** P1 is currently point to. | 4375 ** P1 is currently point to. |
4101 ** | 4376 ** |
4102 ** P1 can be either an ordinary table or a virtual table. There used to | 4377 ** P1 can be either an ordinary table or a virtual table. There used to |
4103 ** be a separate OP_VRowid opcode for use with virtual tables, but this | 4378 ** be a separate OP_VRowid opcode for use with virtual tables, but this |
4104 ** one opcode now works for both table types. | 4379 ** one opcode now works for both table types. |
4105 */ | 4380 */ |
4106 case OP_Rowid: { /* out2-prerelease */ | 4381 case OP_Rowid: { /* out2-prerelease */ |
4107 VdbeCursor *pC; | 4382 VdbeCursor *pC; |
4108 i64 v; | 4383 i64 v; |
4109 sqlite3_vtab *pVtab; | 4384 sqlite3_vtab *pVtab; |
4110 const sqlite3_module *pModule; | 4385 const sqlite3_module *pModule; |
4111 | 4386 |
4112 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4387 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4113 pC = p->apCsr[pOp->p1]; | 4388 pC = p->apCsr[pOp->p1]; |
4114 assert( pC!=0 ); | 4389 assert( pC!=0 ); |
4115 assert( pC->pseudoTableReg==0 ); | 4390 assert( pC->pseudoTableReg==0 || pC->nullRow ); |
4116 if( pC->nullRow ){ | 4391 if( pC->nullRow ){ |
4117 pOut->flags = MEM_Null; | 4392 pOut->flags = MEM_Null; |
4118 break; | 4393 break; |
4119 }else if( pC->deferredMoveto ){ | 4394 }else if( pC->deferredMoveto ){ |
4120 v = pC->movetoTarget; | 4395 v = pC->movetoTarget; |
4121 #ifndef SQLITE_OMIT_VIRTUALTABLE | 4396 #ifndef SQLITE_OMIT_VIRTUALTABLE |
4122 }else if( pC->pVtabCursor ){ | 4397 }else if( pC->pVtabCursor ){ |
4123 pVtab = pC->pVtabCursor->pVtab; | 4398 pVtab = pC->pVtabCursor->pVtab; |
4124 pModule = pVtab->pModule; | 4399 pModule = pVtab->pModule; |
4125 assert( pModule->xRowid ); | 4400 assert( pModule->xRowid ); |
4126 rc = pModule->xRowid(pC->pVtabCursor, &v); | 4401 rc = pModule->xRowid(pC->pVtabCursor, &v); |
4127 importVtabErrMsg(p, pVtab); | 4402 sqlite3VtabImportErrmsg(p, pVtab); |
4128 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 4403 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
4129 }else{ | 4404 }else{ |
4130 assert( pC->pCursor!=0 ); | 4405 assert( pC->pCursor!=0 ); |
4131 rc = sqlite3VdbeCursorMoveto(pC); | 4406 rc = sqlite3VdbeCursorRestore(pC); |
4132 if( rc ) goto abort_due_to_error; | 4407 if( rc ) goto abort_due_to_error; |
4133 if( pC->rowidIsValid ){ | 4408 if( pC->nullRow ){ |
4134 v = pC->lastRowid; | 4409 pOut->flags = MEM_Null; |
4135 }else{ | 4410 break; |
4136 rc = sqlite3BtreeKeySize(pC->pCursor, &v); | |
4137 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */ | |
4138 } | 4411 } |
| 4412 rc = sqlite3BtreeKeySize(pC->pCursor, &v); |
| 4413 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */ |
4139 } | 4414 } |
4140 pOut->u.i = v; | 4415 pOut->u.i = v; |
4141 break; | 4416 break; |
4142 } | 4417 } |
4143 | 4418 |
4144 /* Opcode: NullRow P1 * * * * | 4419 /* Opcode: NullRow P1 * * * * |
4145 ** | 4420 ** |
4146 ** Move the cursor P1 to a null row. Any OP_Column operations | 4421 ** Move the cursor P1 to a null row. Any OP_Column operations |
4147 ** that occur while the cursor is on the null row will always | 4422 ** that occur while the cursor is on the null row will always |
4148 ** write a NULL. | 4423 ** write a NULL. |
4149 */ | 4424 */ |
4150 case OP_NullRow: { | 4425 case OP_NullRow: { |
4151 VdbeCursor *pC; | 4426 VdbeCursor *pC; |
4152 | 4427 |
4153 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4428 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4154 pC = p->apCsr[pOp->p1]; | 4429 pC = p->apCsr[pOp->p1]; |
4155 assert( pC!=0 ); | 4430 assert( pC!=0 ); |
4156 pC->nullRow = 1; | 4431 pC->nullRow = 1; |
4157 pC->rowidIsValid = 0; | 4432 pC->cacheStatus = CACHE_STALE; |
4158 if( pC->pCursor ){ | 4433 if( pC->pCursor ){ |
4159 sqlite3BtreeClearCursor(pC->pCursor); | 4434 sqlite3BtreeClearCursor(pC->pCursor); |
4160 } | 4435 } |
4161 break; | 4436 break; |
4162 } | 4437 } |
4163 | 4438 |
4164 /* Opcode: Last P1 P2 * * * | 4439 /* Opcode: Last P1 P2 * * * |
4165 ** | 4440 ** |
4166 ** The next use of the Rowid or Column or Next instruction for P1 | 4441 ** The next use of the Rowid or Column or Prev instruction for P1 |
4167 ** will refer to the last entry in the database table or index. | 4442 ** will refer to the last entry in the database table or index. |
4168 ** If the table or index is empty and P2>0, then jump immediately to P2. | 4443 ** If the table or index is empty and P2>0, then jump immediately to P2. |
4169 ** If P2 is 0 or if the table or index is not empty, fall through | 4444 ** If P2 is 0 or if the table or index is not empty, fall through |
4170 ** to the following instruction. | 4445 ** to the following instruction. |
| 4446 ** |
| 4447 ** This opcode leaves the cursor configured to move in reverse order, |
| 4448 ** from the end toward the beginning. In other words, the cursor is |
| 4449 ** configured to use Prev, not Next. |
4171 */ | 4450 */ |
4172 case OP_Last: { /* jump */ | 4451 case OP_Last: { /* jump */ |
4173 VdbeCursor *pC; | 4452 VdbeCursor *pC; |
4174 BtCursor *pCrsr; | 4453 BtCursor *pCrsr; |
4175 int res; | 4454 int res; |
4176 | 4455 |
4177 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4456 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4178 pC = p->apCsr[pOp->p1]; | 4457 pC = p->apCsr[pOp->p1]; |
4179 assert( pC!=0 ); | 4458 assert( pC!=0 ); |
4180 pCrsr = pC->pCursor; | 4459 pCrsr = pC->pCursor; |
4181 if( pCrsr==0 ){ | 4460 res = 0; |
4182 res = 1; | 4461 assert( pCrsr!=0 ); |
4183 }else{ | 4462 rc = sqlite3BtreeLast(pCrsr, &res); |
4184 rc = sqlite3BtreeLast(pCrsr, &res); | |
4185 } | |
4186 pC->nullRow = (u8)res; | 4463 pC->nullRow = (u8)res; |
4187 pC->deferredMoveto = 0; | 4464 pC->deferredMoveto = 0; |
4188 pC->rowidIsValid = 0; | |
4189 pC->cacheStatus = CACHE_STALE; | 4465 pC->cacheStatus = CACHE_STALE; |
4190 if( pOp->p2>0 && res ){ | 4466 #ifdef SQLITE_DEBUG |
4191 pc = pOp->p2 - 1; | 4467 pC->seekOp = OP_Last; |
| 4468 #endif |
| 4469 if( pOp->p2>0 ){ |
| 4470 VdbeBranchTaken(res!=0,2); |
| 4471 if( res ) pc = pOp->p2 - 1; |
4192 } | 4472 } |
4193 break; | 4473 break; |
4194 } | 4474 } |
4195 | 4475 |
4196 | 4476 |
4197 /* Opcode: Sort P1 P2 * * * | 4477 /* Opcode: Sort P1 P2 * * * |
4198 ** | 4478 ** |
4199 ** This opcode does exactly the same thing as OP_Rewind except that | 4479 ** This opcode does exactly the same thing as OP_Rewind except that |
4200 ** it increments an undocumented global variable used for testing. | 4480 ** it increments an undocumented global variable used for testing. |
4201 ** | 4481 ** |
4202 ** Sorting is accomplished by writing records into a sorting index, | 4482 ** Sorting is accomplished by writing records into a sorting index, |
4203 ** then rewinding that index and playing it back from beginning to | 4483 ** then rewinding that index and playing it back from beginning to |
4204 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the | 4484 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the |
4205 ** rewinding so that the global variable will be incremented and | 4485 ** rewinding so that the global variable will be incremented and |
4206 ** regression tests can determine whether or not the optimizer is | 4486 ** regression tests can determine whether or not the optimizer is |
4207 ** correctly optimizing out sorts. | 4487 ** correctly optimizing out sorts. |
4208 */ | 4488 */ |
| 4489 case OP_SorterSort: /* jump */ |
4209 case OP_Sort: { /* jump */ | 4490 case OP_Sort: { /* jump */ |
4210 #ifdef SQLITE_TEST | 4491 #ifdef SQLITE_TEST |
4211 sqlite3_sort_count++; | 4492 sqlite3_sort_count++; |
4212 sqlite3_search_count--; | 4493 sqlite3_search_count--; |
4213 #endif | 4494 #endif |
4214 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++; | 4495 p->aCounter[SQLITE_STMTSTATUS_SORT]++; |
4215 /* Fall through into OP_Rewind */ | 4496 /* Fall through into OP_Rewind */ |
4216 } | 4497 } |
4217 /* Opcode: Rewind P1 P2 * * * | 4498 /* Opcode: Rewind P1 P2 * * * |
4218 ** | 4499 ** |
4219 ** The next use of the Rowid or Column or Next instruction for P1 | 4500 ** The next use of the Rowid or Column or Next instruction for P1 |
4220 ** will refer to the first entry in the database table or index. | 4501 ** will refer to the first entry in the database table or index. |
4221 ** If the table or index is empty and P2>0, then jump immediately to P2. | 4502 ** If the table or index is empty and P2>0, then jump immediately to P2. |
4222 ** If P2 is 0 or if the table or index is not empty, fall through | 4503 ** If P2 is 0 or if the table or index is not empty, fall through |
4223 ** to the following instruction. | 4504 ** to the following instruction. |
| 4505 ** |
| 4506 ** This opcode leaves the cursor configured to move in forward order, |
| 4507 ** from the beginning toward the end. In other words, the cursor is |
| 4508 ** configured to use Next, not Prev. |
4224 */ | 4509 */ |
4225 case OP_Rewind: { /* jump */ | 4510 case OP_Rewind: { /* jump */ |
4226 VdbeCursor *pC; | 4511 VdbeCursor *pC; |
4227 BtCursor *pCrsr; | 4512 BtCursor *pCrsr; |
4228 int res; | 4513 int res; |
4229 | 4514 |
4230 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4515 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4231 pC = p->apCsr[pOp->p1]; | 4516 pC = p->apCsr[pOp->p1]; |
4232 assert( pC!=0 ); | 4517 assert( pC!=0 ); |
| 4518 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); |
4233 res = 1; | 4519 res = 1; |
4234 if( (pCrsr = pC->pCursor)!=0 ){ | 4520 #ifdef SQLITE_DEBUG |
| 4521 pC->seekOp = OP_Rewind; |
| 4522 #endif |
| 4523 if( isSorter(pC) ){ |
| 4524 rc = sqlite3VdbeSorterRewind(pC, &res); |
| 4525 }else{ |
| 4526 pCrsr = pC->pCursor; |
| 4527 assert( pCrsr ); |
4235 rc = sqlite3BtreeFirst(pCrsr, &res); | 4528 rc = sqlite3BtreeFirst(pCrsr, &res); |
4236 pC->atFirst = res==0 ?1:0; | |
4237 pC->deferredMoveto = 0; | 4529 pC->deferredMoveto = 0; |
4238 pC->cacheStatus = CACHE_STALE; | 4530 pC->cacheStatus = CACHE_STALE; |
4239 pC->rowidIsValid = 0; | |
4240 } | 4531 } |
4241 pC->nullRow = (u8)res; | 4532 pC->nullRow = (u8)res; |
4242 assert( pOp->p2>0 && pOp->p2<p->nOp ); | 4533 assert( pOp->p2>0 && pOp->p2<p->nOp ); |
| 4534 VdbeBranchTaken(res!=0,2); |
4243 if( res ){ | 4535 if( res ){ |
4244 pc = pOp->p2 - 1; | 4536 pc = pOp->p2 - 1; |
4245 } | 4537 } |
4246 break; | 4538 break; |
4247 } | 4539 } |
4248 | 4540 |
4249 /* Opcode: Next P1 P2 * * P5 | 4541 /* Opcode: Next P1 P2 P3 P4 P5 |
4250 ** | 4542 ** |
4251 ** Advance cursor P1 so that it points to the next key/data pair in its | 4543 ** Advance cursor P1 so that it points to the next key/data pair in its |
4252 ** table or index. If there are no more key/value pairs then fall through | 4544 ** table or index. If there are no more key/value pairs then fall through |
4253 ** to the following instruction. But if the cursor advance was successful, | 4545 ** to the following instruction. But if the cursor advance was successful, |
4254 ** jump immediately to P2. | 4546 ** jump immediately to P2. |
4255 ** | 4547 ** |
4256 ** The P1 cursor must be for a real table, not a pseudo-table. | 4548 ** The Next opcode is only valid following an SeekGT, SeekGE, or |
| 4549 ** OP_Rewind opcode used to position the cursor. Next is not allowed |
| 4550 ** to follow SeekLT, SeekLE, or OP_Last. |
| 4551 ** |
| 4552 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have |
| 4553 ** been opened prior to this opcode or the program will segfault. |
| 4554 ** |
| 4555 ** The P3 value is a hint to the btree implementation. If P3==1, that |
| 4556 ** means P1 is an SQL index and that this instruction could have been |
| 4557 ** omitted if that index had been unique. P3 is usually 0. P3 is |
| 4558 ** always either 0 or 1. |
| 4559 ** |
| 4560 ** P4 is always of type P4_ADVANCE. The function pointer points to |
| 4561 ** sqlite3BtreeNext(). |
4257 ** | 4562 ** |
4258 ** If P5 is positive and the jump is taken, then event counter | 4563 ** If P5 is positive and the jump is taken, then event counter |
4259 ** number P5-1 in the prepared statement is incremented. | 4564 ** number P5-1 in the prepared statement is incremented. |
4260 ** | 4565 ** |
4261 ** See also: Prev | 4566 ** See also: Prev, NextIfOpen |
4262 */ | 4567 */ |
4263 /* Opcode: Prev P1 P2 * * P5 | 4568 /* Opcode: NextIfOpen P1 P2 P3 P4 P5 |
| 4569 ** |
| 4570 ** This opcode works just like Next except that if cursor P1 is not |
| 4571 ** open it behaves a no-op. |
| 4572 */ |
| 4573 /* Opcode: Prev P1 P2 P3 P4 P5 |
4264 ** | 4574 ** |
4265 ** Back up cursor P1 so that it points to the previous key/data pair in its | 4575 ** Back up cursor P1 so that it points to the previous key/data pair in its |
4266 ** table or index. If there is no previous key/value pairs then fall through | 4576 ** table or index. If there is no previous key/value pairs then fall through |
4267 ** to the following instruction. But if the cursor backup was successful, | 4577 ** to the following instruction. But if the cursor backup was successful, |
4268 ** jump immediately to P2. | 4578 ** jump immediately to P2. |
4269 ** | 4579 ** |
4270 ** The P1 cursor must be for a real table, not a pseudo-table. | 4580 ** |
| 4581 ** The Prev opcode is only valid following an SeekLT, SeekLE, or |
| 4582 ** OP_Last opcode used to position the cursor. Prev is not allowed |
| 4583 ** to follow SeekGT, SeekGE, or OP_Rewind. |
| 4584 ** |
| 4585 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is |
| 4586 ** not open then the behavior is undefined. |
| 4587 ** |
| 4588 ** The P3 value is a hint to the btree implementation. If P3==1, that |
| 4589 ** means P1 is an SQL index and that this instruction could have been |
| 4590 ** omitted if that index had been unique. P3 is usually 0. P3 is |
| 4591 ** always either 0 or 1. |
| 4592 ** |
| 4593 ** P4 is always of type P4_ADVANCE. The function pointer points to |
| 4594 ** sqlite3BtreePrevious(). |
4271 ** | 4595 ** |
4272 ** If P5 is positive and the jump is taken, then event counter | 4596 ** If P5 is positive and the jump is taken, then event counter |
4273 ** number P5-1 in the prepared statement is incremented. | 4597 ** number P5-1 in the prepared statement is incremented. |
4274 */ | 4598 */ |
4275 case OP_Prev: /* jump */ | 4599 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 |
4276 case OP_Next: { /* jump */ | 4600 ** |
| 4601 ** This opcode works just like Prev except that if cursor P1 is not |
| 4602 ** open it behaves a no-op. |
| 4603 */ |
| 4604 case OP_SorterNext: { /* jump */ |
4277 VdbeCursor *pC; | 4605 VdbeCursor *pC; |
4278 BtCursor *pCrsr; | |
4279 int res; | 4606 int res; |
4280 | 4607 |
4281 CHECK_FOR_INTERRUPT; | 4608 pC = p->apCsr[pOp->p1]; |
| 4609 assert( isSorter(pC) ); |
| 4610 res = 0; |
| 4611 rc = sqlite3VdbeSorterNext(db, pC, &res); |
| 4612 goto next_tail; |
| 4613 case OP_PrevIfOpen: /* jump */ |
| 4614 case OP_NextIfOpen: /* jump */ |
| 4615 if( p->apCsr[pOp->p1]==0 ) break; |
| 4616 /* Fall through */ |
| 4617 case OP_Prev: /* jump */ |
| 4618 case OP_Next: /* jump */ |
4282 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4619 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4283 assert( pOp->p5<=ArraySize(p->aCounter) ); | 4620 assert( pOp->p5<ArraySize(p->aCounter) ); |
