Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(69)

Side by Side Diff: third_party/sqlite/sqlite-src-3080704/src/util.c

Issue 883353008: [sql] Import reference version of SQLite 3.8.7.4. (Closed) Base URL: http://chromium.googlesource.com/chromium/src.git@master
Patch Set: Hold back encoding change which is messing up patch. Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 ** 2001 September 15 2 ** 2001 September 15
3 ** 3 **
4 ** The author disclaims copyright to this source code. In place of 4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing: 5 ** a legal notice, here is a blessing:
6 ** 6 **
7 ** May you do good and not evil. 7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others. 8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give. 9 ** May you share freely, never taking more than you give.
10 ** 10 **
(...skipping 13 matching lines...) Expand all
24 /* 24 /*
25 ** Routine needed to support the testcase() macro. 25 ** Routine needed to support the testcase() macro.
26 */ 26 */
27 #ifdef SQLITE_COVERAGE_TEST 27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){ 28 void sqlite3Coverage(int x){
29 static unsigned dummy = 0; 29 static unsigned dummy = 0;
30 dummy += (unsigned)x; 30 dummy += (unsigned)x;
31 } 31 }
32 #endif 32 #endif
33 33
34 /*
35 ** Give a callback to the test harness that can be used to simulate faults
36 ** in places where it is difficult or expensive to do so purely by means
37 ** of inputs.
38 **
39 ** The intent of the integer argument is to let the fault simulator know
40 ** which of multiple sqlite3FaultSim() calls has been hit.
41 **
42 ** Return whatever integer value the test callback returns, or return
43 ** SQLITE_OK if no test callback is installed.
44 */
45 #ifndef SQLITE_OMIT_BUILTIN_TEST
46 int sqlite3FaultSim(int iTest){
47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48 return xCallback ? xCallback(iTest) : SQLITE_OK;
49 }
50 #endif
51
34 #ifndef SQLITE_OMIT_FLOATING_POINT 52 #ifndef SQLITE_OMIT_FLOATING_POINT
35 /* 53 /*
36 ** Return true if the floating point value is Not a Number (NaN). 54 ** Return true if the floating point value is Not a Number (NaN).
37 ** 55 **
38 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
39 ** Otherwise, we have our own implementation that works on most systems. 57 ** Otherwise, we have our own implementation that works on most systems.
40 */ 58 */
41 int sqlite3IsNaN(double x){ 59 int sqlite3IsNaN(double x){
42 int rc; /* The value return */ 60 int rc; /* The value return */
43 #if !defined(SQLITE_HAVE_ISNAN) 61 #if !defined(SQLITE_HAVE_ISNAN)
(...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after
87 ** than 1GiB) the value returned might be less than the true string length. 105 ** than 1GiB) the value returned might be less than the true string length.
88 */ 106 */
89 int sqlite3Strlen30(const char *z){ 107 int sqlite3Strlen30(const char *z){
90 const char *z2 = z; 108 const char *z2 = z;
91 if( z==0 ) return 0; 109 if( z==0 ) return 0;
92 while( *z2 ){ z2++; } 110 while( *z2 ){ z2++; }
93 return 0x3fffffff & (int)(z2 - z); 111 return 0x3fffffff & (int)(z2 - z);
94 } 112 }
95 113
96 /* 114 /*
115 ** Set the current error code to err_code and clear any prior error message.
116 */
117 void sqlite3Error(sqlite3 *db, int err_code){
118 assert( db!=0 );
119 db->errCode = err_code;
120 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
121 }
122
123 /*
97 ** Set the most recent error code and error string for the sqlite 124 ** Set the most recent error code and error string for the sqlite
98 ** handle "db". The error code is set to "err_code". 125 ** handle "db". The error code is set to "err_code".
99 ** 126 **
100 ** If it is not NULL, string zFormat specifies the format of the 127 ** If it is not NULL, string zFormat specifies the format of the
101 ** error string in the style of the printf functions: The following 128 ** error string in the style of the printf functions: The following
102 ** format characters are allowed: 129 ** format characters are allowed:
103 ** 130 **
104 ** %s Insert a string 131 ** %s Insert a string
105 ** %z A string that should be freed after use 132 ** %z A string that should be freed after use
106 ** %d Insert an integer 133 ** %d Insert an integer
107 ** %T Insert a token 134 ** %T Insert a token
108 ** %S Insert the first element of a SrcList 135 ** %S Insert the first element of a SrcList
109 ** 136 **
110 ** zFormat and any string tokens that follow it are assumed to be 137 ** zFormat and any string tokens that follow it are assumed to be
111 ** encoded in UTF-8. 138 ** encoded in UTF-8.
112 ** 139 **
113 ** To clear the most recent error for sqlite handle "db", sqlite3Error 140 ** To clear the most recent error for sqlite handle "db", sqlite3Error
114 ** should be called with err_code set to SQLITE_OK and zFormat set 141 ** should be called with err_code set to SQLITE_OK and zFormat set
115 ** to NULL. 142 ** to NULL.
