OLD | NEW |
1 /* | 1 /* |
2 ** 2001 September 15 | 2 ** 2001 September 15 |
3 ** | 3 ** |
4 ** The author disclaims copyright to this source code. In place of | 4 ** The author disclaims copyright to this source code. In place of |
5 ** a legal notice, here is a blessing: | 5 ** a legal notice, here is a blessing: |
6 ** | 6 ** |
7 ** May you do good and not evil. | 7 ** May you do good and not evil. |
8 ** May you find forgiveness for yourself and forgive others. | 8 ** May you find forgiveness for yourself and forgive others. |
9 ** May you share freely, never taking more than you give. | 9 ** May you share freely, never taking more than you give. |
10 ** | 10 ** |
11 ************************************************************************* | 11 ************************************************************************* |
12 ** This file contains C code routines that are called by the parser | 12 ** This file contains C code routines that are called by the parser |
13 ** to handle SELECT statements in SQLite. | 13 ** to handle SELECT statements in SQLite. |
14 */ | 14 */ |
15 #include "sqliteInt.h" | 15 #include "sqliteInt.h" |
16 | 16 |
| 17 /* |
| 18 ** Trace output macros |
| 19 */ |
| 20 #if SELECTTRACE_ENABLED |
| 21 /***/ int sqlite3SelectTrace = 0; |
| 22 # define SELECTTRACE(K,P,S,X) \ |
| 23 if(sqlite3SelectTrace&(K)) \ |
| 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S))
,\ |
| 25 sqlite3DebugPrintf X |
| 26 #else |
| 27 # define SELECTTRACE(K,P,S,X) |
| 28 #endif |
| 29 |
| 30 |
| 31 /* |
| 32 ** An instance of the following object is used to record information about |
| 33 ** how to process the DISTINCT keyword, to simplify passing that information |
| 34 ** into the selectInnerLoop() routine. |
| 35 */ |
| 36 typedef struct DistinctCtx DistinctCtx; |
| 37 struct DistinctCtx { |
| 38 u8 isTnct; /* True if the DISTINCT keyword is present */ |
| 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ |
| 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ |
| 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ |
| 42 }; |
| 43 |
| 44 /* |
| 45 ** An instance of the following object is used to record information about |
| 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. |
| 47 */ |
| 48 typedef struct SortCtx SortCtx; |
| 49 struct SortCtx { |
| 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ |
| 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ |
| 52 int iECursor; /* Cursor number for the sorter */ |
| 53 int regReturn; /* Register holding block-output return address */ |
| 54 int labelBkOut; /* Start label for the block-output subroutine */ |
| 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ |
| 56 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ |
| 57 }; |
| 58 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ |
17 | 59 |
18 /* | 60 /* |
19 ** Delete all the content of a Select structure but do not deallocate | 61 ** Delete all the content of a Select structure but do not deallocate |
20 ** the select structure itself. | 62 ** the select structure itself. |
21 */ | 63 */ |
22 static void clearSelect(sqlite3 *db, Select *p){ | 64 static void clearSelect(sqlite3 *db, Select *p){ |
23 sqlite3ExprListDelete(db, p->pEList); | 65 sqlite3ExprListDelete(db, p->pEList); |
24 sqlite3SrcListDelete(db, p->pSrc); | 66 sqlite3SrcListDelete(db, p->pSrc); |
25 sqlite3ExprDelete(db, p->pWhere); | 67 sqlite3ExprDelete(db, p->pWhere); |
26 sqlite3ExprListDelete(db, p->pGroupBy); | 68 sqlite3ExprListDelete(db, p->pGroupBy); |
27 sqlite3ExprDelete(db, p->pHaving); | 69 sqlite3ExprDelete(db, p->pHaving); |
28 sqlite3ExprListDelete(db, p->pOrderBy); | 70 sqlite3ExprListDelete(db, p->pOrderBy); |
29 sqlite3SelectDelete(db, p->pPrior); | 71 sqlite3SelectDelete(db, p->pPrior); |
30 sqlite3ExprDelete(db, p->pLimit); | 72 sqlite3ExprDelete(db, p->pLimit); |
31 sqlite3ExprDelete(db, p->pOffset); | 73 sqlite3ExprDelete(db, p->pOffset); |
| 74 sqlite3WithDelete(db, p->pWith); |
32 } | 75 } |
33 | 76 |
34 /* | 77 /* |
35 ** Initialize a SelectDest structure. | 78 ** Initialize a SelectDest structure. |
36 */ | 79 */ |
37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ | 80 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ |
38 pDest->eDest = (u8)eDest; | 81 pDest->eDest = (u8)eDest; |
39 pDest->iParm = iParm; | 82 pDest->iSDParm = iParm; |
40 pDest->affinity = 0; | 83 pDest->affSdst = 0; |
41 pDest->iMem = 0; | 84 pDest->iSdst = 0; |
42 pDest->nMem = 0; | 85 pDest->nSdst = 0; |
43 } | 86 } |
44 | 87 |
45 | 88 |
46 /* | 89 /* |
47 ** Allocate a new Select structure and return a pointer to that | 90 ** Allocate a new Select structure and return a pointer to that |
48 ** structure. | 91 ** structure. |
49 */ | 92 */ |
50 Select *sqlite3SelectNew( | 93 Select *sqlite3SelectNew( |
51 Parse *pParse, /* Parsing context */ | 94 Parse *pParse, /* Parsing context */ |
52 ExprList *pEList, /* which columns to include in the result */ | 95 ExprList *pEList, /* which columns to include in the result */ |
53 SrcList *pSrc, /* the FROM clause -- which tables to scan */ | 96 SrcList *pSrc, /* the FROM clause -- which tables to scan */ |
54 Expr *pWhere, /* the WHERE clause */ | 97 Expr *pWhere, /* the WHERE clause */ |
55 ExprList *pGroupBy, /* the GROUP BY clause */ | 98 ExprList *pGroupBy, /* the GROUP BY clause */ |
56 Expr *pHaving, /* the HAVING clause */ | 99 Expr *pHaving, /* the HAVING clause */ |
57 ExprList *pOrderBy, /* the ORDER BY clause */ | 100 ExprList *pOrderBy, /* the ORDER BY clause */ |
58 int isDistinct, /* true if the DISTINCT keyword is present */ | 101 u16 selFlags, /* Flag parameters, such as SF_Distinct */ |
59 Expr *pLimit, /* LIMIT value. NULL means not used */ | 102 Expr *pLimit, /* LIMIT value. NULL means not used */ |
60 Expr *pOffset /* OFFSET value. NULL means no offset */ | 103 Expr *pOffset /* OFFSET value. NULL means no offset */ |
61 ){ | 104 ){ |
62 Select *pNew; | 105 Select *pNew; |
63 Select standin; | 106 Select standin; |
64 sqlite3 *db = pParse->db; | 107 sqlite3 *db = pParse->db; |
65 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); | 108 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); |
66 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ | 109 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ |
67 if( pNew==0 ){ | 110 if( pNew==0 ){ |
| 111 assert( db->mallocFailed ); |
68 pNew = &standin; | 112 pNew = &standin; |
69 memset(pNew, 0, sizeof(*pNew)); | 113 memset(pNew, 0, sizeof(*pNew)); |
70 } | 114 } |
71 if( pEList==0 ){ | 115 if( pEList==0 ){ |
72 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); | 116 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); |
73 } | 117 } |
74 pNew->pEList = pEList; | 118 pNew->pEList = pEList; |
| 119 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); |
75 pNew->pSrc = pSrc; | 120 pNew->pSrc = pSrc; |
76 pNew->pWhere = pWhere; | 121 pNew->pWhere = pWhere; |
77 pNew->pGroupBy = pGroupBy; | 122 pNew->pGroupBy = pGroupBy; |
78 pNew->pHaving = pHaving; | 123 pNew->pHaving = pHaving; |
79 pNew->pOrderBy = pOrderBy; | 124 pNew->pOrderBy = pOrderBy; |
80 pNew->selFlags = isDistinct ? SF_Distinct : 0; | 125 pNew->selFlags = selFlags; |
81 pNew->op = TK_SELECT; | 126 pNew->op = TK_SELECT; |
82 pNew->pLimit = pLimit; | 127 pNew->pLimit = pLimit; |
83 pNew->pOffset = pOffset; | 128 pNew->pOffset = pOffset; |
84 assert( pOffset==0 || pLimit!=0 ); | 129 assert( pOffset==0 || pLimit!=0 ); |
85 pNew->addrOpenEphm[0] = -1; | 130 pNew->addrOpenEphm[0] = -1; |
86 pNew->addrOpenEphm[1] = -1; | 131 pNew->addrOpenEphm[1] = -1; |
87 pNew->addrOpenEphm[2] = -1; | |
88 if( db->mallocFailed ) { | 132 if( db->mallocFailed ) { |
89 clearSelect(db, pNew); | 133 clearSelect(db, pNew); |
90 if( pNew!=&standin ) sqlite3DbFree(db, pNew); | 134 if( pNew!=&standin ) sqlite3DbFree(db, pNew); |
91 pNew = 0; | 135 pNew = 0; |
| 136 }else{ |
| 137 assert( pNew->pSrc!=0 || pParse->nErr>0 ); |
92 } | 138 } |
| 139 assert( pNew!=&standin ); |
93 return pNew; | 140 return pNew; |
94 } | 141 } |
95 | 142 |
| 143 #if SELECTTRACE_ENABLED |
| 144 /* |
| 145 ** Set the name of a Select object |
| 146 */ |
| 147 void sqlite3SelectSetName(Select *p, const char *zName){ |
| 148 if( p && zName ){ |
| 149 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); |
| 150 } |
| 151 } |
| 152 #endif |
| 153 |
| 154 |
96 /* | 155 /* |
97 ** Delete the given Select structure and all of its substructures. | 156 ** Delete the given Select structure and all of its substructures. |
98 */ | 157 */ |
99 void sqlite3SelectDelete(sqlite3 *db, Select *p){ | 158 void sqlite3SelectDelete(sqlite3 *db, Select *p){ |
100 if( p ){ | 159 if( p ){ |
101 clearSelect(db, p); | 160 clearSelect(db, p); |
102 sqlite3DbFree(db, p); | 161 sqlite3DbFree(db, p); |
103 } | 162 } |
104 } | 163 } |
105 | 164 |
106 /* | 165 /* |
107 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the | 166 ** Return a pointer to the right-most SELECT statement in a compound. |
| 167 */ |
| 168 static Select *findRightmost(Select *p){ |
| 169 while( p->pNext ) p = p->pNext; |
| 170 return p; |
| 171 } |
| 172 |
| 173 /* |
| 174 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the |
108 ** type of join. Return an integer constant that expresses that type | 175 ** type of join. Return an integer constant that expresses that type |
109 ** in terms of the following bit values: | 176 ** in terms of the following bit values: |
110 ** | 177 ** |
111 ** JT_INNER | 178 ** JT_INNER |
112 ** JT_CROSS | 179 ** JT_CROSS |
113 ** JT_OUTER | 180 ** JT_OUTER |
114 ** JT_NATURAL | 181 ** JT_NATURAL |
115 ** JT_LEFT | 182 ** JT_LEFT |
116 ** JT_RIGHT | 183 ** JT_RIGHT |
117 ** | 184 ** |
(...skipping 134 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
252 assert( pSrc->nSrc>iRight ); | 319 assert( pSrc->nSrc>iRight ); |
253 assert( pSrc->a[iLeft].pTab ); | 320 assert( pSrc->a[iLeft].pTab ); |
254 assert( pSrc->a[iRight].pTab ); | 321 assert( pSrc->a[iRight].pTab ); |
255 | 322 |
256 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); | 323 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); |
257 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); | 324 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); |
258 | 325 |
259 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); | 326 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); |
260 if( pEq && isOuterJoin ){ | 327 if( pEq && isOuterJoin ){ |
261 ExprSetProperty(pEq, EP_FromJoin); | 328 ExprSetProperty(pEq, EP_FromJoin); |
262 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) ); | 329 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); |
263 ExprSetIrreducible(pEq); | 330 ExprSetVVAProperty(pEq, EP_NoReduce); |
264 pEq->iRightJoinTable = (i16)pE2->iTable; | 331 pEq->iRightJoinTable = (i16)pE2->iTable; |
265 } | 332 } |
266 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); | 333 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); |
267 } | 334 } |
268 | 335 |
269 /* | 336 /* |
270 ** Set the EP_FromJoin property on all terms of the given expression. | 337 ** Set the EP_FromJoin property on all terms of the given expression. |
271 ** And set the Expr.iRightJoinTable to iTable for every term in the | 338 ** And set the Expr.iRightJoinTable to iTable for every term in the |
272 ** expression. | 339 ** expression. |
273 ** | 340 ** |
(...skipping 14 matching lines...) Expand all Loading... |
288 ** The where clause needs to defer the handling of the t1.x=5 | 355 ** The where clause needs to defer the handling of the t1.x=5 |
289 ** term until after the t2 loop of the join. In that way, a | 356 ** term until after the t2 loop of the join. In that way, a |
290 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not | 357 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not |
291 ** defer the handling of t1.x=5, it will be processed immediately | 358 ** defer the handling of t1.x=5, it will be processed immediately |
292 ** after the t1 loop and rows with t1.x!=5 will never appear in | 359 ** after the t1 loop and rows with t1.x!=5 will never appear in |
293 ** the output, which is incorrect. | 360 ** the output, which is incorrect. |
294 */ | 361 */ |
295 static void setJoinExpr(Expr *p, int iTable){ | 362 static void setJoinExpr(Expr *p, int iTable){ |
296 while( p ){ | 363 while( p ){ |
297 ExprSetProperty(p, EP_FromJoin); | 364 ExprSetProperty(p, EP_FromJoin); |
298 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); | 365 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); |
299 ExprSetIrreducible(p); | 366 ExprSetVVAProperty(p, EP_NoReduce); |
300 p->iRightJoinTable = (i16)iTable; | 367 p->iRightJoinTable = (i16)iTable; |
301 setJoinExpr(p->pLeft, iTable); | 368 setJoinExpr(p->pLeft, iTable); |
302 p = p->pRight; | 369 p = p->pRight; |
303 } | 370 } |
304 } | 371 } |
305 | 372 |
306 /* | 373 /* |
307 ** This routine processes the join information for a SELECT statement. | 374 ** This routine processes the join information for a SELECT statement. |
308 ** ON and USING clauses are converted into extra terms of the WHERE clause. | 375 ** ON and USING clauses are converted into extra terms of the WHERE clause. |
309 ** NATURAL joins also create extra WHERE clause terms. | 376 ** NATURAL joins also create extra WHERE clause terms. |
(...skipping 88 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
398 return 1; | 465 return 1; |
399 } | 466 } |
400 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, | 467 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, |
401 isOuter, &p->pWhere); | 468 isOuter, &p->pWhere); |
402 } | 469 } |
403 } | 470 } |
404 } | 471 } |
405 return 0; | 472 return 0; |
406 } | 473 } |
407 | 474 |
| 475 /* Forward reference */ |
| 476 static KeyInfo *keyInfoFromExprList( |
| 477 Parse *pParse, /* Parsing context */ |
| 478 ExprList *pList, /* Form the KeyInfo object from this ExprList */ |
| 479 int iStart, /* Begin with this column of pList */ |
| 480 int nExtra /* Add this many extra columns to the end */ |
| 481 ); |
| 482 |
408 /* | 483 /* |
409 ** Insert code into "v" that will push the record on the top of the | 484 ** Generate code that will push the record in registers regData |
410 ** stack into the sorter. | 485 ** through regData+nData-1 onto the sorter. |
411 */ | 486 */ |
412 static void pushOntoSorter( | 487 static void pushOntoSorter( |
413 Parse *pParse, /* Parser context */ | 488 Parse *pParse, /* Parser context */ |
414 ExprList *pOrderBy, /* The ORDER BY clause */ | 489 SortCtx *pSort, /* Information about the ORDER BY clause */ |
415 Select *pSelect, /* The whole SELECT statement */ | 490 Select *pSelect, /* The whole SELECT statement */ |
416 int regData /* Register holding data to be sorted */ | 491 int regData, /* First register holding data to be sorted */ |
| 492 int nData, /* Number of elements in the data array */ |
| 493 int nPrefixReg /* No. of reg prior to regData available for use */ |
417 ){ | 494 ){ |
418 Vdbe *v = pParse->pVdbe; | 495 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ |
419 int nExpr = pOrderBy->nExpr; | 496 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); |
420 int regBase = sqlite3GetTempRange(pParse, nExpr+2); | 497 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ |
421 int regRecord = sqlite3GetTempReg(pParse); | 498 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ |
422 sqlite3ExprCacheClear(pParse); | 499 int regBase; /* Regs for sorter record */ |
423 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); | 500 int regRecord = ++pParse->nMem; /* Assembled sorter record */ |
424 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); | 501 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ |
425 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); | 502 int op; /* Opcode to add sorter record to sorter */ |
426 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); | 503 |
427 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); | 504 assert( bSeq==0 || bSeq==1 ); |
428 sqlite3ReleaseTempReg(pParse, regRecord); | 505 if( nPrefixReg ){ |
429 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); | 506 assert( nPrefixReg==nExpr+bSeq ); |
| 507 regBase = regData - nExpr - bSeq; |
| 508 }else{ |
| 509 regBase = pParse->nMem + 1; |
| 510 pParse->nMem += nBase; |
| 511 } |
| 512 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); |
| 513 if( bSeq ){ |
| 514 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); |
| 515 } |
| 516 if( nPrefixReg==0 ){ |
| 517 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); |
| 518 } |
| 519 |
| 520 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); |
| 521 if( nOBSat>0 ){ |
| 522 int regPrevKey; /* The first nOBSat columns of the previous row */ |
| 523 int addrFirst; /* Address of the OP_IfNot opcode */ |
| 524 int addrJmp; /* Address of the OP_Jump opcode */ |
| 525 VdbeOp *pOp; /* Opcode that opens the sorter */ |
| 526 int nKey; /* Number of sorting key columns, including OP_Sequence */ |
| 527 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ |
| 528 |
| 529 regPrevKey = pParse->nMem+1; |
| 530 pParse->nMem += pSort->nOBSat; |
| 531 nKey = nExpr - pSort->nOBSat + bSeq; |
| 532 if( bSeq ){ |
| 533 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); |
| 534 }else{ |
| 535 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); |
| 536 } |
| 537 VdbeCoverage(v); |
| 538 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); |
| 539 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); |
| 540 if( pParse->db->mallocFailed ) return; |
| 541 pOp->p2 = nKey + nData; |
| 542 pKI = pOp->p4.pKeyInfo; |
| 543 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ |
| 544 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); |
| 545 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1); |
| 546 addrJmp = sqlite3VdbeCurrentAddr(v); |
| 547 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); |
| 548 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); |
| 549 pSort->regReturn = ++pParse->nMem; |
| 550 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); |
| 551 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); |
| 552 sqlite3VdbeJumpHere(v, addrFirst); |
| 553 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); |
| 554 sqlite3VdbeJumpHere(v, addrJmp); |
| 555 } |
| 556 if( pSort->sortFlags & SORTFLAG_UseSorter ){ |
| 557 op = OP_SorterInsert; |
| 558 }else{ |
| 559 op = OP_IdxInsert; |
| 560 } |
| 561 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); |
430 if( pSelect->iLimit ){ | 562 if( pSelect->iLimit ){ |
431 int addr1, addr2; | 563 int addr1, addr2; |
432 int iLimit; | 564 int iLimit; |
433 if( pSelect->iOffset ){ | 565 if( pSelect->iOffset ){ |
434 iLimit = pSelect->iOffset+1; | 566 iLimit = pSelect->iOffset+1; |
435 }else{ | 567 }else{ |
436 iLimit = pSelect->iLimit; | 568 iLimit = pSelect->iLimit; |
437 } | 569 } |
438 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); | 570 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v); |
439 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); | 571 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); |
440 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); | 572 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); |
441 sqlite3VdbeJumpHere(v, addr1); | 573 sqlite3VdbeJumpHere(v, addr1); |
442 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); | 574 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); |
443 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); | 575 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); |
444 sqlite3VdbeJumpHere(v, addr2); | 576 sqlite3VdbeJumpHere(v, addr2); |
445 } | 577 } |
446 } | 578 } |
447 | 579 |
448 /* | 580 /* |
449 ** Add code to implement the OFFSET | 581 ** Add code to implement the OFFSET |
450 */ | 582 */ |
451 static void codeOffset( | 583 static void codeOffset( |
452 Vdbe *v, /* Generate code into this VM */ | 584 Vdbe *v, /* Generate code into this VM */ |
453 Select *p, /* The SELECT statement being coded */ | 585 int iOffset, /* Register holding the offset counter */ |
454 int iContinue /* Jump here to skip the current record */ | 586 int iContinue /* Jump here to skip the current record */ |
455 ){ | 587 ){ |
456 if( p->iOffset && iContinue!=0 ){ | 588 if( iOffset>0 ){ |
457 int addr; | 589 int addr; |
458 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); | 590 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); |
459 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); | |
460 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); | 591 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); |
461 VdbeComment((v, "skip OFFSET records")); | 592 VdbeComment((v, "skip OFFSET records")); |
462 sqlite3VdbeJumpHere(v, addr); | 593 sqlite3VdbeJumpHere(v, addr); |
463 } | 594 } |
464 } | 595 } |
465 | 596 |
466 /* | 597 /* |
467 ** Add code that will check to make sure the N registers starting at iMem | 598 ** Add code that will check to make sure the N registers starting at iMem |
468 ** form a distinct entry. iTab is a sorting index that holds previously | 599 ** form a distinct entry. iTab is a sorting index that holds previously |
469 ** seen combinations of the N values. A new entry is made in iTab | 600 ** seen combinations of the N values. A new entry is made in iTab |
470 ** if the current N values are new. | 601 ** if the current N values are new. |
471 ** | 602 ** |
472 ** A jump to addrRepeat is made and the N+1 values are popped from the | 603 ** A jump to addrRepeat is made and the N+1 values are popped from the |
473 ** stack if the top N elements are not distinct. | 604 ** stack if the top N elements are not distinct. |
474 */ | 605 */ |
475 static void codeDistinct( | 606 static void codeDistinct( |
476 Parse *pParse, /* Parsing and code generating context */ | 607 Parse *pParse, /* Parsing and code generating context */ |
477 int iTab, /* A sorting index used to test for distinctness */ | 608 int iTab, /* A sorting index used to test for distinctness */ |
478 int addrRepeat, /* Jump to here if not distinct */ | 609 int addrRepeat, /* Jump to here if not distinct */ |
479 int N, /* Number of elements */ | 610 int N, /* Number of elements */ |
480 int iMem /* First element */ | 611 int iMem /* First element */ |
481 ){ | 612 ){ |
482 Vdbe *v; | 613 Vdbe *v; |
483 int r1; | 614 int r1; |
484 | 615 |
485 v = pParse->pVdbe; | 616 v = pParse->pVdbe; |
486 r1 = sqlite3GetTempReg(pParse); | 617 r1 = sqlite3GetTempReg(pParse); |
487 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); | 618 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); |
488 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); | 619 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); |
489 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); | 620 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); |
490 sqlite3ReleaseTempReg(pParse, r1); | 621 sqlite3ReleaseTempReg(pParse, r1); |
491 } | 622 } |
492 | 623 |
493 #ifndef SQLITE_OMIT_SUBQUERY | 624 #ifndef SQLITE_OMIT_SUBQUERY |
494 /* | 625 /* |
495 ** Generate an error message when a SELECT is used within a subexpression | 626 ** Generate an error message when a SELECT is used within a subexpression |
496 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result | 627 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result |
497 ** column. We do this in a subroutine because the error used to occur | 628 ** column. We do this in a subroutine because the error used to occur |
(...skipping 13 matching lines...) Expand all Loading... |
511 }else{ | 642 }else{ |
512 return 0; | 643 return 0; |
513 } | 644 } |
514 } | 645 } |
515 #endif | 646 #endif |
516 | 647 |
517 /* | 648 /* |
518 ** This routine generates the code for the inside of the inner loop | 649 ** This routine generates the code for the inside of the inner loop |
519 ** of a SELECT. | 650 ** of a SELECT. |
520 ** | 651 ** |
521 ** If srcTab and nColumn are both zero, then the pEList expressions | 652 ** If srcTab is negative, then the pEList expressions |
522 ** are evaluated in order to get the data for this row. If nColumn>0 | 653 ** are evaluated in order to get the data for this row. If srcTab is |
523 ** then data is pulled from srcTab and pEList is used only to get the | 654 ** zero or more, then data is pulled from srcTab and pEList is used only |
524 ** datatypes for each column. | 655 ** to get number columns and the datatype for each column. |
525 */ | 656 */ |
526 static void selectInnerLoop( | 657 static void selectInnerLoop( |
527 Parse *pParse, /* The parser context */ | 658 Parse *pParse, /* The parser context */ |
528 Select *p, /* The complete select statement being coded */ | 659 Select *p, /* The complete select statement being coded */ |
529 ExprList *pEList, /* List of values being extracted */ | 660 ExprList *pEList, /* List of values being extracted */ |
530 int srcTab, /* Pull data from this table */ | 661 int srcTab, /* Pull data from this table */ |
531 int nColumn, /* Number of columns in the source table */ | 662 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ |
532 ExprList *pOrderBy, /* If not NULL, sort results using this key */ | 663 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ |
533 int distinct, /* If >=0, make sure results are distinct */ | |
534 SelectDest *pDest, /* How to dispose of the results */ | 664 SelectDest *pDest, /* How to dispose of the results */ |
535 int iContinue, /* Jump here to continue with next row */ | 665 int iContinue, /* Jump here to continue with next row */ |
536 int iBreak /* Jump here to break out of the inner loop */ | 666 int iBreak /* Jump here to break out of the inner loop */ |
537 ){ | 667 ){ |
538 Vdbe *v = pParse->pVdbe; | 668 Vdbe *v = pParse->pVdbe; |
539 int i; | 669 int i; |
540 int hasDistinct; /* True if the DISTINCT keyword is present */ | 670 int hasDistinct; /* True if the DISTINCT keyword is present */ |
541 int regResult; /* Start of memory holding result set */ | 671 int regResult; /* Start of memory holding result set */ |
542 int eDest = pDest->eDest; /* How to dispose of results */ | 672 int eDest = pDest->eDest; /* How to dispose of results */ |
543 int iParm = pDest->iParm; /* First argument to disposal method */ | 673 int iParm = pDest->iSDParm; /* First argument to disposal method */ |
544 int nResultCol; /* Number of result columns */ | 674 int nResultCol; /* Number of result columns */ |
| 675 int nPrefixReg = 0; /* Number of extra registers before regResult */ |
545 | 676 |
546 assert( v ); | 677 assert( v ); |
547 if( NEVER(v==0) ) return; | |
548 assert( pEList!=0 ); | 678 assert( pEList!=0 ); |
549 hasDistinct = distinct>=0; | 679 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; |
550 if( pOrderBy==0 && !hasDistinct ){ | 680 if( pSort && pSort->pOrderBy==0 ) pSort = 0; |
551 codeOffset(v, p, iContinue); | 681 if( pSort==0 && !hasDistinct ){ |
| 682 assert( iContinue!=0 ); |
| 683 codeOffset(v, p->iOffset, iContinue); |
552 } | 684 } |
553 | 685 |
554 /* Pull the requested columns. | 686 /* Pull the requested columns. |
555 */ | 687 */ |
556 if( nColumn>0 ){ | 688 nResultCol = pEList->nExpr; |
557 nResultCol = nColumn; | 689 |
558 }else{ | 690 if( pDest->iSdst==0 ){ |
559 nResultCol = pEList->nExpr; | 691 if( pSort ){ |
| 692 nPrefixReg = pSort->pOrderBy->nExpr; |
| 693 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; |
| 694 pParse->nMem += nPrefixReg; |
| 695 } |
| 696 pDest->iSdst = pParse->nMem+1; |
| 697 pParse->nMem += nResultCol; |
| 698 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ |
| 699 /* This is an error condition that can result, for example, when a SELECT |
| 700 ** on the right-hand side of an INSERT contains more result columns than |
| 701 ** there are columns in the table on the left. The error will be caught |
| 702 ** and reported later. But we need to make sure enough memory is allocated |
| 703 ** to avoid other spurious errors in the meantime. */ |
| 704 pParse->nMem += nResultCol; |
560 } | 705 } |
561 if( pDest->iMem==0 ){ | 706 pDest->nSdst = nResultCol; |
562 pDest->iMem = pParse->nMem+1; | 707 regResult = pDest->iSdst; |
563 pDest->nMem = nResultCol; | 708 if( srcTab>=0 ){ |
564 pParse->nMem += nResultCol; | 709 for(i=0; i<nResultCol; i++){ |
565 }else{ | |
566 assert( pDest->nMem==nResultCol ); | |
567 } | |
568 regResult = pDest->iMem; | |
569 if( nColumn>0 ){ | |
570 for(i=0; i<nColumn; i++){ | |
571 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); | 710 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); |
| 711 VdbeComment((v, "%s", pEList->a[i].zName)); |
572 } | 712 } |
573 }else if( eDest!=SRT_Exists ){ | 713 }else if( eDest!=SRT_Exists ){ |
574 /* If the destination is an EXISTS(...) expression, the actual | 714 /* If the destination is an EXISTS(...) expression, the actual |
575 ** values returned by the SELECT are not required. | 715 ** values returned by the SELECT are not required. |
576 */ | 716 */ |
577 sqlite3ExprCacheClear(pParse); | 717 sqlite3ExprCodeExprList(pParse, pEList, regResult, |
578 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); | 718 (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); |
579 } | 719 } |
580 nColumn = nResultCol; | |
581 | 720 |
582 /* If the DISTINCT keyword was present on the SELECT statement | 721 /* If the DISTINCT keyword was present on the SELECT statement |
583 ** and this row has been seen before, then do not make this row | 722 ** and this row has been seen before, then do not make this row |
584 ** part of the result. | 723 ** part of the result. |
585 */ | 724 */ |
586 if( hasDistinct ){ | 725 if( hasDistinct ){ |
587 assert( pEList!=0 ); | 726 switch( pDistinct->eTnctType ){ |
588 assert( pEList->nExpr==nColumn ); | 727 case WHERE_DISTINCT_ORDERED: { |
589 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); | 728 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ |
590 if( pOrderBy==0 ){ | 729 int iJump; /* Jump destination */ |
591 codeOffset(v, p, iContinue); | 730 int regPrev; /* Previous row content */ |
| 731 |
| 732 /* Allocate space for the previous row */ |
| 733 regPrev = pParse->nMem+1; |
| 734 pParse->nMem += nResultCol; |
| 735 |
| 736 /* Change the OP_OpenEphemeral coded earlier to an OP_Null |
| 737 ** sets the MEM_Cleared bit on the first register of the |
| 738 ** previous value. This will cause the OP_Ne below to always |
| 739 ** fail on the first iteration of the loop even if the first |
| 740 ** row is all NULLs. |
| 741 */ |
| 742 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); |
| 743 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); |
| 744 pOp->opcode = OP_Null; |
| 745 pOp->p1 = 1; |
| 746 pOp->p2 = regPrev; |
| 747 |
| 748 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; |
| 749 for(i=0; i<nResultCol; i++){ |
| 750 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); |
| 751 if( i<nResultCol-1 ){ |
| 752 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); |
| 753 VdbeCoverage(v); |
| 754 }else{ |
| 755 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); |
| 756 VdbeCoverage(v); |
| 757 } |
| 758 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); |
| 759 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); |
| 760 } |
| 761 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); |
| 762 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); |
| 763 break; |
| 764 } |
| 765 |
| 766 case WHERE_DISTINCT_UNIQUE: { |
| 767 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); |
| 768 break; |
| 769 } |
| 770 |
| 771 default: { |
| 772 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); |
| 773 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResul
t); |
| 774 break; |
| 775 } |
| 776 } |
| 777 if( pSort==0 ){ |
| 778 codeOffset(v, p->iOffset, iContinue); |
592 } | 779 } |
593 } | 780 } |
594 | 781 |
595 switch( eDest ){ | 782 switch( eDest ){ |
596 /* In this mode, write each query result to the key of the temporary | 783 /* In this mode, write each query result to the key of the temporary |
597 ** table iParm. | 784 ** table iParm. |
598 */ | 785 */ |
599 #ifndef SQLITE_OMIT_COMPOUND_SELECT | 786 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
600 case SRT_Union: { | 787 case SRT_Union: { |
601 int r1; | 788 int r1; |
602 r1 = sqlite3GetTempReg(pParse); | 789 r1 = sqlite3GetTempReg(pParse); |
603 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); | 790 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); |
604 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); | 791 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); |
605 sqlite3ReleaseTempReg(pParse, r1); | 792 sqlite3ReleaseTempReg(pParse, r1); |
606 break; | 793 break; |
607 } | 794 } |
608 | 795 |
609 /* Construct a record from the query result, but instead of | 796 /* Construct a record from the query result, but instead of |
610 ** saving that record, use it as a key to delete elements from | 797 ** saving that record, use it as a key to delete elements from |
611 ** the temporary table iParm. | 798 ** the temporary table iParm. |
612 */ | 799 */ |
613 case SRT_Except: { | 800 case SRT_Except: { |
614 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); | 801 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); |
615 break; | 802 break; |
616 } | 803 } |
617 #endif | 804 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
618 | 805 |
619 /* Store the result as data using a unique key. | 806 /* Store the result as data using a unique key. |
620 */ | 807 */ |
| 808 case SRT_Fifo: |
| 809 case SRT_DistFifo: |
621 case SRT_Table: | 810 case SRT_Table: |
622 case SRT_EphemTab: { | 811 case SRT_EphemTab: { |
623 int r1 = sqlite3GetTempReg(pParse); | 812 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); |
624 testcase( eDest==SRT_Table ); | 813 testcase( eDest==SRT_Table ); |
625 testcase( eDest==SRT_EphemTab ); | 814 testcase( eDest==SRT_EphemTab ); |
626 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); | 815 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); |
627 if( pOrderBy ){ | 816 #ifndef SQLITE_OMIT_CTE |
628 pushOntoSorter(pParse, pOrderBy, p, r1); | 817 if( eDest==SRT_DistFifo ){ |
| 818 /* If the destination is DistFifo, then cursor (iParm+1) is open |
| 819 ** on an ephemeral index. If the current row is already present |
| 820 ** in the index, do not write it to the output. If not, add the |
| 821 ** current row to the index and proceed with writing it to the |
| 822 ** output table as well. */ |
| 823 int addr = sqlite3VdbeCurrentAddr(v) + 4; |
| 824 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v)
; |
| 825 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); |
| 826 assert( pSort==0 ); |
| 827 } |
| 828 #endif |
| 829 if( pSort ){ |
| 830 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); |
629 }else{ | 831 }else{ |
630 int r2 = sqlite3GetTempReg(pParse); | 832 int r2 = sqlite3GetTempReg(pParse); |
631 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); | 833 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); |
632 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); | 834 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); |
633 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); | 835 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
634 sqlite3ReleaseTempReg(pParse, r2); | 836 sqlite3ReleaseTempReg(pParse, r2); |
635 } | 837 } |
636 sqlite3ReleaseTempReg(pParse, r1); | 838 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); |
637 break; | 839 break; |
638 } | 840 } |
639 | 841 |
640 #ifndef SQLITE_OMIT_SUBQUERY | 842 #ifndef SQLITE_OMIT_SUBQUERY |
641 /* If we are creating a set for an "expr IN (SELECT ...)" construct, | 843 /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
642 ** then there should be a single item on the stack. Write this | 844 ** then there should be a single item on the stack. Write this |
643 ** item into the set table with bogus data. | 845 ** item into the set table with bogus data. |
644 */ | 846 */ |
645 case SRT_Set: { | 847 case SRT_Set: { |
646 assert( nColumn==1 ); | 848 assert( nResultCol==1 ); |
647 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); | 849 pDest->affSdst = |
648 if( pOrderBy ){ | 850 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); |
| 851 if( pSort ){ |