4284 pC = p->apCsr[pOp->p1]; | 4621 pC = p->apCsr[pOp->p1]; |
4285 if( pC==0 ){ | 4622 res = pOp->p3; |
4286 break; /* See ticket #2273 */ | 4623 assert( pC!=0 ); |
4287 } | |
4288 pCrsr = pC->pCursor; | |
4289 if( pCrsr==0 ){ | |
4290 pC->nullRow = 1; | |
4291 break; | |
4292 } | |
4293 res = 1; | |
4294 assert( pC->deferredMoveto==0 ); | 4624 assert( pC->deferredMoveto==0 ); |
4295 rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) : | 4625 assert( pC->pCursor ); |
4296 sqlite3BtreePrevious(pCrsr, &res); | 4626 assert( res==0 || (res==1 && pC->isTable==0) ); |
4297 pC->nullRow = (u8)res; | 4627 testcase( res==1 ); |
| 4628 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); |
| 4629 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); |
| 4630 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); |
| 4631 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); |
| 4632 |
| 4633 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. |
| 4634 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ |
| 4635 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen |
| 4636 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE |
| 4637 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); |
| 4638 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen |
| 4639 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE |
| 4640 || pC->seekOp==OP_Last ); |
| 4641 |
| 4642 rc = pOp->p4.xAdvance(pC->pCursor, &res); |
| 4643 next_tail: |
4298 pC->cacheStatus = CACHE_STALE; | 4644 pC->cacheStatus = CACHE_STALE; |
| 4645 VdbeBranchTaken(res==0,2); |
4299 if( res==0 ){ | 4646 if( res==0 ){ |
| 4647 pC->nullRow = 0; |
4300 pc = pOp->p2 - 1; | 4648 pc = pOp->p2 - 1; |
4301 if( pOp->p5 ) p->aCounter[pOp->p5-1]++; | 4649 p->aCounter[pOp->p5]++; |
4302 #ifdef SQLITE_TEST | 4650 #ifdef SQLITE_TEST |
4303 sqlite3_search_count++; | 4651 sqlite3_search_count++; |
4304 #endif | 4652 #endif |
| 4653 }else{ |
| 4654 pC->nullRow = 1; |
4305 } | 4655 } |
4306 pC->rowidIsValid = 0; | 4656 goto check_for_interrupt; |
4307 break; | |
4308 } | 4657 } |
4309 | 4658 |
4310 /* Opcode: IdxInsert P1 P2 P3 * P5 | 4659 /* Opcode: IdxInsert P1 P2 P3 * P5 |
| 4660 ** Synopsis: key=r[P2] |
4311 ** | 4661 ** |
4312 ** Register P2 holds a SQL index key made using the | 4662 ** Register P2 holds an SQL index key made using the |
4313 ** MakeRecord instructions. This opcode writes that key | 4663 ** MakeRecord instructions. This opcode writes that key |
4314 ** into the index P1. Data for the entry is nil. | 4664 ** into the index P1. Data for the entry is nil. |
4315 ** | 4665 ** |
4316 ** P3 is a flag that provides a hint to the b-tree layer that this | 4666 ** P3 is a flag that provides a hint to the b-tree layer that this |
4317 ** insert is likely to be an append. | 4667 ** insert is likely to be an append. |
4318 ** | 4668 ** |
| 4669 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is |
| 4670 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, |
| 4671 ** then the change counter is unchanged. |
| 4672 ** |
| 4673 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have |
| 4674 ** just done a seek to the spot where the new entry is to be inserted. |
| 4675 ** This flag avoids doing an extra seek. |
| 4676 ** |
4319 ** This instruction only works for indices. The equivalent instruction | 4677 ** This instruction only works for indices. The equivalent instruction |
4320 ** for tables is OP_Insert. | 4678 ** for tables is OP_Insert. |
4321 */ | 4679 */ |
| 4680 case OP_SorterInsert: /* in2 */ |
4322 case OP_IdxInsert: { /* in2 */ | 4681 case OP_IdxInsert: { /* in2 */ |
4323 VdbeCursor *pC; | 4682 VdbeCursor *pC; |
4324 BtCursor *pCrsr; | 4683 BtCursor *pCrsr; |
4325 int nKey; | 4684 int nKey; |
4326 const char *zKey; | 4685 const char *zKey; |
4327 | 4686 |
4328 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4687 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4329 pC = p->apCsr[pOp->p1]; | 4688 pC = p->apCsr[pOp->p1]; |
4330 assert( pC!=0 ); | 4689 assert( pC!=0 ); |
| 4690 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); |
4331 pIn2 = &aMem[pOp->p2]; | 4691 pIn2 = &aMem[pOp->p2]; |
4332 assert( pIn2->flags & MEM_Blob ); | 4692 assert( pIn2->flags & MEM_Blob ); |
4333 pCrsr = pC->pCursor; | 4693 pCrsr = pC->pCursor; |
4334 if( ALWAYS(pCrsr!=0) ){ | 4694 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; |
4335 assert( pC->isTable==0 ); | 4695 assert( pCrsr!=0 ); |
4336 rc = ExpandBlob(pIn2); | 4696 assert( pC->isTable==0 ); |
4337 if( rc==SQLITE_OK ){ | 4697 rc = ExpandBlob(pIn2); |
| 4698 if( rc==SQLITE_OK ){ |
| 4699 if( isSorter(pC) ){ |
| 4700 rc = sqlite3VdbeSorterWrite(pC, pIn2); |
| 4701 }else{ |
4338 nKey = pIn2->n; | 4702 nKey = pIn2->n; |
4339 zKey = pIn2->z; | 4703 zKey = pIn2->z; |
4340 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, | 4704 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, |
4341 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) | 4705 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) |
4342 ); | 4706 ); |
4343 assert( pC->deferredMoveto==0 ); | 4707 assert( pC->deferredMoveto==0 ); |
4344 pC->cacheStatus = CACHE_STALE; | 4708 pC->cacheStatus = CACHE_STALE; |
4345 } | 4709 } |
4346 } | 4710 } |
4347 break; | 4711 break; |
4348 } | 4712 } |
4349 | 4713 |
4350 /* Opcode: IdxDelete P1 P2 P3 * * | 4714 /* Opcode: IdxDelete P1 P2 P3 * * |
| 4715 ** Synopsis: key=r[P2@P3] |
4351 ** | 4716 ** |
4352 ** The content of P3 registers starting at register P2 form | 4717 ** The content of P3 registers starting at register P2 form |
4353 ** an unpacked index key. This opcode removes that entry from the | 4718 ** an unpacked index key. This opcode removes that entry from the |
4354 ** index opened by cursor P1. | 4719 ** index opened by cursor P1. |
4355 */ | 4720 */ |
4356 case OP_IdxDelete: { | 4721 case OP_IdxDelete: { |
4357 VdbeCursor *pC; | 4722 VdbeCursor *pC; |
4358 BtCursor *pCrsr; | 4723 BtCursor *pCrsr; |
4359 int res; | 4724 int res; |
4360 UnpackedRecord r; | 4725 UnpackedRecord r; |
4361 | 4726 |
4362 assert( pOp->p3>0 ); | 4727 assert( pOp->p3>0 ); |
4363 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 ); | 4728 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 ); |
4364 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4729 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4365 pC = p->apCsr[pOp->p1]; | 4730 pC = p->apCsr[pOp->p1]; |
4366 assert( pC!=0 ); | 4731 assert( pC!=0 ); |
4367 pCrsr = pC->pCursor; | 4732 pCrsr = pC->pCursor; |
4368 if( ALWAYS(pCrsr!=0) ){ | 4733 assert( pCrsr!=0 ); |
4369 r.pKeyInfo = pC->pKeyInfo; | 4734 assert( pOp->p5==0 ); |
4370 r.nField = (u16)pOp->p3; | 4735 r.pKeyInfo = pC->pKeyInfo; |
4371 r.flags = 0; | 4736 r.nField = (u16)pOp->p3; |
4372 r.aMem = &aMem[pOp->p2]; | 4737 r.default_rc = 0; |
| 4738 r.aMem = &aMem[pOp->p2]; |
4373 #ifdef SQLITE_DEBUG | 4739 #ifdef SQLITE_DEBUG |
4374 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } | 4740 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
4375 #endif | 4741 #endif |
4376 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); | 4742 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); |
4377 if( rc==SQLITE_OK && res==0 ){ | 4743 if( rc==SQLITE_OK && res==0 ){ |
4378 rc = sqlite3BtreeDelete(pCrsr); | 4744 rc = sqlite3BtreeDelete(pCrsr); |
4379 } | |
4380 assert( pC->deferredMoveto==0 ); | |
4381 pC->cacheStatus = CACHE_STALE; | |
4382 } | 4745 } |
| 4746 assert( pC->deferredMoveto==0 ); |
| 4747 pC->cacheStatus = CACHE_STALE; |
4383 break; | 4748 break; |
4384 } | 4749 } |
4385 | 4750 |
4386 /* Opcode: IdxRowid P1 P2 * * * | 4751 /* Opcode: IdxRowid P1 P2 * * * |
| 4752 ** Synopsis: r[P2]=rowid |
4387 ** | 4753 ** |
4388 ** Write into register P2 an integer which is the last entry in the record at | 4754 ** Write into register P2 an integer which is the last entry in the record at |
4389 ** the end of the index key pointed to by cursor P1. This integer should be | 4755 ** the end of the index key pointed to by cursor P1. This integer should be |
4390 ** the rowid of the table entry to which this index entry points. | 4756 ** the rowid of the table entry to which this index entry points. |
4391 ** | 4757 ** |
4392 ** See also: Rowid, MakeRecord. | 4758 ** See also: Rowid, MakeRecord. |
4393 */ | 4759 */ |
4394 case OP_IdxRowid: { /* out2-prerelease */ | 4760 case OP_IdxRowid: { /* out2-prerelease */ |
4395 BtCursor *pCrsr; | 4761 BtCursor *pCrsr; |
4396 VdbeCursor *pC; | 4762 VdbeCursor *pC; |
4397 i64 rowid; | 4763 i64 rowid; |
4398 | 4764 |
4399 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4765 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4400 pC = p->apCsr[pOp->p1]; | 4766 pC = p->apCsr[pOp->p1]; |
4401 assert( pC!=0 ); | 4767 assert( pC!=0 ); |
4402 pCrsr = pC->pCursor; | 4768 pCrsr = pC->pCursor; |
| 4769 assert( pCrsr!=0 ); |
4403 pOut->flags = MEM_Null; | 4770 pOut->flags = MEM_Null; |
4404 if( ALWAYS(pCrsr!=0) ){ | 4771 assert( pC->isTable==0 ); |
4405 rc = sqlite3VdbeCursorMoveto(pC); | 4772 assert( pC->deferredMoveto==0 ); |
4406 if( NEVER(rc) ) goto abort_due_to_error; | 4773 |
4407 assert( pC->deferredMoveto==0 ); | 4774 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted |
4408 assert( pC->isTable==0 ); | 4775 ** out from under the cursor. That will never happend for an IdxRowid |
4409 if( !pC->nullRow ){ | 4776 ** opcode, hence the NEVER() arround the check of the return value. |
4410 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); | 4777 */ |
4411 if( rc!=SQLITE_OK ){ | 4778 rc = sqlite3VdbeCursorRestore(pC); |
4412 goto abort_due_to_error; | 4779 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; |
4413 } | 4780 |
4414 pOut->u.i = rowid; | 4781 if( !pC->nullRow ){ |
4415 pOut->flags = MEM_Int; | 4782 rowid = 0; /* Not needed. Only used to silence a warning. */ |
| 4783 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); |
| 4784 if( rc!=SQLITE_OK ){ |
| 4785 goto abort_due_to_error; |
4416 } | 4786 } |
| 4787 pOut->u.i = rowid; |
| 4788 pOut->flags = MEM_Int; |
4417 } | 4789 } |
4418 break; | 4790 break; |
4419 } | 4791 } |
4420 | 4792 |
4421 /* Opcode: IdxGE P1 P2 P3 P4 P5 | 4793 /* Opcode: IdxGE P1 P2 P3 P4 P5 |
| 4794 ** Synopsis: key=r[P3@P4] |
4422 ** | 4795 ** |
4423 ** The P4 register values beginning with P3 form an unpacked index | 4796 ** The P4 register values beginning with P3 form an unpacked index |
4424 ** key that omits the ROWID. Compare this key value against the index | 4797 ** key that omits the PRIMARY KEY. Compare this key value against the index |
4425 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. | 4798 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID |
| 4799 ** fields at the end. |
4426 ** | 4800 ** |
4427 ** If the P1 index entry is greater than or equal to the key value | 4801 ** If the P1 index entry is greater than or equal to the key value |
4428 ** then jump to P2. Otherwise fall through to the next instruction. | 4802 ** then jump to P2. Otherwise fall through to the next instruction. |
| 4803 */ |
| 4804 /* Opcode: IdxGT P1 P2 P3 P4 P5 |
| 4805 ** Synopsis: key=r[P3@P4] |
4429 ** | 4806 ** |
4430 ** If P5 is non-zero then the key value is increased by an epsilon | 4807 ** The P4 register values beginning with P3 form an unpacked index |
4431 ** prior to the comparison. This make the opcode work like IdxGT except | 4808 ** key that omits the PRIMARY KEY. Compare this key value against the index |
4432 ** that if the key from register P3 is a prefix of the key in the cursor, | 4809 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID |
4433 ** the result is false whereas it would be true with IdxGT. | 4810 ** fields at the end. |
| 4811 ** |
| 4812 ** If the P1 index entry is greater than the key value |
| 4813 ** then jump to P2. Otherwise fall through to the next instruction. |
4434 */ | 4814 */ |
4435 /* Opcode: IdxLT P1 P2 P3 P4 P5 | 4815 /* Opcode: IdxLT P1 P2 P3 P4 P5 |
| 4816 ** Synopsis: key=r[P3@P4] |
4436 ** | 4817 ** |
4437 ** The P4 register values beginning with P3 form an unpacked index | 4818 ** The P4 register values beginning with P3 form an unpacked index |
4438 ** key that omits the ROWID. Compare this key value against the index | 4819 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against |
4439 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. | 4820 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or |
| 4821 ** ROWID on the P1 index. |
4440 ** | 4822 ** |
4441 ** If the P1 index entry is less than the key value then jump to P2. | 4823 ** If the P1 index entry is less than the key value then jump to P2. |
4442 ** Otherwise fall through to the next instruction. | 4824 ** Otherwise fall through to the next instruction. |
| 4825 */ |
| 4826 /* Opcode: IdxLE P1 P2 P3 P4 P5 |
| 4827 ** Synopsis: key=r[P3@P4] |
4443 ** | 4828 ** |
4444 ** If P5 is non-zero then the key value is increased by an epsilon prior | 4829 ** The P4 register values beginning with P3 form an unpacked index |
4445 ** to the comparison. This makes the opcode work like IdxLE. | 4830 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against |
| 4831 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or |
| 4832 ** ROWID on the P1 index. |
| 4833 ** |
| 4834 ** If the P1 index entry is less than or equal to the key value then jump |
| 4835 ** to P2. Otherwise fall through to the next instruction. |
4446 */ | 4836 */ |
| 4837 case OP_IdxLE: /* jump */ |
| 4838 case OP_IdxGT: /* jump */ |
4447 case OP_IdxLT: /* jump */ | 4839 case OP_IdxLT: /* jump */ |
4448 case OP_IdxGE: { /* jump */ | 4840 case OP_IdxGE: { /* jump */ |
4449 VdbeCursor *pC; | 4841 VdbeCursor *pC; |
4450 int res; | 4842 int res; |
4451 UnpackedRecord r; | 4843 UnpackedRecord r; |
4452 | 4844 |
4453 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4845 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4454 pC = p->apCsr[pOp->p1]; | 4846 pC = p->apCsr[pOp->p1]; |
4455 assert( pC!=0 ); | 4847 assert( pC!=0 ); |
4456 assert( pC->isOrdered ); | 4848 assert( pC->isOrdered ); |
4457 if( ALWAYS(pC->pCursor!=0) ){ | 4849 assert( pC->pCursor!=0); |
4458 assert( pC->deferredMoveto==0 ); | 4850 assert( pC->deferredMoveto==0 ); |
4459 assert( pOp->p5==0 || pOp->p5==1 ); | 4851 assert( pOp->p5==0 || pOp->p5==1 ); |
4460 assert( pOp->p4type==P4_INT32 ); | 4852 assert( pOp->p4type==P4_INT32 ); |
4461 r.pKeyInfo = pC->pKeyInfo; | 4853 r.pKeyInfo = pC->pKeyInfo; |
4462 r.nField = (u16)pOp->p4.i; | 4854 r.nField = (u16)pOp->p4.i; |
4463 if( pOp->p5 ){ | 4855 if( pOp->opcode<OP_IdxLT ){ |
4464 r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID; | 4856 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); |
4465 }else{ | 4857 r.default_rc = -1; |
4466 r.flags = UNPACKED_IGNORE_ROWID; | 4858 }else{ |
4467 } | 4859 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); |
4468 r.aMem = &aMem[pOp->p3]; | 4860 r.default_rc = 0; |
| 4861 } |
| 4862 r.aMem = &aMem[pOp->p3]; |
4469 #ifdef SQLITE_DEBUG | 4863 #ifdef SQLITE_DEBUG |
4470 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } | 4864 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