116 */ 143 */
117 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ 144 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
118 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ 145 assert( db!=0 );
119 db->errCode = err_code; 146 db->errCode = err_code;
120 if( zFormat ){ 147 if( zFormat==0 ){
121 char *z; 148 sqlite3Error(db, err_code);
122 va_list ap; 149 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
123 va_start(ap, zFormat); 150 char *z;
124 z = sqlite3VMPrintf(db, zFormat, ap); 151 va_list ap;
125 va_end(ap); 152 va_start(ap, zFormat);
126 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 153 z = sqlite3VMPrintf(db, zFormat, ap);
127 }else{ 154 va_end(ap);
128 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); 155 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
129 }
130 } 156 }
131 } 157 }
132 158
133 /* 159 /*
134 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 160 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
135 ** The following formatting characters are allowed: 161 ** The following formatting characters are allowed:
136 ** 162 **
137 ** %s Insert a string 163 ** %s Insert a string
138 ** %z A string that should be freed after use 164 ** %z A string that should be freed after use
139 ** %d Insert an integer 165 ** %d Insert an integer
140 ** %T Insert a token 166 ** %T Insert a token
141 ** %S Insert the first element of a SrcList 167 ** %S Insert the first element of a SrcList
142 ** 168 **
143 ** This function should be used to report any error that occurs whilst 169 ** This function should be used to report any error that occurs while
144 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 170 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
145 ** last thing the sqlite3_prepare() function does is copy the error 171 ** last thing the sqlite3_prepare() function does is copy the error
146 ** stored by this function into the database handle using sqlite3Error(). 172 ** stored by this function into the database handle using sqlite3Error().
147 ** Function sqlite3Error() should be used during statement execution 173 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
148 ** (sqlite3_step() etc.). 174 ** during statement execution (sqlite3_step() etc.).
149 */ 175 */
150 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 176 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
151 char *zMsg; 177 char *zMsg;
152 va_list ap; 178 va_list ap;
153 sqlite3 *db = pParse->db; 179 sqlite3 *db = pParse->db;
154 va_start(ap, zFormat); 180 va_start(ap, zFormat);
155 zMsg = sqlite3VMPrintf(db, zFormat, ap); 181 zMsg = sqlite3VMPrintf(db, zFormat, ap);
156 va_end(ap); 182 va_end(ap);
157 if( db->suppressErr ){ 183 if( db->suppressErr ){
158 sqlite3DbFree(db, zMsg); 184 sqlite3DbFree(db, zMsg);
(...skipping 12 matching lines...) Expand all
171 ** is a no-op. 197 ** is a no-op.
172 ** 198 **
173 ** The input string must be zero-terminated. A new zero-terminator 199 ** The input string must be zero-terminated. A new zero-terminator
174 ** is added to the dequoted string. 200 ** is added to the dequoted string.
175 ** 201 **
176 ** The return value is -1 if no dequoting occurs or the length of the 202 ** The return value is -1 if no dequoting occurs or the length of the
177 ** dequoted string, exclusive of the zero terminator, if dequoting does 203 ** dequoted string, exclusive of the zero terminator, if dequoting does
178 ** occur. 204 ** occur.
179 ** 205 **
180 ** 2002-Feb-14: This routine is extended to remove MS-Access style 206 ** 2002-Feb-14: This routine is extended to remove MS-Access style
181 ** brackets from around identifers. For example: "[a-b-c]" becomes 207 ** brackets from around identifiers. For example: "[a-b-c]" becomes
182 ** "a-b-c". 208 ** "a-b-c".
183 */ 209 */
184 int sqlite3Dequote(char *z){ 210 int sqlite3Dequote(char *z){
185 char quote; 211 char quote;
186 int i, j; 212 int i, j;
187 if( z==0 ) return -1; 213 if( z==0 ) return -1;
188 quote = z[0]; 214 quote = z[0];
189 switch( quote ){ 215 switch( quote ){
190 case '\'': break; 216 case '\'': break;
191 case '"': break; 217 case '"': break;
192 case '`': break; /* For MySQL compatibility */ 218 case '`': break; /* For MySQL compatibility */
193 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 219 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
194 default: return -1; 220 default: return -1;
195 } 221 }
196 for(i=1, j=0; ALWAYS(z[i]); i++){ 222 for(i=1, j=0;; i++){
223 assert( z[i] );
197 if( z[i]==quote ){ 224 if( z[i]==quote ){
198 if( z[i+1]==quote ){ 225 if( z[i+1]==quote ){
199 z[j++] = quote; 226 z[j++] = quote;
200 i++; 227 i++;
201 }else{ 228 }else{
202 break; 229 break;
203 } 230 }
204 }else{ 231 }else{
205 z[j++] = z[i]; 232 z[j++] = z[i];
206 } 233 }
207 } 234 }
208 z[j] = 0; 235 z[j] = 0;
209 return j; 236 return j;
210 } 237 }
211 238
212 /* Convenient short-hand */ 239 /* Convenient short-hand */
213 #define UpperToLower sqlite3UpperToLower 240 #define UpperToLower sqlite3UpperToLower
214 241
215 /* 242 /*
216 ** Some systems have stricmp(). Others have strcasecmp(). Because 243 ** Some systems have stricmp(). Others have strcasecmp(). Because
217 ** there is no consistency, we will define our own. 244 ** there is no consistency, we will define our own.
218 ** 245 **
219 ** IMPLEMENTATION-OF: R-20522-24639 The sqlite3_strnicmp() API allows 246 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
220 ** applications and extensions to compare the contents of two buffers 247 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
221 ** containing UTF-8 strings in a case-independent fashion, using the same 248 ** the contents of two buffers containing UTF-8 strings in a
222 ** definition of case independence that SQLite uses internally when 249 ** case-independent fashion, using the same definition of "case
223 ** comparing identifiers. 250 ** independence" that SQLite uses internally when comparing identifiers.