649 /* At first glance you would think we could optimize out the | 852 /* At first glance you would think we could optimize out the |
650 ** ORDER BY in this case since the order of entries in the set | 853 ** ORDER BY in this case since the order of entries in the set |
651 ** does not matter. But there might be a LIMIT clause, in which | 854 ** does not matter. But there might be a LIMIT clause, in which |
652 ** case the order does matter */ | 855 ** case the order does matter */ |
653 pushOntoSorter(pParse, pOrderBy, p, regResult); | 856 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); |
654 }else{ | 857 }else{ |
655 int r1 = sqlite3GetTempReg(pParse); | 858 int r1 = sqlite3GetTempReg(pParse); |
656 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); | 859 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); |
657 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); | 860 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); |
658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); | 861 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); |
659 sqlite3ReleaseTempReg(pParse, r1); | 862 sqlite3ReleaseTempReg(pParse, r1); |
660 } | 863 } |
661 break; | 864 break; |
662 } | 865 } |
663 | 866 |
664 /* If any row exist in the result set, record that fact and abort. | 867 /* If any row exist in the result set, record that fact and abort. |
665 */ | 868 */ |
666 case SRT_Exists: { | 869 case SRT_Exists: { |
667 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); | 870 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); |
668 /* The LIMIT clause will terminate the loop for us */ | 871 /* The LIMIT clause will terminate the loop for us */ |
669 break; | 872 break; |
670 } | 873 } |
671 | 874 |
672 /* If this is a scalar select that is part of an expression, then | 875 /* If this is a scalar select that is part of an expression, then |
673 ** store the results in the appropriate memory cell and break out | 876 ** store the results in the appropriate memory cell and break out |
674 ** of the scan loop. | 877 ** of the scan loop. |
675 */ | 878 */ |
676 case SRT_Mem: { | 879 case SRT_Mem: { |
677 assert( nColumn==1 ); | 880 assert( nResultCol==1 ); |
678 if( pOrderBy ){ | 881 if( pSort ){ |
679 pushOntoSorter(pParse, pOrderBy, p, regResult); | 882 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); |
680 }else{ | 883 }else{ |
681 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); | 884 assert( regResult==iParm ); |
682 /* The LIMIT clause will jump out of the loop for us */ | 885 /* The LIMIT clause will jump out of the loop for us */ |
683 } | 886 } |
684 break; | 887 break; |
685 } | 888 } |
686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ | 889 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ |
687 | 890 |
688 /* Send the data to the callback function or to a subroutine. In the | 891 case SRT_Coroutine: /* Send data to a co-routine */ |
689 ** case of a subroutine, the subroutine itself is responsible for | 892 case SRT_Output: { /* Return the results */ |
690 ** popping the data from the stack. | |
691 */ | |
692 case SRT_Coroutine: | |
693 case SRT_Output: { | |
694 testcase( eDest==SRT_Coroutine ); | 893 testcase( eDest==SRT_Coroutine ); |
695 testcase( eDest==SRT_Output ); | 894 testcase( eDest==SRT_Output ); |
696 if( pOrderBy ){ | 895 if( pSort ){ |
697 int r1 = sqlite3GetTempReg(pParse); | 896 pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg); |
698 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); | |
699 pushOntoSorter(pParse, pOrderBy, p, r1); | |
700 sqlite3ReleaseTempReg(pParse, r1); | |
701 }else if( eDest==SRT_Coroutine ){ | 897 }else if( eDest==SRT_Coroutine ){ |
702 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); | 898 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); |
703 }else{ | 899 }else{ |
704 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); | 900 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); |
705 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); | 901 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); |
706 } | 902 } |
707 break; | 903 break; |
708 } | 904 } |
709 | 905 |
| 906 #ifndef SQLITE_OMIT_CTE |
| 907 /* Write the results into a priority queue that is order according to |
| 908 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an |
| 909 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first |
| 910 ** pSO->nExpr columns, then make sure all keys are unique by adding a |
| 911 ** final OP_Sequence column. The last column is the record as a blob. |
| 912 */ |
| 913 case SRT_DistQueue: |
| 914 case SRT_Queue: { |
| 915 int nKey; |
| 916 int r1, r2, r3; |
| 917 int addrTest = 0; |
| 918 ExprList *pSO; |
| 919 pSO = pDest->pOrderBy; |
| 920 assert( pSO ); |
| 921 nKey = pSO->nExpr; |
| 922 r1 = sqlite3GetTempReg(pParse); |
| 923 r2 = sqlite3GetTempRange(pParse, nKey+2); |
| 924 r3 = r2+nKey+1; |
| 925 if( eDest==SRT_DistQueue ){ |
| 926 /* If the destination is DistQueue, then cursor (iParm+1) is open |
| 927 ** on a second ephemeral index that holds all values every previously |
| 928 ** added to the queue. */ |
| 929 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, |
| 930 regResult, nResultCol); |
| 931 VdbeCoverage(v); |
| 932 } |
| 933 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); |
| 934 if( eDest==SRT_DistQueue ){ |
| 935 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); |
| 936 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
| 937 } |
| 938 for(i=0; i<nKey; i++){ |
| 939 sqlite3VdbeAddOp2(v, OP_SCopy, |
| 940 regResult + pSO->a[i].u.x.iOrderByCol - 1, |
| 941 r2+i); |
| 942 } |
| 943 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); |
| 944 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); |
| 945 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); |
| 946 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); |
| 947 sqlite3ReleaseTempReg(pParse, r1); |
| 948 sqlite3ReleaseTempRange(pParse, r2, nKey+2); |
| 949 break; |
| 950 } |
| 951 #endif /* SQLITE_OMIT_CTE */ |
| 952 |
| 953 |
| 954 |
710 #if !defined(SQLITE_OMIT_TRIGGER) | 955 #if !defined(SQLITE_OMIT_TRIGGER) |
711 /* Discard the results. This is used for SELECT statements inside | 956 /* Discard the results. This is used for SELECT statements inside |
712 ** the body of a TRIGGER. The purpose of such selects is to call | 957 ** the body of a TRIGGER. The purpose of such selects is to call |
713 ** user-defined functions that have side effects. We do not care | 958 ** user-defined functions that have side effects. We do not care |
714 ** about the actual results of the select. | 959 ** about the actual results of the select. |
715 */ | 960 */ |
716 default: { | 961 default: { |
717 assert( eDest==SRT_Discard ); | 962 assert( eDest==SRT_Discard ); |
718 break; | 963 break; |
719 } | 964 } |
720 #endif | 965 #endif |
721 } | 966 } |
722 | 967 |
723 /* Jump to the end of the loop if the LIMIT is reached. Except, if | 968 /* Jump to the end of the loop if the LIMIT is reached. Except, if |
724 ** there is a sorter, in which case the sorter has already limited | 969 ** there is a sorter, in which case the sorter has already limited |
725 ** the output for us. | 970 ** the output for us. |
726 */ | 971 */ |
727 if( pOrderBy==0 && p->iLimit ){ | 972 if( pSort==0 && p->iLimit ){ |
728 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); | 973 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); |
729 } | 974 } |
730 } | 975 } |
731 | 976 |
732 /* | 977 /* |
| 978 ** Allocate a KeyInfo object sufficient for an index of N key columns and |
| 979 ** X extra columns. |
| 980 */ |
| 981 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ |
| 982 KeyInfo *p = sqlite3DbMallocZero(0, |
| 983 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); |
| 984 if( p ){ |
| 985 p->aSortOrder = (u8*)&p->aColl[N+X]; |
| 986 p->nField = (u16)N; |
| 987 p->nXField = (u16)X; |
| 988 p->enc = ENC(db); |
| 989 p->db = db; |
| 990 p->nRef = 1; |
| 991 }else{ |
| 992 db->mallocFailed = 1; |
| 993 } |
| 994 return p; |
| 995 } |
| 996 |
| 997 /* |
| 998 ** Deallocate a KeyInfo object |
| 999 */ |
| 1000 void sqlite3KeyInfoUnref(KeyInfo *p){ |
| 1001 if( p ){ |
| 1002 assert( p->nRef>0 ); |
| 1003 p->nRef--; |
| 1004 if( p->nRef==0 ) sqlite3DbFree(0, p); |
| 1005 } |
| 1006 } |
| 1007 |
| 1008 /* |
| 1009 ** Make a new pointer to a KeyInfo object |
| 1010 */ |
| 1011 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ |
| 1012 if( p ){ |
| 1013 assert( p->nRef>0 ); |
| 1014 p->nRef++; |
| 1015 } |
| 1016 return p; |
| 1017 } |
| 1018 |
| 1019 #ifdef SQLITE_DEBUG |
| 1020 /* |
| 1021 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object |
| 1022 ** can only be changed if this is just a single reference to the object. |
| 1023 ** |
| 1024 ** This routine is used only inside of assert() statements. |
| 1025 */ |
| 1026 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } |
| 1027 #endif /* SQLITE_DEBUG */ |
| 1028 |
| 1029 /* |
733 ** Given an expression list, generate a KeyInfo structure that records | 1030 ** Given an expression list, generate a KeyInfo structure that records |
734 ** the collating sequence for each expression in that expression list. | 1031 ** the collating sequence for each expression in that expression list. |
735 ** | 1032 ** |
736 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting | 1033 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting |
737 ** KeyInfo structure is appropriate for initializing a virtual index to | 1034 ** KeyInfo structure is appropriate for initializing a virtual index to |
738 ** implement that clause. If the ExprList is the result set of a SELECT | 1035 ** implement that clause. If the ExprList is the result set of a SELECT |
739 ** then the KeyInfo structure is appropriate for initializing a virtual | 1036 ** then the KeyInfo structure is appropriate for initializing a virtual |
740 ** index to implement a DISTINCT test. | 1037 ** index to implement a DISTINCT test. |
741 ** | 1038 ** |
742 ** Space to hold the KeyInfo structure is obtain from malloc. The calling | 1039 ** Space to hold the KeyInfo structure is obtained from malloc. The calling |
743 ** function is responsible for seeing that this structure is eventually | 1040 ** function is responsible for seeing that this structure is eventually |
744 ** freed. Add the KeyInfo structure to the P4 field of an opcode using | 1041 ** freed. |
745 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. | |
746 */ | 1042 */ |
747 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ | 1043 static KeyInfo *keyInfoFromExprList( |
748 sqlite3 *db = pParse->db; | 1044 Parse *pParse, /* Parsing context */ |
| 1045 ExprList *pList, /* Form the KeyInfo object from this ExprList */ |
| 1046 int iStart, /* Begin with this column of pList */ |
| 1047 int nExtra /* Add this many extra columns to the end */ |
| 1048 ){ |
749 int nExpr; | 1049 int nExpr; |
750 KeyInfo *pInfo; | 1050 KeyInfo *pInfo; |
751 struct ExprList_item *pItem; | 1051 struct ExprList_item *pItem; |
| 1052 sqlite3 *db = pParse->db; |
752 int i; | 1053 int i; |
753 | 1054 |
754 nExpr = pList->nExpr; | 1055 nExpr = pList->nExpr; |
755 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); | 1056 pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1); |
756 if( pInfo ){ | 1057 if( pInfo ){ |
757 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; | 1058 assert( sqlite3KeyInfoIsWriteable(pInfo) ); |
758 pInfo->nField = (u16)nExpr; | 1059 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ |
759 pInfo->enc = ENC(db); | |
760 pInfo->db = db; | |
761 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ | |
762 CollSeq *pColl; | 1060 CollSeq *pColl; |
763 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); | 1061 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
764 if( !pColl ){ | 1062 if( !pColl ) pColl = db->pDfltColl; |
765 pColl = db->pDfltColl; | 1063 pInfo->aColl[i-iStart] = pColl; |
766 } | 1064 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; |
767 pInfo->aColl[i] = pColl; | |
768 pInfo->aSortOrder[i] = pItem->sortOrder; | |
769 } | 1065 } |
770 } | 1066 } |
771 return pInfo; | 1067 return pInfo; |
772 } | 1068 } |
773 | 1069 |
774 #ifndef SQLITE_OMIT_COMPOUND_SELECT | 1070 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
775 /* | 1071 /* |
776 ** Name of the connection operator, used for error messages. | 1072 ** Name of the connection operator, used for error messages. |
777 */ | 1073 */ |
778 static const char *selectOpName(int id){ | 1074 static const char *selectOpName(int id){ |
(...skipping 81 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
860 | 1156 |
861 /* | 1157 /* |
862 ** If the inner loop was generated using a non-null pOrderBy argument, | 1158 ** If the inner loop was generated using a non-null pOrderBy argument, |
863 ** then the results were placed in a sorter. After the loop is terminated | 1159 ** then the results were placed in a sorter. After the loop is terminated |
864 ** we need to run the sorter and output the results. The following | 1160 ** we need to run the sorter and output the results. The following |
865 ** routine generates the code needed to do that. | 1161 ** routine generates the code needed to do that. |
866 */ | 1162 */ |
867 static void generateSortTail( | 1163 static void generateSortTail( |
868 Parse *pParse, /* Parsing context */ | 1164 Parse *pParse, /* Parsing context */ |
869 Select *p, /* The SELECT statement */ | 1165 Select *p, /* The SELECT statement */ |
870 Vdbe *v, /* Generate code into this VDBE */ | 1166 SortCtx *pSort, /* Information on the ORDER BY clause */ |
871 int nColumn, /* Number of columns of data */ | 1167 int nColumn, /* Number of columns of data */ |
872 SelectDest *pDest /* Write the sorted results here */ | 1168 SelectDest *pDest /* Write the sorted results here */ |
873 ){ | 1169 ){ |
| 1170 Vdbe *v = pParse->pVdbe; /* The prepared statement */ |
874 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ | 1171 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ |
875 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ | 1172 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ |
876 int addr; | 1173 int addr; |
| 1174 int addrOnce = 0; |
877 int iTab; | 1175 int iTab; |
878 int pseudoTab = 0; | 1176 ExprList *pOrderBy = pSort->pOrderBy; |
879 ExprList *pOrderBy = p->pOrderBy; | |
880 | |
881 int eDest = pDest->eDest; | 1177 int eDest = pDest->eDest; |
882 int iParm = pDest->iParm; | 1178 int iParm = pDest->iSDParm; |
883 | |
884 int regRow; | 1179 int regRow; |
885 int regRowid; | 1180 int regRowid; |
| 1181 int nKey; |
| 1182 int iSortTab; /* Sorter cursor to read from */ |
| 1183 int nSortData; /* Trailing values to read from sorter */ |
| 1184 int i; |
| 1185 int bSeq; /* True if sorter record includes seq. no. */ |
| 1186 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| 1187 struct ExprList_item *aOutEx = p->pEList->a; |
| 1188 #endif |
886 | 1189 |
887 iTab = pOrderBy->iECursor; | 1190 if( pSort->labelBkOut ){ |
888 regRow = sqlite3GetTempReg(pParse); | 1191 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); |
| 1192 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); |
| 1193 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); |
| 1194 } |
| 1195 iTab = pSort->iECursor; |
889 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ | 1196 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ |
890 pseudoTab = pParse->nTab++; | |
891 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); | |
892 regRowid = 0; | 1197 regRowid = 0; |
| 1198 regRow = pDest->iSdst; |
| 1199 nSortData = nColumn; |
893 }else{ | 1200 }else{ |
894 regRowid = sqlite3GetTempReg(pParse); | 1201 regRowid = sqlite3GetTempReg(pParse); |
| 1202 regRow = sqlite3GetTempReg(pParse); |
| 1203 nSortData = 1; |
895 } | 1204 } |
896 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); | 1205 nKey = pOrderBy->nExpr - pSort->nOBSat; |
897 codeOffset(v, p, addrContinue); | 1206 if( pSort->sortFlags & SORTFLAG_UseSorter ){ |
898 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); | 1207 int regSortOut = ++pParse->nMem; |
| 1208 iSortTab = pParse->nTab++; |
| 1209 if( pSort->labelBkOut ){ |
| 1210 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); |
| 1211 } |
| 1212 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); |
| 1213 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); |
| 1214 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); |
| 1215 VdbeCoverage(v); |
| 1216 codeOffset(v, p->iOffset, addrContinue); |
| 1217 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); |
| 1218 bSeq = 0; |
| 1219 }else{ |
| 1220 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); |
| 1221 codeOffset(v, p->iOffset, addrContinue); |
| 1222 iSortTab = iTab; |
| 1223 bSeq = 1; |
| 1224 } |
| 1225 for(i=0; i<nSortData; i++){ |
| 1226 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); |
| 1227 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); |
| 1228 } |
899 switch( eDest ){ | 1229 switch( eDest ){ |
900 case SRT_Table: | 1230 case SRT_Table: |
901 case SRT_EphemTab: { | 1231 case SRT_EphemTab: { |
902 testcase( eDest==SRT_Table ); | 1232 testcase( eDest==SRT_Table ); |
903 testcase( eDest==SRT_EphemTab ); | 1233 testcase( eDest==SRT_EphemTab ); |
904 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); | 1234 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); |
905 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); | 1235 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); |
906 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); | 1236 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
907 break; | 1237 break; |
908 } | 1238 } |
909 #ifndef SQLITE_OMIT_SUBQUERY | 1239 #ifndef SQLITE_OMIT_SUBQUERY |
910 case SRT_Set: { | 1240 case SRT_Set: { |
911 assert( nColumn==1 ); | 1241 assert( nColumn==1 ); |
912 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); | 1242 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, |
| 1243 &pDest->affSdst, 1); |
913 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); | 1244 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); |
914 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); | 1245 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); |
915 break; | 1246 break; |
916 } | 1247 } |
917 case SRT_Mem: { | 1248 case SRT_Mem: { |
918 assert( nColumn==1 ); | 1249 assert( nColumn==1 ); |
919 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); | 1250 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); |
920 /* The LIMIT clause will terminate the loop for us */ | 1251 /* The LIMIT clause will terminate the loop for us */ |
921 break; | 1252 break; |
922 } | 1253 } |
923 #endif | 1254 #endif |
924 default: { | 1255 default: { |
925 int i; | |
926 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); | 1256 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); |
927 testcase( eDest==SRT_Output ); | 1257 testcase( eDest==SRT_Output ); |
928 testcase( eDest==SRT_Coroutine ); | 1258 testcase( eDest==SRT_Coroutine ); |
929 for(i=0; i<nColumn; i++){ | |
930 assert( regRow!=pDest->iMem+i ); | |
931 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); | |
932 if( i==0 ){ | |
933 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); | |
934 } | |
935 } | |
936 if( eDest==SRT_Output ){ | 1259 if( eDest==SRT_Output ){ |
937 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); | 1260 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); |
938 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); | 1261 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); |
939 }else{ | 1262 }else{ |
940 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); | 1263 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); |
941 } | 1264 } |
942 break; | 1265 break; |
943 } | 1266 } |
944 } | 1267 } |
945 sqlite3ReleaseTempReg(pParse, regRow); | 1268 if( regRowid ){ |
946 sqlite3ReleaseTempReg(pParse, regRowid); | 1269 sqlite3ReleaseTempReg(pParse, regRow); |
947 | 1270 sqlite3ReleaseTempReg(pParse, regRowid); |
| 1271 } |
948 /* The bottom of the loop | 1272 /* The bottom of the loop |
949 */ | 1273 */ |
950 sqlite3VdbeResolveLabel(v, addrContinue); | 1274 sqlite3VdbeResolveLabel(v, addrContinue); |
951 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); | 1275 if( pSort->sortFlags & SORTFLAG_UseSorter ){ |
| 1276 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); |
| 1277 }else{ |
| 1278 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); |
| 1279 } |
| 1280 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); |
952 sqlite3VdbeResolveLabel(v, addrBreak); | 1281 sqlite3VdbeResolveLabel(v, addrBreak); |
953 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ | |
954 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); | |
955 } | |
956 } | 1282 } |
957 | 1283 |
958 /* | 1284 /* |
959 ** Return a pointer to a string containing the 'declaration type' of the | 1285 ** Return a pointer to a string containing the 'declaration type' of the |
960 ** expression pExpr. The string may be treated as static by the caller. | 1286 ** expression pExpr. The string may be treated as static by the caller. |
961 ** | 1287 ** |
| 1288 ** Also try to estimate the size of the returned value and return that |
| 1289 ** result in *pEstWidth. |
| 1290 ** |
962 ** The declaration type is the exact datatype definition extracted from the | 1291 ** The declaration type is the exact datatype definition extracted from the |
963 ** original CREATE TABLE statement if the expression is a column. The | 1292 ** original CREATE TABLE statement if the expression is a column. The |
964 ** declaration type for a ROWID field is INTEGER. Exactly when an expression | 1293 ** declaration type for a ROWID field is INTEGER. Exactly when an expression |
965 ** is considered a column can be complex in the presence of subqueries. The | 1294 ** is considered a column can be complex in the presence of subqueries. The |
966 ** result-set expression in all of the following SELECT statements is | 1295 ** result-set expression in all of the following SELECT statements is |
967 ** considered a column by this function. | 1296 ** considered a column by this function. |
968 ** | 1297 ** |
969 ** SELECT col FROM tbl; | 1298 ** SELECT col FROM tbl; |
970 ** SELECT (SELECT col FROM tbl; | 1299 ** SELECT (SELECT col FROM tbl; |
971 ** SELECT (SELECT col FROM tbl); | 1300 ** SELECT (SELECT col FROM tbl); |
972 ** SELECT abc FROM (SELECT col AS abc FROM tbl); | 1301 ** SELECT abc FROM (SELECT col AS abc FROM tbl); |
973 ** | 1302 ** |
974 ** The declaration type for any expression other than a column is NULL. | 1303 ** The declaration type for any expression other than a column is NULL. |
| 1304 ** |
| 1305 ** This routine has either 3 or 6 parameters depending on whether or not |
| 1306 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. |
975 */ | 1307 */ |
976 static const char *columnType( | 1308 #ifdef SQLITE_ENABLE_COLUMN_METADATA |
| 1309 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) |
| 1310 static const char *columnTypeImpl( |
977 NameContext *pNC, | 1311 NameContext *pNC, |
978 Expr *pExpr, | 1312 Expr *pExpr, |
979 const char **pzOriginDb, | 1313 const char **pzOrigDb, |
980 const char **pzOriginTab, | 1314 const char **pzOrigTab, |
981 const char **pzOriginCol | 1315 const char **pzOrigCol, |
| 1316 u8 *pEstWidth |
982 ){ | 1317 ){ |
| 1318 char const *zOrigDb = 0; |
| 1319 char const *zOrigTab = 0; |
| 1320 char const *zOrigCol = 0; |
| 1321 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ |
| 1322 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) |
| 1323 static const char *columnTypeImpl( |
| 1324 NameContext *pNC, |
| 1325 Expr *pExpr, |
| 1326 u8 *pEstWidth |
| 1327 ){ |
| 1328 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ |
983 char const *zType = 0; | 1329 char const *zType = 0; |
984 char const *zOriginDb = 0; | |
985 char const *zOriginTab = 0; | |
986 char const *zOriginCol = 0; | |
987 int j; | 1330 int j; |
| 1331 u8 estWidth = 1; |
| 1332 |
988 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; | 1333 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; |
989 | |
990 switch( pExpr->op ){ | 1334 switch( pExpr->op ){ |
991 case TK_AGG_COLUMN: | 1335 case TK_AGG_COLUMN: |
992 case TK_COLUMN: { | 1336 case TK_COLUMN: { |
993 /* The expression is a column. Locate the table the column is being | 1337 /* The expression is a column. Locate the table the column is being |
994 ** extracted from in NameContext.pSrcList. This table may be real | 1338 ** extracted from in NameContext.pSrcList. This table may be real |
995 ** database table or a subquery. | 1339 ** database table or a subquery. |
996 */ | 1340 */ |
997 Table *pTab = 0; /* Table structure column is extracted from */ | 1341 Table *pTab = 0; /* Table structure column is extracted from */ |
998 Select *pS = 0; /* Select the column is extracted from */ | 1342 Select *pS = 0; /* Select the column is extracted from */ |
999 int iCol = pExpr->iColumn; /* Index of column in pTab */ | 1343 int iCol = pExpr->iColumn; /* Index of column in pTab */ |
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1040 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ | 1384 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ |
1041 /* If iCol is less than zero, then the expression requests the | 1385 /* If iCol is less than zero, then the expression requests the |
1042 ** rowid of the sub-select or view. This expression is legal (see | 1386 ** rowid of the sub-select or view. This expression is legal (see |
1043 ** test case misc2.2.2) - it always evaluates to NULL. | 1387 ** test case misc2.2.2) - it always evaluates to NULL. |
1044 */ | 1388 */ |
1045 NameContext sNC; | 1389 NameContext sNC; |
1046 Expr *p = pS->pEList->a[iCol].pExpr; | 1390 Expr *p = pS->pEList->a[iCol].pExpr; |
1047 sNC.pSrcList = pS->pSrc; | 1391 sNC.pSrcList = pS->pSrc; |
1048 sNC.pNext = pNC; | 1392 sNC.pNext = pNC; |
1049 sNC.pParse = pNC->pParse; | 1393 sNC.pParse = pNC->pParse; |
1050 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); | 1394 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); |
1051 } | 1395 } |
1052 }else if( ALWAYS(pTab->pSchema) ){ | 1396 }else if( pTab->pSchema ){ |
1053 /* A real table */ | 1397 /* A real table */ |
1054 assert( !pS ); | 1398 assert( !pS ); |
1055 if( iCol<0 ) iCol = pTab->iPKey; | 1399 if( iCol<0 ) iCol = pTab->iPKey; |
1056 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); | 1400 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
| 1401 #ifdef SQLITE_ENABLE_COLUMN_METADATA |
1057 if( iCol<0 ){ | 1402 if( iCol<0 ){ |
1058 zType = "INTEGER"; | 1403 zType = "INTEGER"; |
1059 zOriginCol = "rowid"; | 1404 zOrigCol = "rowid"; |
1060 }else{ | 1405 }else{ |
1061 zType = pTab->aCol[iCol].zType; | 1406 zType = pTab->aCol[iCol].zType; |
1062 zOriginCol = pTab->aCol[iCol].zName; | 1407 zOrigCol = pTab->aCol[iCol].zName; |
| 1408 estWidth = pTab->aCol[iCol].szEst; |
1063 } | 1409 } |
1064 zOriginTab = pTab->zName; | 1410 zOrigTab = pTab->zName; |
1065 if( pNC->pParse ){ | 1411 if( pNC->pParse ){ |
1066 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); | 1412 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); |
1067 zOriginDb = pNC->pParse->db->aDb[iDb].zName; | 1413 zOrigDb = pNC->pParse->db->aDb[iDb].zName; |
1068 } | 1414 } |
| 1415 #else |
| 1416 if( iCol<0 ){ |
| 1417 zType = "INTEGER"; |
| 1418 }else{ |
| 1419 zType = pTab->aCol[iCol].zType; |
| 1420 estWidth = pTab->aCol[iCol].szEst; |
| 1421 } |
| 1422 #endif |
1069 } | 1423 } |
1070 break; | 1424 break; |
1071 } | 1425 } |
1072 #ifndef SQLITE_OMIT_SUBQUERY | 1426 #ifndef SQLITE_OMIT_SUBQUERY |
1073 case TK_SELECT: { | 1427 case TK_SELECT: { |
1074 /* The expression is a sub-select. Return the declaration type and | 1428 /* The expression is a sub-select. Return the declaration type and |
1075 ** origin info for the single column in the result set of the SELECT | 1429 ** origin info for the single column in the result set of the SELECT |
1076 ** statement. | 1430 ** statement. |
1077 */ | 1431 */ |
1078 NameContext sNC; | 1432 NameContext sNC; |
1079 Select *pS = pExpr->x.pSelect; | 1433 Select *pS = pExpr->x.pSelect; |
1080 Expr *p = pS->pEList->a[0].pExpr; | 1434 Expr *p = pS->pEList->a[0].pExpr; |
1081 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); | 1435 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); |
1082 sNC.pSrcList = pS->pSrc; | 1436 sNC.pSrcList = pS->pSrc; |
1083 sNC.pNext = pNC; | 1437 sNC.pNext = pNC; |
1084 sNC.pParse = pNC->pParse; | 1438 sNC.pParse = pNC->pParse; |
1085 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); | 1439 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); |
1086 break; | 1440 break; |
1087 } | 1441 } |
1088 #endif | 1442 #endif |
1089 } | 1443 } |
1090 | 1444 |
1091 if( pzOriginDb ){ | 1445 #ifdef SQLITE_ENABLE_COLUMN_METADATA |
1092 assert( pzOriginTab && pzOriginCol ); | 1446 if( pzOrigDb ){ |
1093 *pzOriginDb = zOriginDb; | 1447 assert( pzOrigTab && pzOrigCol ); |
1094 *pzOriginTab = zOriginTab; | 1448 *pzOrigDb = zOrigDb; |
1095 *pzOriginCol = zOriginCol; | 1449 *pzOrigTab = zOrigTab; |
| 1450 *pzOrigCol = zOrigCol; |
1096 } | 1451 } |
| 1452 #endif |
| 1453 if( pEstWidth ) *pEstWidth = estWidth; |
1097 return zType; | 1454 return zType; |
1098 } | 1455 } |
1099 | 1456 |
1100 /* | 1457 /* |
1101 ** Generate code that will tell the VDBE the declaration types of columns | 1458 ** Generate code that will tell the VDBE the declaration types of columns |
1102 ** in the result set. | 1459 ** in the result set. |
1103 */ | 1460 */ |
1104 static void generateColumnTypes( | 1461 static void generateColumnTypes( |
1105 Parse *pParse, /* Parser context */ | 1462 Parse *pParse, /* Parser context */ |
1106 SrcList *pTabList, /* List of tables */ | 1463 SrcList *pTabList, /* List of tables */ |
1107 ExprList *pEList /* Expressions defining the result set */ | 1464 ExprList *pEList /* Expressions defining the result set */ |
1108 ){ | 1465 ){ |
1109 #ifndef SQLITE_OMIT_DECLTYPE | 1466 #ifndef SQLITE_OMIT_DECLTYPE |
1110 Vdbe *v = pParse->pVdbe; | 1467 Vdbe *v = pParse->pVdbe; |
1111 int i; | 1468 int i; |
1112 NameContext sNC; | 1469 NameContext sNC; |
1113 sNC.pSrcList = pTabList; | 1470 sNC.pSrcList = pTabList; |
1114 sNC.pParse = pParse; | 1471 sNC.pParse = pParse; |
1115 for(i=0; i<pEList->nExpr; i++){ | 1472 for(i=0; i<pEList->nExpr; i++){ |
1116 Expr *p = pEList->a[i].pExpr; | 1473 Expr *p = pEList->a[i].pExpr; |
1117 const char *zType; | 1474 const char *zType; |
1118 #ifdef SQLITE_ENABLE_COLUMN_METADATA | 1475 #ifdef SQLITE_ENABLE_COLUMN_METADATA |
1119 const char *zOrigDb = 0; | 1476 const char *zOrigDb = 0; |
1120 const char *zOrigTab = 0; | 1477 const char *zOrigTab = 0; |
1121 const char *zOrigCol = 0; | 1478 const char *zOrigCol = 0; |
1122 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); | 1479 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); |
1123 | 1480 |
1124 /* The vdbe must make its own copy of the column-type and other | 1481 /* The vdbe must make its own copy of the column-type and other |
1125 ** column specific strings, in case the schema is reset before this | 1482 ** column specific strings, in case the schema is reset before this |
1126 ** virtual machine is deleted. | 1483 ** virtual machine is deleted. |
1127 */ | 1484 */ |
1128 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); | 1485 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); |
1129 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); | 1486 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); |
1130 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); | 1487 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); |
1131 #else | 1488 #else |
1132 zType = columnType(&sNC, p, 0, 0, 0); | 1489 zType = columnType(&sNC, p, 0, 0, 0, 0); |
1133 #endif | 1490 #endif |
1134 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); | 1491 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); |
1135 } | 1492 } |
1136 #endif /* SQLITE_OMIT_DECLTYPE */ | 1493 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ |
1137 } | 1494 } |
1138 | 1495 |
1139 /* | 1496 /* |
1140 ** Generate code that will tell the VDBE the names of columns | 1497 ** Generate code that will tell the VDBE the names of columns |
1141 ** in the result set. This information is used to provide the | 1498 ** in the result set. This information is used to provide the |
1142 ** azCol[] values in the callback. | 1499 ** azCol[] values in the callback. |
1143 */ | 1500 */ |
1144 static void generateColumnNames( | 1501 static void generateColumnNames( |
1145 Parse *pParse, /* Parser context */ | 1502 Parse *pParse, /* Parser context */ |
1146 SrcList *pTabList, /* List of tables */ | 1503 SrcList *pTabList, /* List of tables */ |
(...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1190 sqlite3VdbeSetColName(v, i, COLNAME_NAME, | 1547 sqlite3VdbeSetColName(v, i, COLNAME_NAME, |
1191 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); | 1548 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); |
1192 }else if( fullNames ){ | 1549 }else if( fullNames ){ |
1193 char *zName = 0; | 1550 char *zName = 0; |
1194 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); | 1551 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); |
1195 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); | 1552 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); |
1196 }else{ | 1553 }else{ |
1197 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); | 1554 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); |
1198 } | 1555 } |
1199 }else{ | 1556 }else{ |
1200 sqlite3VdbeSetColName(v, i, COLNAME_NAME, | 1557 const char *z = pEList->a[i].zSpan; |
1201 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); | 1558 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); |
| 1559 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); |
1202 } | 1560 } |
1203 } | 1561 } |
1204 generateColumnTypes(pParse, pTabList, pEList); | 1562 generateColumnTypes(pParse, pTabList, pEList); |
1205 } | 1563 } |
1206 | 1564 |
1207 /* | 1565 /* |
1208 ** Given a an expression list (which is really the list of expressions | 1566 ** Given an expression list (which is really the list of expressions |
1209 ** that form the result set of a SELECT statement) compute appropriate | 1567 ** that form the result set of a SELECT statement) compute appropriate |
1210 ** column names for a table that would hold the expression list. | 1568 ** column names for a table that would hold the expression list. |
1211 ** | 1569 ** |
1212 ** All column names will be unique. | 1570 ** All column names will be unique. |
1213 ** | 1571 ** |
1214 ** Only the column names are computed. Column.zType, Column.zColl, | 1572 ** Only the column names are computed. Column.zType, Column.zColl, |
1215 ** and other fields of Column are zeroed. | 1573 ** and other fields of Column are zeroed. |
1216 ** | 1574 ** |
1217 ** Return SQLITE_OK on success. If a memory allocation error occurs, | 1575 ** Return SQLITE_OK on success. If a memory allocation error occurs, |
1218 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. | 1576 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. |
1219 */ | 1577 */ |
1220 static int selectColumnsFromExprList( | 1578 static int selectColumnsFromExprList( |
1221 Parse *pParse, /* Parsing context */ | 1579 Parse *pParse, /* Parsing context */ |
1222 ExprList *pEList, /* Expr list from which to derive column names */ | 1580 ExprList *pEList, /* Expr list from which to derive column names */ |
1223 int *pnCol, /* Write the number of columns here */ | 1581 i16 *pnCol, /* Write the number of columns here */ |
1224 Column **paCol /* Write the new column list here */ | 1582 Column **paCol /* Write the new column list here */ |
1225 ){ | 1583 ){ |
1226 sqlite3 *db = pParse->db; /* Database connection */ | 1584 sqlite3 *db = pParse->db; /* Database connection */ |
1227 int i, j; /* Loop counters */ | 1585 int i, j; /* Loop counters */ |
1228 int cnt; /* Index added to make the name unique */ | 1586 int cnt; /* Index added to make the name unique */ |