4471 #endif | 4865 #endif |
4472 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); | 4866 res = 0; /* Not needed. Only used to silence a warning. */ |
4473 if( pOp->opcode==OP_IdxLT ){ | 4867 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); |
4474 res = -res; | 4868 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); |
4475 }else{ | 4869 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ |
4476 assert( pOp->opcode==OP_IdxGE ); | 4870 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); |
4477 res++; | 4871 res = -res; |
4478 } | 4872 }else{ |
4479 if( res>0 ){ | 4873 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); |
4480 pc = pOp->p2 - 1 ; | 4874 res++; |
4481 } | 4875 } |
| 4876 VdbeBranchTaken(res>0,2); |
| 4877 if( res>0 ){ |
| 4878 pc = pOp->p2 - 1 ; |
4482 } | 4879 } |
4483 break; | 4880 break; |
4484 } | 4881 } |
4485 | 4882 |
4486 /* Opcode: Destroy P1 P2 P3 * * | 4883 /* Opcode: Destroy P1 P2 P3 * * |
4487 ** | 4884 ** |
4488 ** Delete an entire database table or index whose root page in the database | 4885 ** Delete an entire database table or index whose root page in the database |
4489 ** file is given by P1. | 4886 ** file is given by P1. |
4490 ** | 4887 ** |
4491 ** The table being destroyed is in the main database file if P3==0. If | 4888 ** The table being destroyed is in the main database file if P3==0. If |
4492 ** P3==1 then the table to be clear is in the auxiliary database file | 4889 ** P3==1 then the table to be clear is in the auxiliary database file |
4493 ** that is used to store tables create using CREATE TEMPORARY TABLE. | 4890 ** that is used to store tables create using CREATE TEMPORARY TABLE. |
4494 ** | 4891 ** |
4495 ** If AUTOVACUUM is enabled then it is possible that another root page | 4892 ** If AUTOVACUUM is enabled then it is possible that another root page |
4496 ** might be moved into the newly deleted root page in order to keep all | 4893 ** might be moved into the newly deleted root page in order to keep all |
4497 ** root pages contiguous at the beginning of the database. The former | 4894 ** root pages contiguous at the beginning of the database. The former |
4498 ** value of the root page that moved - its value before the move occurred - | 4895 ** value of the root page that moved - its value before the move occurred - |
4499 ** is stored in register P2. If no page | 4896 ** is stored in register P2. If no page |
4500 ** movement was required (because the table being dropped was already | 4897 ** movement was required (because the table being dropped was already |
4501 ** the last one in the database) then a zero is stored in register P2. | 4898 ** the last one in the database) then a zero is stored in register P2. |
4502 ** If AUTOVACUUM is disabled then a zero is stored in register P2. | 4899 ** If AUTOVACUUM is disabled then a zero is stored in register P2. |
4503 ** | 4900 ** |
4504 ** See also: Clear | 4901 ** See also: Clear |
4505 */ | 4902 */ |
4506 case OP_Destroy: { /* out2-prerelease */ | 4903 case OP_Destroy: { /* out2-prerelease */ |
4507 int iMoved; | 4904 int iMoved; |
4508 int iCnt; | 4905 int iCnt; |
4509 Vdbe *pVdbe; | 4906 Vdbe *pVdbe; |
4510 int iDb; | 4907 int iDb; |
| 4908 |
| 4909 assert( p->readOnly==0 ); |
4511 #ifndef SQLITE_OMIT_VIRTUALTABLE | 4910 #ifndef SQLITE_OMIT_VIRTUALTABLE |
4512 iCnt = 0; | 4911 iCnt = 0; |
4513 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ | 4912 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ |
4514 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){ | 4913 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader |
| 4914 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 |
| 4915 ){ |
4515 iCnt++; | 4916 iCnt++; |
4516 } | 4917 } |
4517 } | 4918 } |
4518 #else | 4919 #else |
4519 iCnt = db->activeVdbeCnt; | 4920 iCnt = db->nVdbeRead; |
4520 #endif | 4921 #endif |
4521 pOut->flags = MEM_Null; | 4922 pOut->flags = MEM_Null; |
4522 if( iCnt>1 ){ | 4923 if( iCnt>1 ){ |
4523 rc = SQLITE_LOCKED; | 4924 rc = SQLITE_LOCKED; |
4524 p->errorAction = OE_Abort; | 4925 p->errorAction = OE_Abort; |
4525 }else{ | 4926 }else{ |
4526 iDb = pOp->p3; | 4927 iDb = pOp->p3; |
4527 assert( iCnt==1 ); | 4928 assert( iCnt==1 ); |
4528 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); | 4929 assert( DbMaskTest(p->btreeMask, iDb) ); |
| 4930 iMoved = 0; /* Not needed. Only to silence a warning. */ |
4529 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); | 4931 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); |
4530 pOut->flags = MEM_Int; | 4932 pOut->flags = MEM_Int; |
4531 pOut->u.i = iMoved; | 4933 pOut->u.i = iMoved; |
4532 #ifndef SQLITE_OMIT_AUTOVACUUM | 4934 #ifndef SQLITE_OMIT_AUTOVACUUM |
4533 if( rc==SQLITE_OK && iMoved!=0 ){ | 4935 if( rc==SQLITE_OK && iMoved!=0 ){ |
4534 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); | 4936 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); |
4535 /* All OP_Destroy operations occur on the same btree */ | 4937 /* All OP_Destroy operations occur on the same btree */ |
4536 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); | 4938 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); |
4537 resetSchemaOnFault = iDb+1; | 4939 resetSchemaOnFault = iDb+1; |
4538 } | 4940 } |
(...skipping 17 matching lines...) Expand all Loading... |
4556 ** count is incremented by the number of rows in the table being cleared. | 4958 ** count is incremented by the number of rows in the table being cleared. |
4557 ** If P3 is greater than zero, then the value stored in register P3 is | 4959 ** If P3 is greater than zero, then the value stored in register P3 is |
4558 ** also incremented by the number of rows in the table being cleared. | 4960 ** also incremented by the number of rows in the table being cleared. |
4559 ** | 4961 ** |
4560 ** See also: Destroy | 4962 ** See also: Destroy |
4561 */ | 4963 */ |
4562 case OP_Clear: { | 4964 case OP_Clear: { |
4563 int nChange; | 4965 int nChange; |
4564 | 4966 |
4565 nChange = 0; | 4967 nChange = 0; |
4566 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 ); | 4968 assert( p->readOnly==0 ); |
| 4969 assert( DbMaskTest(p->btreeMask, pOp->p2) ); |
4567 rc = sqlite3BtreeClearTable( | 4970 rc = sqlite3BtreeClearTable( |
4568 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) | 4971 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) |
4569 ); | 4972 ); |
4570 if( pOp->p3 ){ | 4973 if( pOp->p3 ){ |
4571 p->nChange += nChange; | 4974 p->nChange += nChange; |
4572 if( pOp->p3>0 ){ | 4975 if( pOp->p3>0 ){ |
4573 assert( memIsValid(&aMem[pOp->p3]) ); | 4976 assert( memIsValid(&aMem[pOp->p3]) ); |
4574 memAboutToChange(p, &aMem[pOp->p3]); | 4977 memAboutToChange(p, &aMem[pOp->p3]); |
4575 aMem[pOp->p3].u.i += nChange; | 4978 aMem[pOp->p3].u.i += nChange; |
4576 } | 4979 } |
4577 } | 4980 } |
4578 break; | 4981 break; |
4579 } | 4982 } |
4580 | 4983 |
| 4984 /* Opcode: ResetSorter P1 * * * * |
| 4985 ** |
| 4986 ** Delete all contents from the ephemeral table or sorter |
| 4987 ** that is open on cursor P1. |
| 4988 ** |
| 4989 ** This opcode only works for cursors used for sorting and |
| 4990 ** opened with OP_OpenEphemeral or OP_SorterOpen. |
| 4991 */ |
| 4992 case OP_ResetSorter: { |
| 4993 VdbeCursor *pC; |
| 4994 |
| 4995 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4996 pC = p->apCsr[pOp->p1]; |
| 4997 assert( pC!=0 ); |
| 4998 if( pC->pSorter ){ |
| 4999 sqlite3VdbeSorterReset(db, pC->pSorter); |
| 5000 }else{ |
| 5001 assert( pC->isEphemeral ); |
| 5002 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor); |
| 5003 } |
| 5004 break; |
| 5005 } |
| 5006 |
4581 /* Opcode: CreateTable P1 P2 * * * | 5007 /* Opcode: CreateTable P1 P2 * * * |
| 5008 ** Synopsis: r[P2]=root iDb=P1 |
4582 ** | 5009 ** |
4583 ** Allocate a new table in the main database file if P1==0 or in the | 5010 ** Allocate a new table in the main database file if P1==0 or in the |
4584 ** auxiliary database file if P1==1 or in an attached database if | 5011 ** auxiliary database file if P1==1 or in an attached database if |
4585 ** P1>1. Write the root page number of the new table into | 5012 ** P1>1. Write the root page number of the new table into |
4586 ** register P2 | 5013 ** register P2 |
4587 ** | 5014 ** |
4588 ** The difference between a table and an index is this: A table must | 5015 ** The difference between a table and an index is this: A table must |
4589 ** have a 4-byte integer key and can have arbitrary data. An index | 5016 ** have a 4-byte integer key and can have arbitrary data. An index |
4590 ** has an arbitrary key but no data. | 5017 ** has an arbitrary key but no data. |
4591 ** | 5018 ** |
4592 ** See also: CreateIndex | 5019 ** See also: CreateIndex |
4593 */ | 5020 */ |
4594 /* Opcode: CreateIndex P1 P2 * * * | 5021 /* Opcode: CreateIndex P1 P2 * * * |
| 5022 ** Synopsis: r[P2]=root iDb=P1 |
4595 ** | 5023 ** |
4596 ** Allocate a new index in the main database file if P1==0 or in the | 5024 ** Allocate a new index in the main database file if P1==0 or in the |
4597 ** auxiliary database file if P1==1 or in an attached database if | 5025 ** auxiliary database file if P1==1 or in an attached database if |
4598 ** P1>1. Write the root page number of the new table into | 5026 ** P1>1. Write the root page number of the new table into |
4599 ** register P2. | 5027 ** register P2. |
4600 ** | 5028 ** |
4601 ** See documentation on OP_CreateTable for additional information. | 5029 ** See documentation on OP_CreateTable for additional information. |
4602 */ | 5030 */ |
4603 case OP_CreateIndex: /* out2-prerelease */ | 5031 case OP_CreateIndex: /* out2-prerelease */ |
4604 case OP_CreateTable: { /* out2-prerelease */ | 5032 case OP_CreateTable: { /* out2-prerelease */ |
4605 int pgno; | 5033 int pgno; |
4606 int flags; | 5034 int flags; |
4607 Db *pDb; | 5035 Db *pDb; |
4608 | 5036 |
4609 pgno = 0; | 5037 pgno = 0; |
4610 assert( pOp->p1>=0 && pOp->p1<db->nDb ); | 5038 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
4611 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); | 5039 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
| 5040 assert( p->readOnly==0 ); |
4612 pDb = &db->aDb[pOp->p1]; | 5041 pDb = &db->aDb[pOp->p1]; |
4613 assert( pDb->pBt!=0 ); | 5042 assert( pDb->pBt!=0 ); |
4614 if( pOp->opcode==OP_CreateTable ){ | 5043 if( pOp->opcode==OP_CreateTable ){ |
4615 /* flags = BTREE_INTKEY; */ | 5044 /* flags = BTREE_INTKEY; */ |
4616 flags = BTREE_INTKEY; | 5045 flags = BTREE_INTKEY; |
4617 }else{ | 5046 }else{ |
4618 flags = BTREE_BLOBKEY; | 5047 flags = BTREE_BLOBKEY; |
4619 } | 5048 } |
4620 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); | 5049 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); |
4621 pOut->u.i = pgno; | 5050 pOut->u.i = pgno; |
(...skipping 41 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
4663 assert( db->init.busy==0 ); | 5092 assert( db->init.busy==0 ); |
4664 db->init.busy = 1; | 5093 db->init.busy = 1; |
4665 initData.rc = SQLITE_OK; | 5094 initData.rc = SQLITE_OK; |
4666 assert( !db->mallocFailed ); | 5095 assert( !db->mallocFailed ); |
4667 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); | 5096 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); |
4668 if( rc==SQLITE_OK ) rc = initData.rc; | 5097 if( rc==SQLITE_OK ) rc = initData.rc; |
4669 sqlite3DbFree(db, zSql); | 5098 sqlite3DbFree(db, zSql); |
4670 db->init.busy = 0; | 5099 db->init.busy = 0; |
4671 } | 5100 } |
4672 } | 5101 } |
| 5102 if( rc ) sqlite3ResetAllSchemasOfConnection(db); |
4673 if( rc==SQLITE_NOMEM ){ | 5103 if( rc==SQLITE_NOMEM ){ |
4674 goto no_mem; | 5104 goto no_mem; |
4675 } | 5105 } |
4676 break; | 5106 break; |
4677 } | 5107 } |
4678 | 5108 |
4679 #if !defined(SQLITE_OMIT_ANALYZE) | 5109 #if !defined(SQLITE_OMIT_ANALYZE) |
4680 /* Opcode: LoadAnalysis P1 * * * * | 5110 /* Opcode: LoadAnalysis P1 * * * * |
4681 ** | 5111 ** |
4682 ** Read the sqlite_stat1 table for database P1 and load the content | 5112 ** Read the sqlite_stat1 table for database P1 and load the content |
4683 ** of that table into the internal index hash table. This will cause | 5113 ** of that table into the internal index hash table. This will cause |
4684 ** the analysis to be used when preparing all subsequent queries. | 5114 ** the analysis to be used when preparing all subsequent queries. |
4685 */ | 5115 */ |
4686 case OP_LoadAnalysis: { | 5116 case OP_LoadAnalysis: { |
4687 assert( pOp->p1>=0 && pOp->p1<db->nDb ); | 5117 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
4688 rc = sqlite3AnalysisLoad(db, pOp->p1); | 5118 rc = sqlite3AnalysisLoad(db, pOp->p1); |
4689 break; | 5119 break; |
4690 } | 5120 } |
4691 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ | 5121 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ |
4692 | 5122 |
4693 /* Opcode: DropTable P1 * * P4 * | 5123 /* Opcode: DropTable P1 * * P4 * |
4694 ** | 5124 ** |
4695 ** Remove the internal (in-memory) data structures that describe | 5125 ** Remove the internal (in-memory) data structures that describe |
4696 ** the table named P4 in database P1. This is called after a table | 5126 ** the table named P4 in database P1. This is called after a table |
4697 ** is dropped in order to keep the internal representation of the | 5127 ** is dropped from disk (using the Destroy opcode) in order to keep |
| 5128 ** the internal representation of the |
4698 ** schema consistent with what is on disk. | 5129 ** schema consistent with what is on disk. |
4699 */ | 5130 */ |
4700 case OP_DropTable: { | 5131 case OP_DropTable: { |
4701 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); | 5132 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); |
4702 break; | 5133 break; |
4703 } | 5134 } |
4704 | 5135 |
4705 /* Opcode: DropIndex P1 * * P4 * | 5136 /* Opcode: DropIndex P1 * * P4 * |
4706 ** | 5137 ** |
4707 ** Remove the internal (in-memory) data structures that describe | 5138 ** Remove the internal (in-memory) data structures that describe |
4708 ** the index named P4 in database P1. This is called after an index | 5139 ** the index named P4 in database P1. This is called after an index |
4709 ** is dropped in order to keep the internal representation of the | 5140 ** is dropped from disk (using the Destroy opcode) |
| 5141 ** in order to keep the internal representation of the |
4710 ** schema consistent with what is on disk. | 5142 ** schema consistent with what is on disk. |
4711 */ | 5143 */ |
4712 case OP_DropIndex: { | 5144 case OP_DropIndex: { |
4713 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); | 5145 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); |
4714 break; | 5146 break; |
4715 } | 5147 } |
4716 | 5148 |
4717 /* Opcode: DropTrigger P1 * * P4 * | 5149 /* Opcode: DropTrigger P1 * * P4 * |
4718 ** | 5150 ** |
4719 ** Remove the internal (in-memory) data structures that describe | 5151 ** Remove the internal (in-memory) data structures that describe |
4720 ** the trigger named P4 in database P1. This is called after a trigger | 5152 ** the trigger named P4 in database P1. This is called after a trigger |