224 */ 251 */
225 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 252 int sqlite3_stricmp(const char *zLeft, const char *zRight){
226 register unsigned char *a, *b; 253 register unsigned char *a, *b;
227 a = (unsigned char *)zLeft; 254 a = (unsigned char *)zLeft;
228 b = (unsigned char *)zRight; 255 b = (unsigned char *)zRight;
229 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 256 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
230 return UpperToLower[*a] - UpperToLower[*b]; 257 return UpperToLower[*a] - UpperToLower[*b];
231 } 258 }
232 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 259 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
233 register unsigned char *a, *b; 260 register unsigned char *a, *b;
234 a = (unsigned char *)zLeft; 261 a = (unsigned char *)zLeft;
235 b = (unsigned char *)zRight; 262 b = (unsigned char *)zRight;
(...skipping 18 matching lines...) Expand all
254 ** 281 **
255 ** Leading and trailing whitespace is ignored for the purpose of determining 282 ** Leading and trailing whitespace is ignored for the purpose of determining
256 ** validity. 283 ** validity.
257 ** 284 **
258 ** If some prefix of the input string is a valid number, this routine 285 ** If some prefix of the input string is a valid number, this routine
259 ** returns FALSE but it still converts the prefix and writes the result 286 ** returns FALSE but it still converts the prefix and writes the result
260 ** into *pResult. 287 ** into *pResult.
261 */ 288 */
262 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 289 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
263 #ifndef SQLITE_OMIT_FLOATING_POINT 290 #ifndef SQLITE_OMIT_FLOATING_POINT
264 int incr = (enc==SQLITE_UTF8?1:2); 291 int incr;
265 const char *zEnd = z + length; 292 const char *zEnd = z + length;
266 /* sign * significand * (10 ^ (esign * exponent)) */ 293 /* sign * significand * (10 ^ (esign * exponent)) */
267 int sign = 1; /* sign of significand */ 294 int sign = 1; /* sign of significand */
268 i64 s = 0; /* significand */ 295 i64 s = 0; /* significand */
269 int d = 0; /* adjust exponent for shifting decimal point */ 296 int d = 0; /* adjust exponent for shifting decimal point */
270 int esign = 1; /* sign of exponent */ 297 int esign = 1; /* sign of exponent */
271 int e = 0; /* exponent */ 298 int e = 0; /* exponent */
272 int eValid = 1; /* True exponent is either not used or is well-formed */ 299 int eValid = 1; /* True exponent is either not used or is well-formed */
273 double result; 300 double result;
274 int nDigits = 0; 301 int nDigits = 0;
302 int nonNum = 0;
275 303
304 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
276 *pResult = 0.0; /* Default return value, in case of an error */ 305 *pResult = 0.0; /* Default return value, in case of an error */
277 306
278 if( enc==SQLITE_UTF16BE ) z++; 307 if( enc==SQLITE_UTF8 ){
308 incr = 1;
309 }else{
310 int i;
311 incr = 2;
312 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
313 for(i=3-enc; i<length && z[i]==0; i+=2){}
314 nonNum = i<length;
315 zEnd = z+i+enc-3;
316 z += (enc&1);
317 }
279 318
280 /* skip leading spaces */ 319 /* skip leading spaces */
281 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 320 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
282 if( z>=zEnd ) return 0; 321 if( z>=zEnd ) return 0;
283 322
284 /* get sign of significand */ 323 /* get sign of significand */
285 if( *z=='-' ){ 324 if( *z=='-' ){
286 sign = -1; 325 sign = -1;
287 z+=incr; 326 z+=incr;
288 }else if( *z=='+' ){ 327 }else if( *z=='+' ){
(...skipping 35 matching lines...) Expand 10 before | Expand all | Expand 10 after
324 if( z>=zEnd ) goto do_atof_calc; 363 if( z>=zEnd ) goto do_atof_calc;
325 /* get sign of exponent */ 364 /* get sign of exponent */
326 if( *z=='-' ){ 365 if( *z=='-' ){
327 esign = -1; 366 esign = -1;
328 z+=incr; 367 z+=incr;
329 }else if( *z=='+' ){ 368 }else if( *z=='+' ){
330 z+=incr; 369 z+=incr;
331 } 370 }
332 /* copy digits to exponent */ 371 /* copy digits to exponent */
333 while( z<zEnd && sqlite3Isdigit(*z) ){ 372 while( z<zEnd && sqlite3Isdigit(*z) ){
334 e = e*10 + (*z - '0'); 373 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
335 z+=incr; 374 z+=incr;
336 eValid = 1; 375 eValid = 1;
337 } 376 }
338 } 377 }
339 378
340 /* skip trailing spaces */ 379 /* skip trailing spaces */
341 if( nDigits && eValid ){ 380 if( nDigits && eValid ){
342 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 381 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
343 } 382 }
344 383
(...skipping 19 matching lines...) Expand all
364 }else{ 403 }else{
365 while( !(s%10) && e>0 ) e--,s/=10; 404 while( !(s%10) && e>0 ) e--,s/=10;
366 } 405 }
367 406