1229 Column *aCol, *pCol; /* For looping over result columns */ | 1587 Column *aCol, *pCol; /* For looping over result columns */ |
1230 int nCol; /* Number of columns in the result set */ | 1588 int nCol; /* Number of columns in the result set */ |
1231 Expr *p; /* Expression for a single result column */ | 1589 Expr *p; /* Expression for a single result column */ |
1232 char *zName; /* Column name */ | 1590 char *zName; /* Column name */ |
1233 int nName; /* Size of name in zName[] */ | 1591 int nName; /* Size of name in zName[] */ |
1234 | 1592 |
1235 *pnCol = nCol = pEList->nExpr; | 1593 if( pEList ){ |
1236 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); | 1594 nCol = pEList->nExpr; |
1237 if( aCol==0 ) return SQLITE_NOMEM; | 1595 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); |
| 1596 testcase( aCol==0 ); |
| 1597 }else{ |
| 1598 nCol = 0; |
| 1599 aCol = 0; |
| 1600 } |
| 1601 *pnCol = nCol; |
| 1602 *paCol = aCol; |
| 1603 |
1238 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ | 1604 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ |
1239 /* Get an appropriate name for the column | 1605 /* Get an appropriate name for the column |
1240 */ | 1606 */ |
1241 p = pEList->a[i].pExpr; | 1607 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); |
1242 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue) | |
1243 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 ); | |
1244 if( (zName = pEList->a[i].zName)!=0 ){ | 1608 if( (zName = pEList->a[i].zName)!=0 ){ |
1245 /* If the column contains an "AS <name>" phrase, use <name> as the name */ | 1609 /* If the column contains an "AS <name>" phrase, use <name> as the name */ |
1246 zName = sqlite3DbStrDup(db, zName); | 1610 zName = sqlite3DbStrDup(db, zName); |
1247 }else{ | 1611 }else{ |
1248 Expr *pColExpr = p; /* The expression that is the result column name */ | 1612 Expr *pColExpr = p; /* The expression that is the result column name */ |
1249 Table *pTab; /* Table associated with this expression */ | 1613 Table *pTab; /* Table associated with this expression */ |
1250 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight; | 1614 while( pColExpr->op==TK_DOT ){ |
| 1615 pColExpr = pColExpr->pRight; |
| 1616 assert( pColExpr!=0 ); |
| 1617 } |
1251 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ | 1618 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ |
1252 /* For columns use the column name name */ | 1619 /* For columns use the column name name */ |
1253 int iCol = pColExpr->iColumn; | 1620 int iCol = pColExpr->iColumn; |
1254 pTab = pColExpr->pTab; | 1621 pTab = pColExpr->pTab; |
1255 if( iCol<0 ) iCol = pTab->iPKey; | 1622 if( iCol<0 ) iCol = pTab->iPKey; |
1256 zName = sqlite3MPrintf(db, "%s", | 1623 zName = sqlite3MPrintf(db, "%s", |
1257 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); | 1624 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); |
1258 }else if( pColExpr->op==TK_ID ){ | 1625 }else if( pColExpr->op==TK_ID ){ |
1259 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); | 1626 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); |
1260 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); | 1627 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); |
1261 }else{ | 1628 }else{ |
1262 /* Use the original text of the column expression as its name */ | 1629 /* Use the original text of the column expression as its name */ |
1263 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); | 1630 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); |
1264 } | 1631 } |
1265 } | 1632 } |
1266 if( db->mallocFailed ){ | 1633 if( db->mallocFailed ){ |
1267 sqlite3DbFree(db, zName); | 1634 sqlite3DbFree(db, zName); |
1268 break; | 1635 break; |
1269 } | 1636 } |
1270 | 1637 |
1271 /* Make sure the column name is unique. If the name is not unique, | 1638 /* Make sure the column name is unique. If the name is not unique, |
1272 ** append a integer to the name so that it becomes unique. | 1639 ** append an integer to the name so that it becomes unique. |
1273 */ | 1640 */ |
1274 nName = sqlite3Strlen30(zName); | 1641 nName = sqlite3Strlen30(zName); |
1275 for(j=cnt=0; j<i; j++){ | 1642 for(j=cnt=0; j<i; j++){ |
1276 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ | 1643 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ |
1277 char *zNewName; | 1644 char *zNewName; |
| 1645 int k; |
| 1646 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} |
| 1647 if( k>=0 && zName[k]==':' ) nName = k; |
1278 zName[nName] = 0; | 1648 zName[nName] = 0; |
1279 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); | 1649 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); |
1280 sqlite3DbFree(db, zName); | 1650 sqlite3DbFree(db, zName); |
1281 zName = zNewName; | 1651 zName = zNewName; |
1282 j = -1; | 1652 j = -1; |
1283 if( zName==0 ) break; | 1653 if( zName==0 ) break; |
1284 } | 1654 } |
1285 } | 1655 } |
1286 pCol->zName = zName; | 1656 pCol->zName = zName; |
1287 } | 1657 } |
(...skipping 15 matching lines...) Expand all Loading... |
1303 ** | 1673 ** |
1304 ** The column list presumably came from selectColumnNamesFromExprList(). | 1674 ** The column list presumably came from selectColumnNamesFromExprList(). |
1305 ** The column list has only names, not types or collations. This | 1675 ** The column list has only names, not types or collations. This |
1306 ** routine goes through and adds the types and collations. | 1676 ** routine goes through and adds the types and collations. |
1307 ** | 1677 ** |
1308 ** This routine requires that all identifiers in the SELECT | 1678 ** This routine requires that all identifiers in the SELECT |
1309 ** statement be resolved. | 1679 ** statement be resolved. |
1310 */ | 1680 */ |
1311 static void selectAddColumnTypeAndCollation( | 1681 static void selectAddColumnTypeAndCollation( |
1312 Parse *pParse, /* Parsing contexts */ | 1682 Parse *pParse, /* Parsing contexts */ |
1313 int nCol, /* Number of columns */ | 1683 Table *pTab, /* Add column type information to this table */ |
1314 Column *aCol, /* List of columns */ | |
1315 Select *pSelect /* SELECT used to determine types and collations */ | 1684 Select *pSelect /* SELECT used to determine types and collations */ |
1316 ){ | 1685 ){ |
1317 sqlite3 *db = pParse->db; | 1686 sqlite3 *db = pParse->db; |
1318 NameContext sNC; | 1687 NameContext sNC; |
1319 Column *pCol; | 1688 Column *pCol; |
1320 CollSeq *pColl; | 1689 CollSeq *pColl; |
1321 int i; | 1690 int i; |
1322 Expr *p; | 1691 Expr *p; |
1323 struct ExprList_item *a; | 1692 struct ExprList_item *a; |
| 1693 u64 szAll = 0; |
1324 | 1694 |
1325 assert( pSelect!=0 ); | 1695 assert( pSelect!=0 ); |
1326 assert( (pSelect->selFlags & SF_Resolved)!=0 ); | 1696 assert( (pSelect->selFlags & SF_Resolved)!=0 ); |
1327 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); | 1697 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); |
1328 if( db->mallocFailed ) return; | 1698 if( db->mallocFailed ) return; |
1329 memset(&sNC, 0, sizeof(sNC)); | 1699 memset(&sNC, 0, sizeof(sNC)); |
1330 sNC.pSrcList = pSelect->pSrc; | 1700 sNC.pSrcList = pSelect->pSrc; |
1331 a = pSelect->pEList->a; | 1701 a = pSelect->pEList->a; |
1332 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ | 1702 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ |
1333 p = a[i].pExpr; | 1703 p = a[i].pExpr; |
1334 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); | 1704 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); |
| 1705 szAll += pCol->szEst; |
1335 pCol->affinity = sqlite3ExprAffinity(p); | 1706 pCol->affinity = sqlite3ExprAffinity(p); |
1336 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; | 1707 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; |
1337 pColl = sqlite3ExprCollSeq(pParse, p); | 1708 pColl = sqlite3ExprCollSeq(pParse, p); |
1338 if( pColl ){ | 1709 if( pColl ){ |
1339 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); | 1710 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); |
1340 } | 1711 } |
1341 } | 1712 } |
| 1713 pTab->szTabRow = sqlite3LogEst(szAll*4); |
1342 } | 1714 } |
1343 | 1715 |
1344 /* | 1716 /* |
1345 ** Given a SELECT statement, generate a Table structure that describes | 1717 ** Given a SELECT statement, generate a Table structure that describes |
1346 ** the result set of that SELECT. | 1718 ** the result set of that SELECT. |
1347 */ | 1719 */ |
1348 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ | 1720 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ |
1349 Table *pTab; | 1721 Table *pTab; |
1350 sqlite3 *db = pParse->db; | 1722 sqlite3 *db = pParse->db; |
1351 int savedFlags; | 1723 int savedFlags; |
1352 | 1724 |
1353 savedFlags = db->flags; | 1725 savedFlags = db->flags; |
1354 db->flags &= ~SQLITE_FullColNames; | 1726 db->flags &= ~SQLITE_FullColNames; |
1355 db->flags |= SQLITE_ShortColNames; | 1727 db->flags |= SQLITE_ShortColNames; |
1356 sqlite3SelectPrep(pParse, pSelect, 0); | 1728 sqlite3SelectPrep(pParse, pSelect, 0); |
1357 if( pParse->nErr ) return 0; | 1729 if( pParse->nErr ) return 0; |
1358 while( pSelect->pPrior ) pSelect = pSelect->pPrior; | 1730 while( pSelect->pPrior ) pSelect = pSelect->pPrior; |
1359 db->flags = savedFlags; | 1731 db->flags = savedFlags; |
1360 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); | 1732 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); |
1361 if( pTab==0 ){ | 1733 if( pTab==0 ){ |
1362 return 0; | 1734 return 0; |
1363 } | 1735 } |
1364 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside | 1736 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside |
1365 ** is disabled */ | 1737 ** is disabled */ |
1366 assert( db->lookaside.bEnabled==0 ); | 1738 assert( db->lookaside.bEnabled==0 ); |
1367 pTab->nRef = 1; | 1739 pTab->nRef = 1; |
1368 pTab->zName = 0; | 1740 pTab->zName = 0; |
1369 pTab->nRowEst = 1000000; | 1741 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
1370 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); | 1742 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); |
1371 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); | 1743 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); |
1372 pTab->iPKey = -1; | 1744 pTab->iPKey = -1; |
1373 if( db->mallocFailed ){ | 1745 if( db->mallocFailed ){ |
1374 sqlite3DeleteTable(db, pTab); | 1746 sqlite3DeleteTable(db, pTab); |
1375 return 0; | 1747 return 0; |
1376 } | 1748 } |
1377 return pTab; | 1749 return pTab; |
1378 } | 1750 } |
1379 | 1751 |
1380 /* | 1752 /* |
1381 ** Get a VDBE for the given parser context. Create a new one if necessary. | 1753 ** Get a VDBE for the given parser context. Create a new one if necessary. |
1382 ** If an error occurs, return NULL and leave a message in pParse. | 1754 ** If an error occurs, return NULL and leave a message in pParse. |
1383 */ | 1755 */ |
1384 Vdbe *sqlite3GetVdbe(Parse *pParse){ | 1756 Vdbe *sqlite3GetVdbe(Parse *pParse){ |
1385 Vdbe *v = pParse->pVdbe; | 1757 Vdbe *v = pParse->pVdbe; |
1386 if( v==0 ){ | 1758 if( v==0 ){ |
1387 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); | 1759 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); |
1388 #ifndef SQLITE_OMIT_TRACE | 1760 if( v ) sqlite3VdbeAddOp0(v, OP_Init); |
1389 if( v ){ | 1761 if( pParse->pToplevel==0 |
1390 sqlite3VdbeAddOp0(v, OP_Trace); | 1762 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) |
| 1763 ){ |
| 1764 pParse->okConstFactor = 1; |
1391 } | 1765 } |
1392 #endif | 1766 |
1393 } | 1767 } |
1394 return v; | 1768 return v; |
1395 } | 1769 } |
1396 | 1770 |
1397 | 1771 |
1398 /* | 1772 /* |
1399 ** Compute the iLimit and iOffset fields of the SELECT based on the | 1773 ** Compute the iLimit and iOffset fields of the SELECT based on the |
1400 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions | 1774 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions |
1401 ** that appear in the original SQL statement after the LIMIT and OFFSET | 1775 ** that appear in the original SQL statement after the LIMIT and OFFSET |
1402 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset | 1776 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset |
1403 ** are the integer memory register numbers for counters used to compute | 1777 ** are the integer memory register numbers for counters used to compute |
1404 ** the limit and offset. If there is no limit and/or offset, then | 1778 ** the limit and offset. If there is no limit and/or offset, then |
1405 ** iLimit and iOffset are negative. | 1779 ** iLimit and iOffset are negative. |
1406 ** | 1780 ** |
1407 ** This routine changes the values of iLimit and iOffset only if | 1781 ** This routine changes the values of iLimit and iOffset only if |
1408 ** a limit or offset is defined by pLimit and pOffset. iLimit and | 1782 ** a limit or offset is defined by pLimit and pOffset. iLimit and |
1409 ** iOffset should have been preset to appropriate default values | 1783 ** iOffset should have been preset to appropriate default values (zero) |
1410 ** (usually but not always -1) prior to calling this routine. | 1784 ** prior to calling this routine. |
| 1785 ** |
| 1786 ** The iOffset register (if it exists) is initialized to the value |
| 1787 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register |
| 1788 ** iOffset+1 is initialized to LIMIT+OFFSET. |
| 1789 ** |
1411 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get | 1790 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get |
1412 ** redefined. The UNION ALL operator uses this property to force | 1791 ** redefined. The UNION ALL operator uses this property to force |
1413 ** the reuse of the same limit and offset registers across multiple | 1792 ** the reuse of the same limit and offset registers across multiple |
1414 ** SELECT statements. | 1793 ** SELECT statements. |
1415 */ | 1794 */ |
1416 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ | 1795 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ |
1417 Vdbe *v = 0; | 1796 Vdbe *v = 0; |
1418 int iLimit = 0; | 1797 int iLimit = 0; |
1419 int iOffset; | 1798 int iOffset; |
1420 int addr1, n; | 1799 int addr1, n; |
1421 if( p->iLimit ) return; | 1800 if( p->iLimit ) return; |
1422 | 1801 |
1423 /* | 1802 /* |
1424 ** "LIMIT -1" always shows all rows. There is some | 1803 ** "LIMIT -1" always shows all rows. There is some |
1425 ** contraversy about what the correct behavior should be. | 1804 ** controversy about what the correct behavior should be. |
1426 ** The current implementation interprets "LIMIT 0" to mean | 1805 ** The current implementation interprets "LIMIT 0" to mean |
1427 ** no rows. | 1806 ** no rows. |
1428 */ | 1807 */ |
1429 sqlite3ExprCacheClear(pParse); | 1808 sqlite3ExprCacheClear(pParse); |
1430 assert( p->pOffset==0 || p->pLimit!=0 ); | 1809 assert( p->pOffset==0 || p->pLimit!=0 ); |
1431 if( p->pLimit ){ | 1810 if( p->pLimit ){ |
1432 p->iLimit = iLimit = ++pParse->nMem; | 1811 p->iLimit = iLimit = ++pParse->nMem; |
1433 v = sqlite3GetVdbe(pParse); | 1812 v = sqlite3GetVdbe(pParse); |
1434 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ | 1813 assert( v!=0 ); |
1435 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ | 1814 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ |
1436 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); | 1815 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); |
1437 VdbeComment((v, "LIMIT counter")); | 1816 VdbeComment((v, "LIMIT counter")); |
1438 if( n==0 ){ | 1817 if( n==0 ){ |
1439 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); | 1818 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); |
1440 }else{ | 1819 }else if( n>=0 && p->nSelectRow>(u64)n ){ |
1441 if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n; | 1820 p->nSelectRow = n; |
1442 } | 1821 } |
1443 }else{ | 1822 }else{ |
1444 sqlite3ExprCode(pParse, p->pLimit, iLimit); | 1823 sqlite3ExprCode(pParse, p->pLimit, iLimit); |
1445 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); | 1824 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); |
1446 VdbeComment((v, "LIMIT counter")); | 1825 VdbeComment((v, "LIMIT counter")); |
1447 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); | 1826 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v); |
1448 } | 1827 } |
1449 if( p->pOffset ){ | 1828 if( p->pOffset ){ |
1450 p->iOffset = iOffset = ++pParse->nMem; | 1829 p->iOffset = iOffset = ++pParse->nMem; |
1451 pParse->nMem++; /* Allocate an extra register for limit+offset */ | 1830 pParse->nMem++; /* Allocate an extra register for limit+offset */ |
1452 sqlite3ExprCode(pParse, p->pOffset, iOffset); | 1831 sqlite3ExprCode(pParse, p->pOffset, iOffset); |
1453 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); | 1832 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); |
1454 VdbeComment((v, "OFFSET counter")); | 1833 VdbeComment((v, "OFFSET counter")); |
1455 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); | 1834 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); |
1456 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); | 1835 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); |
1457 sqlite3VdbeJumpHere(v, addr1); | 1836 sqlite3VdbeJumpHere(v, addr1); |
1458 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); | 1837 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); |
1459 VdbeComment((v, "LIMIT+OFFSET")); | 1838 VdbeComment((v, "LIMIT+OFFSET")); |
1460 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); | 1839 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); |
1461 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); | 1840 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); |
1462 sqlite3VdbeJumpHere(v, addr1); | 1841 sqlite3VdbeJumpHere(v, addr1); |
1463 } | 1842 } |
1464 } | 1843 } |
1465 } | 1844 } |
1466 | 1845 |
1467 #ifndef SQLITE_OMIT_COMPOUND_SELECT | 1846 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
1468 /* | 1847 /* |
1469 ** Return the appropriate collating sequence for the iCol-th column of | 1848 ** Return the appropriate collating sequence for the iCol-th column of |
1470 ** the result set for the compound-select statement "p". Return NULL if | 1849 ** the result set for the compound-select statement "p". Return NULL if |
1471 ** the column has no default collating sequence. | 1850 ** the column has no default collating sequence. |
1472 ** | 1851 ** |
1473 ** The collating sequence for the compound select is taken from the | 1852 ** The collating sequence for the compound select is taken from the |
1474 ** left-most term of the select that has a collating sequence. | 1853 ** left-most term of the select that has a collating sequence. |
1475 */ | 1854 */ |
1476 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ | 1855 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ |
1477 CollSeq *pRet; | 1856 CollSeq *pRet; |
1478 if( p->pPrior ){ | 1857 if( p->pPrior ){ |
1479 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); | 1858 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); |
1480 }else{ | 1859 }else{ |
1481 pRet = 0; | 1860 pRet = 0; |
1482 } | 1861 } |
1483 assert( iCol>=0 ); | 1862 assert( iCol>=0 ); |
1484 if( pRet==0 && iCol<p->pEList->nExpr ){ | 1863 if( pRet==0 && iCol<p->pEList->nExpr ){ |
1485 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); | 1864 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); |
1486 } | 1865 } |
1487 return pRet; | 1866 return pRet; |
1488 } | 1867 } |
1489 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ | 1868 |
1490 | 1869 /* |
1491 /* Forward reference */ | 1870 ** The select statement passed as the second parameter is a compound SELECT |
| 1871 ** with an ORDER BY clause. This function allocates and returns a KeyInfo |
| 1872 ** structure suitable for implementing the ORDER BY. |
| 1873 ** |
| 1874 ** Space to hold the KeyInfo structure is obtained from malloc. The calling |
| 1875 ** function is responsible for ensuring that this structure is eventually |
| 1876 ** freed. |
| 1877 */ |
| 1878 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ |
| 1879 ExprList *pOrderBy = p->pOrderBy; |
| 1880 int nOrderBy = p->pOrderBy->nExpr; |
| 1881 sqlite3 *db = pParse->db; |
| 1882 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); |
| 1883 if( pRet ){ |
| 1884 int i; |
| 1885 for(i=0; i<nOrderBy; i++){ |
| 1886 struct ExprList_item *pItem = &pOrderBy->a[i]; |
| 1887 Expr *pTerm = pItem->pExpr; |
| 1888 CollSeq *pColl; |
| 1889 |
| 1890 if( pTerm->flags & EP_Collate ){ |
| 1891 pColl = sqlite3ExprCollSeq(pParse, pTerm); |
| 1892 }else{ |
| 1893 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); |
| 1894 if( pColl==0 ) pColl = db->pDfltColl; |
| 1895 pOrderBy->a[i].pExpr = |
| 1896 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); |
| 1897 } |
| 1898 assert( sqlite3KeyInfoIsWriteable(pRet) ); |
| 1899 pRet->aColl[i] = pColl; |
| 1900 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; |
| 1901 } |
| 1902 } |
| 1903 |
| 1904 return pRet; |
| 1905 } |
| 1906 |
| 1907 #ifndef SQLITE_OMIT_CTE |
| 1908 /* |
| 1909 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE |
| 1910 ** query of the form: |
| 1911 ** |
| 1912 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) |
| 1913 ** \___________/ \_______________/ |
| 1914 ** p->pPrior p |
| 1915 ** |
| 1916 ** |
| 1917 ** There is exactly one reference to the recursive-table in the FROM clause |
| 1918 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. |
| 1919 ** |
| 1920 ** The setup-query runs once to generate an initial set of rows that go |
| 1921 ** into a Queue table. Rows are extracted from the Queue table one by |
| 1922 ** one. Each row extracted from Queue is output to pDest. Then the single |
| 1923 ** extracted row (now in the iCurrent table) becomes the content of the |
| 1924 ** recursive-table for a recursive-query run. The output of the recursive-query |
| 1925 ** is added back into the Queue table. Then another row is extracted from Queue |
| 1926 ** and the iteration continues until the Queue table is empty. |
| 1927 ** |
| 1928 ** If the compound query operator is UNION then no duplicate rows are ever |
| 1929 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows |
| 1930 ** that have ever been inserted into Queue and causes duplicates to be |
| 1931 ** discarded. If the operator is UNION ALL, then duplicates are allowed. |
| 1932 ** |
| 1933 ** If the query has an ORDER BY, then entries in the Queue table are kept in |
| 1934 ** ORDER BY order and the first entry is extracted for each cycle. Without |
| 1935 ** an ORDER BY, the Queue table is just a FIFO. |
| 1936 ** |
| 1937 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows |
| 1938 ** have been output to pDest. A LIMIT of zero means to output no rows and a |
| 1939 ** negative LIMIT means to output all rows. If there is also an OFFSET clause |
| 1940 ** with a positive value, then the first OFFSET outputs are discarded rather |
| 1941 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET |
| 1942 ** rows have been skipped. |
| 1943 */ |
| 1944 static void generateWithRecursiveQuery( |
| 1945 Parse *pParse, /* Parsing context */ |
| 1946 Select *p, /* The recursive SELECT to be coded */ |
| 1947 SelectDest *pDest /* What to do with query results */ |
| 1948 ){ |
| 1949 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ |
| 1950 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ |
| 1951 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ |
| 1952 Select *pSetup = p->pPrior; /* The setup query */ |
| 1953 int addrTop; /* Top of the loop */ |
| 1954 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ |
| 1955 int iCurrent = 0; /* The Current table */ |
| 1956 int regCurrent; /* Register holding Current table */ |
| 1957 int iQueue; /* The Queue table */ |
| 1958 int iDistinct = 0; /* To ensure unique results if UNION */ |
| 1959 int eDest = SRT_Fifo; /* How to write to Queue */ |
| 1960 SelectDest destQueue; /* SelectDest targetting the Queue table */ |
| 1961 int i; /* Loop counter */ |
| 1962 int rc; /* Result code */ |
| 1963 ExprList *pOrderBy; /* The ORDER BY clause */ |
| 1964 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ |
| 1965 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ |
| 1966 |
| 1967 /* Obtain authorization to do a recursive query */ |
| 1968 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; |
| 1969 |
| 1970 /* Process the LIMIT and OFFSET clauses, if they exist */ |
| 1971 addrBreak = sqlite3VdbeMakeLabel(v); |
| 1972 computeLimitRegisters(pParse, p, addrBreak); |
| 1973 pLimit = p->pLimit; |
| 1974 pOffset = p->pOffset; |
| 1975 regLimit = p->iLimit; |
| 1976 regOffset = p->iOffset; |
| 1977 p->pLimit = p->pOffset = 0; |
| 1978 p->iLimit = p->iOffset = 0; |
| 1979 pOrderBy = p->pOrderBy; |
| 1980 |
| 1981 /* Locate the cursor number of the Current table */ |
| 1982 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ |
| 1983 if( pSrc->a[i].isRecursive ){ |
| 1984 iCurrent = pSrc->a[i].iCursor; |
| 1985 break; |
| 1986 } |
| 1987 } |
| 1988 |
| 1989 /* Allocate cursors numbers for Queue and Distinct. The cursor number for |
| 1990 ** the Distinct table must be exactly one greater than Queue in order |
| 1991 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ |
| 1992 iQueue = pParse->nTab++; |
| 1993 if( p->op==TK_UNION ){ |
| 1994 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; |
| 1995 iDistinct = pParse->nTab++; |
| 1996 }else{ |
| 1997 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; |
| 1998 } |
| 1999 sqlite3SelectDestInit(&destQueue, eDest, iQueue); |
| 2000 |
| 2001 /* Allocate cursors for Current, Queue, and Distinct. */ |
| 2002 regCurrent = ++pParse->nMem; |
| 2003 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); |
| 2004 if( pOrderBy ){ |
| 2005 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); |
| 2006 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, |
| 2007 (char*)pKeyInfo, P4_KEYINFO); |
| 2008 destQueue.pOrderBy = pOrderBy; |
| 2009 }else{ |
| 2010 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); |
| 2011 } |
| 2012 VdbeComment((v, "Queue table")); |
| 2013 if( iDistinct ){ |
| 2014 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); |
| 2015 p->selFlags |= SF_UsesEphemeral; |
| 2016 } |
| 2017 |
| 2018 /* Detach the ORDER BY clause from the compound SELECT */ |
| 2019 p->pOrderBy = 0; |
| 2020 |
| 2021 /* Store the results of the setup-query in Queue. */ |
| 2022 pSetup->pNext = 0; |
| 2023 rc = sqlite3Select(pParse, pSetup, &destQueue); |
| 2024 pSetup->pNext = p; |
| 2025 if( rc ) goto end_of_recursive_query; |
| 2026 |
| 2027 /* Find the next row in the Queue and output that row */ |
| 2028 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); |
| 2029 |
| 2030 /* Transfer the next row in Queue over to Current */ |
| 2031 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ |
| 2032 if( pOrderBy ){ |
| 2033 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); |
| 2034 }else{ |
| 2035 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); |
| 2036 } |
| 2037 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); |
| 2038 |
| 2039 /* Output the single row in Current */ |
| 2040 addrCont = sqlite3VdbeMakeLabel(v); |
| 2041 codeOffset(v, regOffset, addrCont); |
| 2042 selectInnerLoop(pParse, p, p->pEList, iCurrent, |
| 2043 0, 0, pDest, addrCont, addrBreak); |
| 2044 if( regLimit ){ |
| 2045 sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); |
| 2046 VdbeCoverage(v); |
| 2047 } |
| 2048 sqlite3VdbeResolveLabel(v, addrCont); |
| 2049 |
| 2050 /* Execute the recursive SELECT taking the single row in Current as |
| 2051 ** the value for the recursive-table. Store the results in the Queue. |
| 2052 */ |
| 2053 p->pPrior = 0; |
| 2054 sqlite3Select(pParse, p, &destQueue); |
| 2055 assert( p->pPrior==0 ); |
| 2056 p->pPrior = pSetup; |
| 2057 |
| 2058 /* Keep running the loop until the Queue is empty */ |
| 2059 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); |
| 2060 sqlite3VdbeResolveLabel(v, addrBreak); |
| 2061 |
| 2062 end_of_recursive_query: |
| 2063 sqlite3ExprListDelete(pParse->db, p->pOrderBy); |
| 2064 p->pOrderBy = pOrderBy; |
| 2065 p->pLimit = pLimit; |
| 2066 p->pOffset = pOffset; |
| 2067 return; |
| 2068 } |
| 2069 #endif /* SQLITE_OMIT_CTE */ |
| 2070 |
| 2071 /* Forward references */ |
1492 static int multiSelectOrderBy( | 2072 static int multiSelectOrderBy( |
1493 Parse *pParse, /* Parsing context */ | 2073 Parse *pParse, /* Parsing context */ |
1494 Select *p, /* The right-most of SELECTs to be coded */ | 2074 Select *p, /* The right-most of SELECTs to be coded */ |
1495 SelectDest *pDest /* What to do with query results */ | 2075 SelectDest *pDest /* What to do with query results */ |
1496 ); | 2076 ); |
1497 | 2077 |
1498 | 2078 |
1499 #ifndef SQLITE_OMIT_COMPOUND_SELECT | |
1500 /* | 2079 /* |
1501 ** This routine is called to process a compound query form from | 2080 ** This routine is called to process a compound query form from |
1502 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or | 2081 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or |
1503 ** INTERSECT | 2082 ** INTERSECT |
1504 ** | 2083 ** |
1505 ** "p" points to the right-most of the two queries. the query on the | 2084 ** "p" points to the right-most of the two queries. the query on the |
1506 ** left is p->pPrior. The left query could also be a compound query | 2085 ** left is p->pPrior. The left query could also be a compound query |
1507 ** in which case this routine will be called recursively. | 2086 ** in which case this routine will be called recursively. |
1508 ** | 2087 ** |
1509 ** The results of the total query are to be written into a destination | 2088 ** The results of the total query are to be written into a destination |
(...skipping 23 matching lines...) Expand all Loading... |
1533 Select *p, /* The right-most of SELECTs to be coded */ | 2112 Select *p, /* The right-most of SELECTs to be coded */ |
1534 SelectDest *pDest /* What to do with query results */ | 2113 SelectDest *pDest /* What to do with query results */ |
1535 ){ | 2114 ){ |
1536 int rc = SQLITE_OK; /* Success code from a subroutine */ | 2115 int rc = SQLITE_OK; /* Success code from a subroutine */ |
1537 Select *pPrior; /* Another SELECT immediately to our left */ | 2116 Select *pPrior; /* Another SELECT immediately to our left */ |
1538 Vdbe *v; /* Generate code to this VDBE */ | 2117 Vdbe *v; /* Generate code to this VDBE */ |
1539 SelectDest dest; /* Alternative data destination */ | 2118 SelectDest dest; /* Alternative data destination */ |
1540 Select *pDelete = 0; /* Chain of simple selects to delete */ | 2119 Select *pDelete = 0; /* Chain of simple selects to delete */ |
1541 sqlite3 *db; /* Database connection */ | 2120 sqlite3 *db; /* Database connection */ |
1542 #ifndef SQLITE_OMIT_EXPLAIN | 2121 #ifndef SQLITE_OMIT_EXPLAIN |
1543 int iSub1; /* EQP id of left-hand query */ | 2122 int iSub1 = 0; /* EQP id of left-hand query */ |
1544 int iSub2; /* EQP id of right-hand query */ | 2123 int iSub2 = 0; /* EQP id of right-hand query */ |
1545 #endif | 2124 #endif |
1546 | 2125 |
1547 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only | 2126 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only |
1548 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. | 2127 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. |
1549 */ | 2128 */ |
1550 assert( p && p->pPrior ); /* Calling function guarantees this much */ | 2129 assert( p && p->pPrior ); /* Calling function guarantees this much */ |
| 2130 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); |
1551 db = pParse->db; | 2131 db = pParse->db; |
1552 pPrior = p->pPrior; | 2132 pPrior = p->pPrior; |
1553 assert( pPrior->pRightmost!=pPrior ); | |
1554 assert( pPrior->pRightmost==p->pRightmost ); | |
1555 dest = *pDest; | 2133 dest = *pDest; |
1556 if( pPrior->pOrderBy ){ | 2134 if( pPrior->pOrderBy ){ |
1557 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", | 2135 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", |
1558 selectOpName(p->op)); | 2136 selectOpName(p->op)); |
1559 rc = 1; | 2137 rc = 1; |
1560 goto multi_select_end; | 2138 goto multi_select_end; |
1561 } | 2139 } |
1562 if( pPrior->pLimit ){ | 2140 if( pPrior->pLimit ){ |
1563 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", | 2141 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", |
1564 selectOpName(p->op)); | 2142 selectOpName(p->op)); |
1565 rc = 1; | 2143 rc = 1; |
1566 goto multi_select_end; | 2144 goto multi_select_end; |
1567 } | 2145 } |
1568 | 2146 |
1569 v = sqlite3GetVdbe(pParse); | 2147 v = sqlite3GetVdbe(pParse); |
1570 assert( v!=0 ); /* The VDBE already created by calling function */ | 2148 assert( v!=0 ); /* The VDBE already created by calling function */ |
1571 | 2149 |
1572 /* Create the destination temporary table if necessary | 2150 /* Create the destination temporary table if necessary |
1573 */ | 2151 */ |
1574 if( dest.eDest==SRT_EphemTab ){ | 2152 if( dest.eDest==SRT_EphemTab ){ |
1575 assert( p->pEList ); | 2153 assert( p->pEList ); |
1576 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); | 2154 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); |
1577 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); | 2155 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); |
1578 dest.eDest = SRT_Table; | 2156 dest.eDest = SRT_Table; |
1579 } | 2157 } |
1580 | 2158 |
1581 /* Make sure all SELECTs in the statement have the same number of elements | 2159 /* Make sure all SELECTs in the statement have the same number of elements |
1582 ** in their result sets. | 2160 ** in their result sets. |
1583 */ | 2161 */ |
1584 assert( p->pEList && pPrior->pEList ); | 2162 assert( p->pEList && pPrior->pEList ); |
1585 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ | 2163 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ |
1586 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" | 2164 if( p->selFlags & SF_Values ){ |
1587 " do not have the same number of result columns", selectOpName(p->op)); | 2165 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); |
| 2166 }else{ |
| 2167 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" |
| 2168 " do not have the same number of result columns", selectOpName(p->op)); |
| 2169 } |
1588 rc = 1; | 2170 rc = 1; |
1589 goto multi_select_end; | 2171 goto multi_select_end; |
1590 } | 2172 } |
1591 | 2173 |
| 2174 #ifndef SQLITE_OMIT_CTE |
| 2175 if( p->selFlags & SF_Recursive ){ |
| 2176 generateWithRecursiveQuery(pParse, p, &dest); |
| 2177 }else |
| 2178 #endif |
| 2179 |
1592 /* Compound SELECTs that have an ORDER BY clause are handled separately. | 2180 /* Compound SELECTs that have an ORDER BY clause are handled separately. |
1593 */ | 2181 */ |
1594 if( p->pOrderBy ){ | 2182 if( p->pOrderBy ){ |
1595 return multiSelectOrderBy(pParse, p, pDest); | 2183 return multiSelectOrderBy(pParse, p, pDest); |
1596 } | 2184 }else |
1597 | 2185 |
1598 /* Generate code for the left and right SELECT statements. | 2186 /* Generate code for the left and right SELECT statements. |
1599 */ | 2187 */ |
1600 switch( p->op ){ | 2188 switch( p->op ){ |
1601 case TK_ALL: { | 2189 case TK_ALL: { |
1602 int addr = 0; | 2190 int addr = 0; |
1603 int nLimit; | 2191 int nLimit; |
1604 assert( !pPrior->pLimit ); | 2192 assert( !pPrior->pLimit ); |
| 2193 pPrior->iLimit = p->iLimit; |
| 2194 pPrior->iOffset = p->iOffset; |
1605 pPrior->pLimit = p->pLimit; | 2195 pPrior->pLimit = p->pLimit; |
1606 pPrior->pOffset = p->pOffset; | 2196 pPrior->pOffset = p->pOffset; |
1607 explainSetInteger(iSub1, pParse->iNextSelectId); | 2197 explainSetInteger(iSub1, pParse->iNextSelectId); |
1608 rc = sqlite3Select(pParse, pPrior, &dest); | 2198 rc = sqlite3Select(pParse, pPrior, &dest); |
1609 p->pLimit = 0; | 2199 p->pLimit = 0; |
1610 p->pOffset = 0; | 2200 p->pOffset = 0; |
1611 if( rc ){ | 2201 if( rc ){ |
1612 goto multi_select_end; | 2202 goto multi_select_end; |
1613 } | 2203 } |
1614 p->pPrior = 0; | 2204 p->pPrior = 0; |
1615 p->iLimit = pPrior->iLimit; | 2205 p->iLimit = pPrior->iLimit; |
1616 p->iOffset = pPrior->iOffset; | 2206 p->iOffset = pPrior->iOffset; |
1617 if( p->iLimit ){ | 2207 if( p->iLimit ){ |
1618 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); | 2208 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v); |