4721 ** is dropped in order to keep the internal representation of the | 5153 ** is dropped from disk (using the Destroy opcode) in order to keep |
| 5154 ** the internal representation of the |
4722 ** schema consistent with what is on disk. | 5155 ** schema consistent with what is on disk. |
4723 */ | 5156 */ |
4724 case OP_DropTrigger: { | 5157 case OP_DropTrigger: { |
4725 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); | 5158 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); |
4726 break; | 5159 break; |
4727 } | 5160 } |
4728 | 5161 |
4729 | 5162 |
4730 #ifndef SQLITE_OMIT_INTEGRITY_CHECK | 5163 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
4731 /* Opcode: IntegrityCk P1 P2 P3 * P5 | 5164 /* Opcode: IntegrityCk P1 P2 P3 * P5 |
(...skipping 16 matching lines...) Expand all Loading... |
4748 ** | 5181 ** |
4749 ** This opcode is used to implement the integrity_check pragma. | 5182 ** This opcode is used to implement the integrity_check pragma. |
4750 */ | 5183 */ |
4751 case OP_IntegrityCk: { | 5184 case OP_IntegrityCk: { |
4752 int nRoot; /* Number of tables to check. (Number of root pages.) */ | 5185 int nRoot; /* Number of tables to check. (Number of root pages.) */ |
4753 int *aRoot; /* Array of rootpage numbers for tables to be checked */ | 5186 int *aRoot; /* Array of rootpage numbers for tables to be checked */ |
4754 int j; /* Loop counter */ | 5187 int j; /* Loop counter */ |
4755 int nErr; /* Number of errors reported */ | 5188 int nErr; /* Number of errors reported */ |
4756 char *z; /* Text of the error report */ | 5189 char *z; /* Text of the error report */ |
4757 Mem *pnErr; /* Register keeping track of errors remaining */ | 5190 Mem *pnErr; /* Register keeping track of errors remaining */ |
4758 | 5191 |
| 5192 assert( p->bIsReader ); |
4759 nRoot = pOp->p2; | 5193 nRoot = pOp->p2; |
4760 assert( nRoot>0 ); | 5194 assert( nRoot>0 ); |
4761 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); | 5195 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); |
4762 if( aRoot==0 ) goto no_mem; | 5196 if( aRoot==0 ) goto no_mem; |
4763 assert( pOp->p3>0 && pOp->p3<=p->nMem ); | 5197 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
4764 pnErr = &aMem[pOp->p3]; | 5198 pnErr = &aMem[pOp->p3]; |
4765 assert( (pnErr->flags & MEM_Int)!=0 ); | 5199 assert( (pnErr->flags & MEM_Int)!=0 ); |
4766 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); | 5200 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); |
4767 pIn1 = &aMem[pOp->p1]; | 5201 pIn1 = &aMem[pOp->p1]; |
4768 for(j=0; j<nRoot; j++){ | 5202 for(j=0; j<nRoot; j++){ |
4769 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); | 5203 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); |
4770 } | 5204 } |
4771 aRoot[j] = 0; | 5205 aRoot[j] = 0; |
4772 assert( pOp->p5<db->nDb ); | 5206 assert( pOp->p5<db->nDb ); |
4773 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 ); | 5207 assert( DbMaskTest(p->btreeMask, pOp->p5) ); |
4774 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, | 5208 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, |
4775 (int)pnErr->u.i, &nErr); | 5209 (int)pnErr->u.i, &nErr); |
4776 sqlite3DbFree(db, aRoot); | 5210 sqlite3DbFree(db, aRoot); |
4777 pnErr->u.i -= nErr; | 5211 pnErr->u.i -= nErr; |
4778 sqlite3VdbeMemSetNull(pIn1); | 5212 sqlite3VdbeMemSetNull(pIn1); |
4779 if( nErr==0 ){ | 5213 if( nErr==0 ){ |
4780 assert( z==0 ); | 5214 assert( z==0 ); |
4781 }else if( z==0 ){ | 5215 }else if( z==0 ){ |
4782 goto no_mem; | 5216 goto no_mem; |
4783 }else{ | 5217 }else{ |
4784 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); | 5218 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); |
4785 } | 5219 } |
4786 UPDATE_MAX_BLOBSIZE(pIn1); | 5220 UPDATE_MAX_BLOBSIZE(pIn1); |
4787 sqlite3VdbeChangeEncoding(pIn1, encoding); | 5221 sqlite3VdbeChangeEncoding(pIn1, encoding); |
4788 break; | 5222 break; |
4789 } | 5223 } |
4790 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ | 5224 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
4791 | 5225 |
4792 /* Opcode: RowSetAdd P1 P2 * * * | 5226 /* Opcode: RowSetAdd P1 P2 * * * |
| 5227 ** Synopsis: rowset(P1)=r[P2] |
4793 ** | 5228 ** |
4794 ** Insert the integer value held by register P2 into a boolean index | 5229 ** Insert the integer value held by register P2 into a boolean index |
4795 ** held in register P1. | 5230 ** held in register P1. |
4796 ** | 5231 ** |
4797 ** An assertion fails if P2 is not an integer. | 5232 ** An assertion fails if P2 is not an integer. |
4798 */ | 5233 */ |
4799 case OP_RowSetAdd: { /* in1, in2 */ | 5234 case OP_RowSetAdd: { /* in1, in2 */ |
4800 pIn1 = &aMem[pOp->p1]; | 5235 pIn1 = &aMem[pOp->p1]; |
4801 pIn2 = &aMem[pOp->p2]; | 5236 pIn2 = &aMem[pOp->p2]; |
4802 assert( (pIn2->flags & MEM_Int)!=0 ); | 5237 assert( (pIn2->flags & MEM_Int)!=0 ); |
4803 if( (pIn1->flags & MEM_RowSet)==0 ){ | 5238 if( (pIn1->flags & MEM_RowSet)==0 ){ |
4804 sqlite3VdbeMemSetRowSet(pIn1); | 5239 sqlite3VdbeMemSetRowSet(pIn1); |
4805 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; | 5240 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; |
4806 } | 5241 } |
4807 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); | 5242 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); |
4808 break; | 5243 break; |
4809 } | 5244 } |
4810 | 5245 |
4811 /* Opcode: RowSetRead P1 P2 P3 * * | 5246 /* Opcode: RowSetRead P1 P2 P3 * * |
| 5247 ** Synopsis: r[P3]=rowset(P1) |
4812 ** | 5248 ** |
4813 ** Extract the smallest value from boolean index P1 and put that value into | 5249 ** Extract the smallest value from boolean index P1 and put that value into |
4814 ** register P3. Or, if boolean index P1 is initially empty, leave P3 | 5250 ** register P3. Or, if boolean index P1 is initially empty, leave P3 |
4815 ** unchanged and jump to instruction P2. | 5251 ** unchanged and jump to instruction P2. |
4816 */ | 5252 */ |
4817 case OP_RowSetRead: { /* jump, in1, out3 */ | 5253 case OP_RowSetRead: { /* jump, in1, out3 */ |
4818 i64 val; | 5254 i64 val; |
4819 CHECK_FOR_INTERRUPT; | 5255 |
4820 pIn1 = &aMem[pOp->p1]; | 5256 pIn1 = &aMem[pOp->p1]; |
4821 if( (pIn1->flags & MEM_RowSet)==0 | 5257 if( (pIn1->flags & MEM_RowSet)==0 |
4822 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 | 5258 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 |
4823 ){ | 5259 ){ |
4824 /* The boolean index is empty */ | 5260 /* The boolean index is empty */ |
4825 sqlite3VdbeMemSetNull(pIn1); | 5261 sqlite3VdbeMemSetNull(pIn1); |
4826 pc = pOp->p2 - 1; | 5262 pc = pOp->p2 - 1; |
| 5263 VdbeBranchTaken(1,2); |
4827 }else{ | 5264 }else{ |
4828 /* A value was pulled from the index */ | 5265 /* A value was pulled from the index */ |
4829 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); | 5266 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); |
| 5267 VdbeBranchTaken(0,2); |
4830 } | 5268 } |
4831 break; | 5269 goto check_for_interrupt; |
4832 } | 5270 } |
4833 | 5271 |
4834 /* Opcode: RowSetTest P1 P2 P3 P4 | 5272 /* Opcode: RowSetTest P1 P2 P3 P4 |
| 5273 ** Synopsis: if r[P3] in rowset(P1) goto P2 |
4835 ** | 5274 ** |
4836 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 | 5275 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 |
4837 ** contains a RowSet object and that RowSet object contains | 5276 ** contains a RowSet object and that RowSet object contains |
4838 ** the value held in P3, jump to register P2. Otherwise, insert the | 5277 ** the value held in P3, jump to register P2. Otherwise, insert the |
4839 ** integer in P3 into the RowSet and continue on to the | 5278 ** integer in P3 into the RowSet and continue on to the |
4840 ** next opcode. | 5279 ** next opcode. |
4841 ** | 5280 ** |
4842 ** The RowSet object is optimized for the case where successive sets | 5281 ** The RowSet object is optimized for the case where successive sets |
4843 ** of integers, where each set contains no duplicates. Each set | 5282 ** of integers, where each set contains no duplicates. Each set |
4844 ** of values is identified by a unique P4 value. The first set | 5283 ** of values is identified by a unique P4 value. The first set |
(...skipping 22 matching lines...) Expand all Loading... |
4867 ** delete it now and initialize P1 with an empty rowset | 5306 ** delete it now and initialize P1 with an empty rowset |
4868 */ | 5307 */ |
4869 if( (pIn1->flags & MEM_RowSet)==0 ){ | 5308 if( (pIn1->flags & MEM_RowSet)==0 ){ |
4870 sqlite3VdbeMemSetRowSet(pIn1); | 5309 sqlite3VdbeMemSetRowSet(pIn1); |
4871 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; | 5310 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; |
4872 } | 5311 } |
4873 | 5312 |
4874 assert( pOp->p4type==P4_INT32 ); | 5313 assert( pOp->p4type==P4_INT32 ); |
4875 assert( iSet==-1 || iSet>=0 ); | 5314 assert( iSet==-1 || iSet>=0 ); |
4876 if( iSet ){ | 5315 if( iSet ){ |
4877 exists = sqlite3RowSetTest(pIn1->u.pRowSet, | 5316 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); |
4878 (u8)(iSet>=0 ? iSet & 0xf : 0xff), | 5317 VdbeBranchTaken(exists!=0,2); |
4879 pIn3->u.i); | |
4880 if( exists ){ | 5318 if( exists ){ |
4881 pc = pOp->p2 - 1; | 5319 pc = pOp->p2 - 1; |
4882 break; | 5320 break; |
4883 } | 5321 } |
4884 } | 5322 } |
4885 if( iSet>=0 ){ | 5323 if( iSet>=0 ){ |
4886 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); | 5324 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); |
4887 } | 5325 } |
4888 break; | 5326 break; |
4889 } | 5327 } |
4890 | 5328 |
4891 | 5329 |
4892 #ifndef SQLITE_OMIT_TRIGGER | 5330 #ifndef SQLITE_OMIT_TRIGGER |
4893 | 5331 |
4894 /* Opcode: Program P1 P2 P3 P4 * | 5332 /* Opcode: Program P1 P2 P3 P4 P5 |
4895 ** | 5333 ** |
4896 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). | 5334 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). |
4897 ** | 5335 ** |
4898 ** P1 contains the address of the memory cell that contains the first memory | 5336 ** P1 contains the address of the memory cell that contains the first memory |
4899 ** cell in an array of values used as arguments to the sub-program. P2 | 5337 ** cell in an array of values used as arguments to the sub-program. P2 |
4900 ** contains the address to jump to if the sub-program throws an IGNORE | 5338 ** contains the address to jump to if the sub-program throws an IGNORE |
4901 ** exception using the RAISE() function. Register P3 contains the address | 5339 ** exception using the RAISE() function. Register P3 contains the address |
4902 ** of a memory cell in this (the parent) VM that is used to allocate the | 5340 ** of a memory cell in this (the parent) VM that is used to allocate the |
4903 ** memory required by the sub-vdbe at runtime. | 5341 ** memory required by the sub-vdbe at runtime. |
4904 ** | 5342 ** |
4905 ** P4 is a pointer to the VM containing the trigger program. | 5343 ** P4 is a pointer to the VM containing the trigger program. |
| 5344 ** |
| 5345 ** If P5 is non-zero, then recursive program invocation is enabled. |
4906 */ | 5346 */ |
4907 case OP_Program: { /* jump */ | 5347 case OP_Program: { /* jump */ |
4908 int nMem; /* Number of memory registers for sub-program */ | 5348 int nMem; /* Number of memory registers for sub-program */ |
4909 int nByte; /* Bytes of runtime space required for sub-program */ | 5349 int nByte; /* Bytes of runtime space required for sub-program */ |
4910 Mem *pRt; /* Register to allocate runtime space */ | 5350 Mem *pRt; /* Register to allocate runtime space */ |
4911 Mem *pMem; /* Used to iterate through memory cells */ | 5351 Mem *pMem; /* Used to iterate through memory cells */ |
4912 Mem *pEnd; /* Last memory cell in new array */ | 5352 Mem *pEnd; /* Last memory cell in new array */ |
4913 VdbeFrame *pFrame; /* New vdbe frame to execute in */ | 5353 VdbeFrame *pFrame; /* New vdbe frame to execute in */ |
4914 SubProgram *pProgram; /* Sub-program to execute */ | 5354 SubProgram *pProgram; /* Sub-program to execute */ |
4915 void *t; /* Token identifying trigger */ | 5355 void *t; /* Token identifying trigger */ |
4916 | 5356 |
4917 pProgram = pOp->p4.pProgram; | 5357 pProgram = pOp->p4.pProgram; |
4918 pRt = &aMem[pOp->p3]; | 5358 pRt = &aMem[pOp->p3]; |
4919 assert( memIsValid(pRt) ); | |
4920 assert( pProgram->nOp>0 ); | 5359 assert( pProgram->nOp>0 ); |
4921 | 5360 |
4922 /* If the p5 flag is clear, then recursive invocation of triggers is | 5361 /* If the p5 flag is clear, then recursive invocation of triggers is |
4923 ** disabled for backwards compatibility (p5 is set if this sub-program | 5362 ** disabled for backwards compatibility (p5 is set if this sub-program |
4924 ** is really a trigger, not a foreign key action, and the flag set | 5363 ** is really a trigger, not a foreign key action, and the flag set |
4925 ** and cleared by the "PRAGMA recursive_triggers" command is clear). | 5364 ** and cleared by the "PRAGMA recursive_triggers" command is clear). |
4926 ** | 5365 ** |
4927 ** It is recursive invocation of triggers, at the SQL level, that is | 5366 ** It is recursive invocation of triggers, at the SQL level, that is |
4928 ** disabled. In some cases a single trigger may generate more than one | 5367 ** disabled. In some cases a single trigger may generate more than one |
4929 ** SubProgram (if the trigger may be executed with more than one different | 5368 ** SubProgram (if the trigger may be executed with more than one different |
(...skipping 18 matching lines...) Expand all Loading... |
4948 ** is already allocated. Otherwise, it must be initialized. */ | 5387 ** is already allocated. Otherwise, it must be initialized. */ |
4949 if( (pRt->flags&MEM_Frame)==0 ){ | 5388 if( (pRt->flags&MEM_Frame)==0 ){ |
4950 /* SubProgram.nMem is set to the number of memory cells used by the | 5389 /* SubProgram.nMem is set to the number of memory cells used by the |
4951 ** program stored in SubProgram.aOp. As well as these, one memory | 5390 ** program stored in SubProgram.aOp. As well as these, one memory |
4952 ** cell is required for each cursor used by the program. Set local | 5391 ** cell is required for each cursor used by the program. Set local |
4953 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. | 5392 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. |
4954 */ | 5393 */ |
4955 nMem = pProgram->nMem + pProgram->nCsr; | 5394 nMem = pProgram->nMem + pProgram->nCsr; |
4956 nByte = ROUND8(sizeof(VdbeFrame)) | 5395 nByte = ROUND8(sizeof(VdbeFrame)) |
4957 + nMem * sizeof(Mem) | 5396 + nMem * sizeof(Mem) |
4958 + pProgram->nCsr * sizeof(VdbeCursor *); | 5397 + pProgram->nCsr * sizeof(VdbeCursor *) |
| 5398 + pProgram->nOnce * sizeof(u8); |
4959 pFrame = sqlite3DbMallocZero(db, nByte); | 5399 pFrame = sqlite3DbMallocZero(db, nByte); |
4960 if( !pFrame ){ | 5400 if( !pFrame ){ |
4961 goto no_mem; | 5401 goto no_mem; |
4962 } | 5402 } |
4963 sqlite3VdbeMemRelease(pRt); | 5403 sqlite3VdbeMemRelease(pRt); |
4964 pRt->flags = MEM_Frame; | 5404 pRt->flags = MEM_Frame; |
4965 pRt->u.pFrame = pFrame; | 5405 pRt->u.pFrame = pFrame; |
4966 | 5406 |
4967 pFrame->v = p; | 5407 pFrame->v = p; |
4968 pFrame->nChildMem = nMem; | 5408 pFrame->nChildMem = nMem; |
4969 pFrame->nChildCsr = pProgram->nCsr; | 5409 pFrame->nChildCsr = pProgram->nCsr; |
4970 pFrame->pc = pc; | 5410 pFrame->pc = pc; |