368 /* adjust the sign of significand */ 407 /* adjust the sign of significand */
369 s = sign<0 ? -s : s; 408 s = sign<0 ? -s : s;
370 409
371 /* if exponent, scale significand as appropriate 410 /* if exponent, scale significand as appropriate
372 ** and store in result. */ 411 ** and store in result. */
373 if( e ){ 412 if( e ){
374 double scale = 1.0; 413 LONGDOUBLE_TYPE scale = 1.0;
375 /* attempt to handle extremely small/large numbers better */ 414 /* attempt to handle extremely small/large numbers better */
376 if( e>307 && e<342 ){ 415 if( e>307 && e<342 ){
377 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 416 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
378 if( esign<0 ){ 417 if( esign<0 ){
379 result = s / scale; 418 result = s / scale;
380 result /= 1.0e+308; 419 result /= 1.0e+308;
381 }else{ 420 }else{
382 result = s * scale; 421 result = s * scale;
383 result *= 1.0e+308; 422 result *= 1.0e+308;
384 } 423 }
424 }else if( e>=342 ){
425 if( esign<0 ){
426 result = 0.0*s;
427 }else{
428 result = 1e308*1e308*s; /* Infinity */
429 }
385 }else{ 430 }else{
386 /* 1.0e+22 is the largest power of 10 than can be 431 /* 1.0e+22 is the largest power of 10 than can be
387 ** represented exactly. */ 432 ** represented exactly. */
388 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 433 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
389 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 434 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
390 if( esign<0 ){ 435 if( esign<0 ){
391 result = s / scale; 436 result = s / scale;
392 }else{ 437 }else{
393 result = s * scale; 438 result = s * scale;
394 } 439 }
395 } 440 }
396 } else { 441 } else {
397 result = (double)s; 442 result = (double)s;
398 } 443 }
399 } 444 }
400 445
401 /* store the result */ 446 /* store the result */
402 *pResult = result; 447 *pResult = result;
403 448
404 /* return true if number and no extra non-whitespace chracters after */ 449 /* return true if number and no extra non-whitespace chracters after */
405 return z>=zEnd && nDigits>0 && eValid; 450 return z>=zEnd && nDigits>0 && eValid && nonNum==0;
406 #else 451 #else
407 return !sqlite3Atoi64(z, pResult, length, enc); 452 return !sqlite3Atoi64(z, pResult, length, enc);
408 #endif /* SQLITE_OMIT_FLOATING_POINT */ 453 #endif /* SQLITE_OMIT_FLOATING_POINT */
409 } 454 }
410 455
411 /* 456 /*
412 ** Compare the 19-character string zNum against the text representation 457 ** Compare the 19-character string zNum against the text representation
413 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 458 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
414 ** if zNum is less than, equal to, or greater than the string. 459 ** if zNum is less than, equal to, or greater than the string.
415 ** Note that zNum must contain exactly 19 characters. 460 ** Note that zNum must contain exactly 19 characters.
(...skipping 16 matching lines...) Expand all
432 } 477 }
433 if( c==0 ){ 478 if( c==0 ){
434 c = zNum[18*incr] - '8'; 479 c = zNum[18*incr] - '8';
435 testcase( c==(-1) ); 480 testcase( c==(-1) );
436 testcase( c==0 ); 481 testcase( c==0 );
437 testcase( c==(+1) ); 482 testcase( c==(+1) );
438 } 483 }
439 return c; 484 return c;
440 } 485 }
441 486
442
443 /* 487 /*
444 ** Convert zNum to a 64-bit signed integer. 488 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
489 ** routine does *not* accept hexadecimal notation.
445 ** 490 **
446 ** If the zNum value is representable as a 64-bit twos-complement 491 ** If the zNum value is representable as a 64-bit twos-complement
447 ** integer, then write that value into *pNum and return 0. 492 ** integer, then write that value into *pNum and return 0.
448 ** 493 **
449 ** If zNum is exactly 9223372036854665808, return 2. This special 494 ** If zNum is exactly 9223372036854775808, return 2. This special
450 ** case is broken out because while 9223372036854665808 cannot be a 495 ** case is broken out because while 9223372036854775808 cannot be a
451 ** signed 64-bit integer, its negative -9223372036854665808 can be. 496 ** signed 64-bit integer, its negative -9223372036854775808 can be.
452 ** 497 **
453 ** If zNum is too big for a 64-bit integer and is not 498 ** If zNum is too big for a 64-bit integer and is not
454 ** 9223372036854665808 then return 1. 499 ** 9223372036854775808 or if zNum contains any non-numeric text,
500 ** then return 1.
455 ** 501 **
456 ** length is the number of bytes in the string (bytes, not characters). 502 ** length is the number of bytes in the string (bytes, not characters).
457 ** The string is not necessarily zero-terminated. The encoding is 503 ** The string is not necessarily zero-terminated. The encoding is
458 ** given by enc. 504 ** given by enc.