1619 VdbeComment((v, "Jump ahead if LIMIT reached")); | 2209 VdbeComment((v, "Jump ahead if LIMIT reached")); |
1620 } | 2210 } |
1621 explainSetInteger(iSub2, pParse->iNextSelectId); | 2211 explainSetInteger(iSub2, pParse->iNextSelectId); |
1622 rc = sqlite3Select(pParse, p, &dest); | 2212 rc = sqlite3Select(pParse, p, &dest); |
1623 testcase( rc!=SQLITE_OK ); | 2213 testcase( rc!=SQLITE_OK ); |
1624 pDelete = p->pPrior; | 2214 pDelete = p->pPrior; |
1625 p->pPrior = pPrior; | 2215 p->pPrior = pPrior; |
1626 p->nSelectRow += pPrior->nSelectRow; | 2216 p->nSelectRow += pPrior->nSelectRow; |
1627 if( pPrior->pLimit | 2217 if( pPrior->pLimit |
1628 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) | 2218 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) |
1629 && p->nSelectRow > (double)nLimit | 2219 && nLimit>0 && p->nSelectRow > (u64)nLimit |
1630 ){ | 2220 ){ |
1631 p->nSelectRow = (double)nLimit; | 2221 p->nSelectRow = nLimit; |
1632 } | 2222 } |
1633 if( addr ){ | 2223 if( addr ){ |
1634 sqlite3VdbeJumpHere(v, addr); | 2224 sqlite3VdbeJumpHere(v, addr); |
1635 } | 2225 } |
1636 break; | 2226 break; |
1637 } | 2227 } |
1638 case TK_EXCEPT: | 2228 case TK_EXCEPT: |
1639 case TK_UNION: { | 2229 case TK_UNION: { |
1640 int unionTab; /* Cursor number of the temporary table holding result */ | 2230 int unionTab; /* Cursor number of the temporary table holding result */ |
1641 u8 op = 0; /* One of the SRT_ operations to apply to self */ | 2231 u8 op = 0; /* One of the SRT_ operations to apply to self */ |
1642 int priorOp; /* The SRT_ operation to apply to prior selects */ | 2232 int priorOp; /* The SRT_ operation to apply to prior selects */ |
1643 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ | 2233 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ |
1644 int addr; | 2234 int addr; |
1645 SelectDest uniondest; | 2235 SelectDest uniondest; |
1646 | 2236 |
1647 testcase( p->op==TK_EXCEPT ); | 2237 testcase( p->op==TK_EXCEPT ); |
1648 testcase( p->op==TK_UNION ); | 2238 testcase( p->op==TK_UNION ); |
1649 priorOp = SRT_Union; | 2239 priorOp = SRT_Union; |
1650 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ | 2240 if( dest.eDest==priorOp ){ |
1651 /* We can reuse a temporary table generated by a SELECT to our | 2241 /* We can reuse a temporary table generated by a SELECT to our |
1652 ** right. | 2242 ** right. |
1653 */ | 2243 */ |
1654 assert( p->pRightmost!=p ); /* Can only happen for leftward elements | |
1655 ** of a 3-way or more compound */ | |
1656 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ | 2244 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ |
1657 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ | 2245 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ |
1658 unionTab = dest.iParm; | 2246 unionTab = dest.iSDParm; |
1659 }else{ | 2247 }else{ |
1660 /* We will need to create our own temporary table to hold the | 2248 /* We will need to create our own temporary table to hold the |
1661 ** intermediate results. | 2249 ** intermediate results. |
1662 */ | 2250 */ |
1663 unionTab = pParse->nTab++; | 2251 unionTab = pParse->nTab++; |
1664 assert( p->pOrderBy==0 ); | 2252 assert( p->pOrderBy==0 ); |
1665 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); | 2253 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); |
1666 assert( p->addrOpenEphm[0] == -1 ); | 2254 assert( p->addrOpenEphm[0] == -1 ); |
1667 p->addrOpenEphm[0] = addr; | 2255 p->addrOpenEphm[0] = addr; |
1668 p->pRightmost->selFlags |= SF_UsesEphemeral; | 2256 findRightmost(p)->selFlags |= SF_UsesEphemeral; |
1669 assert( p->pEList ); | 2257 assert( p->pEList ); |
1670 } | 2258 } |
1671 | 2259 |
1672 /* Code the SELECT statements to our left | 2260 /* Code the SELECT statements to our left |
1673 */ | 2261 */ |
1674 assert( !pPrior->pOrderBy ); | 2262 assert( !pPrior->pOrderBy ); |
1675 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); | 2263 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); |
1676 explainSetInteger(iSub1, pParse->iNextSelectId); | 2264 explainSetInteger(iSub1, pParse->iNextSelectId); |
1677 rc = sqlite3Select(pParse, pPrior, &uniondest); | 2265 rc = sqlite3Select(pParse, pPrior, &uniondest); |
1678 if( rc ){ | 2266 if( rc ){ |
(...skipping 26 matching lines...) Expand all Loading... |
1705 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; | 2293 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; |
1706 sqlite3ExprDelete(db, p->pLimit); | 2294 sqlite3ExprDelete(db, p->pLimit); |
1707 p->pLimit = pLimit; | 2295 p->pLimit = pLimit; |
1708 p->pOffset = pOffset; | 2296 p->pOffset = pOffset; |
1709 p->iLimit = 0; | 2297 p->iLimit = 0; |
1710 p->iOffset = 0; | 2298 p->iOffset = 0; |
1711 | 2299 |
1712 /* Convert the data in the temporary table into whatever form | 2300 /* Convert the data in the temporary table into whatever form |
1713 ** it is that we currently need. | 2301 ** it is that we currently need. |
1714 */ | 2302 */ |
1715 assert( unionTab==dest.iParm || dest.eDest!=priorOp ); | 2303 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); |
1716 if( dest.eDest!=priorOp ){ | 2304 if( dest.eDest!=priorOp ){ |
1717 int iCont, iBreak, iStart; | 2305 int iCont, iBreak, iStart; |
1718 assert( p->pEList ); | 2306 assert( p->pEList ); |
1719 if( dest.eDest==SRT_Output ){ | 2307 if( dest.eDest==SRT_Output ){ |
1720 Select *pFirst = p; | 2308 Select *pFirst = p; |
1721 while( pFirst->pPrior ) pFirst = pFirst->pPrior; | 2309 while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
1722 generateColumnNames(pParse, 0, pFirst->pEList); | 2310 generateColumnNames(pParse, 0, pFirst->pEList); |
1723 } | 2311 } |
1724 iBreak = sqlite3VdbeMakeLabel(v); | 2312 iBreak = sqlite3VdbeMakeLabel(v); |
1725 iCont = sqlite3VdbeMakeLabel(v); | 2313 iCont = sqlite3VdbeMakeLabel(v); |
1726 computeLimitRegisters(pParse, p, iBreak); | 2314 computeLimitRegisters(pParse, p, iBreak); |
1727 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); | 2315 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); |
1728 iStart = sqlite3VdbeCurrentAddr(v); | 2316 iStart = sqlite3VdbeCurrentAddr(v); |
1729 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, | 2317 selectInnerLoop(pParse, p, p->pEList, unionTab, |
1730 0, -1, &dest, iCont, iBreak); | 2318 0, 0, &dest, iCont, iBreak); |
1731 sqlite3VdbeResolveLabel(v, iCont); | 2319 sqlite3VdbeResolveLabel(v, iCont); |
1732 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); | 2320 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); |
1733 sqlite3VdbeResolveLabel(v, iBreak); | 2321 sqlite3VdbeResolveLabel(v, iBreak); |
1734 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); | 2322 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); |
1735 } | 2323 } |
1736 break; | 2324 break; |
1737 } | 2325 } |
1738 default: assert( p->op==TK_INTERSECT ); { | 2326 default: assert( p->op==TK_INTERSECT ); { |
1739 int tab1, tab2; | 2327 int tab1, tab2; |
1740 int iCont, iBreak, iStart; | 2328 int iCont, iBreak, iStart; |
1741 Expr *pLimit, *pOffset; | 2329 Expr *pLimit, *pOffset; |
1742 int addr; | 2330 int addr; |
1743 SelectDest intersectdest; | 2331 SelectDest intersectdest; |
1744 int r1; | 2332 int r1; |
1745 | 2333 |
1746 /* INTERSECT is different from the others since it requires | 2334 /* INTERSECT is different from the others since it requires |
1747 ** two temporary tables. Hence it has its own case. Begin | 2335 ** two temporary tables. Hence it has its own case. Begin |
1748 ** by allocating the tables we will need. | 2336 ** by allocating the tables we will need. |
1749 */ | 2337 */ |
1750 tab1 = pParse->nTab++; | 2338 tab1 = pParse->nTab++; |
1751 tab2 = pParse->nTab++; | 2339 tab2 = pParse->nTab++; |
1752 assert( p->pOrderBy==0 ); | 2340 assert( p->pOrderBy==0 ); |
1753 | 2341 |
1754 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); | 2342 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); |
1755 assert( p->addrOpenEphm[0] == -1 ); | 2343 assert( p->addrOpenEphm[0] == -1 ); |
1756 p->addrOpenEphm[0] = addr; | 2344 p->addrOpenEphm[0] = addr; |
1757 p->pRightmost->selFlags |= SF_UsesEphemeral; | 2345 findRightmost(p)->selFlags |= SF_UsesEphemeral; |
1758 assert( p->pEList ); | 2346 assert( p->pEList ); |
1759 | 2347 |
1760 /* Code the SELECTs to our left into temporary table "tab1". | 2348 /* Code the SELECTs to our left into temporary table "tab1". |
1761 */ | 2349 */ |
1762 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); | 2350 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); |
1763 explainSetInteger(iSub1, pParse->iNextSelectId); | 2351 explainSetInteger(iSub1, pParse->iNextSelectId); |
1764 rc = sqlite3Select(pParse, pPrior, &intersectdest); | 2352 rc = sqlite3Select(pParse, pPrior, &intersectdest); |
1765 if( rc ){ | 2353 if( rc ){ |
1766 goto multi_select_end; | 2354 goto multi_select_end; |
1767 } | 2355 } |
1768 | 2356 |
1769 /* Code the current SELECT into temporary table "tab2" | 2357 /* Code the current SELECT into temporary table "tab2" |
1770 */ | 2358 */ |
1771 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); | 2359 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); |
1772 assert( p->addrOpenEphm[1] == -1 ); | 2360 assert( p->addrOpenEphm[1] == -1 ); |
1773 p->addrOpenEphm[1] = addr; | 2361 p->addrOpenEphm[1] = addr; |
1774 p->pPrior = 0; | 2362 p->pPrior = 0; |
1775 pLimit = p->pLimit; | 2363 pLimit = p->pLimit; |
1776 p->pLimit = 0; | 2364 p->pLimit = 0; |
1777 pOffset = p->pOffset; | 2365 pOffset = p->pOffset; |
1778 p->pOffset = 0; | 2366 p->pOffset = 0; |
1779 intersectdest.iParm = tab2; | 2367 intersectdest.iSDParm = tab2; |
1780 explainSetInteger(iSub2, pParse->iNextSelectId); | 2368 explainSetInteger(iSub2, pParse->iNextSelectId); |
1781 rc = sqlite3Select(pParse, p, &intersectdest); | 2369 rc = sqlite3Select(pParse, p, &intersectdest); |
1782 testcase( rc!=SQLITE_OK ); | 2370 testcase( rc!=SQLITE_OK ); |
1783 pDelete = p->pPrior; | 2371 pDelete = p->pPrior; |
1784 p->pPrior = pPrior; | 2372 p->pPrior = pPrior; |
1785 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; | 2373 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; |
1786 sqlite3ExprDelete(db, p->pLimit); | 2374 sqlite3ExprDelete(db, p->pLimit); |
1787 p->pLimit = pLimit; | 2375 p->pLimit = pLimit; |
1788 p->pOffset = pOffset; | 2376 p->pOffset = pOffset; |
1789 | 2377 |
1790 /* Generate code to take the intersection of the two temporary | 2378 /* Generate code to take the intersection of the two temporary |
1791 ** tables. | 2379 ** tables. |
1792 */ | 2380 */ |
1793 assert( p->pEList ); | 2381 assert( p->pEList ); |
1794 if( dest.eDest==SRT_Output ){ | 2382 if( dest.eDest==SRT_Output ){ |
1795 Select *pFirst = p; | 2383 Select *pFirst = p; |
1796 while( pFirst->pPrior ) pFirst = pFirst->pPrior; | 2384 while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
1797 generateColumnNames(pParse, 0, pFirst->pEList); | 2385 generateColumnNames(pParse, 0, pFirst->pEList); |
1798 } | 2386 } |
1799 iBreak = sqlite3VdbeMakeLabel(v); | 2387 iBreak = sqlite3VdbeMakeLabel(v); |
1800 iCont = sqlite3VdbeMakeLabel(v); | 2388 iCont = sqlite3VdbeMakeLabel(v); |
1801 computeLimitRegisters(pParse, p, iBreak); | 2389 computeLimitRegisters(pParse, p, iBreak); |
1802 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); | 2390 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); |
1803 r1 = sqlite3GetTempReg(pParse); | 2391 r1 = sqlite3GetTempReg(pParse); |
1804 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); | 2392 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); |
1805 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); | 2393 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); |
1806 sqlite3ReleaseTempReg(pParse, r1); | 2394 sqlite3ReleaseTempReg(pParse, r1); |
1807 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, | 2395 selectInnerLoop(pParse, p, p->pEList, tab1, |
1808 0, -1, &dest, iCont, iBreak); | 2396 0, 0, &dest, iCont, iBreak); |
1809 sqlite3VdbeResolveLabel(v, iCont); | 2397 sqlite3VdbeResolveLabel(v, iCont); |
1810 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); | 2398 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); |
1811 sqlite3VdbeResolveLabel(v, iBreak); | 2399 sqlite3VdbeResolveLabel(v, iBreak); |
1812 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); | 2400 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); |
1813 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); | 2401 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); |
1814 break; | 2402 break; |
1815 } | 2403 } |
1816 } | 2404 } |
1817 | 2405 |
1818 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); | 2406 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); |
1819 | 2407 |
1820 /* Compute collating sequences used by | 2408 /* Compute collating sequences used by |
1821 ** temporary tables needed to implement the compound select. | 2409 ** temporary tables needed to implement the compound select. |
1822 ** Attach the KeyInfo structure to all temporary tables. | 2410 ** Attach the KeyInfo structure to all temporary tables. |
1823 ** | 2411 ** |
1824 ** This section is run by the right-most SELECT statement only. | 2412 ** This section is run by the right-most SELECT statement only. |
1825 ** SELECT statements to the left always skip this part. The right-most | 2413 ** SELECT statements to the left always skip this part. The right-most |
1826 ** SELECT might also skip this part if it has no ORDER BY clause and | 2414 ** SELECT might also skip this part if it has no ORDER BY clause and |
1827 ** no temp tables are required. | 2415 ** no temp tables are required. |
1828 */ | 2416 */ |
1829 if( p->selFlags & SF_UsesEphemeral ){ | 2417 if( p->selFlags & SF_UsesEphemeral ){ |
1830 int i; /* Loop counter */ | 2418 int i; /* Loop counter */ |
1831 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ | 2419 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ |
1832 Select *pLoop; /* For looping through SELECT statements */ | 2420 Select *pLoop; /* For looping through SELECT statements */ |
1833 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ | 2421 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ |
1834 int nCol; /* Number of columns in result set */ | 2422 int nCol; /* Number of columns in result set */ |
1835 | 2423 |
1836 assert( p->pRightmost==p ); | 2424 assert( p->pNext==0 ); |
1837 nCol = p->pEList->nExpr; | 2425 nCol = p->pEList->nExpr; |
1838 pKeyInfo = sqlite3DbMallocZero(db, | 2426 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); |
1839 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); | |
1840 if( !pKeyInfo ){ | 2427 if( !pKeyInfo ){ |
1841 rc = SQLITE_NOMEM; | 2428 rc = SQLITE_NOMEM; |
1842 goto multi_select_end; | 2429 goto multi_select_end; |
1843 } | 2430 } |
1844 | |
1845 pKeyInfo->enc = ENC(db); | |
1846 pKeyInfo->nField = (u16)nCol; | |
1847 | |
1848 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ | 2431 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ |
1849 *apColl = multiSelectCollSeq(pParse, p, i); | 2432 *apColl = multiSelectCollSeq(pParse, p, i); |
1850 if( 0==*apColl ){ | 2433 if( 0==*apColl ){ |
1851 *apColl = db->pDfltColl; | 2434 *apColl = db->pDfltColl; |
1852 } | 2435 } |
1853 } | 2436 } |
1854 | 2437 |
1855 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ | 2438 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ |
1856 for(i=0; i<2; i++){ | 2439 for(i=0; i<2; i++){ |
1857 int addr = pLoop->addrOpenEphm[i]; | 2440 int addr = pLoop->addrOpenEphm[i]; |
1858 if( addr<0 ){ | 2441 if( addr<0 ){ |
1859 /* If [0] is unused then [1] is also unused. So we can | 2442 /* If [0] is unused then [1] is also unused. So we can |
1860 ** always safely abort as soon as the first unused slot is found */ | 2443 ** always safely abort as soon as the first unused slot is found */ |
1861 assert( pLoop->addrOpenEphm[1]<0 ); | 2444 assert( pLoop->addrOpenEphm[1]<0 ); |
1862 break; | 2445 break; |
1863 } | 2446 } |
1864 sqlite3VdbeChangeP2(v, addr, nCol); | 2447 sqlite3VdbeChangeP2(v, addr, nCol); |
1865 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); | 2448 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), |
| 2449 P4_KEYINFO); |
1866 pLoop->addrOpenEphm[i] = -1; | 2450 pLoop->addrOpenEphm[i] = -1; |
1867 } | 2451 } |
1868 } | 2452 } |
1869 sqlite3DbFree(db, pKeyInfo); | 2453 sqlite3KeyInfoUnref(pKeyInfo); |
1870 } | 2454 } |
1871 | 2455 |
1872 multi_select_end: | 2456 multi_select_end: |
1873 pDest->iMem = dest.iMem; | 2457 pDest->iSdst = dest.iSdst; |
1874 pDest->nMem = dest.nMem; | 2458 pDest->nSdst = dest.nSdst; |
1875 sqlite3SelectDelete(db, pDelete); | 2459 sqlite3SelectDelete(db, pDelete); |
1876 return rc; | 2460 return rc; |
1877 } | 2461 } |
1878 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ | 2462 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
1879 | 2463 |
1880 /* | 2464 /* |
1881 ** Code an output subroutine for a coroutine implementation of a | 2465 ** Code an output subroutine for a coroutine implementation of a |
1882 ** SELECT statment. | 2466 ** SELECT statment. |
1883 ** | 2467 ** |
1884 ** The data to be output is contained in pIn->iMem. There are | 2468 ** The data to be output is contained in pIn->iSdst. There are |
1885 ** pIn->nMem columns to be output. pDest is where the output should | 2469 ** pIn->nSdst columns to be output. pDest is where the output should |
1886 ** be sent. | 2470 ** be sent. |
1887 ** | 2471 ** |
1888 ** regReturn is the number of the register holding the subroutine | 2472 ** regReturn is the number of the register holding the subroutine |
1889 ** return address. | 2473 ** return address. |
1890 ** | 2474 ** |
1891 ** If regPrev>0 then it is the first register in a vector that | 2475 ** If regPrev>0 then it is the first register in a vector that |
1892 ** records the previous output. mem[regPrev] is a flag that is false | 2476 ** records the previous output. mem[regPrev] is a flag that is false |
1893 ** if there has been no previous output. If regPrev>0 then code is | 2477 ** if there has been no previous output. If regPrev>0 then code is |
1894 ** generated to suppress duplicates. pKeyInfo is used for comparing | 2478 ** generated to suppress duplicates. pKeyInfo is used for comparing |
1895 ** keys. | 2479 ** keys. |
1896 ** | 2480 ** |
1897 ** If the LIMIT found in p->iLimit is reached, jump immediately to | 2481 ** If the LIMIT found in p->iLimit is reached, jump immediately to |
1898 ** iBreak. | 2482 ** iBreak. |
1899 */ | 2483 */ |
1900 static int generateOutputSubroutine( | 2484 static int generateOutputSubroutine( |
1901 Parse *pParse, /* Parsing context */ | 2485 Parse *pParse, /* Parsing context */ |
1902 Select *p, /* The SELECT statement */ | 2486 Select *p, /* The SELECT statement */ |
1903 SelectDest *pIn, /* Coroutine supplying data */ | 2487 SelectDest *pIn, /* Coroutine supplying data */ |
1904 SelectDest *pDest, /* Where to send the data */ | 2488 SelectDest *pDest, /* Where to send the data */ |
1905 int regReturn, /* The return address register */ | 2489 int regReturn, /* The return address register */ |
1906 int regPrev, /* Previous result register. No uniqueness if 0 */ | 2490 int regPrev, /* Previous result register. No uniqueness if 0 */ |
1907 KeyInfo *pKeyInfo, /* For comparing with previous entry */ | 2491 KeyInfo *pKeyInfo, /* For comparing with previous entry */ |
1908 int p4type, /* The p4 type for pKeyInfo */ | |
1909 int iBreak /* Jump here if we hit the LIMIT */ | 2492 int iBreak /* Jump here if we hit the LIMIT */ |
1910 ){ | 2493 ){ |
1911 Vdbe *v = pParse->pVdbe; | 2494 Vdbe *v = pParse->pVdbe; |
1912 int iContinue; | 2495 int iContinue; |
1913 int addr; | 2496 int addr; |
1914 | 2497 |
1915 addr = sqlite3VdbeCurrentAddr(v); | 2498 addr = sqlite3VdbeCurrentAddr(v); |
1916 iContinue = sqlite3VdbeMakeLabel(v); | 2499 iContinue = sqlite3VdbeMakeLabel(v); |
1917 | 2500 |
1918 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT | 2501 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT |
1919 */ | 2502 */ |
1920 if( regPrev ){ | 2503 if( regPrev ){ |
1921 int j1, j2; | 2504 int j1, j2; |
1922 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); | 2505 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); |
1923 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, | 2506 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, |
1924 (char*)pKeyInfo, p4type); | 2507 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); |
1925 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); | 2508 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); |
1926 sqlite3VdbeJumpHere(v, j1); | 2509 sqlite3VdbeJumpHere(v, j1); |
1927 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); | 2510 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); |
1928 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); | 2511 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); |
1929 } | 2512 } |
1930 if( pParse->db->mallocFailed ) return 0; | 2513 if( pParse->db->mallocFailed ) return 0; |
1931 | 2514 |
1932 /* Suppress the the first OFFSET entries if there is an OFFSET clause | 2515 /* Suppress the first OFFSET entries if there is an OFFSET clause |
1933 */ | 2516 */ |
1934 codeOffset(v, p, iContinue); | 2517 codeOffset(v, p->iOffset, iContinue); |
1935 | 2518 |
1936 switch( pDest->eDest ){ | 2519 switch( pDest->eDest ){ |
1937 /* Store the result as data using a unique key. | 2520 /* Store the result as data using a unique key. |
1938 */ | 2521 */ |
1939 case SRT_Table: | 2522 case SRT_Table: |
1940 case SRT_EphemTab: { | 2523 case SRT_EphemTab: { |
1941 int r1 = sqlite3GetTempReg(pParse); | 2524 int r1 = sqlite3GetTempReg(pParse); |
1942 int r2 = sqlite3GetTempReg(pParse); | 2525 int r2 = sqlite3GetTempReg(pParse); |
1943 testcase( pDest->eDest==SRT_Table ); | 2526 testcase( pDest->eDest==SRT_Table ); |
1944 testcase( pDest->eDest==SRT_EphemTab ); | 2527 testcase( pDest->eDest==SRT_EphemTab ); |
1945 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); | 2528 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); |
1946 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); | 2529 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); |
1947 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); | 2530 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); |
1948 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); | 2531 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
1949 sqlite3ReleaseTempReg(pParse, r2); | 2532 sqlite3ReleaseTempReg(pParse, r2); |
1950 sqlite3ReleaseTempReg(pParse, r1); | 2533 sqlite3ReleaseTempReg(pParse, r1); |
1951 break; | 2534 break; |
1952 } | 2535 } |
1953 | 2536 |
1954 #ifndef SQLITE_OMIT_SUBQUERY | 2537 #ifndef SQLITE_OMIT_SUBQUERY |
1955 /* If we are creating a set for an "expr IN (SELECT ...)" construct, | 2538 /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
1956 ** then there should be a single item on the stack. Write this | 2539 ** then there should be a single item on the stack. Write this |
1957 ** item into the set table with bogus data. | 2540 ** item into the set table with bogus data. |
1958 */ | 2541 */ |
1959 case SRT_Set: { | 2542 case SRT_Set: { |
1960 int r1; | 2543 int r1; |
1961 assert( pIn->nMem==1 ); | 2544 assert( pIn->nSdst==1 ); |
1962 p->affinity = | 2545 pDest->affSdst = |
1963 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); | 2546 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); |
1964 r1 = sqlite3GetTempReg(pParse); | 2547 r1 = sqlite3GetTempReg(pParse); |
1965 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); | 2548 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); |
1966 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); | 2549 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); |
1967 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); | 2550 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); |
1968 sqlite3ReleaseTempReg(pParse, r1); | 2551 sqlite3ReleaseTempReg(pParse, r1); |
1969 break; | 2552 break; |
1970 } | 2553 } |
1971 | 2554 |
1972 #if 0 /* Never occurs on an ORDER BY query */ | 2555 #if 0 /* Never occurs on an ORDER BY query */ |
1973 /* If any row exist in the result set, record that fact and abort. | 2556 /* If any row exist in the result set, record that fact and abort. |
1974 */ | 2557 */ |
1975 case SRT_Exists: { | 2558 case SRT_Exists: { |
1976 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); | 2559 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); |
1977 /* The LIMIT clause will terminate the loop for us */ | 2560 /* The LIMIT clause will terminate the loop for us */ |
1978 break; | 2561 break; |
1979 } | 2562 } |
1980 #endif | 2563 #endif |
1981 | 2564 |
1982 /* If this is a scalar select that is part of an expression, then | 2565 /* If this is a scalar select that is part of an expression, then |
1983 ** store the results in the appropriate memory cell and break out | 2566 ** store the results in the appropriate memory cell and break out |
1984 ** of the scan loop. | 2567 ** of the scan loop. |
1985 */ | 2568 */ |
1986 case SRT_Mem: { | 2569 case SRT_Mem: { |
1987 assert( pIn->nMem==1 ); | 2570 assert( pIn->nSdst==1 ); |
1988 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); | 2571 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); |
1989 /* The LIMIT clause will jump out of the loop for us */ | 2572 /* The LIMIT clause will jump out of the loop for us */ |
1990 break; | 2573 break; |
1991 } | 2574 } |
1992 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ | 2575 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ |
1993 | 2576 |
1994 /* The results are stored in a sequence of registers | 2577 /* The results are stored in a sequence of registers |
1995 ** starting at pDest->iMem. Then the co-routine yields. | 2578 ** starting at pDest->iSdst. Then the co-routine yields. |
1996 */ | 2579 */ |
1997 case SRT_Coroutine: { | 2580 case SRT_Coroutine: { |
1998 if( pDest->iMem==0 ){ | 2581 if( pDest->iSdst==0 ){ |
1999 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); | 2582 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); |
2000 pDest->nMem = pIn->nMem; | 2583 pDest->nSdst = pIn->nSdst; |
2001 } | 2584 } |
2002 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); | 2585 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); |
2003 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); | 2586 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); |
2004 break; | 2587 break; |
2005 } | 2588 } |
2006 | 2589 |
2007 /* If none of the above, then the result destination must be | 2590 /* If none of the above, then the result destination must be |
2008 ** SRT_Output. This routine is never called with any other | 2591 ** SRT_Output. This routine is never called with any other |
2009 ** destination other than the ones handled above or SRT_Output. | 2592 ** destination other than the ones handled above or SRT_Output. |
2010 ** | 2593 ** |
2011 ** For SRT_Output, results are stored in a sequence of registers. | 2594 ** For SRT_Output, results are stored in a sequence of registers. |
2012 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to | 2595 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to |
2013 ** return the next row of result. | 2596 ** return the next row of result. |
2014 */ | 2597 */ |
2015 default: { | 2598 default: { |
2016 assert( pDest->eDest==SRT_Output ); | 2599 assert( pDest->eDest==SRT_Output ); |
2017 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); | 2600 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); |
2018 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); | 2601 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); |
2019 break; | 2602 break; |
2020 } | 2603 } |
2021 } | 2604 } |
2022 | 2605 |
2023 /* Jump to the end of the loop if the LIMIT is reached. | 2606 /* Jump to the end of the loop if the LIMIT is reached. |
2024 */ | 2607 */ |
2025 if( p->iLimit ){ | 2608 if( p->iLimit ){ |
2026 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); | 2609 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); |
2027 } | 2610 } |
2028 | 2611 |
2029 /* Generate the subroutine return | 2612 /* Generate the subroutine return |
2030 */ | 2613 */ |
2031 sqlite3VdbeResolveLabel(v, iContinue); | 2614 sqlite3VdbeResolveLabel(v, iContinue); |
2032 sqlite3VdbeAddOp1(v, OP_Return, regReturn); | 2615 sqlite3VdbeAddOp1(v, OP_Return, regReturn); |
2033 | 2616 |
2034 return addr; | 2617 return addr; |
2035 } | 2618 } |
2036 | 2619 |
(...skipping 87 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2124 Parse *pParse, /* Parsing context */ | 2707 Parse *pParse, /* Parsing context */ |
2125 Select *p, /* The right-most of SELECTs to be coded */ | 2708 Select *p, /* The right-most of SELECTs to be coded */ |
2126 SelectDest *pDest /* What to do with query results */ | 2709 SelectDest *pDest /* What to do with query results */ |
2127 ){ | 2710 ){ |
2128 int i, j; /* Loop counters */ | 2711 int i, j; /* Loop counters */ |
2129 Select *pPrior; /* Another SELECT immediately to our left */ | 2712 Select *pPrior; /* Another SELECT immediately to our left */ |
2130 Vdbe *v; /* Generate code to this VDBE */ | 2713 Vdbe *v; /* Generate code to this VDBE */ |
2131 SelectDest destA; /* Destination for coroutine A */ | 2714 SelectDest destA; /* Destination for coroutine A */ |
2132 SelectDest destB; /* Destination for coroutine B */ | 2715 SelectDest destB; /* Destination for coroutine B */ |
2133 int regAddrA; /* Address register for select-A coroutine */ | 2716 int regAddrA; /* Address register for select-A coroutine */ |
2134 int regEofA; /* Flag to indicate when select-A is complete */ | |
2135 int regAddrB; /* Address register for select-B coroutine */ | 2717 int regAddrB; /* Address register for select-B coroutine */ |
2136 int regEofB; /* Flag to indicate when select-B is complete */ | |
2137 int addrSelectA; /* Address of the select-A coroutine */ | 2718 int addrSelectA; /* Address of the select-A coroutine */ |
2138 int addrSelectB; /* Address of the select-B coroutine */ | 2719 int addrSelectB; /* Address of the select-B coroutine */ |
2139 int regOutA; /* Address register for the output-A subroutine */ | 2720 int regOutA; /* Address register for the output-A subroutine */ |
2140 int regOutB; /* Address register for the output-B subroutine */ | 2721 int regOutB; /* Address register for the output-B subroutine */ |
2141 int addrOutA; /* Address of the output-A subroutine */ | 2722 int addrOutA; /* Address of the output-A subroutine */ |
2142 int addrOutB = 0; /* Address of the output-B subroutine */ | 2723 int addrOutB = 0; /* Address of the output-B subroutine */ |
2143 int addrEofA; /* Address of the select-A-exhausted subroutine */ | 2724 int addrEofA; /* Address of the select-A-exhausted subroutine */ |
| 2725 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ |
2144 int addrEofB; /* Address of the select-B-exhausted subroutine */ | 2726 int addrEofB; /* Address of the select-B-exhausted subroutine */ |
2145 int addrAltB; /* Address of the A<B subroutine */ | 2727 int addrAltB; /* Address of the A<B subroutine */ |
2146 int addrAeqB; /* Address of the A==B subroutine */ | 2728 int addrAeqB; /* Address of the A==B subroutine */ |
2147 int addrAgtB; /* Address of the A>B subroutine */ | 2729 int addrAgtB; /* Address of the A>B subroutine */ |
2148 int regLimitA; /* Limit register for select-A */ | 2730 int regLimitA; /* Limit register for select-A */ |
2149 int regLimitB; /* Limit register for select-A */ | 2731 int regLimitB; /* Limit register for select-A */ |
2150 int regPrev; /* A range of registers to hold previous output */ | 2732 int regPrev; /* A range of registers to hold previous output */ |
2151 int savedLimit; /* Saved value of p->iLimit */ | 2733 int savedLimit; /* Saved value of p->iLimit */ |
2152 int savedOffset; /* Saved value of p->iOffset */ | 2734 int savedOffset; /* Saved value of p->iOffset */ |
2153 int labelCmpr; /* Label for the start of the merge algorithm */ | 2735 int labelCmpr; /* Label for the start of the merge algorithm */ |
(...skipping 30 matching lines...) Expand all Loading... |
2184 nOrderBy = pOrderBy->nExpr; | 2766 nOrderBy = pOrderBy->nExpr; |
2185 | 2767 |
2186 /* For operators other than UNION ALL we have to make sure that | 2768 /* For operators other than UNION ALL we have to make sure that |
2187 ** the ORDER BY clause covers every term of the result set. Add | 2769 ** the ORDER BY clause covers every term of the result set. Add |
2188 ** terms to the ORDER BY clause as necessary. | 2770 ** terms to the ORDER BY clause as necessary. |
2189 */ | 2771 */ |
2190 if( op!=TK_ALL ){ | 2772 if( op!=TK_ALL ){ |
2191 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ | 2773 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ |
2192 struct ExprList_item *pItem; | 2774 struct ExprList_item *pItem; |
2193 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ | 2775 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ |
2194 assert( pItem->iCol>0 ); | 2776 assert( pItem->u.x.iOrderByCol>0 ); |
2195 if( pItem->iCol==i ) break; | 2777 if( pItem->u.x.iOrderByCol==i ) break; |
2196 } | 2778 } |
2197 if( j==nOrderBy ){ | 2779 if( j==nOrderBy ){ |
2198 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); | 2780 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); |
2199 if( pNew==0 ) return SQLITE_NOMEM; | 2781 if( pNew==0 ) return SQLITE_NOMEM; |
2200 pNew->flags |= EP_IntValue; | 2782 pNew->flags |= EP_IntValue; |
2201 pNew->u.iValue = i; | 2783 pNew->u.iValue = i; |
2202 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); | 2784 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); |
2203 pOrderBy->a[nOrderBy++].iCol = (u16)i; | 2785 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; |
2204 } | 2786 } |
2205 } | 2787 } |
2206 } | 2788 } |
2207 | 2789 |
2208 /* Compute the comparison permutation and keyinfo that is used with | 2790 /* Compute the comparison permutation and keyinfo that is used with |
2209 ** the permutation used to determine if the next | 2791 ** the permutation used to determine if the next |
2210 ** row of results comes from selectA or selectB. Also add explicit | 2792 ** row of results comes from selectA or selectB. Also add explicit |
2211 ** collations to the ORDER BY clause terms so that when the subqueries | 2793 ** collations to the ORDER BY clause terms so that when the subqueries |
2212 ** to the right and the left are evaluated, they use the correct | 2794 ** to the right and the left are evaluated, they use the correct |
2213 ** collation. | 2795 ** collation. |
2214 */ | 2796 */ |
2215 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); | 2797 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); |
2216 if( aPermute ){ | 2798 if( aPermute ){ |
2217 struct ExprList_item *pItem; | 2799 struct ExprList_item *pItem; |
2218 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ | 2800 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ |
2219 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); | 2801 assert( pItem->u.x.iOrderByCol>0 |
2220 aPermute[i] = pItem->iCol - 1; | 2802 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); |
| 2803 aPermute[i] = pItem->u.x.iOrderByCol - 1; |
2221 } | 2804 } |
2222 pKeyMerge = | 2805 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); |
2223 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); | |
2224 if( pKeyMerge ){ | |
2225 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; | |
2226 pKeyMerge->nField = (u16)nOrderBy; | |
2227 pKeyMerge->enc = ENC(db); | |
2228 for(i=0; i<nOrderBy; i++){ | |
2229 CollSeq *pColl; | |
2230 Expr *pTerm = pOrderBy->a[i].pExpr; | |
2231 if( pTerm->flags & EP_ExpCollate ){ | |
2232 pColl = pTerm->pColl; | |
2233 }else{ | |
2234 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); | |
2235 pTerm->flags |= EP_ExpCollate; | |
2236 pTerm->pColl = pColl; | |
2237 } | |
2238 pKeyMerge->aColl[i] = pColl; | |
2239 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; | |
2240 } | |
2241 } | |
2242 }else{ | 2806 }else{ |
2243 pKeyMerge = 0; | 2807 pKeyMerge = 0; |
2244 } | 2808 } |
2245 | 2809 |
2246 /* Reattach the ORDER BY clause to the query. | 2810 /* Reattach the ORDER BY clause to the query. |
2247 */ | 2811 */ |