4971 pFrame->aMem = p->aMem; | 5411 pFrame->aMem = p->aMem; |
4972 pFrame->nMem = p->nMem; | 5412 pFrame->nMem = p->nMem; |
4973 pFrame->apCsr = p->apCsr; | 5413 pFrame->apCsr = p->apCsr; |
4974 pFrame->nCursor = p->nCursor; | 5414 pFrame->nCursor = p->nCursor; |
4975 pFrame->aOp = p->aOp; | 5415 pFrame->aOp = p->aOp; |
4976 pFrame->nOp = p->nOp; | 5416 pFrame->nOp = p->nOp; |
4977 pFrame->token = pProgram->token; | 5417 pFrame->token = pProgram->token; |
| 5418 pFrame->aOnceFlag = p->aOnceFlag; |
| 5419 pFrame->nOnceFlag = p->nOnceFlag; |
4978 | 5420 |
4979 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; | 5421 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; |
4980 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ | 5422 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ |
4981 pMem->flags = MEM_Null; | 5423 pMem->flags = MEM_Undefined; |
4982 pMem->db = db; | 5424 pMem->db = db; |
4983 } | 5425 } |
4984 }else{ | 5426 }else{ |
4985 pFrame = pRt->u.pFrame; | 5427 pFrame = pRt->u.pFrame; |
4986 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); | 5428 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); |
4987 assert( pProgram->nCsr==pFrame->nChildCsr ); | 5429 assert( pProgram->nCsr==pFrame->nChildCsr ); |
4988 assert( pc==pFrame->pc ); | 5430 assert( pc==pFrame->pc ); |
4989 } | 5431 } |
4990 | 5432 |
4991 p->nFrame++; | 5433 p->nFrame++; |
4992 pFrame->pParent = p->pFrame; | 5434 pFrame->pParent = p->pFrame; |
4993 pFrame->lastRowid = db->lastRowid; | 5435 pFrame->lastRowid = lastRowid; |
4994 pFrame->nChange = p->nChange; | 5436 pFrame->nChange = p->nChange; |
4995 p->nChange = 0; | 5437 p->nChange = 0; |
4996 p->pFrame = pFrame; | 5438 p->pFrame = pFrame; |
4997 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; | 5439 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; |
4998 p->nMem = pFrame->nChildMem; | 5440 p->nMem = pFrame->nChildMem; |
4999 p->nCursor = (u16)pFrame->nChildCsr; | 5441 p->nCursor = (u16)pFrame->nChildCsr; |
5000 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; | 5442 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; |
5001 p->aOp = aOp = pProgram->aOp; | 5443 p->aOp = aOp = pProgram->aOp; |
5002 p->nOp = pProgram->nOp; | 5444 p->nOp = pProgram->nOp; |
| 5445 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; |
| 5446 p->nOnceFlag = pProgram->nOnce; |
5003 pc = -1; | 5447 pc = -1; |
| 5448 memset(p->aOnceFlag, 0, p->nOnceFlag); |
5004 | 5449 |
5005 break; | 5450 break; |
5006 } | 5451 } |
5007 | 5452 |
5008 /* Opcode: Param P1 P2 * * * | 5453 /* Opcode: Param P1 P2 * * * |
5009 ** | 5454 ** |
5010 ** This opcode is only ever present in sub-programs called via the | 5455 ** This opcode is only ever present in sub-programs called via the |
5011 ** OP_Program instruction. Copy a value currently stored in a memory | 5456 ** OP_Program instruction. Copy a value currently stored in a memory |
5012 ** cell of the calling (parent) frame to cell P2 in the current frames | 5457 ** cell of the calling (parent) frame to cell P2 in the current frames |
5013 ** address space. This is used by trigger programs to access the new.* | 5458 ** address space. This is used by trigger programs to access the new.* |
5014 ** and old.* values. | 5459 ** and old.* values. |
5015 ** | 5460 ** |
5016 ** The address of the cell in the parent frame is determined by adding | 5461 ** The address of the cell in the parent frame is determined by adding |
5017 ** the value of the P1 argument to the value of the P1 argument to the | 5462 ** the value of the P1 argument to the value of the P1 argument to the |
5018 ** calling OP_Program instruction. | 5463 ** calling OP_Program instruction. |
5019 */ | 5464 */ |
5020 case OP_Param: { /* out2-prerelease */ | 5465 case OP_Param: { /* out2-prerelease */ |
5021 VdbeFrame *pFrame; | 5466 VdbeFrame *pFrame; |
5022 Mem *pIn; | 5467 Mem *pIn; |
5023 pFrame = p->pFrame; | 5468 pFrame = p->pFrame; |
5024 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; | 5469 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; |
5025 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); | 5470 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); |
5026 break; | 5471 break; |
5027 } | 5472 } |
5028 | 5473 |
5029 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ | 5474 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ |
5030 | 5475 |
5031 #ifndef SQLITE_OMIT_FOREIGN_KEY | 5476 #ifndef SQLITE_OMIT_FOREIGN_KEY |
5032 /* Opcode: FkCounter P1 P2 * * * | 5477 /* Opcode: FkCounter P1 P2 * * * |
| 5478 ** Synopsis: fkctr[P1]+=P2 |
5033 ** | 5479 ** |
5034 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). | 5480 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). |
5035 ** If P1 is non-zero, the database constraint counter is incremented | 5481 ** If P1 is non-zero, the database constraint counter is incremented |
5036 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the | 5482 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the |
5037 ** statement counter is incremented (immediate foreign key constraints). | 5483 ** statement counter is incremented (immediate foreign key constraints). |
5038 */ | 5484 */ |
5039 case OP_FkCounter: { | 5485 case OP_FkCounter: { |
5040 if( pOp->p1 ){ | 5486 if( db->flags & SQLITE_DeferFKs ){ |
| 5487 db->nDeferredImmCons += pOp->p2; |
| 5488 }else if( pOp->p1 ){ |
5041 db->nDeferredCons += pOp->p2; | 5489 db->nDeferredCons += pOp->p2; |
5042 }else{ | 5490 }else{ |
5043 p->nFkConstraint += pOp->p2; | 5491 p->nFkConstraint += pOp->p2; |
5044 } | 5492 } |
5045 break; | 5493 break; |
5046 } | 5494 } |
5047 | 5495 |
5048 /* Opcode: FkIfZero P1 P2 * * * | 5496 /* Opcode: FkIfZero P1 P2 * * * |
| 5497 ** Synopsis: if fkctr[P1]==0 goto P2 |
5049 ** | 5498 ** |
5050 ** This opcode tests if a foreign key constraint-counter is currently zero. | 5499 ** This opcode tests if a foreign key constraint-counter is currently zero. |
5051 ** If so, jump to instruction P2. Otherwise, fall through to the next | 5500 ** If so, jump to instruction P2. Otherwise, fall through to the next |
5052 ** instruction. | 5501 ** instruction. |
5053 ** | 5502 ** |
5054 ** If P1 is non-zero, then the jump is taken if the database constraint-counter | 5503 ** If P1 is non-zero, then the jump is taken if the database constraint-counter |
5055 ** is zero (the one that counts deferred constraint violations). If P1 is | 5504 ** is zero (the one that counts deferred constraint violations). If P1 is |
5056 ** zero, the jump is taken if the statement constraint-counter is zero | 5505 ** zero, the jump is taken if the statement constraint-counter is zero |
5057 ** (immediate foreign key constraint violations). | 5506 ** (immediate foreign key constraint violations). |
5058 */ | 5507 */ |
5059 case OP_FkIfZero: { /* jump */ | 5508 case OP_FkIfZero: { /* jump */ |
5060 if( pOp->p1 ){ | 5509 if( pOp->p1 ){ |
5061 if( db->nDeferredCons==0 ) pc = pOp->p2-1; | 5510 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); |
| 5511 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; |
5062 }else{ | 5512 }else{ |
5063 if( p->nFkConstraint==0 ) pc = pOp->p2-1; | 5513 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); |
| 5514 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; |
5064 } | 5515 } |
5065 break; | 5516 break; |
5066 } | 5517 } |
5067 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ | 5518 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ |
5068 | 5519 |
5069 #ifndef SQLITE_OMIT_AUTOINCREMENT | 5520 #ifndef SQLITE_OMIT_AUTOINCREMENT |
5070 /* Opcode: MemMax P1 P2 * * * | 5521 /* Opcode: MemMax P1 P2 * * * |
| 5522 ** Synopsis: r[P1]=max(r[P1],r[P2]) |
5071 ** | 5523 ** |
5072 ** P1 is a register in the root frame of this VM (the root frame is | 5524 ** P1 is a register in the root frame of this VM (the root frame is |
5073 ** different from the current frame if this instruction is being executed | 5525 ** different from the current frame if this instruction is being executed |
5074 ** within a sub-program). Set the value of register P1 to the maximum of | 5526 ** within a sub-program). Set the value of register P1 to the maximum of |
5075 ** its current value and the value in register P2. | 5527 ** its current value and the value in register P2. |
5076 ** | 5528 ** |
5077 ** This instruction throws an error if the memory cell is not initially | 5529 ** This instruction throws an error if the memory cell is not initially |
5078 ** an integer. | 5530 ** an integer. |
5079 */ | 5531 */ |
5080 case OP_MemMax: { /* in2 */ | 5532 case OP_MemMax: { /* in2 */ |
5081 Mem *pIn1; | |
5082 VdbeFrame *pFrame; | 5533 VdbeFrame *pFrame; |
5083 if( p->pFrame ){ | 5534 if( p->pFrame ){ |
5084 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); | 5535 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
5085 pIn1 = &pFrame->aMem[pOp->p1]; | 5536 pIn1 = &pFrame->aMem[pOp->p1]; |
5086 }else{ | 5537 }else{ |
5087 pIn1 = &aMem[pOp->p1]; | 5538 pIn1 = &aMem[pOp->p1]; |
5088 } | 5539 } |
5089 assert( memIsValid(pIn1) ); | 5540 assert( memIsValid(pIn1) ); |
5090 sqlite3VdbeMemIntegerify(pIn1); | 5541 sqlite3VdbeMemIntegerify(pIn1); |
5091 pIn2 = &aMem[pOp->p2]; | 5542 pIn2 = &aMem[pOp->p2]; |
5092 sqlite3VdbeMemIntegerify(pIn2); | 5543 sqlite3VdbeMemIntegerify(pIn2); |
5093 if( pIn1->u.i<pIn2->u.i){ | 5544 if( pIn1->u.i<pIn2->u.i){ |
5094 pIn1->u.i = pIn2->u.i; | 5545 pIn1->u.i = pIn2->u.i; |
5095 } | 5546 } |
5096 break; | 5547 break; |
5097 } | 5548 } |
5098 #endif /* SQLITE_OMIT_AUTOINCREMENT */ | 5549 #endif /* SQLITE_OMIT_AUTOINCREMENT */ |
5099 | 5550 |
5100 /* Opcode: IfPos P1 P2 * * * | 5551 /* Opcode: IfPos P1 P2 * * * |
| 5552 ** Synopsis: if r[P1]>0 goto P2 |
5101 ** | 5553 ** |
5102 ** If the value of register P1 is 1 or greater, jump to P2. | 5554 ** If the value of register P1 is 1 or greater, jump to P2. |
5103 ** | 5555 ** |
5104 ** It is illegal to use this instruction on a register that does | 5556 ** It is illegal to use this instruction on a register that does |
5105 ** not contain an integer. An assertion fault will result if you try. | 5557 ** not contain an integer. An assertion fault will result if you try. |
5106 */ | 5558 */ |
5107 case OP_IfPos: { /* jump, in1 */ | 5559 case OP_IfPos: { /* jump, in1 */ |
5108 pIn1 = &aMem[pOp->p1]; | 5560 pIn1 = &aMem[pOp->p1]; |
5109 assert( pIn1->flags&MEM_Int ); | 5561 assert( pIn1->flags&MEM_Int ); |
| 5562 VdbeBranchTaken( pIn1->u.i>0, 2); |
5110 if( pIn1->u.i>0 ){ | 5563 if( pIn1->u.i>0 ){ |
5111 pc = pOp->p2 - 1; | 5564 pc = pOp->p2 - 1; |
5112 } | 5565 } |
5113 break; | 5566 break; |
5114 } | 5567 } |
5115 | 5568 |
5116 /* Opcode: IfNeg P1 P2 * * * | 5569 /* Opcode: IfNeg P1 P2 P3 * * |
| 5570 ** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2 |
5117 ** | 5571 ** |
5118 ** If the value of register P1 is less than zero, jump to P2. | 5572 ** Register P1 must contain an integer. Add literal P3 to the value in |
5119 ** | 5573 ** register P1 then if the value of register P1 is less than zero, jump to P2. |
5120 ** It is illegal to use this instruction on a register that does | |
5121 ** not contain an integer. An assertion fault will result if you try. | |
5122 */ | 5574 */ |
5123 case OP_IfNeg: { /* jump, in1 */ | 5575 case OP_IfNeg: { /* jump, in1 */ |
5124 pIn1 = &aMem[pOp->p1]; | 5576 pIn1 = &aMem[pOp->p1]; |
5125 assert( pIn1->flags&MEM_Int ); | 5577 assert( pIn1->flags&MEM_Int ); |
| 5578 pIn1->u.i += pOp->p3; |
| 5579 VdbeBranchTaken(pIn1->u.i<0, 2); |
5126 if( pIn1->u.i<0 ){ | 5580 if( pIn1->u.i<0 ){ |
5127 pc = pOp->p2 - 1; | 5581 pc = pOp->p2 - 1; |
5128 } | 5582 } |
5129 break; | 5583 break; |
5130 } | 5584 } |
5131 | 5585 |
5132 /* Opcode: IfZero P1 P2 P3 * * | 5586 /* Opcode: IfZero P1 P2 P3 * * |
| 5587 ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2 |
5133 ** | 5588 ** |
5134 ** The register P1 must contain an integer. Add literal P3 to the | 5589 ** The register P1 must contain an integer. Add literal P3 to the |
5135 ** value in register P1. If the result is exactly 0, jump to P2. | 5590 ** value in register P1. If the result is exactly 0, jump to P2. |
5136 ** | |
5137 ** It is illegal to use this instruction on a register that does | |
5138 ** not contain an integer. An assertion fault will result if you try. | |
5139 */ | 5591 */ |
5140 case OP_IfZero: { /* jump, in1 */ | 5592 case OP_IfZero: { /* jump, in1 */ |
5141 pIn1 = &aMem[pOp->p1]; | 5593 pIn1 = &aMem[pOp->p1]; |
5142 assert( pIn1->flags&MEM_Int ); | 5594 assert( pIn1->flags&MEM_Int ); |
5143 pIn1->u.i += pOp->p3; | 5595 pIn1->u.i += pOp->p3; |
| 5596 VdbeBranchTaken(pIn1->u.i==0, 2); |
5144 if( pIn1->u.i==0 ){ | 5597 if( pIn1->u.i==0 ){ |
5145 pc = pOp->p2 - 1; | 5598 pc = pOp->p2 - 1; |
5146 } | 5599 } |
5147 break; | 5600 break; |
5148 } | 5601 } |
5149 | 5602 |
5150 /* Opcode: AggStep * P2 P3 P4 P5 | 5603 /* Opcode: AggStep * P2 P3 P4 P5 |
| 5604 ** Synopsis: accum=r[P3] step(r[P2@P5]) |
5151 ** | 5605 ** |
5152 ** Execute the step function for an aggregate. The | 5606 ** Execute the step function for an aggregate. The |
5153 ** function has P5 arguments. P4 is a pointer to the FuncDef | 5607 ** function has P5 arguments. P4 is a pointer to the FuncDef |
5154 ** structure that specifies the function. Use register | 5608 ** structure that specifies the function. Use register |
5155 ** P3 as the accumulator. | 5609 ** P3 as the accumulator. |
5156 ** | 5610 ** |
5157 ** The P5 arguments are taken from register P2 and its | 5611 ** The P5 arguments are taken from register P2 and its |
5158 ** successors. | 5612 ** successors. |
5159 */ | 5613 */ |
5160 case OP_AggStep: { | 5614 case OP_AggStep: { |
5161 int n; | 5615 int n; |
5162 int i; | 5616 int i; |
5163 Mem *pMem; | 5617 Mem *pMem; |
5164 Mem *pRec; | 5618 Mem *pRec; |
| 5619 Mem t; |
5165 sqlite3_context ctx; | 5620 sqlite3_context ctx; |
5166 sqlite3_value **apVal; | 5621 sqlite3_value **apVal; |
5167 | 5622 |
5168 n = pOp->p5; | 5623 n = pOp->p5; |
5169 assert( n>=0 ); | 5624 assert( n>=0 ); |
5170 pRec = &aMem[pOp->p2]; | 5625 pRec = &aMem[pOp->p2]; |
5171 apVal = p->apArg; | 5626 apVal = p->apArg; |
5172 assert( apVal || n==0 ); | 5627 assert( apVal || n==0 ); |
5173 for(i=0; i<n; i++, pRec++){ | 5628 for(i=0; i<n; i++, pRec++){ |
5174 assert( memIsValid(pRec) ); | 5629 assert( memIsValid(pRec) ); |
5175 apVal[i] = pRec; | 5630 apVal[i] = pRec; |
5176 memAboutToChange(p, pRec); | 5631 memAboutToChange(p, pRec); |
5177 sqlite3VdbeMemStoreType(pRec); | |
5178 } | 5632 } |
5179 ctx.pFunc = pOp->p4.pFunc; | 5633 ctx.pFunc = pOp->p4.pFunc; |
5180 assert( pOp->p3>0 && pOp->p3<=p->nMem ); | 5634 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
5181 ctx.pMem = pMem = &aMem[pOp->p3]; | 5635 ctx.pMem = pMem = &aMem[pOp->p3]; |
5182 pMem->n++; | 5636 pMem->n++; |
5183 ctx.s.flags = MEM_Null; | 5637 sqlite3VdbeMemInit(&t, db, MEM_Null); |
5184 ctx.s.z = 0; | 5638 ctx.pOut = &t; |
5185 ctx.s.zMalloc = 0; | |
5186 ctx.s.xDel = 0; | |
5187 ctx.s.db = db; | |
5188 ctx.isError = 0; | 5639 ctx.isError = 0; |
5189 ctx.pColl = 0; | 5640 ctx.pVdbe = p; |
5190 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ | 5641 ctx.iOp = pc; |
5191 assert( pOp>p->aOp ); | 5642 ctx.skipFlag = 0; |