459 */ 505 */
460 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 506 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
461 int incr = (enc==SQLITE_UTF8?1:2); 507 int incr;
462 u64 u = 0; 508 u64 u = 0;
463 int neg = 0; /* assume positive */ 509 int neg = 0; /* assume positive */
464 int i; 510 int i;
465 int c = 0; 511 int c = 0;
512 int nonNum = 0;
466 const char *zStart; 513 const char *zStart;
467 const char *zEnd = zNum + length; 514 const char *zEnd = zNum + length;
468 if( enc==SQLITE_UTF16BE ) zNum++; 515 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
516 if( enc==SQLITE_UTF8 ){
517 incr = 1;
518 }else{
519 incr = 2;
520 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
521 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
522 nonNum = i<length;
523 zEnd = zNum+i+enc-3;
524 zNum += (enc&1);
525 }
469 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 526 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
470 if( zNum<zEnd ){ 527 if( zNum<zEnd ){
471 if( *zNum=='-' ){ 528 if( *zNum=='-' ){
472 neg = 1; 529 neg = 1;
473 zNum+=incr; 530 zNum+=incr;
474 }else if( *zNum=='+' ){ 531 }else if( *zNum=='+' ){
475 zNum+=incr; 532 zNum+=incr;
476 } 533 }
477 } 534 }
478 zStart = zNum; 535 zStart = zNum;
479 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 536 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
480 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 537 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
481 u = u*10 + c - '0'; 538 u = u*10 + c - '0';
482 } 539 }
483 if( u>LARGEST_INT64 ){ 540 if( u>LARGEST_INT64 ){
484 *pNum = SMALLEST_INT64; 541 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
485 }else if( neg ){ 542 }else if( neg ){
486 *pNum = -(i64)u; 543 *pNum = -(i64)u;
487 }else{ 544 }else{
488 *pNum = (i64)u; 545 *pNum = (i64)u;
489 } 546 }
490 testcase( i==18 ); 547 testcase( i==18 );
491 testcase( i==19 ); 548 testcase( i==19 );
492 testcase( i==20 ); 549 testcase( i==20 );
493 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){ 550 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ) {
494 /* zNum is empty or contains non-numeric text or is longer 551 /* zNum is empty or contains non-numeric text or is longer
495 ** than 19 digits (thus guaranteeing that it is too large) */ 552 ** than 19 digits (thus guaranteeing that it is too large) */
496 return 1; 553 return 1;
497 }else if( i<19*incr ){ 554 }else if( i<19*incr ){
498 /* Less than 19 digits, so we know that it fits in 64 bits */ 555 /* Less than 19 digits, so we know that it fits in 64 bits */
499 assert( u<=LARGEST_INT64 ); 556 assert( u<=LARGEST_INT64 );
500 return 0; 557 return 0;
501 }else{ 558 }else{
502 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 559 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
503 c = compare2pow63(zNum, incr); 560 c = compare2pow63(zNum, incr);
504 if( c<0 ){ 561 if( c<0 ){
505 /* zNum is less than 9223372036854775808 so it fits */ 562 /* zNum is less than 9223372036854775808 so it fits */
506 assert( u<=LARGEST_INT64 ); 563 assert( u<=LARGEST_INT64 );
507 return 0; 564 return 0;
508 }else if( c>0 ){ 565 }else if( c>0 ){
509 /* zNum is greater than 9223372036854775808 so it overflows */ 566 /* zNum is greater than 9223372036854775808 so it overflows */
510 return 1; 567 return 1;
511 }else{ 568 }else{
512 /* zNum is exactly 9223372036854775808. Fits if negative. The 569 /* zNum is exactly 9223372036854775808. Fits if negative. The
513 ** special case 2 overflow if positive */ 570 ** special case 2 overflow if positive */
514 assert( u-1==LARGEST_INT64 ); 571 assert( u-1==LARGEST_INT64 );
515 assert( (*pNum)==SMALLEST_INT64 );
516 return neg ? 0 : 2; 572 return neg ? 0 : 2;
517 } 573 }
518 } 574 }
519 } 575 }
520 576
521 /* 577 /*
578 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
579 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
580 ** whereas sqlite3Atoi64() does not.
581 **
582 ** Returns:
583 **
584 ** 0 Successful transformation. Fits in a 64-bit signed integer.
585 ** 1 Integer too large for a 64-bit signed integer or is malformed
586 ** 2 Special case of 9223372036854775808
587 */
588 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
589 #ifndef SQLITE_OMIT_HEX_INTEGER
590 if( z[0]=='0'
591 && (z[1]=='x' || z[1]=='X')
592 && sqlite3Isxdigit(z[2])
593 ){
594 u64 u = 0;
595 int i, k;
596 for(i=2; z[i]=='0'; i++){}
597 for(k=i; sqlite3Isxdigit(z[k]); k++){
598 u = u*16 + sqlite3HexToInt(z[k]);
599 }
600 memcpy(pOut, &u, 8);
601 return (z[k]==0 && k-i<=16) ? 0 : 1;
602 }else
603 #endif /* SQLITE_OMIT_HEX_INTEGER */
604 {
605 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
606 }
607 }
608
609 /*
522 ** If zNum represents an integer that will fit in 32-bits, then set 610 ** If zNum represents an integer that will fit in 32-bits, then set
523 ** *pValue to that integer and return true. Otherwise return false. 611 ** *pValue to that integer and return true. Otherwise return false.
524 ** 612 **
613 ** This routine accepts both decimal and hexadecimal notation for integers.
614 **
525 ** Any non-numeric characters that following zNum are ignored. 615 ** Any non-numeric characters that following zNum are ignored.
526 ** This is different from sqlite3Atoi64() which requires the 616 ** This is different from sqlite3Atoi64() which requires the
527 ** input number to be zero-terminated. 617 ** input number to be zero-terminated.
528 */ 618 */
529 int sqlite3GetInt32(const char *zNum, int *pValue){ 619 int sqlite3GetInt32(const char *zNum, int *pValue){
530 sqlite_int64 v = 0; 620 sqlite_int64 v = 0;
531 int i, c; 621 int i, c;
532 int neg = 0; 622 int neg = 0;
533 if( zNum[0]=='-' ){ 623 if( zNum[0]=='-' ){
534 neg = 1; 624 neg = 1;
535 zNum++; 625 zNum++;
536 }else if( zNum[0]=='+' ){ 626 }else if( zNum[0]=='+' ){
537 zNum++; 627 zNum++;
538 } 628 }
539 while( zNum[0]=='0' ) zNum++; 629 #ifndef SQLITE_OMIT_HEX_INTEGER
630 else if( zNum[0]=='0'
631 && (zNum[1]=='x' || zNum[1]=='X')
632 && sqlite3Isxdigit(zNum[2])
633 ){
634 u32 u = 0;
635 zNum += 2;
636 while( zNum[0]=='0' ) zNum++;
637 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
638 u = u*16 + sqlite3HexToInt(zNum[i]);
639 }
640 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
641 memcpy(pValue, &u, 4);
642 return 1;
643 }else{
644 return 0;
645 }
646 }
647 #endif
540 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 648 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
541 v = v*10 + c; 649 v = v*10 + c;
542 } 650 }
543 651
544 /* The longest decimal representation of a 32 bit integer is 10 digits: 652 /* The longest decimal representation of a 32 bit integer is 10 digits:
545 ** 653 **
546 ** 1234567890 654 ** 1234567890
547 ** 2^31 -> 2147483648 655 ** 2^31 -> 2147483648
548 */ 656 */
549 testcase( i==10 ); 657 testcase( i==10 );
(...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after
593 /* 701 /*
594 ** Write a 64-bit variable-length integer to memory starting at p[0]. 702 ** Write a 64-bit variable-length integer to memory starting at p[0].