2248 p->pOrderBy = pOrderBy; | 2812 p->pOrderBy = pOrderBy; |
2249 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); | 2813 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); |
2250 | 2814 |
2251 /* Allocate a range of temporary registers and the KeyInfo needed | 2815 /* Allocate a range of temporary registers and the KeyInfo needed |
2252 ** for the logic that removes duplicate result rows when the | 2816 ** for the logic that removes duplicate result rows when the |
2253 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). | 2817 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). |
2254 */ | 2818 */ |
2255 if( op==TK_ALL ){ | 2819 if( op==TK_ALL ){ |
2256 regPrev = 0; | 2820 regPrev = 0; |
2257 }else{ | 2821 }else{ |
2258 int nExpr = p->pEList->nExpr; | 2822 int nExpr = p->pEList->nExpr; |
2259 assert( nOrderBy>=nExpr || db->mallocFailed ); | 2823 assert( nOrderBy>=nExpr || db->mallocFailed ); |
2260 regPrev = sqlite3GetTempRange(pParse, nExpr+1); | 2824 regPrev = pParse->nMem+1; |
| 2825 pParse->nMem += nExpr+1; |
2261 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); | 2826 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); |
2262 pKeyDup = sqlite3DbMallocZero(db, | 2827 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); |
2263 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); | |
2264 if( pKeyDup ){ | 2828 if( pKeyDup ){ |
2265 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; | 2829 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); |
2266 pKeyDup->nField = (u16)nExpr; | |
2267 pKeyDup->enc = ENC(db); | |
2268 for(i=0; i<nExpr; i++){ | 2830 for(i=0; i<nExpr; i++){ |
2269 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); | 2831 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); |
2270 pKeyDup->aSortOrder[i] = 0; | 2832 pKeyDup->aSortOrder[i] = 0; |
2271 } | 2833 } |
2272 } | 2834 } |
2273 } | 2835 } |
2274 | 2836 |
2275 /* Separate the left and the right query from one another | 2837 /* Separate the left and the right query from one another |
2276 */ | 2838 */ |
2277 p->pPrior = 0; | 2839 p->pPrior = 0; |
| 2840 pPrior->pNext = 0; |
2278 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); | 2841 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); |
2279 if( pPrior->pPrior==0 ){ | 2842 if( pPrior->pPrior==0 ){ |
2280 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); | 2843 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); |
2281 } | 2844 } |
2282 | 2845 |
2283 /* Compute the limit registers */ | 2846 /* Compute the limit registers */ |
2284 computeLimitRegisters(pParse, p, labelEnd); | 2847 computeLimitRegisters(pParse, p, labelEnd); |
2285 if( p->iLimit && op==TK_ALL ){ | 2848 if( p->iLimit && op==TK_ALL ){ |
2286 regLimitA = ++pParse->nMem; | 2849 regLimitA = ++pParse->nMem; |
2287 regLimitB = ++pParse->nMem; | 2850 regLimitB = ++pParse->nMem; |
2288 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, | 2851 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, |
2289 regLimitA); | 2852 regLimitA); |
2290 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); | 2853 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); |
2291 }else{ | 2854 }else{ |
2292 regLimitA = regLimitB = 0; | 2855 regLimitA = regLimitB = 0; |
2293 } | 2856 } |
2294 sqlite3ExprDelete(db, p->pLimit); | 2857 sqlite3ExprDelete(db, p->pLimit); |
2295 p->pLimit = 0; | 2858 p->pLimit = 0; |
2296 sqlite3ExprDelete(db, p->pOffset); | 2859 sqlite3ExprDelete(db, p->pOffset); |
2297 p->pOffset = 0; | 2860 p->pOffset = 0; |
2298 | 2861 |
2299 regAddrA = ++pParse->nMem; | 2862 regAddrA = ++pParse->nMem; |
2300 regEofA = ++pParse->nMem; | |
2301 regAddrB = ++pParse->nMem; | 2863 regAddrB = ++pParse->nMem; |
2302 regEofB = ++pParse->nMem; | |
2303 regOutA = ++pParse->nMem; | 2864 regOutA = ++pParse->nMem; |
2304 regOutB = ++pParse->nMem; | 2865 regOutB = ++pParse->nMem; |
2305 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); | 2866 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); |
2306 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); | 2867 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); |
2307 | 2868 |
2308 /* Jump past the various subroutines and coroutines to the main | |
2309 ** merge loop | |
2310 */ | |
2311 j1 = sqlite3VdbeAddOp0(v, OP_Goto); | |
2312 addrSelectA = sqlite3VdbeCurrentAddr(v); | |
2313 | |
2314 | |
2315 /* Generate a coroutine to evaluate the SELECT statement to the | 2869 /* Generate a coroutine to evaluate the SELECT statement to the |
2316 ** left of the compound operator - the "A" select. | 2870 ** left of the compound operator - the "A" select. |
2317 */ | 2871 */ |
2318 VdbeNoopComment((v, "Begin coroutine for left SELECT")); | 2872 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; |
| 2873 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); |
| 2874 VdbeComment((v, "left SELECT")); |
2319 pPrior->iLimit = regLimitA; | 2875 pPrior->iLimit = regLimitA; |
2320 explainSetInteger(iSub1, pParse->iNextSelectId); | 2876 explainSetInteger(iSub1, pParse->iNextSelectId); |
2321 sqlite3Select(pParse, pPrior, &destA); | 2877 sqlite3Select(pParse, pPrior, &destA); |
2322 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); | 2878 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); |
2323 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); | 2879 sqlite3VdbeJumpHere(v, j1); |
2324 VdbeNoopComment((v, "End coroutine for left SELECT")); | |
2325 | 2880 |
2326 /* Generate a coroutine to evaluate the SELECT statement on | 2881 /* Generate a coroutine to evaluate the SELECT statement on |
2327 ** the right - the "B" select | 2882 ** the right - the "B" select |
2328 */ | 2883 */ |
2329 addrSelectB = sqlite3VdbeCurrentAddr(v); | 2884 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; |
2330 VdbeNoopComment((v, "Begin coroutine for right SELECT")); | 2885 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); |
| 2886 VdbeComment((v, "right SELECT")); |
2331 savedLimit = p->iLimit; | 2887 savedLimit = p->iLimit; |
2332 savedOffset = p->iOffset; | 2888 savedOffset = p->iOffset; |
2333 p->iLimit = regLimitB; | 2889 p->iLimit = regLimitB; |
2334 p->iOffset = 0; | 2890 p->iOffset = 0; |
2335 explainSetInteger(iSub2, pParse->iNextSelectId); | 2891 explainSetInteger(iSub2, pParse->iNextSelectId); |
2336 sqlite3Select(pParse, p, &destB); | 2892 sqlite3Select(pParse, p, &destB); |
2337 p->iLimit = savedLimit; | 2893 p->iLimit = savedLimit; |
2338 p->iOffset = savedOffset; | 2894 p->iOffset = savedOffset; |
2339 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); | 2895 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); |
2340 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); | |
2341 VdbeNoopComment((v, "End coroutine for right SELECT")); | |
2342 | 2896 |
2343 /* Generate a subroutine that outputs the current row of the A | 2897 /* Generate a subroutine that outputs the current row of the A |
2344 ** select as the next output row of the compound select. | 2898 ** select as the next output row of the compound select. |
2345 */ | 2899 */ |
2346 VdbeNoopComment((v, "Output routine for A")); | 2900 VdbeNoopComment((v, "Output routine for A")); |
2347 addrOutA = generateOutputSubroutine(pParse, | 2901 addrOutA = generateOutputSubroutine(pParse, |
2348 p, &destA, pDest, regOutA, | 2902 p, &destA, pDest, regOutA, |
2349 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); | 2903 regPrev, pKeyDup, labelEnd); |
2350 | 2904 |
2351 /* Generate a subroutine that outputs the current row of the B | 2905 /* Generate a subroutine that outputs the current row of the B |
2352 ** select as the next output row of the compound select. | 2906 ** select as the next output row of the compound select. |
2353 */ | 2907 */ |
2354 if( op==TK_ALL || op==TK_UNION ){ | 2908 if( op==TK_ALL || op==TK_UNION ){ |
2355 VdbeNoopComment((v, "Output routine for B")); | 2909 VdbeNoopComment((v, "Output routine for B")); |
2356 addrOutB = generateOutputSubroutine(pParse, | 2910 addrOutB = generateOutputSubroutine(pParse, |
2357 p, &destB, pDest, regOutB, | 2911 p, &destB, pDest, regOutB, |
2358 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); | 2912 regPrev, pKeyDup, labelEnd); |
2359 } | 2913 } |
| 2914 sqlite3KeyInfoUnref(pKeyDup); |
2360 | 2915 |
2361 /* Generate a subroutine to run when the results from select A | 2916 /* Generate a subroutine to run when the results from select A |
2362 ** are exhausted and only data in select B remains. | 2917 ** are exhausted and only data in select B remains. |
2363 */ | 2918 */ |
2364 VdbeNoopComment((v, "eof-A subroutine")); | |
2365 if( op==TK_EXCEPT || op==TK_INTERSECT ){ | 2919 if( op==TK_EXCEPT || op==TK_INTERSECT ){ |
2366 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); | 2920 addrEofA_noB = addrEofA = labelEnd; |
2367 }else{ | 2921 }else{ |
2368 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); | 2922 VdbeNoopComment((v, "eof-A subroutine")); |
2369 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); | 2923 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); |
2370 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); | 2924 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); |
| 2925 VdbeCoverage(v); |
2371 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); | 2926 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); |
2372 p->nSelectRow += pPrior->nSelectRow; | 2927 p->nSelectRow += pPrior->nSelectRow; |
2373 } | 2928 } |
2374 | 2929 |
2375 /* Generate a subroutine to run when the results from select B | 2930 /* Generate a subroutine to run when the results from select B |
2376 ** are exhausted and only data in select A remains. | 2931 ** are exhausted and only data in select A remains. |
2377 */ | 2932 */ |
2378 if( op==TK_INTERSECT ){ | 2933 if( op==TK_INTERSECT ){ |
2379 addrEofB = addrEofA; | 2934 addrEofB = addrEofA; |
2380 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; | 2935 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; |
2381 }else{ | 2936 }else{ |
2382 VdbeNoopComment((v, "eof-B subroutine")); | 2937 VdbeNoopComment((v, "eof-B subroutine")); |
2383 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); | 2938 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); |
2384 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); | 2939 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); |
2385 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); | |
2386 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); | 2940 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); |
2387 } | 2941 } |
2388 | 2942 |
2389 /* Generate code to handle the case of A<B | 2943 /* Generate code to handle the case of A<B |
2390 */ | 2944 */ |
2391 VdbeNoopComment((v, "A-lt-B subroutine")); | 2945 VdbeNoopComment((v, "A-lt-B subroutine")); |
2392 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); | 2946 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); |
2393 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); | 2947 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); |
2394 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); | |
2395 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); | 2948 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); |
2396 | 2949 |
2397 /* Generate code to handle the case of A==B | 2950 /* Generate code to handle the case of A==B |
2398 */ | 2951 */ |
2399 if( op==TK_ALL ){ | 2952 if( op==TK_ALL ){ |
2400 addrAeqB = addrAltB; | 2953 addrAeqB = addrAltB; |
2401 }else if( op==TK_INTERSECT ){ | 2954 }else if( op==TK_INTERSECT ){ |
2402 addrAeqB = addrAltB; | 2955 addrAeqB = addrAltB; |
2403 addrAltB++; | 2956 addrAltB++; |
2404 }else{ | 2957 }else{ |
2405 VdbeNoopComment((v, "A-eq-B subroutine")); | 2958 VdbeNoopComment((v, "A-eq-B subroutine")); |
2406 addrAeqB = | 2959 addrAeqB = |
2407 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); | 2960 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); |
2408 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); | |
2409 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); | 2961 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); |
2410 } | 2962 } |
2411 | 2963 |
2412 /* Generate code to handle the case of A>B | 2964 /* Generate code to handle the case of A>B |
2413 */ | 2965 */ |
2414 VdbeNoopComment((v, "A-gt-B subroutine")); | 2966 VdbeNoopComment((v, "A-gt-B subroutine")); |
2415 addrAgtB = sqlite3VdbeCurrentAddr(v); | 2967 addrAgtB = sqlite3VdbeCurrentAddr(v); |
2416 if( op==TK_ALL || op==TK_UNION ){ | 2968 if( op==TK_ALL || op==TK_UNION ){ |
2417 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); | 2969 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); |
2418 } | 2970 } |
2419 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); | 2971 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); |
2420 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); | |
2421 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); | 2972 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); |
2422 | 2973 |
2423 /* This code runs once to initialize everything. | 2974 /* This code runs once to initialize everything. |
2424 */ | 2975 */ |
2425 sqlite3VdbeJumpHere(v, j1); | 2976 sqlite3VdbeJumpHere(v, j1); |
2426 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); | 2977 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); |
2427 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); | 2978 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); |
2428 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); | |
2429 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); | |
2430 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); | |
2431 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); | |
2432 | 2979 |
2433 /* Implement the main merge loop | 2980 /* Implement the main merge loop |
2434 */ | 2981 */ |
2435 sqlite3VdbeResolveLabel(v, labelCmpr); | 2982 sqlite3VdbeResolveLabel(v, labelCmpr); |
2436 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); | 2983 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); |
2437 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, | 2984 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, |
2438 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); | 2985 (char*)pKeyMerge, P4_KEYINFO); |
2439 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); | 2986 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); |
2440 | 2987 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); |
2441 /* Release temporary registers | |
2442 */ | |
2443 if( regPrev ){ | |
2444 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); | |
2445 } | |
2446 | 2988 |
2447 /* Jump to the this point in order to terminate the query. | 2989 /* Jump to the this point in order to terminate the query. |
2448 */ | 2990 */ |
2449 sqlite3VdbeResolveLabel(v, labelEnd); | 2991 sqlite3VdbeResolveLabel(v, labelEnd); |
2450 | 2992 |
2451 /* Set the number of output columns | 2993 /* Set the number of output columns |
2452 */ | 2994 */ |
2453 if( pDest->eDest==SRT_Output ){ | 2995 if( pDest->eDest==SRT_Output ){ |
2454 Select *pFirst = pPrior; | 2996 Select *pFirst = pPrior; |
2455 while( pFirst->pPrior ) pFirst = pFirst->pPrior; | 2997 while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
2456 generateColumnNames(pParse, 0, pFirst->pEList); | 2998 generateColumnNames(pParse, 0, pFirst->pEList); |
2457 } | 2999 } |
2458 | 3000 |
2459 /* Reassembly the compound query so that it will be freed correctly | 3001 /* Reassembly the compound query so that it will be freed correctly |
2460 ** by the calling function */ | 3002 ** by the calling function */ |
2461 if( p->pPrior ){ | 3003 if( p->pPrior ){ |
2462 sqlite3SelectDelete(db, p->pPrior); | 3004 sqlite3SelectDelete(db, p->pPrior); |
2463 } | 3005 } |
2464 p->pPrior = pPrior; | 3006 p->pPrior = pPrior; |
| 3007 pPrior->pNext = p; |
2465 | 3008 |
2466 /*** TBD: Insert subroutine calls to close cursors on incomplete | 3009 /*** TBD: Insert subroutine calls to close cursors on incomplete |
2467 **** subqueries ****/ | 3010 **** subqueries ****/ |
2468 explainComposite(pParse, p->op, iSub1, iSub2, 0); | 3011 explainComposite(pParse, p->op, iSub1, iSub2, 0); |
2469 return SQLITE_OK; | 3012 return SQLITE_OK; |
2470 } | 3013 } |
2471 #endif | 3014 #endif |
2472 | 3015 |
2473 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) | 3016 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
2474 /* Forward Declarations */ | 3017 /* Forward Declarations */ |
(...skipping 21 matching lines...) Expand all Loading... |
2496 ){ | 3039 ){ |
2497 if( pExpr==0 ) return 0; | 3040 if( pExpr==0 ) return 0; |
2498 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ | 3041 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ |
2499 if( pExpr->iColumn<0 ){ | 3042 if( pExpr->iColumn<0 ){ |
2500 pExpr->op = TK_NULL; | 3043 pExpr->op = TK_NULL; |
2501 }else{ | 3044 }else{ |
2502 Expr *pNew; | 3045 Expr *pNew; |
2503 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); | 3046 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); |
2504 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); | 3047 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); |
2505 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); | 3048 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); |
2506 if( pNew && pExpr->pColl ){ | |
2507 pNew->pColl = pExpr->pColl; | |
2508 } | |
2509 sqlite3ExprDelete(db, pExpr); | 3049 sqlite3ExprDelete(db, pExpr); |
2510 pExpr = pNew; | 3050 pExpr = pNew; |
2511 } | 3051 } |
2512 }else{ | 3052 }else{ |
2513 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); | 3053 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); |
2514 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); | 3054 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); |
2515 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | 3055 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
2516 substSelect(db, pExpr->x.pSelect, iTable, pEList); | 3056 substSelect(db, pExpr->x.pSelect, iTable, pEList); |
2517 }else{ | 3057 }else{ |
2518 substExprList(db, pExpr->x.pList, iTable, pEList); | 3058 substExprList(db, pExpr->x.pList, iTable, pEList); |
(...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2553 if( ALWAYS(pSrc) ){ | 3093 if( ALWAYS(pSrc) ){ |
2554 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ | 3094 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ |
2555 substSelect(db, pItem->pSelect, iTable, pEList); | 3095 substSelect(db, pItem->pSelect, iTable, pEList); |
2556 } | 3096 } |
2557 } | 3097 } |
2558 } | 3098 } |
2559 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ | 3099 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
2560 | 3100 |
2561 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) | 3101 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
2562 /* | 3102 /* |
2563 ** This routine attempts to flatten subqueries in order to speed | 3103 ** This routine attempts to flatten subqueries as a performance optimization. |
2564 ** execution. It returns 1 if it makes changes and 0 if no flattening | 3104 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. |
2565 ** occurs. | |
2566 ** | 3105 ** |
2567 ** To understand the concept of flattening, consider the following | 3106 ** To understand the concept of flattening, consider the following |
2568 ** query: | 3107 ** query: |
2569 ** | 3108 ** |
2570 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 | 3109 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 |
2571 ** | 3110 ** |
2572 ** The default way of implementing this query is to execute the | 3111 ** The default way of implementing this query is to execute the |
2573 ** subquery first and store the results in a temporary table, then | 3112 ** subquery first and store the results in a temporary table, then |
2574 ** run the outer query on that temporary table. This requires two | 3113 ** run the outer query on that temporary table. This requires two |
2575 ** passes over the data. Furthermore, because the temporary table | 3114 ** passes over the data. Furthermore, because the temporary table |
2576 ** has no indices, the WHERE clause on the outer query cannot be | 3115 ** has no indices, the WHERE clause on the outer query cannot be |
2577 ** optimized. | 3116 ** optimized. |
2578 ** | 3117 ** |
2579 ** This routine attempts to rewrite queries such as the above into | 3118 ** This routine attempts to rewrite queries such as the above into |
2580 ** a single flat select, like this: | 3119 ** a single flat select, like this: |
2581 ** | 3120 ** |
2582 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 | 3121 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 |
2583 ** | 3122 ** |
2584 ** The code generated for this simpification gives the same result | 3123 ** The code generated for this simplification gives the same result |
2585 ** but only has to scan the data once. And because indices might | 3124 ** but only has to scan the data once. And because indices might |
2586 ** exist on the table t1, a complete scan of the data might be | 3125 ** exist on the table t1, a complete scan of the data might be |
2587 ** avoided. | 3126 ** avoided. |
2588 ** | 3127 ** |
2589 ** Flattening is only attempted if all of the following are true: | 3128 ** Flattening is only attempted if all of the following are true: |
2590 ** | 3129 ** |
2591 ** (1) The subquery and the outer query do not both use aggregates. | 3130 ** (1) The subquery and the outer query do not both use aggregates. |
2592 ** | 3131 ** |
2593 ** (2) The subquery is not an aggregate or the outer query is not a join. | 3132 ** (2) The subquery is not an aggregate or the outer query is not a join. |
2594 ** | 3133 ** |
2595 ** (3) The subquery is not the right operand of a left outer join | 3134 ** (3) The subquery is not the right operand of a left outer join |
2596 ** (Originally ticket #306. Strengthened by ticket #3300) | 3135 ** (Originally ticket #306. Strengthened by ticket #3300) |
2597 ** | 3136 ** |
2598 ** (4) The subquery is not DISTINCT. | 3137 ** (4) The subquery is not DISTINCT. |
2599 ** | 3138 ** |
2600 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT | 3139 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT |
2601 ** sub-queries that were excluded from this optimization. Restriction | 3140 ** sub-queries that were excluded from this optimization. Restriction |
2602 ** (4) has since been expanded to exclude all DISTINCT subqueries. | 3141 ** (4) has since been expanded to exclude all DISTINCT subqueries. |
2603 ** | 3142 ** |
2604 ** (6) The subquery does not use aggregates or the outer query is not | 3143 ** (6) The subquery does not use aggregates or the outer query is not |
2605 ** DISTINCT. | 3144 ** DISTINCT. |
2606 ** | 3145 ** |
2607 ** (7) The subquery has a FROM clause. | 3146 ** (7) The subquery has a FROM clause. TODO: For subqueries without |
| 3147 ** A FROM clause, consider adding a FROM close with the special |
| 3148 ** table sqlite_once that consists of a single row containing a |
| 3149 ** single NULL. |
2608 ** | 3150 ** |
2609 ** (8) The subquery does not use LIMIT or the outer query is not a join. | 3151 ** (8) The subquery does not use LIMIT or the outer query is not a join. |
2610 ** | 3152 ** |
2611 ** (9) The subquery does not use LIMIT or the outer query does not use | 3153 ** (9) The subquery does not use LIMIT or the outer query does not use |
2612 ** aggregates. | 3154 ** aggregates. |
2613 ** | 3155 ** |
2614 ** (10) The subquery does not use aggregates or the outer query does not | 3156 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we |
2615 ** use LIMIT. | 3157 ** accidently carried the comment forward until 2014-09-15. Original |
| 3158 ** text: "The subquery does not use aggregates or the outer query does no
t |
| 3159 ** use LIMIT." |
2616 ** | 3160 ** |
2617 ** (11) The subquery and the outer query do not both have ORDER BY clauses. | 3161 ** (11) The subquery and the outer query do not both have ORDER BY clauses. |
2618 ** | 3162 ** |
2619 ** (**) Not implemented. Subsumed into restriction (3). Was previously | 3163 ** (**) Not implemented. Subsumed into restriction (3). Was previously |
2620 ** a separate restriction deriving from ticket #350. | 3164 ** a separate restriction deriving from ticket #350. |
2621 ** | 3165 ** |
2622 ** (13) The subquery and outer query do not both use LIMIT. | 3166 ** (13) The subquery and outer query do not both use LIMIT. |
2623 ** | 3167 ** |
2624 ** (14) The subquery does not use OFFSET. | 3168 ** (14) The subquery does not use OFFSET. |
2625 ** | 3169 ** |
2626 ** (15) The outer query is not part of a compound select or the | 3170 ** (15) The outer query is not part of a compound select or the |
2627 ** subquery does not have a LIMIT clause. | 3171 ** subquery does not have a LIMIT clause. |
2628 ** (See ticket #2339 and ticket [02a8e81d44]). | 3172 ** (See ticket #2339 and ticket [02a8e81d44]). |
2629 ** | 3173 ** |
2630 ** (16) The outer query is not an aggregate or the subquery does | 3174 ** (16) The outer query is not an aggregate or the subquery does |
2631 ** not contain ORDER BY. (Ticket #2942) This used to not matter | 3175 ** not contain ORDER BY. (Ticket #2942) This used to not matter |
2632 ** until we introduced the group_concat() function. | 3176 ** until we introduced the group_concat() function. |
2633 ** | 3177 ** |
2634 ** (17) The sub-query is not a compound select, or it is a UNION ALL | 3178 ** (17) The sub-query is not a compound select, or it is a UNION ALL |
2635 ** compound clause made up entirely of non-aggregate queries, and | 3179 ** compound clause made up entirely of non-aggregate queries, and |
2636 ** the parent query: | 3180 ** the parent query: |
2637 ** | 3181 ** |
2638 ** * is not itself part of a compound select, | 3182 ** * is not itself part of a compound select, |
2639 ** * is not an aggregate or DISTINCT query, and | 3183 ** * is not an aggregate or DISTINCT query, and |
2640 ** * has no other tables or sub-selects in the FROM clause. | 3184 ** * is not a join |
2641 ** | 3185 ** |
2642 ** The parent and sub-query may contain WHERE clauses. Subject to | 3186 ** The parent and sub-query may contain WHERE clauses. Subject to |
2643 ** rules (11), (13) and (14), they may also contain ORDER BY, | 3187 ** rules (11), (13) and (14), they may also contain ORDER BY, |
2644 ** LIMIT and OFFSET clauses. | 3188 ** LIMIT and OFFSET clauses. The subquery cannot use any compound |
| 3189 ** operator other than UNION ALL because all the other compound |
| 3190 ** operators have an implied DISTINCT which is disallowed by |
| 3191 ** restriction (4). |
| 3192 ** |
| 3193 ** Also, each component of the sub-query must return the same number |
| 3194 ** of result columns. This is actually a requirement for any compound |
| 3195 ** SELECT statement, but all the code here does is make sure that no |
| 3196 ** such (illegal) sub-query is flattened. The caller will detect the |
| 3197 ** syntax error and return a detailed message. |
2645 ** | 3198 ** |
2646 ** (18) If the sub-query is a compound select, then all terms of the | 3199 ** (18) If the sub-query is a compound select, then all terms of the |
2647 ** ORDER by clause of the parent must be simple references to | 3200 ** ORDER by clause of the parent must be simple references to |
2648 ** columns of the sub-query. | 3201 ** columns of the sub-query. |
2649 ** | 3202 ** |
2650 ** (19) The subquery does not use LIMIT or the outer query does not | 3203 ** (19) The subquery does not use LIMIT or the outer query does not |
2651 ** have a WHERE clause. | 3204 ** have a WHERE clause. |
2652 ** | 3205 ** |
2653 ** (20) If the sub-query is a compound select, then it must not use | 3206 ** (20) If the sub-query is a compound select, then it must not use |
2654 ** an ORDER BY clause. Ticket #3773. We could relax this constraint | 3207 ** an ORDER BY clause. Ticket #3773. We could relax this constraint |
2655 ** somewhat by saying that the terms of the ORDER BY clause must | 3208 ** somewhat by saying that the terms of the ORDER BY clause must |
2656 ** appear as unmodified result columns in the outer query. But | 3209 ** appear as unmodified result columns in the outer query. But we |
2657 ** have other optimizations in mind to deal with that case. | 3210 ** have other optimizations in mind to deal with that case. |
2658 ** | 3211 ** |
2659 ** (21) The subquery does not use LIMIT or the outer query is not | 3212 ** (21) The subquery does not use LIMIT or the outer query is not |
2660 ** DISTINCT. (See ticket [752e1646fc]). | 3213 ** DISTINCT. (See ticket [752e1646fc]). |
2661 ** | 3214 ** |
| 3215 ** (22) The subquery is not a recursive CTE. |
| 3216 ** |
| 3217 ** (23) The parent is not a recursive CTE, or the sub-query is not a |
| 3218 ** compound query. This restriction is because transforming the |
| 3219 ** parent to a compound query confuses the code that handles |
| 3220 ** recursive queries in multiSelect(). |
| 3221 ** |
| 3222 ** (24) The subquery is not an aggregate that uses the built-in min() or |
| 3223 ** or max() functions. (Without this restriction, a query like: |
| 3224 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily |
| 3225 ** return the value X for which Y was maximal.) |
| 3226 ** |
| 3227 ** |
2662 ** In this routine, the "p" parameter is a pointer to the outer query. | 3228 ** In this routine, the "p" parameter is a pointer to the outer query. |
2663 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query | 3229 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query |
2664 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. | 3230 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. |
2665 ** | 3231 ** |
2666 ** If flattening is not attempted, this routine is a no-op and returns 0. | 3232 ** If flattening is not attempted, this routine is a no-op and returns 0. |
2667 ** If flattening is attempted this routine returns 1. | 3233 ** If flattening is attempted this routine returns 1. |
2668 ** | 3234 ** |
2669 ** All of the expression analysis must occur on both the outer query and | 3235 ** All of the expression analysis must occur on both the outer query and |
2670 ** the subquery before this routine runs. | 3236 ** the subquery before this routine runs. |
2671 */ | 3237 */ |
(...skipping 14 matching lines...) Expand all Loading... |
2686 int iParent; /* VDBE cursor number of the pSub result set temp table */ | 3252 int iParent; /* VDBE cursor number of the pSub result set temp table */ |
2687 int i; /* Loop counter */ | 3253 int i; /* Loop counter */ |
2688 Expr *pWhere; /* The WHERE clause */ | 3254 Expr *pWhere; /* The WHERE clause */ |
2689 struct SrcList_item *pSubitem; /* The subquery */ | 3255 struct SrcList_item *pSubitem; /* The subquery */ |
2690 sqlite3 *db = pParse->db; | 3256 sqlite3 *db = pParse->db; |
2691 | 3257 |
2692 /* Check to see if flattening is permitted. Return 0 if not. | 3258 /* Check to see if flattening is permitted. Return 0 if not. |
2693 */ | 3259 */ |
2694 assert( p!=0 ); | 3260 assert( p!=0 ); |
2695 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ | 3261 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ |
2696 if( db->flags & SQLITE_QueryFlattener ) return 0; | 3262 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; |
2697 pSrc = p->pSrc; | 3263 pSrc = p->pSrc; |
2698 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); | 3264 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); |
2699 pSubitem = &pSrc->a[iFrom]; | 3265 pSubitem = &pSrc->a[iFrom]; |
2700 iParent = pSubitem->iCursor; | 3266 iParent = pSubitem->iCursor; |
2701 pSub = pSubitem->pSelect; | 3267 pSub = pSubitem->pSelect; |
2702 assert( pSub!=0 ); | 3268 assert( pSub!=0 ); |
2703 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ | 3269 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ |
2704 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ | 3270 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ |
2705 pSubSrc = pSub->pSrc; | 3271 pSubSrc = pSub->pSrc; |
2706 assert( pSubSrc ); | 3272 assert( pSubSrc ); |
2707 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, | 3273 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, |
2708 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET | 3274 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET |
2709 ** because they could be computed at compile-time. But when LIMIT and OFFSET | 3275 ** because they could be computed at compile-time. But when LIMIT and OFFSET |
2710 ** became arbitrary expressions, we were forced to add restrictions (13) | 3276 ** became arbitrary expressions, we were forced to add restrictions (13) |
2711 ** and (14). */ | 3277 ** and (14). */ |
2712 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ | 3278 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ |
2713 if( pSub->pOffset ) return 0; /* Restriction (14) */ | 3279 if( pSub->pOffset ) return 0; /* Restriction (14) */ |
2714 if( p->pRightmost && pSub->pLimit ){ | 3280 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ |
2715 return 0; /* Restriction (15) */ | 3281 return 0; /* Restriction (15) */ |
2716 } | 3282 } |
2717 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ | 3283 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ |
2718 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ | 3284 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ |
2719 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ | 3285 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ |
2720 return 0; /* Restrictions (8)(9) */ | 3286 return 0; /* Restrictions (8)(9) */ |
2721 } | 3287 } |
2722 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ | 3288 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ |
2723 return 0; /* Restriction (6) */ | 3289 return 0; /* Restriction (6) */ |
2724 } | 3290 } |
2725 if( p->pOrderBy && pSub->pOrderBy ){ | 3291 if( p->pOrderBy && pSub->pOrderBy ){ |
2726 return 0; /* Restriction (11) */ | 3292 return 0; /* Restriction (11) */ |
2727 } | 3293 } |
2728 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ | 3294 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ |
2729 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ | 3295 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ |
2730 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ | 3296 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ |
2731 return 0; /* Restriction (21) */ | 3297 return 0; /* Restriction (21) */ |
2732 } | 3298 } |
| 3299 testcase( pSub->selFlags & SF_Recursive ); |
| 3300 testcase( pSub->selFlags & SF_MinMaxAgg ); |
| 3301 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ |
| 3302 return 0; /* Restrictions (22) and (24) */ |
| 3303 } |
| 3304 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ |
| 3305 return 0; /* Restriction (23) */ |
| 3306 } |
2733 | 3307 |
2734 /* OBSOLETE COMMENT 1: | 3308 /* OBSOLETE COMMENT 1: |
2735 ** Restriction 3: If the subquery is a join, make sure the subquery is | 3309 ** Restriction 3: If the subquery is a join, make sure the subquery is |
2736 ** not used as the right operand of an outer join. Examples of why this | 3310 ** not used as the right operand of an outer join. Examples of why this |
2737 ** is not allowed: | 3311 ** is not allowed: |
2738 ** | 3312 ** |
2739 ** t1 LEFT OUTER JOIN (t2 JOIN t3) | 3313 ** t1 LEFT OUTER JOIN (t2 JOIN t3) |
2740 ** | 3314 ** |
2741 ** If we flatten the above, we would get | 3315 ** If we flatten the above, we would get |
2742 ** | 3316 ** |
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2775 if( pSub->pPrior ){ | 3349 if( pSub->pPrior ){ |
2776 if( pSub->pOrderBy ){ | 3350 if( pSub->pOrderBy ){ |
2777 return 0; /* Restriction 20 */ | 3351 return 0; /* Restriction 20 */ |
2778 } | 3352 } |
2779 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ | 3353 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ |
2780 return 0; | 3354 return 0; |
2781 } | 3355 } |
2782 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ | 3356 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ |
2783 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); | 3357 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); |