5192 assert( pOp[-1].p4type==P4_COLLSEQ ); | |
5193 assert( pOp[-1].opcode==OP_CollSeq ); | |
5194 ctx.pColl = pOp[-1].p4.pColl; | |
5195 } | |
5196 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ | 5643 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ |
5197 if( ctx.isError ){ | 5644 if( ctx.isError ){ |
5198 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); | 5645 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t)); |
5199 rc = ctx.isError; | 5646 rc = ctx.isError; |
5200 } | 5647 } |
5201 | 5648 if( ctx.skipFlag ){ |
5202 sqlite3VdbeMemRelease(&ctx.s); | 5649 assert( pOp[-1].opcode==OP_CollSeq ); |
5203 | 5650 i = pOp[-1].p1; |
| 5651 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); |
| 5652 } |
| 5653 sqlite3VdbeMemRelease(&t); |
5204 break; | 5654 break; |
5205 } | 5655 } |
5206 | 5656 |
5207 /* Opcode: AggFinal P1 P2 * P4 * | 5657 /* Opcode: AggFinal P1 P2 * P4 * |
| 5658 ** Synopsis: accum=r[P1] N=P2 |
5208 ** | 5659 ** |
5209 ** Execute the finalizer function for an aggregate. P1 is | 5660 ** Execute the finalizer function for an aggregate. P1 is |
5210 ** the memory location that is the accumulator for the aggregate. | 5661 ** the memory location that is the accumulator for the aggregate. |
5211 ** | 5662 ** |
5212 ** P2 is the number of arguments that the step function takes and | 5663 ** P2 is the number of arguments that the step function takes and |
5213 ** P4 is a pointer to the FuncDef for this function. The P2 | 5664 ** P4 is a pointer to the FuncDef for this function. The P2 |
5214 ** argument is not used by this opcode. It is only there to disambiguate | 5665 ** argument is not used by this opcode. It is only there to disambiguate |
5215 ** functions that can take varying numbers of arguments. The | 5666 ** functions that can take varying numbers of arguments. The |
5216 ** P4 argument is only needed for the degenerate case where | 5667 ** P4 argument is only needed for the degenerate case where |
5217 ** the step function was not previously called. | 5668 ** the step function was not previously called. |
5218 */ | 5669 */ |
5219 case OP_AggFinal: { | 5670 case OP_AggFinal: { |
5220 Mem *pMem; | 5671 Mem *pMem; |
5221 assert( pOp->p1>0 && pOp->p1<=p->nMem ); | 5672 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); |
5222 pMem = &aMem[pOp->p1]; | 5673 pMem = &aMem[pOp->p1]; |
5223 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); | 5674 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); |
5224 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); | 5675 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); |
5225 if( rc ){ | 5676 if( rc ){ |
5226 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); | 5677 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); |
5227 } | 5678 } |
5228 sqlite3VdbeChangeEncoding(pMem, encoding); | 5679 sqlite3VdbeChangeEncoding(pMem, encoding); |
5229 UPDATE_MAX_BLOBSIZE(pMem); | 5680 UPDATE_MAX_BLOBSIZE(pMem); |
5230 if( sqlite3VdbeMemTooBig(pMem) ){ | 5681 if( sqlite3VdbeMemTooBig(pMem) ){ |
5231 goto too_big; | 5682 goto too_big; |
(...skipping 11 matching lines...) Expand all Loading... |
5243 ** WAL after the checkpoint into mem[P3+1] and the number of pages | 5694 ** WAL after the checkpoint into mem[P3+1] and the number of pages |
5244 ** in the WAL that have been checkpointed after the checkpoint | 5695 ** in the WAL that have been checkpointed after the checkpoint |
5245 ** completes into mem[P3+2]. However on an error, mem[P3+1] and | 5696 ** completes into mem[P3+2]. However on an error, mem[P3+1] and |
5246 ** mem[P3+2] are initialized to -1. | 5697 ** mem[P3+2] are initialized to -1. |
5247 */ | 5698 */ |
5248 case OP_Checkpoint: { | 5699 case OP_Checkpoint: { |
5249 int i; /* Loop counter */ | 5700 int i; /* Loop counter */ |
5250 int aRes[3]; /* Results */ | 5701 int aRes[3]; /* Results */ |
5251 Mem *pMem; /* Write results here */ | 5702 Mem *pMem; /* Write results here */ |
5252 | 5703 |
| 5704 assert( p->readOnly==0 ); |
5253 aRes[0] = 0; | 5705 aRes[0] = 0; |
5254 aRes[1] = aRes[2] = -1; | 5706 aRes[1] = aRes[2] = -1; |
5255 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE | 5707 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE |
5256 || pOp->p2==SQLITE_CHECKPOINT_FULL | 5708 || pOp->p2==SQLITE_CHECKPOINT_FULL |
5257 || pOp->p2==SQLITE_CHECKPOINT_RESTART | 5709 || pOp->p2==SQLITE_CHECKPOINT_RESTART |
5258 ); | 5710 ); |
5259 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); | 5711 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); |
5260 if( rc==SQLITE_BUSY ){ | 5712 if( rc==SQLITE_BUSY ){ |
5261 rc = SQLITE_OK; | 5713 rc = SQLITE_OK; |
5262 aRes[0] = 1; | 5714 aRes[0] = 1; |
5263 } | 5715 } |
5264 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ | 5716 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ |
5265 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); | 5717 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); |
5266 } | 5718 } |
5267 break; | 5719 break; |
5268 }; | 5720 }; |
5269 #endif | 5721 #endif |
5270 | 5722 |
5271 #ifndef SQLITE_OMIT_PRAGMA | 5723 #ifndef SQLITE_OMIT_PRAGMA |
5272 /* Opcode: JournalMode P1 P2 P3 * P5 | 5724 /* Opcode: JournalMode P1 P2 P3 * * |
5273 ** | 5725 ** |
5274 ** Change the journal mode of database P1 to P3. P3 must be one of the | 5726 ** Change the journal mode of database P1 to P3. P3 must be one of the |
5275 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback | 5727 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback |
5276 ** modes (delete, truncate, persist, off and memory), this is a simple | 5728 ** modes (delete, truncate, persist, off and memory), this is a simple |
5277 ** operation. No IO is required. | 5729 ** operation. No IO is required. |
5278 ** | 5730 ** |
5279 ** If changing into or out of WAL mode the procedure is more complicated. | 5731 ** If changing into or out of WAL mode the procedure is more complicated. |
5280 ** | 5732 ** |
5281 ** Write a string containing the final journal-mode to register P2. | 5733 ** Write a string containing the final journal-mode to register P2. |
5282 */ | 5734 */ |
5283 case OP_JournalMode: { /* out2-prerelease */ | 5735 case OP_JournalMode: { /* out2-prerelease */ |
5284 Btree *pBt; /* Btree to change journal mode of */ | 5736 Btree *pBt; /* Btree to change journal mode of */ |
5285 Pager *pPager; /* Pager associated with pBt */ | 5737 Pager *pPager; /* Pager associated with pBt */ |
5286 int eNew; /* New journal mode */ | 5738 int eNew; /* New journal mode */ |
5287 int eOld; /* The old journal mode */ | 5739 int eOld; /* The old journal mode */ |
| 5740 #ifndef SQLITE_OMIT_WAL |
5288 const char *zFilename; /* Name of database file for pPager */ | 5741 const char *zFilename; /* Name of database file for pPager */ |
| 5742 #endif |
5289 | 5743 |
5290 eNew = pOp->p3; | 5744 eNew = pOp->p3; |
5291 assert( eNew==PAGER_JOURNALMODE_DELETE | 5745 assert( eNew==PAGER_JOURNALMODE_DELETE |
5292 || eNew==PAGER_JOURNALMODE_TRUNCATE | 5746 || eNew==PAGER_JOURNALMODE_TRUNCATE |
5293 || eNew==PAGER_JOURNALMODE_PERSIST | 5747 || eNew==PAGER_JOURNALMODE_PERSIST |
5294 || eNew==PAGER_JOURNALMODE_OFF | 5748 || eNew==PAGER_JOURNALMODE_OFF |
5295 || eNew==PAGER_JOURNALMODE_MEMORY | 5749 || eNew==PAGER_JOURNALMODE_MEMORY |
5296 || eNew==PAGER_JOURNALMODE_WAL | 5750 || eNew==PAGER_JOURNALMODE_WAL |
5297 || eNew==PAGER_JOURNALMODE_QUERY | 5751 || eNew==PAGER_JOURNALMODE_QUERY |
5298 ); | 5752 ); |
5299 assert( pOp->p1>=0 && pOp->p1<db->nDb ); | 5753 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
| 5754 assert( p->readOnly==0 ); |
5300 | 5755 |
5301 pBt = db->aDb[pOp->p1].pBt; | 5756 pBt = db->aDb[pOp->p1].pBt; |
5302 pPager = sqlite3BtreePager(pBt); | 5757 pPager = sqlite3BtreePager(pBt); |
5303 eOld = sqlite3PagerGetJournalMode(pPager); | 5758 eOld = sqlite3PagerGetJournalMode(pPager); |
5304 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; | 5759 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; |
5305 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; | 5760 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; |
5306 | 5761 |
5307 #ifndef SQLITE_OMIT_WAL | 5762 #ifndef SQLITE_OMIT_WAL |
5308 zFilename = sqlite3PagerFilename(pPager); | 5763 zFilename = sqlite3PagerFilename(pPager, 1); |
5309 | 5764 |
5310 /* Do not allow a transition to journal_mode=WAL for a database | 5765 /* Do not allow a transition to journal_mode=WAL for a database |
5311 ** in temporary storage or if the VFS does not support shared memory | 5766 ** in temporary storage or if the VFS does not support shared memory |
5312 */ | 5767 */ |
5313 if( eNew==PAGER_JOURNALMODE_WAL | 5768 if( eNew==PAGER_JOURNALMODE_WAL |
5314 && (zFilename[0]==0 /* Temp file */ | 5769 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ |
5315 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ | 5770 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ |
5316 ){ | 5771 ){ |
5317 eNew = eOld; | 5772 eNew = eOld; |
5318 } | 5773 } |
5319 | 5774 |
5320 if( (eNew!=eOld) | 5775 if( (eNew!=eOld) |
5321 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) | 5776 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) |
5322 ){ | 5777 ){ |
5323 if( !db->autoCommit || db->activeVdbeCnt>1 ){ | 5778 if( !db->autoCommit || db->nVdbeRead>1 ){ |
5324 rc = SQLITE_ERROR; | 5779 rc = SQLITE_ERROR; |
5325 sqlite3SetString(&p->zErrMsg, db, | 5780 sqlite3SetString(&p->zErrMsg, db, |
5326 "cannot change %s wal mode from within a transaction", | 5781 "cannot change %s wal mode from within a transaction", |
5327 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") | 5782 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") |
5328 ); | 5783 ); |
5329 break; | 5784 break; |
5330 }else{ | 5785 }else{ |
5331 | 5786 |
5332 if( eOld==PAGER_JOURNALMODE_WAL ){ | 5787 if( eOld==PAGER_JOURNALMODE_WAL ){ |
5333 /* If leaving WAL mode, close the log file. If successful, the call | 5788 /* If leaving WAL mode, close the log file. If successful, the call |
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
5372 #endif /* SQLITE_OMIT_PRAGMA */ | 5827 #endif /* SQLITE_OMIT_PRAGMA */ |
5373 | 5828 |
5374 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) | 5829 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) |
5375 /* Opcode: Vacuum * * * * * | 5830 /* Opcode: Vacuum * * * * * |
5376 ** | 5831 ** |
5377 ** Vacuum the entire database. This opcode will cause other virtual | 5832 ** Vacuum the entire database. This opcode will cause other virtual |
5378 ** machines to be created and run. It may not be called from within | 5833 ** machines to be created and run. It may not be called from within |
5379 ** a transaction. | 5834 ** a transaction. |
5380 */ | 5835 */ |
5381 case OP_Vacuum: { | 5836 case OP_Vacuum: { |
| 5837 assert( p->readOnly==0 ); |
5382 rc = sqlite3RunVacuum(&p->zErrMsg, db); | 5838 rc = sqlite3RunVacuum(&p->zErrMsg, db); |
5383 break; | 5839 break; |
5384 } | 5840 } |
5385 #endif | 5841 #endif |
5386 | 5842 |
5387 #if !defined(SQLITE_OMIT_AUTOVACUUM) | 5843 #if !defined(SQLITE_OMIT_AUTOVACUUM) |
5388 /* Opcode: IncrVacuum P1 P2 * * * | 5844 /* Opcode: IncrVacuum P1 P2 * * * |
5389 ** | 5845 ** |
5390 ** Perform a single step of the incremental vacuum procedure on | 5846 ** Perform a single step of the incremental vacuum procedure on |
5391 ** the P1 database. If the vacuum has finished, jump to instruction | 5847 ** the P1 database. If the vacuum has finished, jump to instruction |
5392 ** P2. Otherwise, fall through to the next instruction. | 5848 ** P2. Otherwise, fall through to the next instruction. |
5393 */ | 5849 */ |
5394 case OP_IncrVacuum: { /* jump */ | 5850 case OP_IncrVacuum: { /* jump */ |
5395 Btree *pBt; | 5851 Btree *pBt; |
5396 | 5852 |
5397 assert( pOp->p1>=0 && pOp->p1<db->nDb ); | 5853 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
5398 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); | 5854 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
| 5855 assert( p->readOnly==0 ); |
5399 pBt = db->aDb[pOp->p1].pBt; | 5856 pBt = db->aDb[pOp->p1].pBt; |
5400 rc = sqlite3BtreeIncrVacuum(pBt); | 5857 rc = sqlite3BtreeIncrVacuum(pBt); |
| 5858 VdbeBranchTaken(rc==SQLITE_DONE,2); |
5401 if( rc==SQLITE_DONE ){ | 5859 if( rc==SQLITE_DONE ){ |
5402 pc = pOp->p2 - 1; | 5860 pc = pOp->p2 - 1; |
5403 rc = SQLITE_OK; | 5861 rc = SQLITE_OK; |
5404 } | 5862 } |
5405 break; | 5863 break; |
5406 } | 5864 } |
5407 #endif | 5865 #endif |
5408 | 5866 |
5409 /* Opcode: Expire P1 * * * * | 5867 /* Opcode: Expire P1 * * * * |
5410 ** | 5868 ** |
5411 ** Cause precompiled statements to become expired. An expired statement | 5869 ** Cause precompiled statements to expire. When an expired statement |
5412 ** fails with an error code of SQLITE_SCHEMA if it is ever executed | 5870 ** is executed using sqlite3_step() it will either automatically |
5413 ** (via sqlite3_step()). | 5871 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) |
| 5872 ** or it will fail with SQLITE_SCHEMA. |
5414 ** | 5873 ** |
5415 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, | 5874 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, |
5416 ** then only the currently executing statement is affected. | 5875 ** then only the currently executing statement is expired. |
5417 */ | 5876 */ |
5418 case OP_Expire: { | 5877 case OP_Expire: { |
5419 if( !pOp->p1 ){ | 5878 if( !pOp->p1 ){ |
5420 sqlite3ExpirePreparedStatements(db); | 5879 sqlite3ExpirePreparedStatements(db); |
5421 }else{ | 5880 }else{ |
5422 p->expired = 1; | 5881 p->expired = 1; |
5423 } | 5882 } |
5424 break; | 5883 break; |
5425 } | 5884 } |
5426 | 5885 |
5427 #ifndef SQLITE_OMIT_SHARED_CACHE | 5886 #ifndef SQLITE_OMIT_SHARED_CACHE |
5428 /* Opcode: TableLock P1 P2 P3 P4 * | 5887 /* Opcode: TableLock P1 P2 P3 P4 * |
| 5888 ** Synopsis: iDb=P1 root=P2 write=P3 |
5429 ** | 5889 ** |
5430 ** Obtain a lock on a particular table. This instruction is only used when | 5890 ** Obtain a lock on a particular table. This instruction is only used when |
5431 ** the shared-cache feature is enabled. | 5891 ** the shared-cache feature is enabled. |
5432 ** | 5892 ** |
5433 ** P1 is the index of the database in sqlite3.aDb[] of the database | 5893 ** P1 is the index of the database in sqlite3.aDb[] of the database |
5434 ** on which the lock is acquired. A readlock is obtained if P3==0 or | 5894 ** on which the lock is acquired. A readlock is obtained if P3==0 or |
5435 ** a write lock if P3==1. | 5895 ** a write lock if P3==1. |
5436 ** | 5896 ** |
5437 ** P2 contains the root-page of the table to lock. | 5897 ** P2 contains the root-page of the table to lock. |
5438 ** | 5898 ** |
5439 ** P4 contains a pointer to the name of the table being locked. This is only | 5899 ** P4 contains a pointer to the name of the table being locked. This is only |
5440 ** used to generate an error message if the lock cannot be obtained. | 5900 ** used to generate an error message if the lock cannot be obtained. |
5441 */ | 5901 */ |
5442 case OP_TableLock: { | 5902 case OP_TableLock: { |
5443 u8 isWriteLock = (u8)pOp->p3; | 5903 u8 isWriteLock = (u8)pOp->p3; |