595 ** The length of data write will be between 1 and 9 bytes. The number 703 ** The length of data write will be between 1 and 9 bytes. The number
596 ** of bytes written is returned. 704 ** of bytes written is returned.
597 ** 705 **
598 ** A variable-length integer consists of the lower 7 bits of each byte 706 ** A variable-length integer consists of the lower 7 bits of each byte
599 ** for all bytes that have the 8th bit set and one byte with the 8th 707 ** for all bytes that have the 8th bit set and one byte with the 8th
600 ** bit clear. Except, if we get to the 9th byte, it stores the full 708 ** bit clear. Except, if we get to the 9th byte, it stores the full
601 ** 8 bits and is the last byte. 709 ** 8 bits and is the last byte.
602 */ 710 */
603 int sqlite3PutVarint(unsigned char *p, u64 v){ 711 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
604 int i, j, n; 712 int i, j, n;
605 u8 buf[10]; 713 u8 buf[10];
606 if( v & (((u64)0xff000000)<<32) ){ 714 if( v & (((u64)0xff000000)<<32) ){
607 p[8] = (u8)v; 715 p[8] = (u8)v;
608 v >>= 8; 716 v >>= 8;
609 for(i=7; i>=0; i--){ 717 for(i=7; i>=0; i--){
610 p[i] = (u8)((v & 0x7f) | 0x80); 718 p[i] = (u8)((v & 0x7f) | 0x80);
611 v >>= 7; 719 v >>= 7;
612 } 720 }
613 return 9; 721 return 9;
614 } 722 }
615 n = 0; 723 n = 0;
616 do{ 724 do{
617 buf[n++] = (u8)((v & 0x7f) | 0x80); 725 buf[n++] = (u8)((v & 0x7f) | 0x80);
618 v >>= 7; 726 v >>= 7;
619 }while( v!=0 ); 727 }while( v!=0 );
620 buf[0] &= 0x7f; 728 buf[0] &= 0x7f;
621 assert( n<=9 ); 729 assert( n<=9 );
622 for(i=0, j=n-1; j>=0; j--, i++){ 730 for(i=0, j=n-1; j>=0; j--, i++){
623 p[i] = buf[j]; 731 p[i] = buf[j];
624 } 732 }
625 return n; 733 return n;
626 } 734 }
627 735 int sqlite3PutVarint(unsigned char *p, u64 v){
628 /* 736 if( v<=0x7f ){
629 ** This routine is a faster version of sqlite3PutVarint() that only 737 p[0] = v&0x7f;
630 ** works for 32-bit positive integers and which is optimized for
631 ** the common case of small integers. A MACRO version, putVarint32,
632 ** is provided which inlines the single-byte case. All code should use
633 ** the MACRO version as this function assumes the single-byte case has
634 ** already been handled.
635 */
636 int sqlite3PutVarint32(unsigned char *p, u32 v){
637 #ifndef putVarint32
638 if( (v & ~0x7f)==0 ){
639 p[0] = v;
640 return 1; 738 return 1;
641 } 739 }
642 #endif 740 if( v<=0x3fff ){
643 if( (v & ~0x3fff)==0 ){ 741 p[0] = ((v>>7)&0x7f)|0x80;
644 p[0] = (u8)((v>>7) | 0x80); 742 p[1] = v&0x7f;
645 p[1] = (u8)(v & 0x7f);
646 return 2; 743 return 2;
647 } 744 }
648 return sqlite3PutVarint(p, v); 745 return putVarint64(p,v);
649 } 746 }
650 747
651 /* 748 /*
652 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 749 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
653 ** are defined here rather than simply putting the constant expressions 750 ** are defined here rather than simply putting the constant expressions
654 ** inline in order to work around bugs in the RVT compiler. 751 ** inline in order to work around bugs in the RVT compiler.
655 ** 752 **
656 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 753 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
657 ** 754 **
658 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 755 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
(...skipping 306 matching lines...) Expand 10 before | Expand all | Expand 10 after
965 v >>= 7; 1062 v >>= 7;
966 }while( v!=0 && ALWAYS(i<9) ); 1063 }while( v!=0 && ALWAYS(i<9) );
967 return i; 1064 return i;
968 } 1065 }
969 1066
970 1067
971 /* 1068 /*
972 ** Read or write a four-byte big-endian integer value. 1069 ** Read or write a four-byte big-endian integer value.