2784 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); | 3358 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); |
| 3359 assert( pSub->pSrc!=0 ); |
2785 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 | 3360 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 |
2786 || (pSub1->pPrior && pSub1->op!=TK_ALL) | 3361 || (pSub1->pPrior && pSub1->op!=TK_ALL) |
2787 || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1 | 3362 || pSub1->pSrc->nSrc<1 |
| 3363 || pSub->pEList->nExpr!=pSub1->pEList->nExpr |
2788 ){ | 3364 ){ |
2789 return 0; | 3365 return 0; |
2790 } | 3366 } |
| 3367 testcase( pSub1->pSrc->nSrc>1 ); |
2791 } | 3368 } |
2792 | 3369 |
2793 /* Restriction 18. */ | 3370 /* Restriction 18. */ |
2794 if( p->pOrderBy ){ | 3371 if( p->pOrderBy ){ |
2795 int ii; | 3372 int ii; |
2796 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ | 3373 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ |
2797 if( p->pOrderBy->a[ii].iCol==0 ) return 0; | 3374 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; |
2798 } | 3375 } |
2799 } | 3376 } |
2800 } | 3377 } |
2801 | 3378 |
2802 /***** If we reach this point, flattening is permitted. *****/ | 3379 /***** If we reach this point, flattening is permitted. *****/ |
| 3380 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", |
| 3381 pSub->zSelName, pSub, iFrom)); |
2803 | 3382 |
2804 /* Authorize the subquery */ | 3383 /* Authorize the subquery */ |
2805 pParse->zAuthContext = pSubitem->zName; | 3384 pParse->zAuthContext = pSubitem->zName; |
2806 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); | 3385 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); |
| 3386 testcase( i==SQLITE_DENY ); |
2807 pParse->zAuthContext = zSavedAuthContext; | 3387 pParse->zAuthContext = zSavedAuthContext; |
2808 | 3388 |
2809 /* If the sub-query is a compound SELECT statement, then (by restrictions | 3389 /* If the sub-query is a compound SELECT statement, then (by restrictions |
2810 ** 17 and 18 above) it must be a UNION ALL and the parent query must | 3390 ** 17 and 18 above) it must be a UNION ALL and the parent query must |
2811 ** be of the form: | 3391 ** be of the form: |
2812 ** | 3392 ** |
2813 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> | 3393 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> |
2814 ** | 3394 ** |
2815 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block | 3395 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block |
2816 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or | 3396 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or |
(...skipping 19 matching lines...) Expand all Loading... |
2836 ** UNION ALL | 3416 ** UNION ALL |
2837 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 | 3417 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 |
2838 ** ORDER BY 1 | 3418 ** ORDER BY 1 |
2839 ** | 3419 ** |
2840 ** We call this the "compound-subquery flattening". | 3420 ** We call this the "compound-subquery flattening". |
2841 */ | 3421 */ |
2842 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ | 3422 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ |
2843 Select *pNew; | 3423 Select *pNew; |
2844 ExprList *pOrderBy = p->pOrderBy; | 3424 ExprList *pOrderBy = p->pOrderBy; |
2845 Expr *pLimit = p->pLimit; | 3425 Expr *pLimit = p->pLimit; |
| 3426 Expr *pOffset = p->pOffset; |
2846 Select *pPrior = p->pPrior; | 3427 Select *pPrior = p->pPrior; |
2847 p->pOrderBy = 0; | 3428 p->pOrderBy = 0; |
2848 p->pSrc = 0; | 3429 p->pSrc = 0; |
2849 p->pPrior = 0; | 3430 p->pPrior = 0; |
2850 p->pLimit = 0; | 3431 p->pLimit = 0; |
| 3432 p->pOffset = 0; |
2851 pNew = sqlite3SelectDup(db, p, 0); | 3433 pNew = sqlite3SelectDup(db, p, 0); |
| 3434 sqlite3SelectSetName(pNew, pSub->zSelName); |
| 3435 p->pOffset = pOffset; |
2852 p->pLimit = pLimit; | 3436 p->pLimit = pLimit; |
2853 p->pOrderBy = pOrderBy; | 3437 p->pOrderBy = pOrderBy; |
2854 p->pSrc = pSrc; | 3438 p->pSrc = pSrc; |
2855 p->op = TK_ALL; | 3439 p->op = TK_ALL; |
2856 p->pRightmost = 0; | |
2857 if( pNew==0 ){ | 3440 if( pNew==0 ){ |
2858 pNew = pPrior; | 3441 p->pPrior = pPrior; |
2859 }else{ | 3442 }else{ |
2860 pNew->pPrior = pPrior; | 3443 pNew->pPrior = pPrior; |
2861 pNew->pRightmost = 0; | 3444 if( pPrior ) pPrior->pNext = pNew; |
| 3445 pNew->pNext = p; |
| 3446 p->pPrior = pNew; |
| 3447 SELECTTRACE(2,pParse,p, |
| 3448 ("compound-subquery flattener creates %s.%p as peer\n", |
| 3449 pNew->zSelName, pNew)); |
2862 } | 3450 } |
2863 p->pPrior = pNew; | |
2864 if( db->mallocFailed ) return 1; | 3451 if( db->mallocFailed ) return 1; |
2865 } | 3452 } |
2866 | 3453 |
2867 /* Begin flattening the iFrom-th entry of the FROM clause | 3454 /* Begin flattening the iFrom-th entry of the FROM clause |
2868 ** in the outer query. | 3455 ** in the outer query. |
2869 */ | 3456 */ |
2870 pSub = pSub1 = pSubitem->pSelect; | 3457 pSub = pSub1 = pSubitem->pSelect; |
2871 | 3458 |
2872 /* Delete the transient table structure associated with the | 3459 /* Delete the transient table structure associated with the |
2873 ** subquery | 3460 ** subquery |
(...skipping 97 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2971 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; | 3558 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; |
2972 ** \ \_____________ subquery __________/ / | 3559 ** \ \_____________ subquery __________/ / |
2973 ** \_____________________ outer query ______________________________/ | 3560 ** \_____________________ outer query ______________________________/ |
2974 ** | 3561 ** |
2975 ** We look at every expression in the outer query and every place we see | 3562 ** We look at every expression in the outer query and every place we see |
2976 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". | 3563 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". |
2977 */ | 3564 */ |
2978 pList = pParent->pEList; | 3565 pList = pParent->pEList; |
2979 for(i=0; i<pList->nExpr; i++){ | 3566 for(i=0; i<pList->nExpr; i++){ |
2980 if( pList->a[i].zName==0 ){ | 3567 if( pList->a[i].zName==0 ){ |
2981 const char *zSpan = pList->a[i].zSpan; | 3568 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); |
2982 if( ALWAYS(zSpan) ){ | 3569 sqlite3Dequote(zName); |
2983 pList->a[i].zName = sqlite3DbStrDup(db, zSpan); | 3570 pList->a[i].zName = zName; |
2984 } | |
2985 } | 3571 } |
2986 } | 3572 } |
2987 substExprList(db, pParent->pEList, iParent, pSub->pEList); | 3573 substExprList(db, pParent->pEList, iParent, pSub->pEList); |
2988 if( isAgg ){ | 3574 if( isAgg ){ |
2989 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); | 3575 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); |
2990 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); | 3576 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); |
2991 } | 3577 } |
2992 if( pSub->pOrderBy ){ | 3578 if( pSub->pOrderBy ){ |
| 3579 /* At this point, any non-zero iOrderByCol values indicate that the |
| 3580 ** ORDER BY column expression is identical to the iOrderByCol'th |
| 3581 ** expression returned by SELECT statement pSub. Since these values |
| 3582 ** do not necessarily correspond to columns in SELECT statement pParent, |
| 3583 ** zero them before transfering the ORDER BY clause. |
| 3584 ** |
| 3585 ** Not doing this may cause an error if a subsequent call to this |
| 3586 ** function attempts to flatten a compound sub-query into pParent |
| 3587 ** (the only way this can happen is if the compound sub-query is |
| 3588 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ |
| 3589 ExprList *pOrderBy = pSub->pOrderBy; |
| 3590 for(i=0; i<pOrderBy->nExpr; i++){ |
| 3591 pOrderBy->a[i].u.x.iOrderByCol = 0; |
| 3592 } |
2993 assert( pParent->pOrderBy==0 ); | 3593 assert( pParent->pOrderBy==0 ); |
2994 pParent->pOrderBy = pSub->pOrderBy; | 3594 assert( pSub->pPrior==0 ); |
| 3595 pParent->pOrderBy = pOrderBy; |
2995 pSub->pOrderBy = 0; | 3596 pSub->pOrderBy = 0; |
2996 }else if( pParent->pOrderBy ){ | 3597 }else if( pParent->pOrderBy ){ |
2997 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); | 3598 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); |
2998 } | 3599 } |
2999 if( pSub->pWhere ){ | 3600 if( pSub->pWhere ){ |
3000 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); | 3601 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); |
3001 }else{ | 3602 }else{ |
3002 pWhere = 0; | 3603 pWhere = 0; |
3003 } | 3604 } |
3004 if( subqueryIsAgg ){ | 3605 if( subqueryIsAgg ){ |
(...skipping 25 matching lines...) Expand all Loading... |
3030 pParent->pLimit = pSub->pLimit; | 3631 pParent->pLimit = pSub->pLimit; |
3031 pSub->pLimit = 0; | 3632 pSub->pLimit = 0; |
3032 } | 3633 } |
3033 } | 3634 } |
3034 | 3635 |
3035 /* Finially, delete what is left of the subquery and return | 3636 /* Finially, delete what is left of the subquery and return |
3036 ** success. | 3637 ** success. |
3037 */ | 3638 */ |
3038 sqlite3SelectDelete(db, pSub1); | 3639 sqlite3SelectDelete(db, pSub1); |
3039 | 3640 |
| 3641 #if SELECTTRACE_ENABLED |
| 3642 if( sqlite3SelectTrace & 0x100 ){ |
| 3643 sqlite3DebugPrintf("After flattening:\n"); |
| 3644 sqlite3TreeViewSelect(0, p, 0); |
| 3645 } |
| 3646 #endif |
| 3647 |
3040 return 1; | 3648 return 1; |
3041 } | 3649 } |
3042 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ | 3650 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
3043 | 3651 |
3044 /* | 3652 /* |
3045 ** Analyze the SELECT statement passed as an argument to see if it | 3653 ** Based on the contents of the AggInfo structure indicated by the first |
3046 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if | 3654 ** argument, this function checks if the following are true: |
3047 ** it is, or 0 otherwise. At present, a query is considered to be | |
3048 ** a min()/max() query if: | |
3049 ** | 3655 ** |
3050 ** 1. There is a single object in the FROM clause. | 3656 ** * the query contains just a single aggregate function, |
| 3657 ** * the aggregate function is either min() or max(), and |
| 3658 ** * the argument to the aggregate function is a column value. |
3051 ** | 3659 ** |
3052 ** 2. There is a single expression in the result set, and it is | 3660 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX |
3053 ** either min(x) or max(x), where x is a column reference. | 3661 ** is returned as appropriate. Also, *ppMinMax is set to point to the |
| 3662 ** list of arguments passed to the aggregate before returning. |
| 3663 ** |
| 3664 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and |
| 3665 ** WHERE_ORDERBY_NORMAL is returned. |
3054 */ | 3666 */ |
3055 static u8 minMaxQuery(Select *p){ | 3667 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ |
3056 Expr *pExpr; | 3668 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ |
3057 ExprList *pEList = p->pEList; | |
3058 | 3669 |
3059 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; | 3670 *ppMinMax = 0; |
3060 pExpr = pEList->a[0].pExpr; | 3671 if( pAggInfo->nFunc==1 ){ |
3061 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; | 3672 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ |
3062 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; | 3673 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ |
3063 pEList = pExpr->x.pList; | 3674 |
3064 if( pEList==0 || pEList->nExpr!=1 ) return 0; | 3675 assert( pExpr->op==TK_AGG_FUNCTION ); |
3065 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; | 3676 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ |
3066 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | 3677 const char *zFunc = pExpr->u.zToken; |
3067 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){ | 3678 if( sqlite3StrICmp(zFunc, "min")==0 ){ |
3068 return WHERE_ORDERBY_MIN; | 3679 eRet = WHERE_ORDERBY_MIN; |
3069 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){ | 3680 *ppMinMax = pEList; |
3070 return WHERE_ORDERBY_MAX; | 3681 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ |
| 3682 eRet = WHERE_ORDERBY_MAX; |
| 3683 *ppMinMax = pEList; |
| 3684 } |
| 3685 } |
3071 } | 3686 } |
3072 return WHERE_ORDERBY_NORMAL; | 3687 |
| 3688 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); |
| 3689 return eRet; |
3073 } | 3690 } |
3074 | 3691 |
3075 /* | 3692 /* |
3076 ** The select statement passed as the first argument is an aggregate query. | 3693 ** The select statement passed as the first argument is an aggregate query. |
3077 ** The second argment is the associated aggregate-info object. This | 3694 ** The second argument is the associated aggregate-info object. This |
3078 ** function tests if the SELECT is of the form: | 3695 ** function tests if the SELECT is of the form: |
3079 ** | 3696 ** |
3080 ** SELECT count(*) FROM <tbl> | 3697 ** SELECT count(*) FROM <tbl> |
3081 ** | 3698 ** |
3082 ** where table is a database table, not a sub-select or view. If the query | 3699 ** where table is a database table, not a sub-select or view. If the query |
3083 ** does match this pattern, then a pointer to the Table object representing | 3700 ** does match this pattern, then a pointer to the Table object representing |
3084 ** <tbl> is returned. Otherwise, 0 is returned. | 3701 ** <tbl> is returned. Otherwise, 0 is returned. |
3085 */ | 3702 */ |
3086 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ | 3703 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ |
3087 Table *pTab; | 3704 Table *pTab; |
3088 Expr *pExpr; | 3705 Expr *pExpr; |
3089 | 3706 |
3090 assert( !p->pGroupBy ); | 3707 assert( !p->pGroupBy ); |
3091 | 3708 |
3092 if( p->pWhere || p->pEList->nExpr!=1 | 3709 if( p->pWhere || p->pEList->nExpr!=1 |
3093 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect | 3710 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect |
3094 ){ | 3711 ){ |
3095 return 0; | 3712 return 0; |
3096 } | 3713 } |
3097 pTab = p->pSrc->a[0].pTab; | 3714 pTab = p->pSrc->a[0].pTab; |
3098 pExpr = p->pEList->a[0].pExpr; | 3715 pExpr = p->pEList->a[0].pExpr; |
3099 assert( pTab && !pTab->pSelect && pExpr ); | 3716 assert( pTab && !pTab->pSelect && pExpr ); |
3100 | 3717 |
3101 if( IsVirtual(pTab) ) return 0; | 3718 if( IsVirtual(pTab) ) return 0; |
3102 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; | 3719 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; |
3103 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; | 3720 if( NEVER(pAggInfo->nFunc==0) ) return 0; |
| 3721 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; |
3104 if( pExpr->flags&EP_Distinct ) return 0; | 3722 if( pExpr->flags&EP_Distinct ) return 0; |
3105 | 3723 |
3106 return pTab; | 3724 return pTab; |
3107 } | 3725 } |
3108 | 3726 |
3109 /* | 3727 /* |
3110 ** If the source-list item passed as an argument was augmented with an | 3728 ** If the source-list item passed as an argument was augmented with an |
3111 ** INDEXED BY clause, then try to locate the specified index. If there | 3729 ** INDEXED BY clause, then try to locate the specified index. If there |
3112 ** was such a clause and the named index cannot be found, return | 3730 ** was such a clause and the named index cannot be found, return |
3113 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate | 3731 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate |
(...skipping 10 matching lines...) Expand all Loading... |
3124 ); | 3742 ); |
3125 if( !pIdx ){ | 3743 if( !pIdx ){ |
3126 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); | 3744 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); |
3127 pParse->checkSchema = 1; | 3745 pParse->checkSchema = 1; |
3128 return SQLITE_ERROR; | 3746 return SQLITE_ERROR; |
3129 } | 3747 } |
3130 pFrom->pIndex = pIdx; | 3748 pFrom->pIndex = pIdx; |
3131 } | 3749 } |
3132 return SQLITE_OK; | 3750 return SQLITE_OK; |
3133 } | 3751 } |
| 3752 /* |
| 3753 ** Detect compound SELECT statements that use an ORDER BY clause with |
| 3754 ** an alternative collating sequence. |
| 3755 ** |
| 3756 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... |
| 3757 ** |
| 3758 ** These are rewritten as a subquery: |
| 3759 ** |
| 3760 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) |
| 3761 ** ORDER BY ... COLLATE ... |
| 3762 ** |
| 3763 ** This transformation is necessary because the multiSelectOrderBy() routine |
| 3764 ** above that generates the code for a compound SELECT with an ORDER BY clause |
| 3765 ** uses a merge algorithm that requires the same collating sequence on the |
| 3766 ** result columns as on the ORDER BY clause. See ticket |
| 3767 ** http://www.sqlite.org/src/info/6709574d2a |
| 3768 ** |
| 3769 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. |
| 3770 ** The UNION ALL operator works fine with multiSelectOrderBy() even when |
| 3771 ** there are COLLATE terms in the ORDER BY. |
| 3772 */ |
| 3773 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ |
| 3774 int i; |
| 3775 Select *pNew; |
| 3776 Select *pX; |
| 3777 sqlite3 *db; |
| 3778 struct ExprList_item *a; |
| 3779 SrcList *pNewSrc; |
| 3780 Parse *pParse; |
| 3781 Token dummy; |
| 3782 |
| 3783 if( p->pPrior==0 ) return WRC_Continue; |
| 3784 if( p->pOrderBy==0 ) return WRC_Continue; |
| 3785 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} |
| 3786 if( pX==0 ) return WRC_Continue; |
| 3787 a = p->pOrderBy->a; |
| 3788 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ |
| 3789 if( a[i].pExpr->flags & EP_Collate ) break; |
| 3790 } |
| 3791 if( i<0 ) return WRC_Continue; |
| 3792 |
| 3793 /* If we reach this point, that means the transformation is required. */ |
| 3794 |
| 3795 pParse = pWalker->pParse; |
| 3796 db = pParse->db; |
| 3797 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); |
| 3798 if( pNew==0 ) return WRC_Abort; |
| 3799 memset(&dummy, 0, sizeof(dummy)); |
| 3800 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); |
| 3801 if( pNewSrc==0 ) return WRC_Abort; |
| 3802 *pNew = *p; |
| 3803 p->pSrc = pNewSrc; |
| 3804 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); |
| 3805 p->op = TK_SELECT; |
| 3806 p->pWhere = 0; |
| 3807 pNew->pGroupBy = 0; |
| 3808 pNew->pHaving = 0; |
| 3809 pNew->pOrderBy = 0; |
| 3810 p->pPrior = 0; |
| 3811 p->pNext = 0; |
| 3812 p->selFlags &= ~SF_Compound; |
| 3813 assert( pNew->pPrior!=0 ); |
| 3814 pNew->pPrior->pNext = pNew; |
| 3815 pNew->pLimit = 0; |
| 3816 pNew->pOffset = 0; |
| 3817 return WRC_Continue; |
| 3818 } |
| 3819 |
| 3820 #ifndef SQLITE_OMIT_CTE |
| 3821 /* |
| 3822 ** Argument pWith (which may be NULL) points to a linked list of nested |
| 3823 ** WITH contexts, from inner to outermost. If the table identified by |
| 3824 ** FROM clause element pItem is really a common-table-expression (CTE) |
| 3825 ** then return a pointer to the CTE definition for that table. Otherwise |
| 3826 ** return NULL. |
| 3827 ** |
| 3828 ** If a non-NULL value is returned, set *ppContext to point to the With |
| 3829 ** object that the returned CTE belongs to. |
| 3830 */ |
| 3831 static struct Cte *searchWith( |
| 3832 With *pWith, /* Current outermost WITH clause */ |
| 3833 struct SrcList_item *pItem, /* FROM clause element to resolve */ |
| 3834 With **ppContext /* OUT: WITH clause return value belongs to */ |
| 3835 ){ |
| 3836 const char *zName; |
| 3837 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ |
| 3838 With *p; |
| 3839 for(p=pWith; p; p=p->pOuter){ |
| 3840 int i; |
| 3841 for(i=0; i<p->nCte; i++){ |
| 3842 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ |
| 3843 *ppContext = p; |
| 3844 return &p->a[i]; |
| 3845 } |
| 3846 } |
| 3847 } |
| 3848 } |
| 3849 return 0; |
| 3850 } |
| 3851 |
| 3852 /* The code generator maintains a stack of active WITH clauses |
| 3853 ** with the inner-most WITH clause being at the top of the stack. |
| 3854 ** |
| 3855 ** This routine pushes the WITH clause passed as the second argument |
| 3856 ** onto the top of the stack. If argument bFree is true, then this |
| 3857 ** WITH clause will never be popped from the stack. In this case it |
| 3858 ** should be freed along with the Parse object. In other cases, when |
| 3859 ** bFree==0, the With object will be freed along with the SELECT |
| 3860 ** statement with which it is associated. |
| 3861 */ |
| 3862 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ |
| 3863 assert( bFree==0 || pParse->pWith==0 ); |
| 3864 if( pWith ){ |
| 3865 pWith->pOuter = pParse->pWith; |
| 3866 pParse->pWith = pWith; |
| 3867 pParse->bFreeWith = bFree; |
| 3868 } |
| 3869 } |
| 3870 |
| 3871 /* |
| 3872 ** This function checks if argument pFrom refers to a CTE declared by |
| 3873 ** a WITH clause on the stack currently maintained by the parser. And, |
| 3874 ** if currently processing a CTE expression, if it is a recursive |
| 3875 ** reference to the current CTE. |
| 3876 ** |
| 3877 ** If pFrom falls into either of the two categories above, pFrom->pTab |
| 3878 ** and other fields are populated accordingly. The caller should check |
| 3879 ** (pFrom->pTab!=0) to determine whether or not a successful match |
| 3880 ** was found. |
| 3881 ** |
| 3882 ** Whether or not a match is found, SQLITE_OK is returned if no error |
| 3883 ** occurs. If an error does occur, an error message is stored in the |
| 3884 ** parser and some error code other than SQLITE_OK returned. |
| 3885 */ |
| 3886 static int withExpand( |
| 3887 Walker *pWalker, |
| 3888 struct SrcList_item *pFrom |
| 3889 ){ |
| 3890 Parse *pParse = pWalker->pParse; |
| 3891 sqlite3 *db = pParse->db; |
| 3892 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ |
| 3893 With *pWith; /* WITH clause that pCte belongs to */ |
| 3894 |
| 3895 assert( pFrom->pTab==0 ); |
| 3896 |
| 3897 pCte = searchWith(pParse->pWith, pFrom, &pWith); |
| 3898 if( pCte ){ |
| 3899 Table *pTab; |
| 3900 ExprList *pEList; |
| 3901 Select *pSel; |
| 3902 Select *pLeft; /* Left-most SELECT statement */ |
| 3903 int bMayRecursive; /* True if compound joined by UNION [ALL] */ |
| 3904 With *pSavedWith; /* Initial value of pParse->pWith */ |
| 3905 |
| 3906 /* If pCte->zErr is non-NULL at this point, then this is an illegal |
| 3907 ** recursive reference to CTE pCte. Leave an error in pParse and return |
| 3908 ** early. If pCte->zErr is NULL, then this is not a recursive reference. |
| 3909 ** In this case, proceed. */ |
| 3910 if( pCte->zErr ){ |
| 3911 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); |
| 3912 return SQLITE_ERROR; |
| 3913 } |
| 3914 |
| 3915 assert( pFrom->pTab==0 ); |
| 3916 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); |
| 3917 if( pTab==0 ) return WRC_Abort; |
| 3918 pTab->nRef = 1; |
| 3919 pTab->zName = sqlite3DbStrDup(db, pCte->zName); |
| 3920 pTab->iPKey = -1; |
| 3921 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
| 3922 pTab->tabFlags |= TF_Ephemeral; |
| 3923 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); |
| 3924 if( db->mallocFailed ) return SQLITE_NOMEM; |
| 3925 assert( pFrom->pSelect ); |
| 3926 |
| 3927 /* Check if this is a recursive CTE. */ |
| 3928 pSel = pFrom->pSelect; |
| 3929 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); |
| 3930 if( bMayRecursive ){ |
| 3931 int i; |
| 3932 SrcList *pSrc = pFrom->pSelect->pSrc; |
| 3933 for(i=0; i<pSrc->nSrc; i++){ |
| 3934 struct SrcList_item *pItem = &pSrc->a[i]; |
| 3935 if( pItem->zDatabase==0 |
| 3936 && pItem->zName!=0 |
| 3937 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) |
| 3938 ){ |
| 3939 pItem->pTab = pTab; |
| 3940 pItem->isRecursive = 1; |
| 3941 pTab->nRef++; |
| 3942 pSel->selFlags |= SF_Recursive; |
| 3943 } |
| 3944 } |
| 3945 } |
| 3946 |
| 3947 /* Only one recursive reference is permitted. */ |
| 3948 if( pTab->nRef>2 ){ |
| 3949 sqlite3ErrorMsg( |
| 3950 pParse, "multiple references to recursive table: %s", pCte->zName |
| 3951 ); |
| 3952 return SQLITE_ERROR; |
| 3953 } |
| 3954 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); |
| 3955 |
| 3956 pCte->zErr = "circular reference: %s"; |
| 3957 pSavedWith = pParse->pWith; |
| 3958 pParse->pWith = pWith; |
| 3959 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); |
| 3960 |
| 3961 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); |
| 3962 pEList = pLeft->pEList; |
| 3963 if( pCte->pCols ){ |
| 3964 if( pEList->nExpr!=pCte->pCols->nExpr ){ |
| 3965 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", |
| 3966 pCte->zName, pEList->nExpr, pCte->pCols->nExpr |
| 3967 ); |
| 3968 pParse->pWith = pSavedWith; |
| 3969 return SQLITE_ERROR; |
| 3970 } |
| 3971 pEList = pCte->pCols; |
| 3972 } |
| 3973 |
| 3974 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); |
| 3975 if( bMayRecursive ){ |
| 3976 if( pSel->selFlags & SF_Recursive ){ |
| 3977 pCte->zErr = "multiple recursive references: %s"; |
| 3978 }else{ |
| 3979 pCte->zErr = "recursive reference in a subquery: %s"; |
| 3980 } |
| 3981 sqlite3WalkSelect(pWalker, pSel); |
| 3982 } |
| 3983 pCte->zErr = 0; |
| 3984 pParse->pWith = pSavedWith; |
| 3985 } |
| 3986 |
| 3987 return SQLITE_OK; |
| 3988 } |
| 3989 #endif |
| 3990 |
| 3991 #ifndef SQLITE_OMIT_CTE |
| 3992 /* |
| 3993 ** If the SELECT passed as the second argument has an associated WITH |
| 3994 ** clause, pop it from the stack stored as part of the Parse object. |
| 3995 ** |
| 3996 ** This function is used as the xSelectCallback2() callback by |
| 3997 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table |
| 3998 ** names and other FROM clause elements. |
| 3999 */ |
| 4000 static void selectPopWith(Walker *pWalker, Select *p){ |
| 4001 Parse *pParse = pWalker->pParse; |
| 4002 With *pWith = findRightmost(p)->pWith; |
| 4003 if( pWith!=0 ){ |
| 4004 assert( pParse->pWith==pWith ); |
| 4005 pParse->pWith = pWith->pOuter; |
| 4006 } |
| 4007 } |
| 4008 #else |
| 4009 #define selectPopWith 0 |
| 4010 #endif |
3134 | 4011 |
3135 /* | 4012 /* |
3136 ** This routine is a Walker callback for "expanding" a SELECT statement. | 4013 ** This routine is a Walker callback for "expanding" a SELECT statement. |
3137 ** "Expanding" means to do the following: | 4014 ** "Expanding" means to do the following: |
3138 ** | 4015 ** |
3139 ** (1) Make sure VDBE cursor numbers have been assigned to every | 4016 ** (1) Make sure VDBE cursor numbers have been assigned to every |
3140 ** element of the FROM clause. | 4017 ** element of the FROM clause. |
3141 ** | 4018 ** |
3142 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that | 4019 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that |
3143 ** defines FROM clause. When views appear in the FROM clause, | 4020 ** defines FROM clause. When views appear in the FROM clause, |
3144 ** fill pTabList->a[].pSelect with a copy of the SELECT statement | 4021 ** fill pTabList->a[].pSelect with a copy of the SELECT statement |
3145 ** that implements the view. A copy is made of the view's SELECT | 4022 ** that implements the view. A copy is made of the view's SELECT |
3146 ** statement so that we can freely modify or delete that statement | 4023 ** statement so that we can freely modify or delete that statement |
3147 ** without worrying about messing up the presistent representation | 4024 ** without worrying about messing up the persistent representation |
3148 ** of the view. | 4025 ** of the view. |
3149 ** | 4026 ** |
3150 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword | 4027 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword |
3151 ** on joins and the ON and USING clause of joins. | 4028 ** on joins and the ON and USING clause of joins. |
3152 ** | 4029 ** |
3153 ** (4) Scan the list of columns in the result set (pEList) looking | 4030 ** (4) Scan the list of columns in the result set (pEList) looking |
3154 ** for instances of the "*" operator or the TABLE.* operator. | 4031 ** for instances of the "*" operator or the TABLE.* operator. |
3155 ** If found, expand each "*" to be every column in every table | 4032 ** If found, expand each "*" to be every column in every table |
3156 ** and TABLE.* to be every column in TABLE. | 4033 ** and TABLE.* to be every column in TABLE. |
3157 ** | 4034 ** |
3158 */ | 4035 */ |
3159 static int selectExpander(Walker *pWalker, Select *p){ | 4036 static int selectExpander(Walker *pWalker, Select *p){ |
3160 Parse *pParse = pWalker->pParse; | 4037 Parse *pParse = pWalker->pParse; |
3161 int i, j, k; | 4038 int i, j, k; |
3162 SrcList *pTabList; | 4039 SrcList *pTabList; |
3163 ExprList *pEList; | 4040 ExprList *pEList; |
3164 struct SrcList_item *pFrom; | 4041 struct SrcList_item *pFrom; |
3165 sqlite3 *db = pParse->db; | 4042 sqlite3 *db = pParse->db; |
| 4043 Expr *pE, *pRight, *pExpr; |
| 4044 u16 selFlags = p->selFlags; |
3166 | 4045 |
| 4046 p->selFlags |= SF_Expanded; |
3167 if( db->mallocFailed ){ | 4047 if( db->mallocFailed ){ |
3168 return WRC_Abort; | 4048 return WRC_Abort; |
3169 } | 4049 } |
3170 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ | 4050 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ |
3171 return WRC_Prune; | 4051 return WRC_Prune; |
3172 } | 4052 } |
3173 p->selFlags |= SF_Expanded; | |
3174 pTabList = p->pSrc; | 4053 pTabList = p->pSrc; |
3175 pEList = p->pEList; | 4054 pEList = p->pEList; |
| 4055 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); |
3176 | 4056 |
3177 /* Make sure cursor numbers have been assigned to all entries in | 4057 /* Make sure cursor numbers have been assigned to all entries in |
3178 ** the FROM clause of the SELECT statement. | 4058 ** the FROM clause of the SELECT statement. |
3179 */ | 4059 */ |
3180 sqlite3SrcListAssignCursors(pParse, pTabList); | 4060 sqlite3SrcListAssignCursors(pParse, pTabList); |
3181 | 4061 |
3182 /* Look up every table named in the FROM clause of the select. If | 4062 /* Look up every table named in the FROM clause of the select. If |
3183 ** an entry of the FROM clause is a subquery instead of a table or view, | 4063 ** an entry of the FROM clause is a subquery instead of a table or view, |
3184 ** then create a transient table structure to describe the subquery. | 4064 ** then create a transient table structure to describe the subquery. |
3185 */ | 4065 */ |
3186 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ | 4066 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
3187 Table *pTab; | 4067 Table *pTab; |
| 4068 assert( pFrom->isRecursive==0 || pFrom->pTab ); |
| 4069 if( pFrom->isRecursive ) continue; |
3188 if( pFrom->pTab!=0 ){ | 4070 if( pFrom->pTab!=0 ){ |
3189 /* This statement has already been prepared. There is no need | 4071 /* This statement has already been prepared. There is no need |
3190 ** to go further. */ | 4072 ** to go further. */ |
3191 assert( i==0 ); | 4073 assert( i==0 ); |
| 4074 #ifndef SQLITE_OMIT_CTE |
| 4075 selectPopWith(pWalker, p); |
| 4076 #endif |
3192 return WRC_Prune; | 4077 return WRC_Prune; |
3193 } | 4078 } |
| 4079 #ifndef SQLITE_OMIT_CTE |
| 4080 if( withExpand(pWalker, pFrom) ) return WRC_Abort; |
| 4081 if( pFrom->pTab ) {} else |
| 4082 #endif |
3194 if( pFrom->zName==0 ){ | 4083 if( pFrom->zName==0 ){ |
3195 #ifndef SQLITE_OMIT_SUBQUERY | 4084 #ifndef SQLITE_OMIT_SUBQUERY |
3196 Select *pSel = pFrom->pSelect; | 4085 Select *pSel = pFrom->pSelect; |
3197 /* A sub-query in the FROM clause of a SELECT */ | 4086 /* A sub-query in the FROM clause of a SELECT */ |
3198 assert( pSel!=0 ); | 4087 assert( pSel!=0 ); |
3199 assert( pFrom->pTab==0 ); | 4088 assert( pFrom->pTab==0 ); |
3200 sqlite3WalkSelect(pWalker, pSel); | 4089 sqlite3WalkSelect(pWalker, pSel); |
3201 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); | 4090 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); |
3202 if( pTab==0 ) return WRC_Abort; | 4091 if( pTab==0 ) return WRC_Abort; |
3203 pTab->nRef = 1; | 4092 pTab->nRef = 1; |
3204 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); | 4093 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); |
3205 while( pSel->pPrior ){ pSel = pSel->pPrior; } | 4094 while( pSel->pPrior ){ pSel = pSel->pPrior; } |
3206 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); | 4095 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); |
3207 pTab->iPKey = -1; | 4096 pTab->iPKey = -1; |
3208 pTab->nRowEst = 1000000; | 4097 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
3209 pTab->tabFlags |= TF_Ephemeral; | 4098 pTab->tabFlags |= TF_Ephemeral; |
3210 #endif | 4099 #endif |
3211 }else{ | 4100 }else{ |
3212 /* An ordinary table or view name in the FROM clause */ | 4101 /* An ordinary table or view name in the FROM clause */ |
3213 assert( pFrom->pTab==0 ); | 4102 assert( pFrom->pTab==0 ); |
3214 pFrom->pTab = pTab = | 4103 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); |
3215 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); | |
3216 if( pTab==0 ) return WRC_Abort; | 4104 if( pTab==0 ) return WRC_Abort; |
| 4105 if( pTab->nRef==0xffff ){ |
| 4106 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", |
| 4107 pTab->zName); |
| 4108 pFrom->pTab = 0; |
| 4109 return WRC_Abort; |
| 4110 } |
3217 pTab->nRef++; | 4111 pTab->nRef++; |
3218 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) | 4112 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) |
3219 if( pTab->pSelect || IsVirtual(pTab) ){ | 4113 if( pTab->pSelect || IsVirtual(pTab) ){ |
3220 /* We reach here if the named table is a really a view */ | 4114 /* We reach here if the named table is a really a view */ |
3221 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; | 4115 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; |
3222 assert( pFrom->pSelect==0 ); | 4116 assert( pFrom->pSelect==0 ); |
3223 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); | 4117 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); |
| 4118 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); |
3224 sqlite3WalkSelect(pWalker, pFrom->pSelect); | 4119 sqlite3WalkSelect(pWalker, pFrom->pSelect); |
3225 } | 4120 } |
3226 #endif | 4121 #endif |
3227 } | 4122 } |
3228 | 4123 |
3229 /* Locate the index named by the INDEXED BY clause, if any. */ | 4124 /* Locate the index named by the INDEXED BY clause, if any. */ |
3230 if( sqlite3IndexedByLookup(pParse, pFrom) ){ | 4125 if( sqlite3IndexedByLookup(pParse, pFrom) ){ |
3231 return WRC_Abort; | 4126 return WRC_Abort; |
3232 } | 4127 } |
3233 } | 4128 } |
3234 | 4129 |
3235 /* Process NATURAL keywords, and ON and USING clauses of joins. | 4130 /* Process NATURAL keywords, and ON and USING clauses of joins. |
3236 */ | 4131 */ |
3237 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ | 4132 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ |
3238 return WRC_Abort; | 4133 return WRC_Abort; |
3239 } | 4134 } |
3240 | 4135 |
3241 /* For every "*" that occurs in the column list, insert the names of | 4136 /* For every "*" that occurs in the column list, insert the names of |
3242 ** all columns in all tables. And for every TABLE.* insert the names | 4137 ** all columns in all tables. And for every TABLE.* insert the names |
3243 ** of all columns in TABLE. The parser inserted a special expression | 4138 ** of all columns in TABLE. The parser inserted a special expression |
3244 ** with the TK_ALL operator for each "*" that it found in the column list. | 4139 ** with the TK_ALL operator for each "*" that it found in the column list. |
3245 ** The following code just has to locate the TK_ALL expressions and expand | 4140 ** The following code just has to locate the TK_ALL expressions and expand |
3246 ** each one to the list of all columns in all tables. | 4141 ** each one to the list of all columns in all tables. |
3247 ** | 4142 ** |
3248 ** The first loop just checks to see if there are any "*" operators | 4143 ** The first loop just checks to see if there are any "*" operators |
3249 ** that need expanding. | 4144 ** that need expanding. |
3250 */ | 4145 */ |
3251 for(k=0; k<pEList->nExpr; k++){ | 4146 for(k=0; k<pEList->nExpr; k++){ |
3252 Expr *pE = pEList->a[k].pExpr; | 4147 pE = pEList->a[k].pExpr; |
3253 if( pE->op==TK_ALL ) break; | 4148 if( pE->op==TK_ALL ) break; |
3254 assert( pE->op!=TK_DOT || pE->pRight!=0 ); | 4149 assert( pE->op!=TK_DOT || pE->pRight!=0 ); |
3255 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); | 4150 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); |
3256 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; | 4151 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; |
3257 } | 4152 } |
3258 if( k<pEList->nExpr ){ | 4153 if( k<pEList->nExpr ){ |