5444 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ | 5904 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ |
5445 int p1 = pOp->p1; | 5905 int p1 = pOp->p1; |
5446 assert( p1>=0 && p1<db->nDb ); | 5906 assert( p1>=0 && p1<db->nDb ); |
5447 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 ); | 5907 assert( DbMaskTest(p->btreeMask, p1) ); |
5448 assert( isWriteLock==0 || isWriteLock==1 ); | 5908 assert( isWriteLock==0 || isWriteLock==1 ); |
5449 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); | 5909 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); |
5450 if( (rc&0xFF)==SQLITE_LOCKED ){ | 5910 if( (rc&0xFF)==SQLITE_LOCKED ){ |
5451 const char *z = pOp->p4.z; | 5911 const char *z = pOp->p4.z; |
5452 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); | 5912 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); |
5453 } | 5913 } |
5454 } | 5914 } |
5455 break; | 5915 break; |
5456 } | 5916 } |
5457 #endif /* SQLITE_OMIT_SHARED_CACHE */ | 5917 #endif /* SQLITE_OMIT_SHARED_CACHE */ |
5458 | 5918 |
5459 #ifndef SQLITE_OMIT_VIRTUALTABLE | 5919 #ifndef SQLITE_OMIT_VIRTUALTABLE |
5460 /* Opcode: VBegin * * * P4 * | 5920 /* Opcode: VBegin * * * P4 * |
5461 ** | 5921 ** |
5462 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the | 5922 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the |
5463 ** xBegin method for that table. | 5923 ** xBegin method for that table. |
5464 ** | 5924 ** |
5465 ** Also, whether or not P4 is set, check that this is not being called from | 5925 ** Also, whether or not P4 is set, check that this is not being called from |
5466 ** within a callback to a virtual table xSync() method. If it is, the error | 5926 ** within a callback to a virtual table xSync() method. If it is, the error |
5467 ** code will be set to SQLITE_LOCKED. | 5927 ** code will be set to SQLITE_LOCKED. |
5468 */ | 5928 */ |
5469 case OP_VBegin: { | 5929 case OP_VBegin: { |
5470 VTable *pVTab; | 5930 VTable *pVTab; |
5471 pVTab = pOp->p4.pVtab; | 5931 pVTab = pOp->p4.pVtab; |
5472 rc = sqlite3VtabBegin(db, pVTab); | 5932 rc = sqlite3VtabBegin(db, pVTab); |
5473 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab); | 5933 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); |
5474 break; | 5934 break; |
5475 } | 5935 } |
5476 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 5936 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
5477 | 5937 |
5478 #ifndef SQLITE_OMIT_VIRTUALTABLE | 5938 #ifndef SQLITE_OMIT_VIRTUALTABLE |
5479 /* Opcode: VCreate P1 * * P4 * | 5939 /* Opcode: VCreate P1 * * P4 * |
5480 ** | 5940 ** |
5481 ** P4 is the name of a virtual table in database P1. Call the xCreate method | 5941 ** P4 is the name of a virtual table in database P1. Call the xCreate method |
5482 ** for that table. | 5942 ** for that table. |
5483 */ | 5943 */ |
(...skipping 23 matching lines...) Expand all Loading... |
5507 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. | 5967 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
5508 ** P1 is a cursor number. This opcode opens a cursor to the virtual | 5968 ** P1 is a cursor number. This opcode opens a cursor to the virtual |
5509 ** table and stores that cursor in P1. | 5969 ** table and stores that cursor in P1. |
5510 */ | 5970 */ |
5511 case OP_VOpen: { | 5971 case OP_VOpen: { |
5512 VdbeCursor *pCur; | 5972 VdbeCursor *pCur; |
5513 sqlite3_vtab_cursor *pVtabCursor; | 5973 sqlite3_vtab_cursor *pVtabCursor; |
5514 sqlite3_vtab *pVtab; | 5974 sqlite3_vtab *pVtab; |
5515 sqlite3_module *pModule; | 5975 sqlite3_module *pModule; |
5516 | 5976 |
| 5977 assert( p->bIsReader ); |
5517 pCur = 0; | 5978 pCur = 0; |
5518 pVtabCursor = 0; | 5979 pVtabCursor = 0; |
5519 pVtab = pOp->p4.pVtab->pVtab; | 5980 pVtab = pOp->p4.pVtab->pVtab; |
5520 pModule = (sqlite3_module *)pVtab->pModule; | 5981 pModule = (sqlite3_module *)pVtab->pModule; |
5521 assert(pVtab && pModule); | 5982 assert(pVtab && pModule); |
5522 rc = pModule->xOpen(pVtab, &pVtabCursor); | 5983 rc = pModule->xOpen(pVtab, &pVtabCursor); |
5523 importVtabErrMsg(p, pVtab); | 5984 sqlite3VtabImportErrmsg(p, pVtab); |
5524 if( SQLITE_OK==rc ){ | 5985 if( SQLITE_OK==rc ){ |
5525 /* Initialize sqlite3_vtab_cursor base class */ | 5986 /* Initialize sqlite3_vtab_cursor base class */ |
5526 pVtabCursor->pVtab = pVtab; | 5987 pVtabCursor->pVtab = pVtab; |
5527 | 5988 |
5528 /* Initialise vdbe cursor object */ | 5989 /* Initialize vdbe cursor object */ |
5529 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); | 5990 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); |
5530 if( pCur ){ | 5991 if( pCur ){ |
5531 pCur->pVtabCursor = pVtabCursor; | 5992 pCur->pVtabCursor = pVtabCursor; |
5532 pCur->pModule = pVtabCursor->pVtab->pModule; | |
5533 }else{ | 5993 }else{ |
5534 db->mallocFailed = 1; | 5994 db->mallocFailed = 1; |
5535 pModule->xClose(pVtabCursor); | 5995 pModule->xClose(pVtabCursor); |
5536 } | 5996 } |
5537 } | 5997 } |
5538 break; | 5998 break; |
5539 } | 5999 } |
5540 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 6000 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
5541 | 6001 |
5542 #ifndef SQLITE_OMIT_VIRTUALTABLE | 6002 #ifndef SQLITE_OMIT_VIRTUALTABLE |
5543 /* Opcode: VFilter P1 P2 P3 P4 * | 6003 /* Opcode: VFilter P1 P2 P3 P4 * |
| 6004 ** Synopsis: iplan=r[P3] zplan='P4' |
5544 ** | 6005 ** |
5545 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if | 6006 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if |
5546 ** the filtered result set is empty. | 6007 ** the filtered result set is empty. |
5547 ** | 6008 ** |
5548 ** P4 is either NULL or a string that was generated by the xBestIndex | 6009 ** P4 is either NULL or a string that was generated by the xBestIndex |
5549 ** method of the module. The interpretation of the P4 string is left | 6010 ** method of the module. The interpretation of the P4 string is left |
5550 ** to the module implementation. | 6011 ** to the module implementation. |
5551 ** | 6012 ** |
5552 ** This opcode invokes the xFilter method on the virtual table specified | 6013 ** This opcode invokes the xFilter method on the virtual table specified |
5553 ** by P1. The integer query plan parameter to xFilter is stored in register | 6014 ** by P1. The integer query plan parameter to xFilter is stored in register |
(...skipping 31 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
5585 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); | 6046 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); |
5586 nArg = (int)pArgc->u.i; | 6047 nArg = (int)pArgc->u.i; |
5587 iQuery = (int)pQuery->u.i; | 6048 iQuery = (int)pQuery->u.i; |
5588 | 6049 |
5589 /* Invoke the xFilter method */ | 6050 /* Invoke the xFilter method */ |
5590 { | 6051 { |
5591 res = 0; | 6052 res = 0; |
5592 apArg = p->apArg; | 6053 apArg = p->apArg; |
5593 for(i = 0; i<nArg; i++){ | 6054 for(i = 0; i<nArg; i++){ |
5594 apArg[i] = &pArgc[i+1]; | 6055 apArg[i] = &pArgc[i+1]; |
5595 sqlite3VdbeMemStoreType(apArg[i]); | |
5596 } | 6056 } |
5597 | 6057 |
5598 p->inVtabMethod = 1; | 6058 p->inVtabMethod = 1; |
5599 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); | 6059 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); |
5600 p->inVtabMethod = 0; | 6060 p->inVtabMethod = 0; |
5601 importVtabErrMsg(p, pVtab); | 6061 sqlite3VtabImportErrmsg(p, pVtab); |
5602 if( rc==SQLITE_OK ){ | 6062 if( rc==SQLITE_OK ){ |
5603 res = pModule->xEof(pVtabCursor); | 6063 res = pModule->xEof(pVtabCursor); |
5604 } | 6064 } |
5605 | 6065 VdbeBranchTaken(res!=0,2); |
5606 if( res ){ | 6066 if( res ){ |
5607 pc = pOp->p2 - 1; | 6067 pc = pOp->p2 - 1; |
5608 } | 6068 } |
5609 } | 6069 } |
5610 pCur->nullRow = 0; | 6070 pCur->nullRow = 0; |
5611 | 6071 |
5612 break; | 6072 break; |
5613 } | 6073 } |
5614 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 6074 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
5615 | 6075 |
5616 #ifndef SQLITE_OMIT_VIRTUALTABLE | 6076 #ifndef SQLITE_OMIT_VIRTUALTABLE |
5617 /* Opcode: VColumn P1 P2 P3 * * | 6077 /* Opcode: VColumn P1 P2 P3 * * |
| 6078 ** Synopsis: r[P3]=vcolumn(P2) |
5618 ** | 6079 ** |
5619 ** Store the value of the P2-th column of | 6080 ** Store the value of the P2-th column of |
5620 ** the row of the virtual-table that the | 6081 ** the row of the virtual-table that the |
5621 ** P1 cursor is pointing to into register P3. | 6082 ** P1 cursor is pointing to into register P3. |
5622 */ | 6083 */ |
5623 case OP_VColumn: { | 6084 case OP_VColumn: { |
5624 sqlite3_vtab *pVtab; | 6085 sqlite3_vtab *pVtab; |
5625 const sqlite3_module *pModule; | 6086 const sqlite3_module *pModule; |
5626 Mem *pDest; | 6087 Mem *pDest; |
5627 sqlite3_context sContext; | 6088 sqlite3_context sContext; |
5628 | 6089 |
5629 VdbeCursor *pCur = p->apCsr[pOp->p1]; | 6090 VdbeCursor *pCur = p->apCsr[pOp->p1]; |
5630 assert( pCur->pVtabCursor ); | 6091 assert( pCur->pVtabCursor ); |
5631 assert( pOp->p3>0 && pOp->p3<=p->nMem ); | 6092 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
5632 pDest = &aMem[pOp->p3]; | 6093 pDest = &aMem[pOp->p3]; |
5633 memAboutToChange(p, pDest); | 6094 memAboutToChange(p, pDest); |
5634 if( pCur->nullRow ){ | 6095 if( pCur->nullRow ){ |
5635 sqlite3VdbeMemSetNull(pDest); | 6096 sqlite3VdbeMemSetNull(pDest); |
5636 break; | 6097 break; |
5637 } | 6098 } |
5638 pVtab = pCur->pVtabCursor->pVtab; | 6099 pVtab = pCur->pVtabCursor->pVtab; |
5639 pModule = pVtab->pModule; | 6100 pModule = pVtab->pModule; |
5640 assert( pModule->xColumn ); | 6101 assert( pModule->xColumn ); |
5641 memset(&sContext, 0, sizeof(sContext)); | 6102 memset(&sContext, 0, sizeof(sContext)); |
5642 | 6103 sContext.pOut = pDest; |
5643 /* The output cell may already have a buffer allocated. Move | 6104 MemSetTypeFlag(pDest, MEM_Null); |
5644 ** the current contents to sContext.s so in case the user-function | |
5645 ** can use the already allocated buffer instead of allocating a | |
5646 ** new one. | |
5647 */ | |
5648 sqlite3VdbeMemMove(&sContext.s, pDest); | |
5649 MemSetTypeFlag(&sContext.s, MEM_Null); | |
5650 | |
5651 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); | 6105 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); |
5652 importVtabErrMsg(p, pVtab); | 6106 sqlite3VtabImportErrmsg(p, pVtab); |
5653 if( sContext.isError ){ | 6107 if( sContext.isError ){ |
5654 rc = sContext.isError; | 6108 rc = sContext.isError; |
5655 } | 6109 } |
5656 | 6110 sqlite3VdbeChangeEncoding(pDest, encoding); |
5657 /* Copy the result of the function to the P3 register. We | |
5658 ** do this regardless of whether or not an error occurred to ensure any | |
5659 ** dynamic allocation in sContext.s (a Mem struct) is released. | |
5660 */ | |
5661 sqlite3VdbeChangeEncoding(&sContext.s, encoding); | |
5662 sqlite3VdbeMemMove(pDest, &sContext.s); | |
5663 REGISTER_TRACE(pOp->p3, pDest); | 6111 REGISTER_TRACE(pOp->p3, pDest); |
5664 UPDATE_MAX_BLOBSIZE(pDest); | 6112 UPDATE_MAX_BLOBSIZE(pDest); |
5665 | 6113 |
5666 if( sqlite3VdbeMemTooBig(pDest) ){ | 6114 if( sqlite3VdbeMemTooBig(pDest) ){ |
5667 goto too_big; | 6115 goto too_big; |
5668 } | 6116 } |
5669 break; | 6117 break; |
5670 } | 6118 } |
5671 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 6119 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
5672 | 6120 |
(...skipping 22 matching lines...) Expand all Loading... |
5695 | 6143 |
5696 /* Invoke the xNext() method of the module. There is no way for the | 6144 /* Invoke the xNext() method of the module. There is no way for the |
5697 ** underlying implementation to return an error if one occurs during | 6145 ** underlying implementation to return an error if one occurs during |
5698 ** xNext(). Instead, if an error occurs, true is returned (indicating that | 6146 ** xNext(). Instead, if an error occurs, true is returned (indicating that |
5699 ** data is available) and the error code returned when xColumn or | 6147 ** data is available) and the error code returned when xColumn or |
5700 ** some other method is next invoked on the save virtual table cursor. | 6148 ** some other method is next invoked on the save virtual table cursor. |
5701 */ | 6149 */ |
5702 p->inVtabMethod = 1; | 6150 p->inVtabMethod = 1; |
5703 rc = pModule->xNext(pCur->pVtabCursor); | 6151 rc = pModule->xNext(pCur->pVtabCursor); |
5704 p->inVtabMethod = 0; | 6152 p->inVtabMethod = 0; |
5705 importVtabErrMsg(p, pVtab); | 6153 sqlite3VtabImportErrmsg(p, pVtab); |
5706 if( rc==SQLITE_OK ){ | 6154 if( rc==SQLITE_OK ){ |
5707 res = pModule->xEof(pCur->pVtabCursor); | 6155 res = pModule->xEof(pCur->pVtabCursor); |
5708 } | 6156 } |
5709 | 6157 VdbeBranchTaken(!res,2); |
5710 if( !res ){ | 6158 if( !res ){ |
5711 /* If there is data, jump to P2 */ | 6159 /* If there is data, jump to P2 */ |
5712 pc = pOp->p2 - 1; | 6160 pc = pOp->p2 - 1; |
5713 } | 6161 } |
5714 break; | 6162 goto check_for_interrupt; |
5715 } | 6163 } |
5716 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 6164 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
5717 | 6165 |
5718 #ifndef SQLITE_OMIT_VIRTUALTABLE | 6166 #ifndef SQLITE_OMIT_VIRTUALTABLE |
5719 /* Opcode: VRename P1 * * P4 * | 6167 /* Opcode: VRename P1 * * P4 * |
5720 ** | 6168 ** |
5721 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. | 6169 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
5722 ** This opcode invokes the corresponding xRename method. The value | 6170 ** This opcode invokes the corresponding xRename method. The value |
5723 ** in register P1 is passed as the zName argument to the xRename method. | 6171 ** in register P1 is passed as the zName argument to the xRename method. |
5724 */ | 6172 */ |
5725 case OP_VRename: { | 6173 case OP_VRename: { |
5726 sqlite3_vtab *pVtab; | 6174 sqlite3_vtab *pVtab; |
5727 Mem *pName; | 6175 Mem *pName; |
5728 | 6176 |
5729 pVtab = pOp->p4.pVtab->pVtab; | 6177 pVtab = pOp->p4.pVtab->pVtab; |
5730 pName = &aMem[pOp->p1]; | 6178 pName = &aMem[pOp->p1]; |
5731 assert( pVtab->pModule->xRename ); | 6179 assert( pVtab->pModule->xRename ); |
5732 assert( memIsValid(pName) ); | 6180 assert( memIsValid(pName) ); |
| 6181 assert( p->readOnly==0 ); |
5733 REGISTER_TRACE(pOp->p1, pName); | 6182 REGISTER_TRACE(pOp->p1, pName); |
5734 assert( pName->flags & MEM_Str ); | 6183 assert( pName->flags & MEM_Str ); |
5735 rc = pVtab->pModule->xRename(pVtab, pName->z); | 6184 testcase( pName->enc==SQLITE_UTF8 ); |
5736 importVtabErrMsg(p, pVtab); | 6185 testcase( pName->enc==SQLITE_UTF16BE ); |
5737 p->expired = 0; | 6186 testcase( pName->enc==SQLITE_UTF16LE ); |
5738 | 6187 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); |
| 6188 if( rc==SQLITE_OK ){ |
| 6189 rc = pVtab->pModule->xRename(pVtab, pName->z); |
| 6190 sqlite3VtabImportErrmsg(p, pVtab); |
| 6191 p->expired = 0; |
| 6192 } |
5739 break; | 6193 break; |
5740 } | 6194 } |
5741 #endif | 6195 #endif |
5742 | 6196 |
5743 #ifndef SQLITE_OMIT_VIRTUALTABLE | 6197 #ifndef SQLITE_OMIT_VIRTUALTABLE |
5744 /* Opcode: VUpdate P1 P2 P3 P4 * | 6198 /* Opcode: VUpdate P1 P2 P3 P4 P5 |
| 6199 ** Synopsis: data=r[P3@P2] |
5745 ** | 6200 ** |
5746 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. | 6201 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