973 */ 1070 */
974 u32 sqlite3Get4byte(const u8 *p){ 1071 u32 sqlite3Get4byte(const u8 *p){
975 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1072 testcase( p[0]&0x80 );
1073 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
976 } 1074 }
977 void sqlite3Put4byte(unsigned char *p, u32 v){ 1075 void sqlite3Put4byte(unsigned char *p, u32 v){
978 p[0] = (u8)(v>>24); 1076 p[0] = (u8)(v>>24);
979 p[1] = (u8)(v>>16); 1077 p[1] = (u8)(v>>16);
980 p[2] = (u8)(v>>8); 1078 p[2] = (u8)(v>>8);
981 p[3] = (u8)v; 1079 p[3] = (u8)v;
982 } 1080 }
983 1081
984 1082
985 1083
986 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
987 /* 1084 /*
988 ** Translate a single byte of Hex into an integer. 1085 ** Translate a single byte of Hex into an integer.
989 ** This routine only works if h really is a valid hexadecimal 1086 ** This routine only works if h really is a valid hexadecimal
990 ** character: 0..9a..fA..F 1087 ** character: 0..9a..fA..F
991 */ 1088 */
992 static u8 hexToInt(int h){ 1089 u8 sqlite3HexToInt(int h){
993 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1090 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
994 #ifdef SQLITE_ASCII 1091 #ifdef SQLITE_ASCII
995 h += 9*(1&(h>>6)); 1092 h += 9*(1&(h>>6));
996 #endif 1093 #endif
997 #ifdef SQLITE_EBCDIC 1094 #ifdef SQLITE_EBCDIC
998 h += 9*(1&~(h>>4)); 1095 h += 9*(1&~(h>>4));
999 #endif 1096 #endif
1000 return (u8)(h & 0xf); 1097 return (u8)(h & 0xf);
1001 } 1098 }
1002 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1003 1099
1004 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1100 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1005 /* 1101 /*
1006 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1102 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1007 ** value. Return a pointer to its binary value. Space to hold the 1103 ** value. Return a pointer to its binary value. Space to hold the
1008 ** binary value has been obtained from malloc and must be freed by 1104 ** binary value has been obtained from malloc and must be freed by
1009 ** the calling routine. 1105 ** the calling routine.
1010 */ 1106 */
1011 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1107 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1012 char *zBlob; 1108 char *zBlob;
1013 int i; 1109 int i;
1014 1110
1015 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 1111 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1016 n--; 1112 n--;
1017 if( zBlob ){ 1113 if( zBlob ){
1018 for(i=0; i<n; i+=2){ 1114 for(i=0; i<n; i+=2){
1019 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); 1115 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1020 } 1116 }
1021 zBlob[i/2] = 0; 1117 zBlob[i/2] = 0;
1022 } 1118 }
1023 return zBlob; 1119 return zBlob;
1024 } 1120 }
1025 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1121 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1026 1122
1027 /* 1123 /*
1028 ** Log an error that is an API call on a connection pointer that should 1124 ** Log an error that is an API call on a connection pointer that should
1029 ** not have been used. The "type" of connection pointer is given as the 1125 ** not have been used. The "type" of connection pointer is given as the
(...skipping 58 matching lines...) Expand 10 before | Expand all | Expand 10 after
1088 ** overflow, leave *pA unchanged and return 1. 1184 ** overflow, leave *pA unchanged and return 1.
1089 */ 1185 */
1090 int sqlite3AddInt64(i64 *pA, i64 iB){ 1186 int sqlite3AddInt64(i64 *pA, i64 iB){
1091 i64 iA = *pA; 1187 i64 iA = *pA;
1092 testcase( iA==0 ); testcase( iA==1 ); 1188 testcase( iA==0 ); testcase( iA==1 );
1093 testcase( iB==-1 ); testcase( iB==0 ); 1189 testcase( iB==-1 ); testcase( iB==0 );
1094 if( iB>=0 ){ 1190 if( iB>=0 ){
1095 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1191 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1096 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1192 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1097 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1193 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1098 *pA += iB;
1099 }else{ 1194 }else{
1100 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1195 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1101 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1196 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1102 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1197 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1103 *pA += iB;
1104 } 1198 }
1199 *pA += iB;
1105 return 0; 1200 return 0;
1106 } 1201 }
1107 int sqlite3SubInt64(i64 *pA, i64 iB){ 1202 int sqlite3SubInt64(i64 *pA, i64 iB){
1108 testcase( iB==SMALLEST_INT64+1 ); 1203 testcase( iB==SMALLEST_INT64+1 );
1109 if( iB==SMALLEST_INT64 ){ 1204 if( iB==SMALLEST_INT64 ){
1110 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1205 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1111 if( (*pA)>=0 ) return 1; 1206 if( (*pA)>=0 ) return 1;
1112 *pA -= iB; 1207 *pA -= iB;
1113 return 0; 1208 return 0;
1114 }else{ 1209 }else{
1115 return sqlite3AddInt64(pA, -iB); 1210 return sqlite3AddInt64(pA, -iB);
1116 } 1211 }
1117 } 1212 }
1118 #define TWOPOWER32 (((i64)1)<<32) 1213 #define TWOPOWER32 (((i64)1)<<32)