3259 /* | 4154 /* |
3260 ** If we get here it means the result set contains one or more "*" | 4155 ** If we get here it means the result set contains one or more "*" |
3261 ** operators that need to be expanded. Loop through each expression | 4156 ** operators that need to be expanded. Loop through each expression |
3262 ** in the result set and expand them one by one. | 4157 ** in the result set and expand them one by one. |
3263 */ | 4158 */ |
3264 struct ExprList_item *a = pEList->a; | 4159 struct ExprList_item *a = pEList->a; |
3265 ExprList *pNew = 0; | 4160 ExprList *pNew = 0; |
3266 int flags = pParse->db->flags; | 4161 int flags = pParse->db->flags; |
3267 int longNames = (flags & SQLITE_FullColNames)!=0 | 4162 int longNames = (flags & SQLITE_FullColNames)!=0 |
3268 && (flags & SQLITE_ShortColNames)==0; | 4163 && (flags & SQLITE_ShortColNames)==0; |
3269 | 4164 |
| 4165 /* When processing FROM-clause subqueries, it is always the case |
| 4166 ** that full_column_names=OFF and short_column_names=ON. The |
| 4167 ** sqlite3ResultSetOfSelect() routine makes it so. */ |
| 4168 assert( (p->selFlags & SF_NestedFrom)==0 |
| 4169 || ((flags & SQLITE_FullColNames)==0 && |
| 4170 (flags & SQLITE_ShortColNames)!=0) ); |
| 4171 |
3270 for(k=0; k<pEList->nExpr; k++){ | 4172 for(k=0; k<pEList->nExpr; k++){ |
3271 Expr *pE = a[k].pExpr; | 4173 pE = a[k].pExpr; |
3272 assert( pE->op!=TK_DOT || pE->pRight!=0 ); | 4174 pRight = pE->pRight; |
3273 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ | 4175 assert( pE->op!=TK_DOT || pRight!=0 ); |
| 4176 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ |
3274 /* This particular expression does not need to be expanded. | 4177 /* This particular expression does not need to be expanded. |
3275 */ | 4178 */ |
3276 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); | 4179 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); |
3277 if( pNew ){ | 4180 if( pNew ){ |
3278 pNew->a[pNew->nExpr-1].zName = a[k].zName; | 4181 pNew->a[pNew->nExpr-1].zName = a[k].zName; |
3279 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; | 4182 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; |
3280 a[k].zName = 0; | 4183 a[k].zName = 0; |
3281 a[k].zSpan = 0; | 4184 a[k].zSpan = 0; |
3282 } | 4185 } |
3283 a[k].pExpr = 0; | 4186 a[k].pExpr = 0; |
3284 }else{ | 4187 }else{ |
3285 /* This expression is a "*" or a "TABLE.*" and needs to be | 4188 /* This expression is a "*" or a "TABLE.*" and needs to be |
3286 ** expanded. */ | 4189 ** expanded. */ |
3287 int tableSeen = 0; /* Set to 1 when TABLE matches */ | 4190 int tableSeen = 0; /* Set to 1 when TABLE matches */ |
3288 char *zTName; /* text of name of TABLE */ | 4191 char *zTName = 0; /* text of name of TABLE */ |
3289 if( pE->op==TK_DOT ){ | 4192 if( pE->op==TK_DOT ){ |
3290 assert( pE->pLeft!=0 ); | 4193 assert( pE->pLeft!=0 ); |
3291 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); | 4194 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); |
3292 zTName = pE->pLeft->u.zToken; | 4195 zTName = pE->pLeft->u.zToken; |
3293 }else{ | |
3294 zTName = 0; | |
3295 } | 4196 } |
3296 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ | 4197 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
3297 Table *pTab = pFrom->pTab; | 4198 Table *pTab = pFrom->pTab; |
| 4199 Select *pSub = pFrom->pSelect; |
3298 char *zTabName = pFrom->zAlias; | 4200 char *zTabName = pFrom->zAlias; |
| 4201 const char *zSchemaName = 0; |
| 4202 int iDb; |
3299 if( zTabName==0 ){ | 4203 if( zTabName==0 ){ |
3300 zTabName = pTab->zName; | 4204 zTabName = pTab->zName; |
3301 } | 4205 } |
3302 if( db->mallocFailed ) break; | 4206 if( db->mallocFailed ) break; |
3303 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ | 4207 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ |
3304 continue; | 4208 pSub = 0; |
| 4209 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ |
| 4210 continue; |
| 4211 } |
| 4212 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 4213 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; |
3305 } | 4214 } |
3306 tableSeen = 1; | |
3307 for(j=0; j<pTab->nCol; j++){ | 4215 for(j=0; j<pTab->nCol; j++){ |
3308 Expr *pExpr, *pRight; | |
3309 char *zName = pTab->aCol[j].zName; | 4216 char *zName = pTab->aCol[j].zName; |
3310 char *zColname; /* The computed column name */ | 4217 char *zColname; /* The computed column name */ |
3311 char *zToFree; /* Malloced string that needs to be freed */ | 4218 char *zToFree; /* Malloced string that needs to be freed */ |
3312 Token sColname; /* Computed column name as a token */ | 4219 Token sColname; /* Computed column name as a token */ |
3313 | 4220 |
| 4221 assert( zName ); |
| 4222 if( zTName && pSub |
| 4223 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 |
| 4224 ){ |
| 4225 continue; |
| 4226 } |
| 4227 |
3314 /* If a column is marked as 'hidden' (currently only possible | 4228 /* If a column is marked as 'hidden' (currently only possible |
3315 ** for virtual tables), do not include it in the expanded | 4229 ** for virtual tables), do not include it in the expanded |
3316 ** result-set list. | 4230 ** result-set list. |
3317 */ | 4231 */ |
3318 if( IsHiddenColumn(&pTab->aCol[j]) ){ | 4232 if( IsHiddenColumn(&pTab->aCol[j]) ){ |
3319 assert(IsVirtual(pTab)); | 4233 assert(IsVirtual(pTab)); |
3320 continue; | 4234 continue; |
3321 } | 4235 } |
| 4236 tableSeen = 1; |
3322 | 4237 |
3323 if( i>0 && zTName==0 ){ | 4238 if( i>0 && zTName==0 ){ |
3324 if( (pFrom->jointype & JT_NATURAL)!=0 | 4239 if( (pFrom->jointype & JT_NATURAL)!=0 |
3325 && tableAndColumnIndex(pTabList, i, zName, 0, 0) | 4240 && tableAndColumnIndex(pTabList, i, zName, 0, 0) |
3326 ){ | 4241 ){ |
3327 /* In a NATURAL join, omit the join columns from the | 4242 /* In a NATURAL join, omit the join columns from the |
3328 ** table to the right of the join */ | 4243 ** table to the right of the join */ |
3329 continue; | 4244 continue; |
3330 } | 4245 } |
3331 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ | 4246 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ |
3332 /* In a join with a USING clause, omit columns in the | 4247 /* In a join with a USING clause, omit columns in the |
3333 ** using clause from the table on the right. */ | 4248 ** using clause from the table on the right. */ |
3334 continue; | 4249 continue; |
3335 } | 4250 } |
3336 } | 4251 } |
3337 pRight = sqlite3Expr(db, TK_ID, zName); | 4252 pRight = sqlite3Expr(db, TK_ID, zName); |
3338 zColname = zName; | 4253 zColname = zName; |
3339 zToFree = 0; | 4254 zToFree = 0; |
3340 if( longNames || pTabList->nSrc>1 ){ | 4255 if( longNames || pTabList->nSrc>1 ){ |
3341 Expr *pLeft; | 4256 Expr *pLeft; |
3342 pLeft = sqlite3Expr(db, TK_ID, zTabName); | 4257 pLeft = sqlite3Expr(db, TK_ID, zTabName); |
3343 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); | 4258 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); |
| 4259 if( zSchemaName ){ |
| 4260 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); |
| 4261 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); |
| 4262 } |
3344 if( longNames ){ | 4263 if( longNames ){ |
3345 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); | 4264 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); |
3346 zToFree = zColname; | 4265 zToFree = zColname; |
3347 } | 4266 } |
3348 }else{ | 4267 }else{ |
3349 pExpr = pRight; | 4268 pExpr = pRight; |
3350 } | 4269 } |
3351 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); | 4270 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); |
3352 sColname.z = zColname; | 4271 sColname.z = zColname; |
3353 sColname.n = sqlite3Strlen30(zColname); | 4272 sColname.n = sqlite3Strlen30(zColname); |
3354 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); | 4273 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); |
| 4274 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ |
| 4275 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; |
| 4276 if( pSub ){ |
| 4277 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); |
| 4278 testcase( pX->zSpan==0 ); |
| 4279 }else{ |
| 4280 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", |
| 4281 zSchemaName, zTabName, zColname); |
| 4282 testcase( pX->zSpan==0 ); |
| 4283 } |
| 4284 pX->bSpanIsTab = 1; |
| 4285 } |
3355 sqlite3DbFree(db, zToFree); | 4286 sqlite3DbFree(db, zToFree); |
3356 } | 4287 } |
3357 } | 4288 } |
3358 if( !tableSeen ){ | 4289 if( !tableSeen ){ |
3359 if( zTName ){ | 4290 if( zTName ){ |
3360 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); | 4291 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); |
3361 }else{ | 4292 }else{ |
3362 sqlite3ErrorMsg(pParse, "no tables specified"); | 4293 sqlite3ErrorMsg(pParse, "no tables specified"); |
3363 } | 4294 } |
3364 } | 4295 } |
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3397 ** Expanding a SELECT statement is the first step in processing a | 4328 ** Expanding a SELECT statement is the first step in processing a |
3398 ** SELECT statement. The SELECT statement must be expanded before | 4329 ** SELECT statement. The SELECT statement must be expanded before |
3399 ** name resolution is performed. | 4330 ** name resolution is performed. |
3400 ** | 4331 ** |
3401 ** If anything goes wrong, an error message is written into pParse. | 4332 ** If anything goes wrong, an error message is written into pParse. |
3402 ** The calling function can detect the problem by looking at pParse->nErr | 4333 ** The calling function can detect the problem by looking at pParse->nErr |
3403 ** and/or pParse->db->mallocFailed. | 4334 ** and/or pParse->db->mallocFailed. |
3404 */ | 4335 */ |
3405 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ | 4336 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ |
3406 Walker w; | 4337 Walker w; |
3407 w.xSelectCallback = selectExpander; | 4338 memset(&w, 0, sizeof(w)); |
3408 w.xExprCallback = exprWalkNoop; | 4339 w.xExprCallback = exprWalkNoop; |
3409 w.pParse = pParse; | 4340 w.pParse = pParse; |
| 4341 if( pParse->hasCompound ){ |
| 4342 w.xSelectCallback = convertCompoundSelectToSubquery; |
| 4343 sqlite3WalkSelect(&w, pSelect); |
| 4344 } |
| 4345 w.xSelectCallback = selectExpander; |
| 4346 w.xSelectCallback2 = selectPopWith; |
3410 sqlite3WalkSelect(&w, pSelect); | 4347 sqlite3WalkSelect(&w, pSelect); |
3411 } | 4348 } |
3412 | 4349 |
3413 | 4350 |
3414 #ifndef SQLITE_OMIT_SUBQUERY | 4351 #ifndef SQLITE_OMIT_SUBQUERY |
3415 /* | 4352 /* |
3416 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() | 4353 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() |
3417 ** interface. | 4354 ** interface. |
3418 ** | 4355 ** |
3419 ** For each FROM-clause subquery, add Column.zType and Column.zColl | 4356 ** For each FROM-clause subquery, add Column.zType and Column.zColl |
3420 ** information to the Table structure that represents the result set | 4357 ** information to the Table structure that represents the result set |
3421 ** of that subquery. | 4358 ** of that subquery. |
3422 ** | 4359 ** |
3423 ** The Table structure that represents the result set was constructed | 4360 ** The Table structure that represents the result set was constructed |
3424 ** by selectExpander() but the type and collation information was omitted | 4361 ** by selectExpander() but the type and collation information was omitted |
3425 ** at that point because identifiers had not yet been resolved. This | 4362 ** at that point because identifiers had not yet been resolved. This |
3426 ** routine is called after identifier resolution. | 4363 ** routine is called after identifier resolution. |
3427 */ | 4364 */ |
3428 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ | 4365 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ |
3429 Parse *pParse; | 4366 Parse *pParse; |
3430 int i; | 4367 int i; |
3431 SrcList *pTabList; | 4368 SrcList *pTabList; |
3432 struct SrcList_item *pFrom; | 4369 struct SrcList_item *pFrom; |
3433 | 4370 |
3434 assert( p->selFlags & SF_Resolved ); | 4371 assert( p->selFlags & SF_Resolved ); |
3435 if( (p->selFlags & SF_HasTypeInfo)==0 ){ | 4372 if( (p->selFlags & SF_HasTypeInfo)==0 ){ |
3436 p->selFlags |= SF_HasTypeInfo; | 4373 p->selFlags |= SF_HasTypeInfo; |
3437 pParse = pWalker->pParse; | 4374 pParse = pWalker->pParse; |
3438 pTabList = p->pSrc; | 4375 pTabList = p->pSrc; |
3439 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ | 4376 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
3440 Table *pTab = pFrom->pTab; | 4377 Table *pTab = pFrom->pTab; |
3441 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ | 4378 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ |
3442 /* A sub-query in the FROM clause of a SELECT */ | 4379 /* A sub-query in the FROM clause of a SELECT */ |
3443 Select *pSel = pFrom->pSelect; | 4380 Select *pSel = pFrom->pSelect; |
3444 assert( pSel ); | 4381 if( pSel ){ |
3445 while( pSel->pPrior ) pSel = pSel->pPrior; | 4382 while( pSel->pPrior ) pSel = pSel->pPrior; |
3446 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); | 4383 selectAddColumnTypeAndCollation(pParse, pTab, pSel); |
| 4384 } |
3447 } | 4385 } |
3448 } | 4386 } |
3449 } | 4387 } |
3450 return WRC_Continue; | |
3451 } | 4388 } |
3452 #endif | 4389 #endif |
3453 | 4390 |
3454 | 4391 |
3455 /* | 4392 /* |
3456 ** This routine adds datatype and collating sequence information to | 4393 ** This routine adds datatype and collating sequence information to |
3457 ** the Table structures of all FROM-clause subqueries in a | 4394 ** the Table structures of all FROM-clause subqueries in a |
3458 ** SELECT statement. | 4395 ** SELECT statement. |
3459 ** | 4396 ** |
3460 ** Use this routine after name resolution. | 4397 ** Use this routine after name resolution. |
3461 */ | 4398 */ |
3462 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ | 4399 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ |
3463 #ifndef SQLITE_OMIT_SUBQUERY | 4400 #ifndef SQLITE_OMIT_SUBQUERY |
3464 Walker w; | 4401 Walker w; |
3465 w.xSelectCallback = selectAddSubqueryTypeInfo; | 4402 memset(&w, 0, sizeof(w)); |
| 4403 w.xSelectCallback2 = selectAddSubqueryTypeInfo; |
3466 w.xExprCallback = exprWalkNoop; | 4404 w.xExprCallback = exprWalkNoop; |
3467 w.pParse = pParse; | 4405 w.pParse = pParse; |
3468 sqlite3WalkSelect(&w, pSelect); | 4406 sqlite3WalkSelect(&w, pSelect); |
3469 #endif | 4407 #endif |
3470 } | 4408 } |
3471 | 4409 |
3472 | 4410 |
3473 /* | 4411 /* |
3474 ** This routine sets of a SELECT statement for processing. The | 4412 ** This routine sets up a SELECT statement for processing. The |
3475 ** following is accomplished: | 4413 ** following is accomplished: |
3476 ** | 4414 ** |
3477 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. | 4415 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. |
3478 ** * Ephemeral Table objects are created for all FROM-clause subqueries. | 4416 ** * Ephemeral Table objects are created for all FROM-clause subqueries. |
3479 ** * ON and USING clauses are shifted into WHERE statements | 4417 ** * ON and USING clauses are shifted into WHERE statements |
3480 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. | 4418 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. |
3481 ** * Identifiers in expression are matched to tables. | 4419 ** * Identifiers in expression are matched to tables. |
3482 ** | 4420 ** |
3483 ** This routine acts recursively on all subqueries within the SELECT. | 4421 ** This routine acts recursively on all subqueries within the SELECT. |
3484 */ | 4422 */ |
3485 void sqlite3SelectPrep( | 4423 void sqlite3SelectPrep( |
3486 Parse *pParse, /* The parser context */ | 4424 Parse *pParse, /* The parser context */ |
3487 Select *p, /* The SELECT statement being coded. */ | 4425 Select *p, /* The SELECT statement being coded. */ |
3488 NameContext *pOuterNC /* Name context for container */ | 4426 NameContext *pOuterNC /* Name context for container */ |
3489 ){ | 4427 ){ |
3490 sqlite3 *db; | 4428 sqlite3 *db; |
3491 if( NEVER(p==0) ) return; | 4429 if( NEVER(p==0) ) return; |
3492 db = pParse->db; | 4430 db = pParse->db; |
| 4431 if( db->mallocFailed ) return; |
3493 if( p->selFlags & SF_HasTypeInfo ) return; | 4432 if( p->selFlags & SF_HasTypeInfo ) return; |
3494 sqlite3SelectExpand(pParse, p); | 4433 sqlite3SelectExpand(pParse, p); |
3495 if( pParse->nErr || db->mallocFailed ) return; | 4434 if( pParse->nErr || db->mallocFailed ) return; |
3496 sqlite3ResolveSelectNames(pParse, p, pOuterNC); | 4435 sqlite3ResolveSelectNames(pParse, p, pOuterNC); |
3497 if( pParse->nErr || db->mallocFailed ) return; | 4436 if( pParse->nErr || db->mallocFailed ) return; |
3498 sqlite3SelectAddTypeInfo(pParse, p); | 4437 sqlite3SelectAddTypeInfo(pParse, p); |
3499 } | 4438 } |
3500 | 4439 |
3501 /* | 4440 /* |
3502 ** Reset the aggregate accumulator. | 4441 ** Reset the aggregate accumulator. |
3503 ** | 4442 ** |
3504 ** The aggregate accumulator is a set of memory cells that hold | 4443 ** The aggregate accumulator is a set of memory cells that hold |
3505 ** intermediate results while calculating an aggregate. This | 4444 ** intermediate results while calculating an aggregate. This |
3506 ** routine simply stores NULLs in all of those memory cells. | 4445 ** routine generates code that stores NULLs in all of those memory |
| 4446 ** cells. |
3507 */ | 4447 */ |
3508 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ | 4448 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
3509 Vdbe *v = pParse->pVdbe; | 4449 Vdbe *v = pParse->pVdbe; |
3510 int i; | 4450 int i; |
3511 struct AggInfo_func *pFunc; | 4451 struct AggInfo_func *pFunc; |
3512 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ | 4452 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; |
3513 return; | 4453 if( nReg==0 ) return; |
| 4454 #ifdef SQLITE_DEBUG |
| 4455 /* Verify that all AggInfo registers are within the range specified by |
| 4456 ** AggInfo.mnReg..AggInfo.mxReg */ |
| 4457 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); |
| 4458 for(i=0; i<pAggInfo->nColumn; i++){ |
| 4459 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg |
| 4460 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); |
3514 } | 4461 } |
3515 for(i=0; i<pAggInfo->nColumn; i++){ | 4462 for(i=0; i<pAggInfo->nFunc; i++){ |
3516 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); | 4463 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg |
| 4464 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); |
3517 } | 4465 } |
| 4466 #endif |
| 4467 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); |
3518 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ | 4468 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ |
3519 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); | |
3520 if( pFunc->iDistinct>=0 ){ | 4469 if( pFunc->iDistinct>=0 ){ |
3521 Expr *pE = pFunc->pExpr; | 4470 Expr *pE = pFunc->pExpr; |
3522 assert( !ExprHasProperty(pE, EP_xIsSelect) ); | 4471 assert( !ExprHasProperty(pE, EP_xIsSelect) ); |
3523 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ | 4472 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ |
3524 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " | 4473 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " |
3525 "argument"); | 4474 "argument"); |
3526 pFunc->iDistinct = -1; | 4475 pFunc->iDistinct = -1; |
3527 }else{ | 4476 }else{ |
3528 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); | 4477 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); |
3529 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, | 4478 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, |
3530 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); | 4479 (char*)pKeyInfo, P4_KEYINFO); |
3531 } | 4480 } |
3532 } | 4481 } |
3533 } | 4482 } |
3534 } | 4483 } |
3535 | 4484 |
3536 /* | 4485 /* |
3537 ** Invoke the OP_AggFinalize opcode for every aggregate function | 4486 ** Invoke the OP_AggFinalize opcode for every aggregate function |
3538 ** in the AggInfo structure. | 4487 ** in the AggInfo structure. |
3539 */ | 4488 */ |
3540 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ | 4489 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ |
3541 Vdbe *v = pParse->pVdbe; | 4490 Vdbe *v = pParse->pVdbe; |
3542 int i; | 4491 int i; |
3543 struct AggInfo_func *pF; | 4492 struct AggInfo_func *pF; |
3544 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ | 4493 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
3545 ExprList *pList = pF->pExpr->x.pList; | 4494 ExprList *pList = pF->pExpr->x.pList; |
3546 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); | 4495 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); |
3547 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, | 4496 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, |
3548 (void*)pF->pFunc, P4_FUNCDEF); | 4497 (void*)pF->pFunc, P4_FUNCDEF); |
3549 } | 4498 } |
3550 } | 4499 } |
3551 | 4500 |
3552 /* | 4501 /* |
3553 ** Update the accumulator memory cells for an aggregate based on | 4502 ** Update the accumulator memory cells for an aggregate based on |
3554 ** the current cursor position. | 4503 ** the current cursor position. |
3555 */ | 4504 */ |
3556 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ | 4505 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
3557 Vdbe *v = pParse->pVdbe; | 4506 Vdbe *v = pParse->pVdbe; |
3558 int i; | 4507 int i; |
| 4508 int regHit = 0; |
| 4509 int addrHitTest = 0; |
3559 struct AggInfo_func *pF; | 4510 struct AggInfo_func *pF; |
3560 struct AggInfo_col *pC; | 4511 struct AggInfo_col *pC; |
3561 | 4512 |
3562 pAggInfo->directMode = 1; | 4513 pAggInfo->directMode = 1; |
3563 sqlite3ExprCacheClear(pParse); | |
3564 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ | 4514 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
3565 int nArg; | 4515 int nArg; |
3566 int addrNext = 0; | 4516 int addrNext = 0; |
3567 int regAgg; | 4517 int regAgg; |
3568 ExprList *pList = pF->pExpr->x.pList; | 4518 ExprList *pList = pF->pExpr->x.pList; |
3569 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); | 4519 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); |
3570 if( pList ){ | 4520 if( pList ){ |
3571 nArg = pList->nExpr; | 4521 nArg = pList->nExpr; |
3572 regAgg = sqlite3GetTempRange(pParse, nArg); | 4522 regAgg = sqlite3GetTempRange(pParse, nArg); |
3573 sqlite3ExprCodeExprList(pParse, pList, regAgg, 1); | 4523 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); |
3574 }else{ | 4524 }else{ |
3575 nArg = 0; | 4525 nArg = 0; |
3576 regAgg = 0; | 4526 regAgg = 0; |
3577 } | 4527 } |
3578 if( pF->iDistinct>=0 ){ | 4528 if( pF->iDistinct>=0 ){ |
3579 addrNext = sqlite3VdbeMakeLabel(v); | 4529 addrNext = sqlite3VdbeMakeLabel(v); |
3580 assert( nArg==1 ); | 4530 assert( nArg==1 ); |
3581 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); | 4531 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); |
3582 } | 4532 } |
3583 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ | 4533 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ |
3584 CollSeq *pColl = 0; | 4534 CollSeq *pColl = 0; |
3585 struct ExprList_item *pItem; | 4535 struct ExprList_item *pItem; |
3586 int j; | 4536 int j; |
3587 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ | 4537 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ |
3588 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ | 4538 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ |
3589 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); | 4539 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
3590 } | 4540 } |
3591 if( !pColl ){ | 4541 if( !pColl ){ |
3592 pColl = pParse->db->pDfltColl; | 4542 pColl = pParse->db->pDfltColl; |
3593 } | 4543 } |
3594 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); | 4544 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; |
| 4545 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); |
3595 } | 4546 } |
3596 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, | 4547 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, |
3597 (void*)pF->pFunc, P4_FUNCDEF); | 4548 (void*)pF->pFunc, P4_FUNCDEF); |
3598 sqlite3VdbeChangeP5(v, (u8)nArg); | 4549 sqlite3VdbeChangeP5(v, (u8)nArg); |
3599 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); | 4550 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); |
3600 sqlite3ReleaseTempRange(pParse, regAgg, nArg); | 4551 sqlite3ReleaseTempRange(pParse, regAgg, nArg); |
3601 if( addrNext ){ | 4552 if( addrNext ){ |
3602 sqlite3VdbeResolveLabel(v, addrNext); | 4553 sqlite3VdbeResolveLabel(v, addrNext); |
3603 sqlite3ExprCacheClear(pParse); | 4554 sqlite3ExprCacheClear(pParse); |
3604 } | 4555 } |
3605 } | 4556 } |
3606 | 4557 |
3607 /* Before populating the accumulator registers, clear the column cache. | 4558 /* Before populating the accumulator registers, clear the column cache. |
3608 ** Otherwise, if any of the required column values are already present | 4559 ** Otherwise, if any of the required column values are already present |
3609 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value | 4560 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value |
3610 ** to pC->iMem. But by the time the value is used, the original register | 4561 ** to pC->iMem. But by the time the value is used, the original register |
3611 ** may have been used, invalidating the underlying buffer holding the | 4562 ** may have been used, invalidating the underlying buffer holding the |
3612 ** text or blob value. See ticket [883034dcb5]. | 4563 ** text or blob value. See ticket [883034dcb5]. |
3613 ** | 4564 ** |
3614 ** Another solution would be to change the OP_SCopy used to copy cached | 4565 ** Another solution would be to change the OP_SCopy used to copy cached |
3615 ** values to an OP_Copy. | 4566 ** values to an OP_Copy. |
3616 */ | 4567 */ |
| 4568 if( regHit ){ |
| 4569 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); |
| 4570 } |
3617 sqlite3ExprCacheClear(pParse); | 4571 sqlite3ExprCacheClear(pParse); |
3618 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ | 4572 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ |
3619 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); | 4573 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); |
3620 } | 4574 } |
3621 pAggInfo->directMode = 0; | 4575 pAggInfo->directMode = 0; |
3622 sqlite3ExprCacheClear(pParse); | 4576 sqlite3ExprCacheClear(pParse); |
| 4577 if( addrHitTest ){ |
| 4578 sqlite3VdbeJumpHere(v, addrHitTest); |
| 4579 } |
3623 } | 4580 } |
3624 | 4581 |
3625 /* | 4582 /* |
3626 ** Add a single OP_Explain instruction to the VDBE to explain a simple | 4583 ** Add a single OP_Explain instruction to the VDBE to explain a simple |
3627 ** count(*) query ("SELECT count(*) FROM pTab"). | 4584 ** count(*) query ("SELECT count(*) FROM pTab"). |
3628 */ | 4585 */ |
3629 #ifndef SQLITE_OMIT_EXPLAIN | 4586 #ifndef SQLITE_OMIT_EXPLAIN |
3630 static void explainSimpleCount( | 4587 static void explainSimpleCount( |
3631 Parse *pParse, /* Parse context */ | 4588 Parse *pParse, /* Parse context */ |
3632 Table *pTab, /* Table being queried */ | 4589 Table *pTab, /* Table being queried */ |
3633 Index *pIdx /* Index used to optimize scan, or NULL */ | 4590 Index *pIdx /* Index used to optimize scan, or NULL */ |
3634 ){ | 4591 ){ |
3635 if( pParse->explain==2 ){ | 4592 if( pParse->explain==2 ){ |
3636 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)", | 4593 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); |
3637 pTab->zName, | 4594 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", |
3638 pIdx ? "USING COVERING INDEX " : "", | 4595 pTab->zName, |
3639 pIdx ? pIdx->zName : "", | 4596 bCover ? " USING COVERING INDEX " : "", |
3640 pTab->nRowEst | 4597 bCover ? pIdx->zName : "" |
3641 ); | 4598 ); |
3642 sqlite3VdbeAddOp4( | 4599 sqlite3VdbeAddOp4( |
3643 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC | 4600 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC |
3644 ); | 4601 ); |
3645 } | 4602 } |
3646 } | 4603 } |
3647 #else | 4604 #else |
3648 # define explainSimpleCount(a,b,c) | 4605 # define explainSimpleCount(a,b,c) |
3649 #endif | 4606 #endif |
3650 | 4607 |
3651 /* | 4608 /* |
3652 ** Generate code for the SELECT statement given in the p argument. | 4609 ** Generate code for the SELECT statement given in the p argument. |
3653 ** | 4610 ** |
3654 ** The results are distributed in various ways depending on the | 4611 ** The results are returned according to the SelectDest structure. |
3655 ** contents of the SelectDest structure pointed to by argument pDest | 4612 ** See comments in sqliteInt.h for further information. |
3656 ** as follows: | |
3657 ** | |
3658 ** pDest->eDest Result | |
3659 ** ------------ ------------------------------------------- | |
3660 ** SRT_Output Generate a row of output (using the OP_ResultRow | |
3661 ** opcode) for each row in the result set. | |
3662 ** | |
3663 ** SRT_Mem Only valid if the result is a single column. | |
3664 ** Store the first column of the first result row | |
3665 ** in register pDest->iParm then abandon the rest | |
3666 ** of the query. This destination implies "LIMIT 1". | |
3667 ** | |
3668 ** SRT_Set The result must be a single column. Store each | |
3669 ** row of result as the key in table pDest->iParm. | |
3670 ** Apply the affinity pDest->affinity before storing | |
3671 ** results. Used to implement "IN (SELECT ...)". | |
3672 ** | |
3673 ** SRT_Union Store results as a key in a temporary table pDest->iParm. | |
3674 ** | |
3675 ** SRT_Except Remove results from the temporary table pDest->iParm. | |
3676 ** | |
3677 ** SRT_Table Store results in temporary table pDest->iParm. | |
3678 ** This is like SRT_EphemTab except that the table | |
3679 ** is assumed to already be open. | |
3680 ** | |
3681 ** SRT_EphemTab Create an temporary table pDest->iParm and store | |
3682 ** the result there. The cursor is left open after | |
3683 ** returning. This is like SRT_Table except that | |
3684 ** this destination uses OP_OpenEphemeral to create | |
3685 ** the table first. | |
3686 ** | |
3687 ** SRT_Coroutine Generate a co-routine that returns a new row of | |
3688 ** results each time it is invoked. The entry point | |
3689 ** of the co-routine is stored in register pDest->iParm. | |
3690 ** | |
3691 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result | |
3692 ** set is not empty. | |
3693 ** | |
3694 ** SRT_Discard Throw the results away. This is used by SELECT | |
3695 ** statements within triggers whose only purpose is | |
3696 ** the side-effects of functions. | |
3697 ** | 4613 ** |
3698 ** This routine returns the number of errors. If any errors are | 4614 ** This routine returns the number of errors. If any errors are |
3699 ** encountered, then an appropriate error message is left in | 4615 ** encountered, then an appropriate error message is left in |
3700 ** pParse->zErrMsg. | 4616 ** pParse->zErrMsg. |
3701 ** | 4617 ** |
3702 ** This routine does NOT free the Select structure passed in. The | 4618 ** This routine does NOT free the Select structure passed in. The |
3703 ** calling function needs to do that. | 4619 ** calling function needs to do that. |
3704 */ | 4620 */ |
3705 int sqlite3Select( | 4621 int sqlite3Select( |
3706 Parse *pParse, /* The parser context */ | 4622 Parse *pParse, /* The parser context */ |
3707 Select *p, /* The SELECT statement being coded. */ | 4623 Select *p, /* The SELECT statement being coded. */ |
3708 SelectDest *pDest /* What to do with the query results */ | 4624 SelectDest *pDest /* What to do with the query results */ |
3709 ){ | 4625 ){ |
3710 int i, j; /* Loop counters */ | 4626 int i, j; /* Loop counters */ |
3711 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ | 4627 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ |
3712 Vdbe *v; /* The virtual machine under construction */ | 4628 Vdbe *v; /* The virtual machine under construction */ |
3713 int isAgg; /* True for select lists like "count(*)" */ | 4629 int isAgg; /* True for select lists like "count(*)" */ |
3714 ExprList *pEList; /* List of columns to extract. */ | 4630 ExprList *pEList; /* List of columns to extract. */ |
3715 SrcList *pTabList; /* List of tables to select from */ | 4631 SrcList *pTabList; /* List of tables to select from */ |
3716 Expr *pWhere; /* The WHERE clause. May be NULL */ | 4632 Expr *pWhere; /* The WHERE clause. May be NULL */ |
3717 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ | |
3718 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ | 4633 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ |
3719 Expr *pHaving; /* The HAVING clause. May be NULL */ | 4634 Expr *pHaving; /* The HAVING clause. May be NULL */ |
3720 int isDistinct; /* True if the DISTINCT keyword is present */ | |
3721 int distinct; /* Table to use for the distinct set */ | |
3722 int rc = 1; /* Value to return from this function */ | 4635 int rc = 1; /* Value to return from this function */ |
3723 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ | 4636 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ |
| 4637 SortCtx sSort; /* Info on how to code the ORDER BY clause */ |
3724 AggInfo sAggInfo; /* Information used by aggregate queries */ | 4638 AggInfo sAggInfo; /* Information used by aggregate queries */ |
3725 int iEnd; /* Address of the end of the query */ | 4639 int iEnd; /* Address of the end of the query */ |
3726 sqlite3 *db; /* The database connection */ | 4640 sqlite3 *db; /* The database connection */ |
3727 | 4641 |
3728 #ifndef SQLITE_OMIT_EXPLAIN | 4642 #ifndef SQLITE_OMIT_EXPLAIN |
3729 int iRestoreSelectId = pParse->iSelectId; | 4643 int iRestoreSelectId = pParse->iSelectId; |
3730 pParse->iSelectId = pParse->iNextSelectId++; | 4644 pParse->iSelectId = pParse->iNextSelectId++; |
3731 #endif | 4645 #endif |
3732 | 4646 |
3733 db = pParse->db; | 4647 db = pParse->db; |
3734 if( p==0 || db->mallocFailed || pParse->nErr ){ | 4648 if( p==0 || db->mallocFailed || pParse->nErr ){ |
3735 return 1; | 4649 return 1; |
3736 } | 4650 } |
3737 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; | 4651 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; |
3738 memset(&sAggInfo, 0, sizeof(sAggInfo)); | 4652 memset(&sAggInfo, 0, sizeof(sAggInfo)); |
| 4653 #if SELECTTRACE_ENABLED |
| 4654 pParse->nSelectIndent++; |
| 4655 SELECTTRACE(1,pParse,p, ("begin processing:\n")); |
| 4656 if( sqlite3SelectTrace & 0x100 ){ |
| 4657 sqlite3TreeViewSelect(0, p, 0); |
| 4658 } |
| 4659 #endif |
3739 | 4660 |
| 4661 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); |
| 4662 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); |
| 4663 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); |
| 4664 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); |
3740 if( IgnorableOrderby(pDest) ){ | 4665 if( IgnorableOrderby(pDest) ){ |
3741 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || | 4666 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || |
3742 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); | 4667 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || |
| 4668 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || |
| 4669 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); |
3743 /* If ORDER BY makes no difference in the output then neither does | 4670 /* If ORDER BY makes no difference in the output then neither does |
3744 ** DISTINCT so it can be removed too. */ | 4671 ** DISTINCT so it can be removed too. */ |
3745 sqlite3ExprListDelete(db, p->pOrderBy); | 4672 sqlite3ExprListDelete(db, p->pOrderBy); |
3746 p->pOrderBy = 0; | 4673 p->pOrderBy = 0; |
3747 p->selFlags &= ~SF_Distinct; | 4674 p->selFlags &= ~SF_Distinct; |
3748 } | 4675 } |
3749 sqlite3SelectPrep(pParse, p, 0); | 4676 sqlite3SelectPrep(pParse, p, 0); |
3750 pOrderBy = p->pOrderBy; | 4677 memset(&sSort, 0, sizeof(sSort)); |
| 4678 sSort.pOrderBy = p->pOrderBy; |
3751 pTabList = p->pSrc; | 4679 pTabList = p->pSrc; |
3752 pEList = p->pEList; | 4680 pEList = p->pEList; |
3753 if( pParse->nErr || db->mallocFailed ){ | 4681 if( pParse->nErr || db->mallocFailed ){ |
3754 goto select_end; | 4682 goto select_end; |
3755 } | 4683 } |
3756 isAgg = (p->selFlags & SF_Aggregate)!=0; | 4684 isAgg = (p->selFlags & SF_Aggregate)!=0; |
3757 assert( pEList!=0 ); | 4685 assert( pEList!=0 ); |