5747 ** This opcode invokes the corresponding xUpdate method. P2 values | 6202 ** This opcode invokes the corresponding xUpdate method. P2 values |
5748 ** are contiguous memory cells starting at P3 to pass to the xUpdate | 6203 ** are contiguous memory cells starting at P3 to pass to the xUpdate |
5749 ** invocation. The value in register (P3+P2-1) corresponds to the | 6204 ** invocation. The value in register (P3+P2-1) corresponds to the |
5750 ** p2th element of the argv array passed to xUpdate. | 6205 ** p2th element of the argv array passed to xUpdate. |
5751 ** | 6206 ** |
5752 ** The xUpdate method will do a DELETE or an INSERT or both. | 6207 ** The xUpdate method will do a DELETE or an INSERT or both. |
5753 ** The argv[0] element (which corresponds to memory cell P3) | 6208 ** The argv[0] element (which corresponds to memory cell P3) |
5754 ** is the rowid of a row to delete. If argv[0] is NULL then no | 6209 ** is the rowid of a row to delete. If argv[0] is NULL then no |
5755 ** deletion occurs. The argv[1] element is the rowid of the new | 6210 ** deletion occurs. The argv[1] element is the rowid of the new |
5756 ** row. This can be NULL to have the virtual table select the new | 6211 ** row. This can be NULL to have the virtual table select the new |
5757 ** rowid for itself. The subsequent elements in the array are | 6212 ** rowid for itself. The subsequent elements in the array are |
5758 ** the values of columns in the new row. | 6213 ** the values of columns in the new row. |
5759 ** | 6214 ** |
5760 ** If P2==1 then no insert is performed. argv[0] is the rowid of | 6215 ** If P2==1 then no insert is performed. argv[0] is the rowid of |
5761 ** a row to delete. | 6216 ** a row to delete. |
5762 ** | 6217 ** |
5763 ** P1 is a boolean flag. If it is set to true and the xUpdate call | 6218 ** P1 is a boolean flag. If it is set to true and the xUpdate call |
5764 ** is successful, then the value returned by sqlite3_last_insert_rowid() | 6219 ** is successful, then the value returned by sqlite3_last_insert_rowid() |
5765 ** is set to the value of the rowid for the row just inserted. | 6220 ** is set to the value of the rowid for the row just inserted. |
| 6221 ** |
| 6222 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to |
| 6223 ** apply in the case of a constraint failure on an insert or update. |
5766 */ | 6224 */ |
5767 case OP_VUpdate: { | 6225 case OP_VUpdate: { |
5768 sqlite3_vtab *pVtab; | 6226 sqlite3_vtab *pVtab; |
5769 sqlite3_module *pModule; | 6227 sqlite3_module *pModule; |
5770 int nArg; | 6228 int nArg; |
5771 int i; | 6229 int i; |
5772 sqlite_int64 rowid; | 6230 sqlite_int64 rowid; |
5773 Mem **apArg; | 6231 Mem **apArg; |
5774 Mem *pX; | 6232 Mem *pX; |
5775 | 6233 |
| 6234 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback |
| 6235 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace |
| 6236 ); |
| 6237 assert( p->readOnly==0 ); |
5776 pVtab = pOp->p4.pVtab->pVtab; | 6238 pVtab = pOp->p4.pVtab->pVtab; |
5777 pModule = (sqlite3_module *)pVtab->pModule; | 6239 pModule = (sqlite3_module *)pVtab->pModule; |
5778 nArg = pOp->p2; | 6240 nArg = pOp->p2; |
5779 assert( pOp->p4type==P4_VTAB ); | 6241 assert( pOp->p4type==P4_VTAB ); |
5780 if( ALWAYS(pModule->xUpdate) ){ | 6242 if( ALWAYS(pModule->xUpdate) ){ |
| 6243 u8 vtabOnConflict = db->vtabOnConflict; |
5781 apArg = p->apArg; | 6244 apArg = p->apArg; |
5782 pX = &aMem[pOp->p3]; | 6245 pX = &aMem[pOp->p3]; |
5783 for(i=0; i<nArg; i++){ | 6246 for(i=0; i<nArg; i++){ |
5784 assert( memIsValid(pX) ); | 6247 assert( memIsValid(pX) ); |
5785 memAboutToChange(p, pX); | 6248 memAboutToChange(p, pX); |
5786 sqlite3VdbeMemStoreType(pX); | |
5787 apArg[i] = pX; | 6249 apArg[i] = pX; |
5788 pX++; | 6250 pX++; |
5789 } | 6251 } |
| 6252 db->vtabOnConflict = pOp->p5; |
5790 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); | 6253 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); |
5791 importVtabErrMsg(p, pVtab); | 6254 db->vtabOnConflict = vtabOnConflict; |
| 6255 sqlite3VtabImportErrmsg(p, pVtab); |
5792 if( rc==SQLITE_OK && pOp->p1 ){ | 6256 if( rc==SQLITE_OK && pOp->p1 ){ |
5793 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); | 6257 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); |
5794 db->lastRowid = rowid; | 6258 db->lastRowid = lastRowid = rowid; |
5795 } | 6259 } |
5796 p->nChange++; | 6260 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ |
| 6261 if( pOp->p5==OE_Ignore ){ |
| 6262 rc = SQLITE_OK; |
| 6263 }else{ |
| 6264 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); |
| 6265 } |
| 6266 }else{ |
| 6267 p->nChange++; |
| 6268 } |
5797 } | 6269 } |
5798 break; | 6270 break; |
5799 } | 6271 } |
5800 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 6272 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
5801 | 6273 |
5802 #ifndef SQLITE_OMIT_PAGER_PRAGMAS | 6274 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
5803 /* Opcode: Pagecount P1 P2 * * * | 6275 /* Opcode: Pagecount P1 P2 * * * |
5804 ** | 6276 ** |
5805 ** Write the current number of pages in database P1 to memory cell P2. | 6277 ** Write the current number of pages in database P1 to memory cell P2. |
5806 */ | 6278 */ |
(...skipping 22 matching lines...) Expand all Loading... |
5829 if( pOp->p3 ){ | 6301 if( pOp->p3 ){ |
5830 newMax = sqlite3BtreeLastPage(pBt); | 6302 newMax = sqlite3BtreeLastPage(pBt); |
5831 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; | 6303 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; |
5832 } | 6304 } |
5833 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); | 6305 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); |
5834 break; | 6306 break; |
5835 } | 6307 } |
5836 #endif | 6308 #endif |
5837 | 6309 |
5838 | 6310 |
5839 #ifndef SQLITE_OMIT_TRACE | 6311 /* Opcode: Init * P2 * P4 * |
5840 /* Opcode: Trace * * * P4 * | 6312 ** Synopsis: Start at P2 |
| 6313 ** |
| 6314 ** Programs contain a single instance of this opcode as the very first |
| 6315 ** opcode. |
5841 ** | 6316 ** |
5842 ** If tracing is enabled (by the sqlite3_trace()) interface, then | 6317 ** If tracing is enabled (by the sqlite3_trace()) interface, then |
5843 ** the UTF-8 string contained in P4 is emitted on the trace callback. | 6318 ** the UTF-8 string contained in P4 is emitted on the trace callback. |
| 6319 ** Or if P4 is blank, use the string returned by sqlite3_sql(). |
| 6320 ** |
| 6321 ** If P2 is not zero, jump to instruction P2. |
5844 */ | 6322 */ |
5845 case OP_Trace: { | 6323 case OP_Init: { /* jump */ |
5846 char *zTrace; | 6324 char *zTrace; |
| 6325 char *z; |
5847 | 6326 |
| 6327 if( pOp->p2 ){ |
| 6328 pc = pOp->p2 - 1; |
| 6329 } |
| 6330 #ifndef SQLITE_OMIT_TRACE |
| 6331 if( db->xTrace |
| 6332 && !p->doingRerun |
| 6333 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 |
| 6334 ){ |
| 6335 z = sqlite3VdbeExpandSql(p, zTrace); |
| 6336 db->xTrace(db->pTraceArg, z); |
| 6337 sqlite3DbFree(db, z); |
| 6338 } |
| 6339 #ifdef SQLITE_USE_FCNTL_TRACE |
5848 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); | 6340 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); |
5849 if( zTrace ){ | 6341 if( zTrace ){ |
5850 if( db->xTrace ){ | 6342 int i; |
5851 char *z = sqlite3VdbeExpandSql(p, zTrace); | 6343 for(i=0; i<db->nDb; i++){ |
5852 db->xTrace(db->pTraceArg, z); | 6344 if( DbMaskTest(p->btreeMask, i)==0 ) continue; |
5853 sqlite3DbFree(db, z); | 6345 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace); |
5854 } | 6346 } |
| 6347 } |
| 6348 #endif /* SQLITE_USE_FCNTL_TRACE */ |
5855 #ifdef SQLITE_DEBUG | 6349 #ifdef SQLITE_DEBUG |
5856 if( (db->flags & SQLITE_SqlTrace)!=0 ){ | 6350 if( (db->flags & SQLITE_SqlTrace)!=0 |
5857 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); | 6351 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 |
5858 } | 6352 ){ |
| 6353 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); |
| 6354 } |
5859 #endif /* SQLITE_DEBUG */ | 6355 #endif /* SQLITE_DEBUG */ |
5860 } | 6356 #endif /* SQLITE_OMIT_TRACE */ |
5861 break; | 6357 break; |
5862 } | 6358 } |
5863 #endif | |
5864 | 6359 |
5865 | 6360 |
5866 /* Opcode: Noop * * * * * | 6361 /* Opcode: Noop * * * * * |
5867 ** | 6362 ** |
5868 ** Do nothing. This instruction is often useful as a jump | 6363 ** Do nothing. This instruction is often useful as a jump |
5869 ** destination. | 6364 ** destination. |
5870 */ | 6365 */ |
5871 /* | 6366 /* |
5872 ** The magic Explain opcode are only inserted when explain==2 (which | 6367 ** The magic Explain opcode are only inserted when explain==2 (which |
5873 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) | 6368 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) |
5874 ** This opcode records information from the optimizer. It is the | 6369 ** This opcode records information from the optimizer. It is the |
5875 ** the same as a no-op. This opcodesnever appears in a real VM program. | 6370 ** the same as a no-op. This opcodesnever appears in a real VM program. |
5876 */ | 6371 */ |
5877 default: { /* This is really OP_Noop and OP_Explain */ | 6372 default: { /* This is really OP_Noop and OP_Explain */ |
5878 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); | 6373 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); |
5879 break; | 6374 break; |
5880 } | 6375 } |
5881 | 6376 |
5882 /***************************************************************************** | 6377 /***************************************************************************** |
5883 ** The cases of the switch statement above this line should all be indented | 6378 ** The cases of the switch statement above this line should all be indented |
5884 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the | 6379 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the |
5885 ** readability. From this point on down, the normal indentation rules are | 6380 ** readability. From this point on down, the normal indentation rules are |
5886 ** restored. | 6381 ** restored. |
5887 *****************************************************************************/ | 6382 *****************************************************************************/ |
5888 } | 6383 } |
5889 | 6384 |
5890 #ifdef VDBE_PROFILE | 6385 #ifdef VDBE_PROFILE |
5891 { | 6386 { |
5892 u64 elapsed = sqlite3Hwtime() - start; | 6387 u64 endTime = sqlite3Hwtime(); |
5893 pOp->cycles += elapsed; | 6388 if( endTime>start ) pOp->cycles += endTime - start; |
5894 pOp->cnt++; | 6389 pOp->cnt++; |
5895 #if 0 | |
5896 fprintf(stdout, "%10llu ", elapsed); | |
5897 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]); | |
5898 #endif | |
5899 } | 6390 } |
5900 #endif | 6391 #endif |
5901 | 6392 |
5902 /* The following code adds nothing to the actual functionality | 6393 /* The following code adds nothing to the actual functionality |
5903 ** of the program. It is only here for testing and debugging. | 6394 ** of the program. It is only here for testing and debugging. |
5904 ** On the other hand, it does burn CPU cycles every time through | 6395 ** On the other hand, it does burn CPU cycles every time through |
5905 ** the evaluator loop. So we can leave it out when NDEBUG is defined. | 6396 ** the evaluator loop. So we can leave it out when NDEBUG is defined. |
5906 */ | 6397 */ |
5907 #ifndef NDEBUG | 6398 #ifndef NDEBUG |
5908 assert( pc>=-1 && pc<p->nOp ); | 6399 assert( pc>=-1 && pc<p->nOp ); |
5909 | 6400 |
5910 #ifdef SQLITE_DEBUG | 6401 #ifdef SQLITE_DEBUG |
5911 if( p->trace ){ | 6402 if( db->flags & SQLITE_VdbeTrace ){ |
5912 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc); | 6403 if( rc!=0 ) printf("rc=%d\n",rc); |
5913 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ | 6404 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ |
5914 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]); | 6405 registerTrace(pOp->p2, &aMem[pOp->p2]); |
5915 } | 6406 } |
5916 if( pOp->opflags & OPFLG_OUT3 ){ | 6407 if( pOp->opflags & OPFLG_OUT3 ){ |
5917 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]); | 6408 registerTrace(pOp->p3, &aMem[pOp->p3]); |
5918 } | 6409 } |
5919 } | 6410 } |
5920 #endif /* SQLITE_DEBUG */ | 6411 #endif /* SQLITE_DEBUG */ |
5921 #endif /* NDEBUG */ | 6412 #endif /* NDEBUG */ |
5922 } /* The end of the for(;;) loop the loops through opcodes */ | 6413 } /* The end of the for(;;) loop the loops through opcodes */ |
5923 | 6414 |
5924 /* If we reach this point, it means that execution is finished with | 6415 /* If we reach this point, it means that execution is finished with |
5925 ** an error of some kind. | 6416 ** an error of some kind. |
5926 */ | 6417 */ |
5927 vdbe_error_halt: | 6418 vdbe_error_halt: |
5928 assert( rc ); | 6419 assert( rc ); |
5929 p->rc = rc; | 6420 p->rc = rc; |
5930 testcase( sqlite3GlobalConfig.xLog!=0 ); | 6421 testcase( sqlite3GlobalConfig.xLog!=0 ); |
5931 sqlite3_log(rc, "statement aborts at %d: [%s] %s", | 6422 sqlite3_log(rc, "statement aborts at %d: [%s] %s", |
5932 pc, p->zSql, p->zErrMsg); | 6423 pc, p->zSql, p->zErrMsg); |
5933 sqlite3VdbeHalt(p); | 6424 sqlite3VdbeHalt(p); |
5934 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; | 6425 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; |
5935 rc = SQLITE_ERROR; | 6426 rc = SQLITE_ERROR; |
5936 if( resetSchemaOnFault>0 ){ | 6427 if( resetSchemaOnFault>0 ){ |
5937 sqlite3ResetInternalSchema(db, resetSchemaOnFault-1); | 6428 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); |
5938 } | 6429 } |
5939 | 6430 |
5940 /* This is the only way out of this procedure. We have to | 6431 /* This is the only way out of this procedure. We have to |
5941 ** release the mutexes on btrees that were acquired at the | 6432 ** release the mutexes on btrees that were acquired at the |
5942 ** top. */ | 6433 ** top. */ |
5943 vdbe_return: | 6434 vdbe_return: |
| 6435 db->lastRowid = lastRowid; |
| 6436 testcase( nVmStep>0 ); |
| 6437 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; |
5944 sqlite3VdbeLeave(p); | 6438 sqlite3VdbeLeave(p); |
5945 return rc; | 6439 return rc; |
5946 | 6440 |
5947 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH | 6441 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH |
5948 ** is encountered. | 6442 ** is encountered. |
5949 */ | 6443 */ |
5950 too_big: | 6444 too_big: |
5951 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); | 6445 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); |
5952 rc = SQLITE_TOOBIG; | 6446 rc = SQLITE_TOOBIG; |
5953 goto vdbe_error_halt; | 6447 goto vdbe_error_halt; |
(...skipping 20 matching lines...) Expand all Loading... |
5974 /* Jump to here if the sqlite3_interrupt() API sets the interrupt | 6468 /* Jump to here if the sqlite3_interrupt() API sets the interrupt |
5975 ** flag. | 6469 ** flag. |
5976 */ | 6470 */ |
5977 abort_due_to_interrupt: | 6471 abort_due_to_interrupt: |
5978 assert( db->u1.isInterrupted ); | 6472 assert( db->u1.isInterrupted ); |
5979 rc = SQLITE_INTERRUPT; | 6473 rc = SQLITE_INTERRUPT; |
5980 p->rc = rc; | 6474 p->rc = rc; |
5981 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); | 6475 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); |
5982 goto vdbe_error_halt; | 6476 goto vdbe_error_halt; |
5983 } | 6477 } |
OLD | NEW |