1119 #define TWOPOWER31 (((i64)1)<<31) 1214 #define TWOPOWER31 (((i64)1)<<31)
1120 int sqlite3MulInt64(i64 *pA, i64 iB){ 1215 int sqlite3MulInt64(i64 *pA, i64 iB){
1121 i64 iA = *pA; 1216 i64 iA = *pA;
1122 i64 iA1, iA0, iB1, iB0, r; 1217 i64 iA1, iA0, iB1, iB0, r;
1123 1218
1124 iA1 = iA/TWOPOWER32; 1219 iA1 = iA/TWOPOWER32;
1125 iA0 = iA % TWOPOWER32; 1220 iA0 = iA % TWOPOWER32;
1126 iB1 = iB/TWOPOWER32; 1221 iB1 = iB/TWOPOWER32;
1127 iB0 = iB % TWOPOWER32; 1222 iB0 = iB % TWOPOWER32;
1128 if( iA1*iB1 != 0 ) return 1; 1223 if( iA1==0 ){
1129 assert( iA1*iB0==0 || iA0*iB1==0 ); 1224 if( iB1==0 ){
1130 r = iA1*iB0 + iA0*iB1; 1225 *pA *= iB;
1226 return 0;
1227 }
1228 r = iA0*iB1;
1229 }else if( iB1==0 ){
1230 r = iA1*iB0;
1231 }else{
1232 /* If both iA1 and iB1 are non-zero, overflow will result */
1233 return 1;
1234 }
1131 testcase( r==(-TWOPOWER31)-1 ); 1235 testcase( r==(-TWOPOWER31)-1 );
1132 testcase( r==(-TWOPOWER31) ); 1236 testcase( r==(-TWOPOWER31) );
1133 testcase( r==TWOPOWER31 ); 1237 testcase( r==TWOPOWER31 );
1134 testcase( r==TWOPOWER31-1 ); 1238 testcase( r==TWOPOWER31-1 );
1135 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; 1239 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1136 r *= TWOPOWER32; 1240 r *= TWOPOWER32;
1137 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; 1241 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1138 *pA = r; 1242 *pA = r;
1139 return 0; 1243 return 0;
1140 } 1244 }
1141 1245
1142 /* 1246 /*
1143 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1247 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1144 ** if the integer has a value of -2147483648, return +2147483647 1248 ** if the integer has a value of -2147483648, return +2147483647
1145 */ 1249 */
1146 int sqlite3AbsInt32(int x){ 1250 int sqlite3AbsInt32(int x){
1147 if( x>=0 ) return x; 1251 if( x>=0 ) return x;
1148 if( x==(int)0x80000000 ) return 0x7fffffff; 1252 if( x==(int)0x80000000 ) return 0x7fffffff;
1149 return -x; 1253 return -x;
1150 } 1254 }
1255
1256 #ifdef SQLITE_ENABLE_8_3_NAMES
1257 /*
1258 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1259 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1260 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1261 ** three characters, then shorten the suffix on z[] to be the last three
1262 ** characters of the original suffix.
1263 **
1264 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1265 ** do the suffix shortening regardless of URI parameter.
1266 **
1267 ** Examples:
1268 **
1269 ** test.db-journal => test.nal
1270 ** test.db-wal => test.wal
1271 ** test.db-shm => test.shm
1272 ** test.db-mj7f3319fa => test.9fa
1273 */
1274 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1275 #if SQLITE_ENABLE_8_3_NAMES<2
1276 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1277 #endif
1278 {
1279 int i, sz;
1280 sz = sqlite3Strlen30(z);
1281 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1282 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1283 }
1284 }
1285 #endif
1286
1287 /*
1288 ** Find (an approximate) sum of two LogEst values. This computation is
1289 ** not a simple "+" operator because LogEst is stored as a logarithmic
1290 ** value.
1291 **
1292 */
1293 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1294 static const unsigned char x[] = {
1295 10, 10, /* 0,1 */
1296 9, 9, /* 2,3 */
1297 8, 8, /* 4,5 */
1298 7, 7, 7, /* 6,7,8 */
1299 6, 6, 6, /* 9,10,11 */
1300 5, 5, 5, /* 12-14 */
1301 4, 4, 4, 4, /* 15-18 */
1302 3, 3, 3, 3, 3, 3, /* 19-24 */
1303 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1304 };
1305 if( a>=b ){
1306 if( a>b+49 ) return a;
1307 if( a>b+31 ) return a+1;
1308 return a+x[a-b];
1309 }else{
1310 if( b>a+49 ) return b;
1311 if( b>a+31 ) return b+1;
1312 return b+x[b-a];
1313 }
1314 }
1315
1316 /*
1317 ** Convert an integer into a LogEst. In other words, compute an
1318 ** approximation for 10*log2(x).
1319 */
1320 LogEst sqlite3LogEst(u64 x){
1321 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1322 LogEst y = 40;
1323 if( x<8 ){
1324 if( x<2 ) return 0;
1325 while( x<8 ){ y -= 10; x <<= 1; }
1326 }else{
1327 while( x>255 ){ y += 40; x >>= 4; }
1328 while( x>15 ){ y += 10; x >>= 1; }
1329 }
1330 return a[x&7] + y - 10;
1331 }
1332
1333 #ifndef SQLITE_OMIT_VIRTUALTABLE
1334 /*
1335 ** Convert a double into a LogEst
1336 ** In other words, compute an approximation for 10*log2(x).
1337 */
1338 LogEst sqlite3LogEstFromDouble(double x){
1339 u64 a;
1340 LogEst e;
1341 assert( sizeof(x)==8 && sizeof(a)==8 );
1342 if( x<=1 ) return 0;
1343 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1344 memcpy(&a, &x, 8);
1345 e = (a>>52) - 1022;
1346 return e*10;
1347 }
1348 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1349
1350 /*
1351 ** Convert a LogEst into an integer.
1352 */
1353 u64 sqlite3LogEstToInt(LogEst x){
1354 u64 n;
1355 if( x<10 ) return 1;
1356 n = x%10;
1357 x /= 10;
1358 if( n>=5 ) n -= 2;
1359 else if( n>=1 ) n -= 1;
1360 if( x>=3 ){
1361 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3);
1362 }
1363 return (n+8)>>(3-x);
1364 }
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3080704/src/utf.c ('k') | third_party/sqlite/sqlite-src-3080704/src/vacuum.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698