3758 | 4686 |
3759 /* Begin generating code. | 4687 /* Begin generating code. |
3760 */ | 4688 */ |
(...skipping 11 matching lines...) Expand all Loading... |
3772 | 4700 |
3773 /* Generate code for all sub-queries in the FROM clause | 4701 /* Generate code for all sub-queries in the FROM clause |
3774 */ | 4702 */ |
3775 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) | 4703 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
3776 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ | 4704 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ |
3777 struct SrcList_item *pItem = &pTabList->a[i]; | 4705 struct SrcList_item *pItem = &pTabList->a[i]; |
3778 SelectDest dest; | 4706 SelectDest dest; |
3779 Select *pSub = pItem->pSelect; | 4707 Select *pSub = pItem->pSelect; |
3780 int isAggSub; | 4708 int isAggSub; |
3781 | 4709 |
3782 if( pSub==0 || pItem->isPopulated ) continue; | 4710 if( pSub==0 ) continue; |
| 4711 |
| 4712 /* Sometimes the code for a subquery will be generated more than |
| 4713 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, |
| 4714 ** for example. In that case, do not regenerate the code to manifest |
| 4715 ** a view or the co-routine to implement a view. The first instance |
| 4716 ** is sufficient, though the subroutine to manifest the view does need |
| 4717 ** to be invoked again. */ |
| 4718 if( pItem->addrFillSub ){ |
| 4719 if( pItem->viaCoroutine==0 ){ |
| 4720 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); |
| 4721 } |
| 4722 continue; |
| 4723 } |
3783 | 4724 |
3784 /* Increment Parse.nHeight by the height of the largest expression | 4725 /* Increment Parse.nHeight by the height of the largest expression |
3785 ** tree refered to by this, the parent select. The child select | 4726 ** tree referred to by this, the parent select. The child select |
3786 ** may contain expression trees of at most | 4727 ** may contain expression trees of at most |
3787 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit | 4728 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit |
3788 ** more conservative than necessary, but much easier than enforcing | 4729 ** more conservative than necessary, but much easier than enforcing |
3789 ** an exact limit. | 4730 ** an exact limit. |
3790 */ | 4731 */ |
3791 pParse->nHeight += sqlite3SelectExprHeight(p); | 4732 pParse->nHeight += sqlite3SelectExprHeight(p); |
3792 | 4733 |
3793 /* Check to see if the subquery can be absorbed into the parent. */ | |
3794 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; | 4734 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; |
3795 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ | 4735 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ |
| 4736 /* This subquery can be absorbed into its parent. */ |
3796 if( isAggSub ){ | 4737 if( isAggSub ){ |
3797 isAgg = 1; | 4738 isAgg = 1; |
3798 p->selFlags |= SF_Aggregate; | 4739 p->selFlags |= SF_Aggregate; |
3799 } | 4740 } |
3800 i = -1; | 4741 i = -1; |
3801 }else{ | 4742 }else if( pTabList->nSrc==1 |
3802 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); | 4743 && OptimizationEnabled(db, SQLITE_SubqCoroutine) |
3803 assert( pItem->isPopulated==0 ); | 4744 ){ |
| 4745 /* Implement a co-routine that will return a single row of the result |
| 4746 ** set on each invocation. |
| 4747 */ |
| 4748 int addrTop = sqlite3VdbeCurrentAddr(v)+1; |
| 4749 pItem->regReturn = ++pParse->nMem; |
| 4750 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); |
| 4751 VdbeComment((v, "%s", pItem->pTab->zName)); |
| 4752 pItem->addrFillSub = addrTop; |
| 4753 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); |
3804 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); | 4754 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); |
3805 sqlite3Select(pParse, pSub, &dest); | 4755 sqlite3Select(pParse, pSub, &dest); |
3806 pItem->isPopulated = 1; | 4756 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); |
3807 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; | 4757 pItem->viaCoroutine = 1; |
| 4758 pItem->regResult = dest.iSdst; |
| 4759 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); |
| 4760 sqlite3VdbeJumpHere(v, addrTop-1); |
| 4761 sqlite3ClearTempRegCache(pParse); |
| 4762 }else{ |
| 4763 /* Generate a subroutine that will fill an ephemeral table with |
| 4764 ** the content of this subquery. pItem->addrFillSub will point |
| 4765 ** to the address of the generated subroutine. pItem->regReturn |
| 4766 ** is a register allocated to hold the subroutine return address |
| 4767 */ |
| 4768 int topAddr; |
| 4769 int onceAddr = 0; |
| 4770 int retAddr; |
| 4771 assert( pItem->addrFillSub==0 ); |
| 4772 pItem->regReturn = ++pParse->nMem; |
| 4773 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); |
| 4774 pItem->addrFillSub = topAddr+1; |
| 4775 if( pItem->isCorrelated==0 ){ |
| 4776 /* If the subquery is not correlated and if we are not inside of |
| 4777 ** a trigger, then we only need to compute the value of the subquery |
| 4778 ** once. */ |
| 4779 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); |
| 4780 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); |
| 4781 }else{ |
| 4782 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); |
| 4783 } |
| 4784 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); |
| 4785 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); |
| 4786 sqlite3Select(pParse, pSub, &dest); |
| 4787 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); |
| 4788 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); |
| 4789 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); |
| 4790 VdbeComment((v, "end %s", pItem->pTab->zName)); |
| 4791 sqlite3VdbeChangeP1(v, topAddr, retAddr); |
| 4792 sqlite3ClearTempRegCache(pParse); |
3808 } | 4793 } |
3809 if( /*pParse->nErr ||*/ db->mallocFailed ){ | 4794 if( /*pParse->nErr ||*/ db->mallocFailed ){ |
3810 goto select_end; | 4795 goto select_end; |
3811 } | 4796 } |
3812 pParse->nHeight -= sqlite3SelectExprHeight(p); | 4797 pParse->nHeight -= sqlite3SelectExprHeight(p); |
3813 pTabList = p->pSrc; | 4798 pTabList = p->pSrc; |
3814 if( !IgnorableOrderby(pDest) ){ | 4799 if( !IgnorableOrderby(pDest) ){ |
3815 pOrderBy = p->pOrderBy; | 4800 sSort.pOrderBy = p->pOrderBy; |
3816 } | 4801 } |
3817 } | 4802 } |
3818 pEList = p->pEList; | 4803 pEList = p->pEList; |
3819 #endif | 4804 #endif |
3820 pWhere = p->pWhere; | 4805 pWhere = p->pWhere; |
3821 pGroupBy = p->pGroupBy; | 4806 pGroupBy = p->pGroupBy; |
3822 pHaving = p->pHaving; | 4807 pHaving = p->pHaving; |
3823 isDistinct = (p->selFlags & SF_Distinct)!=0; | 4808 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; |
3824 | 4809 |
3825 #ifndef SQLITE_OMIT_COMPOUND_SELECT | 4810 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
3826 /* If there is are a sequence of queries, do the earlier ones first. | 4811 /* If there is are a sequence of queries, do the earlier ones first. |
3827 */ | 4812 */ |
3828 if( p->pPrior ){ | 4813 if( p->pPrior ){ |
3829 if( p->pRightmost==0 ){ | |
3830 Select *pLoop, *pRight = 0; | |
3831 int cnt = 0; | |
3832 int mxSelect; | |
3833 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ | |
3834 pLoop->pRightmost = p; | |
3835 pLoop->pNext = pRight; | |
3836 pRight = pLoop; | |
3837 } | |
3838 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; | |
3839 if( mxSelect && cnt>mxSelect ){ | |
3840 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); | |
3841 goto select_end; | |
3842 } | |
3843 } | |
3844 rc = multiSelect(pParse, p, pDest); | 4814 rc = multiSelect(pParse, p, pDest); |
3845 explainSetInteger(pParse->iSelectId, iRestoreSelectId); | 4815 explainSetInteger(pParse->iSelectId, iRestoreSelectId); |
| 4816 #if SELECTTRACE_ENABLED |
| 4817 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); |
| 4818 pParse->nSelectIndent--; |
| 4819 #endif |
3846 return rc; | 4820 return rc; |
3847 } | 4821 } |
3848 #endif | 4822 #endif |
3849 | 4823 |
3850 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. | 4824 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and |
3851 ** GROUP BY might use an index, DISTINCT never does. | 4825 ** if the select-list is the same as the ORDER BY list, then this query |
| 4826 ** can be rewritten as a GROUP BY. In other words, this: |
| 4827 ** |
| 4828 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz |
| 4829 ** |
| 4830 ** is transformed to: |
| 4831 ** |
| 4832 ** SELECT xyz FROM ... GROUP BY xyz |
| 4833 ** |
| 4834 ** The second form is preferred as a single index (or temp-table) may be |
| 4835 ** used for both the ORDER BY and DISTINCT processing. As originally |
| 4836 ** written the query must use a temp-table for at least one of the ORDER |
| 4837 ** BY and DISTINCT, and an index or separate temp-table for the other. |
3852 */ | 4838 */ |
3853 assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 ); | 4839 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct |
3854 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){ | 4840 && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0 |
| 4841 ){ |
| 4842 p->selFlags &= ~SF_Distinct; |
3855 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); | 4843 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); |
3856 pGroupBy = p->pGroupBy; | 4844 pGroupBy = p->pGroupBy; |
3857 p->selFlags &= ~SF_Distinct; | 4845 sSort.pOrderBy = 0; |
3858 } | 4846 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, |
3859 | 4847 ** the sDistinct.isTnct is still set. Hence, isTnct represents the |
3860 /* If there is both a GROUP BY and an ORDER BY clause and they are | 4848 ** original setting of the SF_Distinct flag, not the current setting */ |
3861 ** identical, then disable the ORDER BY clause since the GROUP BY | 4849 assert( sDistinct.isTnct ); |
3862 ** will cause elements to come out in the correct order. This is | |
3863 ** an optimization - the correct answer should result regardless. | |
3864 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER | |
3865 ** to disable this optimization for testing purposes. | |
3866 */ | |
3867 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0 | |
3868 && (db->flags & SQLITE_GroupByOrder)==0 ){ | |
3869 pOrderBy = 0; | |
3870 } | 4850 } |
3871 | 4851 |
3872 /* If there is an ORDER BY clause, then this sorting | 4852 /* If there is an ORDER BY clause, then this sorting |
3873 ** index might end up being unused if the data can be | 4853 ** index might end up being unused if the data can be |
3874 ** extracted in pre-sorted order. If that is the case, then the | 4854 ** extracted in pre-sorted order. If that is the case, then the |
3875 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once | 4855 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once |
3876 ** we figure out that the sorting index is not needed. The addrSortIndex | 4856 ** we figure out that the sorting index is not needed. The addrSortIndex |
3877 ** variable is used to facilitate that change. | 4857 ** variable is used to facilitate that change. |
3878 */ | 4858 */ |
3879 if( pOrderBy ){ | 4859 if( sSort.pOrderBy ){ |
3880 KeyInfo *pKeyInfo; | 4860 KeyInfo *pKeyInfo; |
3881 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); | 4861 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0); |
3882 pOrderBy->iECursor = pParse->nTab++; | 4862 sSort.iECursor = pParse->nTab++; |
3883 p->addrOpenEphm[2] = addrSortIndex = | 4863 sSort.addrSortIndex = |
3884 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, | 4864 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, |
3885 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, | 4865 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, |
3886 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); | 4866 (char*)pKeyInfo, P4_KEYINFO |
| 4867 ); |
3887 }else{ | 4868 }else{ |
3888 addrSortIndex = -1; | 4869 sSort.addrSortIndex = -1; |
3889 } | 4870 } |
3890 | 4871 |
3891 /* If the output is destined for a temporary table, open that table. | 4872 /* If the output is destined for a temporary table, open that table. |
3892 */ | 4873 */ |
3893 if( pDest->eDest==SRT_EphemTab ){ | 4874 if( pDest->eDest==SRT_EphemTab ){ |
3894 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); | 4875 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); |
3895 } | 4876 } |
3896 | 4877 |
3897 /* Set the limiter. | 4878 /* Set the limiter. |
3898 */ | 4879 */ |
3899 iEnd = sqlite3VdbeMakeLabel(v); | 4880 iEnd = sqlite3VdbeMakeLabel(v); |
3900 p->nSelectRow = (double)LARGEST_INT64; | 4881 p->nSelectRow = LARGEST_INT64; |
3901 computeLimitRegisters(pParse, p, iEnd); | 4882 computeLimitRegisters(pParse, p, iEnd); |
| 4883 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ |
| 4884 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; |
| 4885 sSort.sortFlags |= SORTFLAG_UseSorter; |
| 4886 } |
3902 | 4887 |
3903 /* Open a virtual index to use for the distinct set. | 4888 /* Open a virtual index to use for the distinct set. |
3904 */ | 4889 */ |
3905 if( p->selFlags & SF_Distinct ){ | 4890 if( p->selFlags & SF_Distinct ){ |
3906 KeyInfo *pKeyInfo; | 4891 sDistinct.tabTnct = pParse->nTab++; |
3907 assert( isAgg || pGroupBy ); | 4892 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, |
3908 distinct = pParse->nTab++; | 4893 sDistinct.tabTnct, 0, 0, |
3909 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); | 4894 (char*)keyInfoFromExprList(pParse, p->pEList,0,0
), |
3910 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, | 4895 P4_KEYINFO); |
3911 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); | |
3912 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); | 4896 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); |
| 4897 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; |
3913 }else{ | 4898 }else{ |
3914 distinct = -1; | 4899 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; |
3915 } | 4900 } |
3916 | 4901 |
3917 /* Aggregate and non-aggregate queries are handled differently */ | |
3918 if( !isAgg && pGroupBy==0 ){ | 4902 if( !isAgg && pGroupBy==0 ){ |
3919 /* This case is for non-aggregate queries | 4903 /* No aggregate functions and no GROUP BY clause */ |
3920 ** Begin the database scan | 4904 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); |
3921 */ | 4905 |
3922 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); | 4906 /* Begin the database scan. */ |
| 4907 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, |
| 4908 p->pEList, wctrlFlags, 0); |
3923 if( pWInfo==0 ) goto select_end; | 4909 if( pWInfo==0 ) goto select_end; |
3924 if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut; | 4910 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ |
| 4911 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); |
| 4912 } |
| 4913 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ |
| 4914 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); |
| 4915 } |
| 4916 if( sSort.pOrderBy ){ |
| 4917 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); |
| 4918 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ |
| 4919 sSort.pOrderBy = 0; |
| 4920 } |
| 4921 } |
3925 | 4922 |
3926 /* If sorting index that was created by a prior OP_OpenEphemeral | 4923 /* If sorting index that was created by a prior OP_OpenEphemeral |
3927 ** instruction ended up not being needed, then change the OP_OpenEphemeral | 4924 ** instruction ended up not being needed, then change the OP_OpenEphemeral |
3928 ** into an OP_Noop. | 4925 ** into an OP_Noop. |
3929 */ | 4926 */ |
3930 if( addrSortIndex>=0 && pOrderBy==0 ){ | 4927 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ |
3931 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); | 4928 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); |
3932 p->addrOpenEphm[2] = -1; | |
3933 } | 4929 } |
3934 | 4930 |
3935 /* Use the standard inner loop | 4931 /* Use the standard inner loop. */ |
3936 */ | 4932 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, |
3937 assert(!isDistinct); | 4933 sqlite3WhereContinueLabel(pWInfo), |
3938 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, | 4934 sqlite3WhereBreakLabel(pWInfo)); |
3939 pWInfo->iContinue, pWInfo->iBreak); | |
3940 | 4935 |
3941 /* End the database scan loop. | 4936 /* End the database scan loop. |
3942 */ | 4937 */ |
3943 sqlite3WhereEnd(pWInfo); | 4938 sqlite3WhereEnd(pWInfo); |
3944 }else{ | 4939 }else{ |
3945 /* This is the processing for aggregate queries */ | 4940 /* This case when there exist aggregate functions or a GROUP BY clause |
| 4941 ** or both */ |
3946 NameContext sNC; /* Name context for processing aggregate information */ | 4942 NameContext sNC; /* Name context for processing aggregate information */ |
3947 int iAMem; /* First Mem address for storing current GROUP BY */ | 4943 int iAMem; /* First Mem address for storing current GROUP BY */ |
3948 int iBMem; /* First Mem address for previous GROUP BY */ | 4944 int iBMem; /* First Mem address for previous GROUP BY */ |
3949 int iUseFlag; /* Mem address holding flag indicating that at least | 4945 int iUseFlag; /* Mem address holding flag indicating that at least |
3950 ** one row of the input to the aggregator has been | 4946 ** one row of the input to the aggregator has been |
3951 ** processed */ | 4947 ** processed */ |
3952 int iAbortFlag; /* Mem address which causes query abort if positive */ | 4948 int iAbortFlag; /* Mem address which causes query abort if positive */ |
3953 int groupBySort; /* Rows come from source in GROUP BY order */ | 4949 int groupBySort; /* Rows come from source in GROUP BY order */ |
3954 int addrEnd; /* End of processing for this SELECT */ | 4950 int addrEnd; /* End of processing for this SELECT */ |
| 4951 int sortPTab = 0; /* Pseudotable used to decode sorting results */ |
| 4952 int sortOut = 0; /* Output register from the sorter */ |
| 4953 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ |
3955 | 4954 |
3956 /* Remove any and all aliases between the result set and the | 4955 /* Remove any and all aliases between the result set and the |
3957 ** GROUP BY clause. | 4956 ** GROUP BY clause. |
3958 */ | 4957 */ |
3959 if( pGroupBy ){ | 4958 if( pGroupBy ){ |
3960 int k; /* Loop counter */ | 4959 int k; /* Loop counter */ |
3961 struct ExprList_item *pItem; /* For looping over expression in a list */ | 4960 struct ExprList_item *pItem; /* For looping over expression in a list */ |
3962 | 4961 |
3963 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ | 4962 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ |
3964 pItem->iAlias = 0; | 4963 pItem->u.x.iAlias = 0; |
3965 } | 4964 } |
3966 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ | 4965 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ |
3967 pItem->iAlias = 0; | 4966 pItem->u.x.iAlias = 0; |
3968 } | 4967 } |
3969 if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100; | 4968 if( p->nSelectRow>100 ) p->nSelectRow = 100; |
3970 }else{ | 4969 }else{ |
3971 p->nSelectRow = (double)1; | 4970 p->nSelectRow = 1; |
3972 } | 4971 } |
3973 | 4972 |
| 4973 |
| 4974 /* If there is both a GROUP BY and an ORDER BY clause and they are |
| 4975 ** identical, then it may be possible to disable the ORDER BY clause |
| 4976 ** on the grounds that the GROUP BY will cause elements to come out |
| 4977 ** in the correct order. It also may not - the GROUP BY may use a |
| 4978 ** database index that causes rows to be grouped together as required |
| 4979 ** but not actually sorted. Either way, record the fact that the |
| 4980 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp |
| 4981 ** variable. */ |
| 4982 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ |
| 4983 orderByGrp = 1; |
| 4984 } |
3974 | 4985 |
3975 /* Create a label to jump to when we want to abort the query */ | 4986 /* Create a label to jump to when we want to abort the query */ |
3976 addrEnd = sqlite3VdbeMakeLabel(v); | 4987 addrEnd = sqlite3VdbeMakeLabel(v); |
3977 | 4988 |
3978 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in | 4989 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in |
3979 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the | 4990 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the |
3980 ** SELECT statement. | 4991 ** SELECT statement. |
3981 */ | 4992 */ |
3982 memset(&sNC, 0, sizeof(sNC)); | 4993 memset(&sNC, 0, sizeof(sNC)); |
3983 sNC.pParse = pParse; | 4994 sNC.pParse = pParse; |
3984 sNC.pSrcList = pTabList; | 4995 sNC.pSrcList = pTabList; |
3985 sNC.pAggInfo = &sAggInfo; | 4996 sNC.pAggInfo = &sAggInfo; |
3986 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; | 4997 sAggInfo.mnReg = pParse->nMem+1; |
| 4998 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; |
3987 sAggInfo.pGroupBy = pGroupBy; | 4999 sAggInfo.pGroupBy = pGroupBy; |
3988 sqlite3ExprAnalyzeAggList(&sNC, pEList); | 5000 sqlite3ExprAnalyzeAggList(&sNC, pEList); |
3989 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); | 5001 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); |
3990 if( pHaving ){ | 5002 if( pHaving ){ |
3991 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); | 5003 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); |
3992 } | 5004 } |
3993 sAggInfo.nAccumulator = sAggInfo.nColumn; | 5005 sAggInfo.nAccumulator = sAggInfo.nColumn; |
3994 for(i=0; i<sAggInfo.nFunc; i++){ | 5006 for(i=0; i<sAggInfo.nFunc; i++){ |
3995 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); | 5007 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); |
| 5008 sNC.ncFlags |= NC_InAggFunc; |
3996 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); | 5009 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); |
| 5010 sNC.ncFlags &= ~NC_InAggFunc; |
3997 } | 5011 } |
| 5012 sAggInfo.mxReg = pParse->nMem; |
3998 if( db->mallocFailed ) goto select_end; | 5013 if( db->mallocFailed ) goto select_end; |
3999 | 5014 |
4000 /* Processing for aggregates with GROUP BY is very different and | 5015 /* Processing for aggregates with GROUP BY is very different and |
4001 ** much more complex than aggregates without a GROUP BY. | 5016 ** much more complex than aggregates without a GROUP BY. |
4002 */ | 5017 */ |
4003 if( pGroupBy ){ | 5018 if( pGroupBy ){ |
4004 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ | 5019 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ |
4005 int j1; /* A-vs-B comparision jump */ | 5020 int j1; /* A-vs-B comparision jump */ |
4006 int addrOutputRow; /* Start of subroutine that outputs a result row */ | 5021 int addrOutputRow; /* Start of subroutine that outputs a result row */ |
4007 int regOutputRow; /* Return address register for output subroutine */ | 5022 int regOutputRow; /* Return address register for output subroutine */ |
4008 int addrSetAbort; /* Set the abort flag and return */ | 5023 int addrSetAbort; /* Set the abort flag and return */ |
4009 int addrTopOfLoop; /* Top of the input loop */ | 5024 int addrTopOfLoop; /* Top of the input loop */ |
4010 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ | 5025 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ |
4011 int addrReset; /* Subroutine for resetting the accumulator */ | 5026 int addrReset; /* Subroutine for resetting the accumulator */ |
4012 int regReset; /* Return address register for reset subroutine */ | 5027 int regReset; /* Return address register for reset subroutine */ |
4013 | 5028 |
4014 /* If there is a GROUP BY clause we might need a sorting index to | 5029 /* If there is a GROUP BY clause we might need a sorting index to |
4015 ** implement it. Allocate that sorting index now. If it turns out | 5030 ** implement it. Allocate that sorting index now. If it turns out |
4016 ** that we do not need it after all, the OpenEphemeral instruction | 5031 ** that we do not need it after all, the OP_SorterOpen instruction |
4017 ** will be converted into a Noop. | 5032 ** will be converted into a Noop. |
4018 */ | 5033 */ |
4019 sAggInfo.sortingIdx = pParse->nTab++; | 5034 sAggInfo.sortingIdx = pParse->nTab++; |
4020 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); | 5035 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0); |
4021 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, | 5036 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, |
4022 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, | 5037 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, |
4023 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); | 5038 0, (char*)pKeyInfo, P4_KEYINFO); |
4024 | 5039 |
4025 /* Initialize memory locations used by GROUP BY aggregate processing | 5040 /* Initialize memory locations used by GROUP BY aggregate processing |
4026 */ | 5041 */ |
4027 iUseFlag = ++pParse->nMem; | 5042 iUseFlag = ++pParse->nMem; |
4028 iAbortFlag = ++pParse->nMem; | 5043 iAbortFlag = ++pParse->nMem; |
4029 regOutputRow = ++pParse->nMem; | 5044 regOutputRow = ++pParse->nMem; |
4030 addrOutputRow = sqlite3VdbeMakeLabel(v); | 5045 addrOutputRow = sqlite3VdbeMakeLabel(v); |
4031 regReset = ++pParse->nMem; | 5046 regReset = ++pParse->nMem; |
4032 addrReset = sqlite3VdbeMakeLabel(v); | 5047 addrReset = sqlite3VdbeMakeLabel(v); |
4033 iAMem = pParse->nMem + 1; | 5048 iAMem = pParse->nMem + 1; |
4034 pParse->nMem += pGroupBy->nExpr; | 5049 pParse->nMem += pGroupBy->nExpr; |
4035 iBMem = pParse->nMem + 1; | 5050 iBMem = pParse->nMem + 1; |
4036 pParse->nMem += pGroupBy->nExpr; | 5051 pParse->nMem += pGroupBy->nExpr; |
4037 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); | 5052 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); |
4038 VdbeComment((v, "clear abort flag")); | 5053 VdbeComment((v, "clear abort flag")); |
4039 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); | 5054 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); |
4040 VdbeComment((v, "indicate accumulator empty")); | 5055 VdbeComment((v, "indicate accumulator empty")); |
| 5056 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); |
4041 | 5057 |
4042 /* Begin a loop that will extract all source rows in GROUP BY order. | 5058 /* Begin a loop that will extract all source rows in GROUP BY order. |
4043 ** This might involve two separate loops with an OP_Sort in between, or | 5059 ** This might involve two separate loops with an OP_Sort in between, or |
4044 ** it might be a single loop that uses an index to extract information | 5060 ** it might be a single loop that uses an index to extract information |
4045 ** in the right order to begin with. | 5061 ** in the right order to begin with. |
4046 */ | 5062 */ |
4047 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); | 5063 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); |
4048 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); | 5064 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, |
| 5065 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 |
| 5066 ); |
4049 if( pWInfo==0 ) goto select_end; | 5067 if( pWInfo==0 ) goto select_end; |
4050 if( pGroupBy==0 ){ | 5068 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ |
4051 /* The optimizer is able to deliver rows in group by order so | 5069 /* The optimizer is able to deliver rows in group by order so |
4052 ** we do not have to sort. The OP_OpenEphemeral table will be | 5070 ** we do not have to sort. The OP_OpenEphemeral table will be |
4053 ** cancelled later because we still need to use the pKeyInfo | 5071 ** cancelled later because we still need to use the pKeyInfo |
4054 */ | 5072 */ |
4055 pGroupBy = p->pGroupBy; | |
4056 groupBySort = 0; | 5073 groupBySort = 0; |
4057 }else{ | 5074 }else{ |
4058 /* Rows are coming out in undetermined order. We have to push | 5075 /* Rows are coming out in undetermined order. We have to push |
4059 ** each row into a sorting index, terminate the first loop, | 5076 ** each row into a sorting index, terminate the first loop, |
4060 ** then loop over the sorting index in order to get the output | 5077 ** then loop over the sorting index in order to get the output |
4061 ** in sorted order | 5078 ** in sorted order |
4062 */ | 5079 */ |
4063 int regBase; | 5080 int regBase; |
4064 int regRecord; | 5081 int regRecord; |
4065 int nCol; | 5082 int nCol; |
4066 int nGroupBy; | 5083 int nGroupBy; |
4067 | 5084 |
4068 explainTempTable(pParse, | 5085 explainTempTable(pParse, |
4069 isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY"); | 5086 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? |
| 5087 "DISTINCT" : "GROUP BY"); |
4070 | 5088 |
4071 groupBySort = 1; | 5089 groupBySort = 1; |
4072 nGroupBy = pGroupBy->nExpr; | 5090 nGroupBy = pGroupBy->nExpr; |
4073 nCol = nGroupBy + 1; | 5091 nCol = nGroupBy; |
4074 j = nGroupBy+1; | 5092 j = nGroupBy; |
4075 for(i=0; i<sAggInfo.nColumn; i++){ | 5093 for(i=0; i<sAggInfo.nColumn; i++){ |
4076 if( sAggInfo.aCol[i].iSorterColumn>=j ){ | 5094 if( sAggInfo.aCol[i].iSorterColumn>=j ){ |
4077 nCol++; | 5095 nCol++; |
4078 j++; | 5096 j++; |
4079 } | 5097 } |
4080 } | 5098 } |
4081 regBase = sqlite3GetTempRange(pParse, nCol); | 5099 regBase = sqlite3GetTempRange(pParse, nCol); |
4082 sqlite3ExprCacheClear(pParse); | 5100 sqlite3ExprCacheClear(pParse); |
4083 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); | 5101 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); |
4084 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); | 5102 j = nGroupBy; |
4085 j = nGroupBy+1; | |
4086 for(i=0; i<sAggInfo.nColumn; i++){ | 5103 for(i=0; i<sAggInfo.nColumn; i++){ |
4087 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; | 5104 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; |
4088 if( pCol->iSorterColumn>=j ){ | 5105 if( pCol->iSorterColumn>=j ){ |
4089 int r1 = j + regBase; | 5106 int r1 = j + regBase; |
4090 int r2; | 5107 int r2; |
4091 | 5108 |
4092 r2 = sqlite3ExprCodeGetColumn(pParse, | 5109 r2 = sqlite3ExprCodeGetColumn(pParse, |
4093 pCol->pTab, pCol->iColumn, pCol->iTable, r1); | 5110 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); |
4094 if( r1!=r2 ){ | 5111 if( r1!=r2 ){ |
4095 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); | 5112 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); |
4096 } | 5113 } |
4097 j++; | 5114 j++; |
4098 } | 5115 } |
4099 } | 5116 } |
4100 regRecord = sqlite3GetTempReg(pParse); | 5117 regRecord = sqlite3GetTempReg(pParse); |
4101 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); | 5118 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); |
4102 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); | 5119 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); |
4103 sqlite3ReleaseTempReg(pParse, regRecord); | 5120 sqlite3ReleaseTempReg(pParse, regRecord); |
4104 sqlite3ReleaseTempRange(pParse, regBase, nCol); | 5121 sqlite3ReleaseTempRange(pParse, regBase, nCol); |
4105 sqlite3WhereEnd(pWInfo); | 5122 sqlite3WhereEnd(pWInfo); |
4106 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); | 5123 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; |
4107 VdbeComment((v, "GROUP BY sort")); | 5124 sortOut = sqlite3GetTempReg(pParse); |
| 5125 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); |
| 5126 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); |
| 5127 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); |
4108 sAggInfo.useSortingIdx = 1; | 5128 sAggInfo.useSortingIdx = 1; |
4109 sqlite3ExprCacheClear(pParse); | 5129 sqlite3ExprCacheClear(pParse); |
| 5130 |
| 5131 } |
| 5132 |
| 5133 /* If the index or temporary table used by the GROUP BY sort |
| 5134 ** will naturally deliver rows in the order required by the ORDER BY |
| 5135 ** clause, cancel the ephemeral table open coded earlier. |
| 5136 ** |
| 5137 ** This is an optimization - the correct answer should result regardless. |
| 5138 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to |
| 5139 ** disable this optimization for testing purposes. */ |
| 5140 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) |
| 5141 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) |
| 5142 ){ |
| 5143 sSort.pOrderBy = 0; |
| 5144 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); |
4110 } | 5145 } |
4111 | 5146 |
4112 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... | 5147 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... |
4113 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) | 5148 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) |
4114 ** Then compare the current GROUP BY terms against the GROUP BY terms | 5149 ** Then compare the current GROUP BY terms against the GROUP BY terms |
4115 ** from the previous row currently stored in a0, a1, a2... | 5150 ** from the previous row currently stored in a0, a1, a2... |
4116 */ | 5151 */ |
4117 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); | 5152 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); |
4118 sqlite3ExprCacheClear(pParse); | 5153 sqlite3ExprCacheClear(pParse); |
| 5154 if( groupBySort ){ |
| 5155 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTa
b); |
| 5156 } |
4119 for(j=0; j<pGroupBy->nExpr; j++){ | 5157 for(j=0; j<pGroupBy->nExpr; j++){ |
4120 if( groupBySort ){ | 5158 if( groupBySort ){ |
4121 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); | 5159 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); |
4122 }else{ | 5160 }else{ |
4123 sAggInfo.directMode = 1; | 5161 sAggInfo.directMode = 1; |
4124 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); | 5162 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); |
4125 } | 5163 } |
4126 } | 5164 } |
4127 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, | 5165 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, |
4128 (char*)pKeyInfo, P4_KEYINFO); | 5166 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); |
4129 j1 = sqlite3VdbeCurrentAddr(v); | 5167 j1 = sqlite3VdbeCurrentAddr(v); |
4130 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); | 5168 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); |
4131 | 5169 |
4132 /* Generate code that runs whenever the GROUP BY changes. | 5170 /* Generate code that runs whenever the GROUP BY changes. |
4133 ** Changes in the GROUP BY are detected by the previous code | 5171 ** Changes in the GROUP BY are detected by the previous code |
4134 ** block. If there were no changes, this block is skipped. | 5172 ** block. If there were no changes, this block is skipped. |
4135 ** | 5173 ** |
4136 ** This code copies current group by terms in b0,b1,b2,... | 5174 ** This code copies current group by terms in b0,b1,b2,... |
4137 ** over to a0,a1,a2. It then calls the output subroutine | 5175 ** over to a0,a1,a2. It then calls the output subroutine |
4138 ** and resets the aggregate accumulator registers in preparation | 5176 ** and resets the aggregate accumulator registers in preparation |
4139 ** for the next GROUP BY batch. | 5177 ** for the next GROUP BY batch. |
4140 */ | 5178 */ |
4141 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); | 5179 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); |
4142 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); | 5180 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); |
4143 VdbeComment((v, "output one row")); | 5181 VdbeComment((v, "output one row")); |
4144 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); | 5182 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); |
4145 VdbeComment((v, "check abort flag")); | 5183 VdbeComment((v, "check abort flag")); |
4146 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); | 5184 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); |
4147 VdbeComment((v, "reset accumulator")); | 5185 VdbeComment((v, "reset accumulator")); |
4148 | 5186 |
4149 /* Update the aggregate accumulators based on the content of | 5187 /* Update the aggregate accumulators based on the content of |
4150 ** the current row | 5188 ** the current row |
4151 */ | 5189 */ |
4152 sqlite3VdbeJumpHere(v, j1); | 5190 sqlite3VdbeJumpHere(v, j1); |
4153 updateAccumulator(pParse, &sAggInfo); | 5191 updateAccumulator(pParse, &sAggInfo); |
4154 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); | 5192 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); |
4155 VdbeComment((v, "indicate data in accumulator")); | 5193 VdbeComment((v, "indicate data in accumulator")); |
4156 | 5194 |
4157 /* End of the loop | 5195 /* End of the loop |
4158 */ | 5196 */ |
4159 if( groupBySort ){ | 5197 if( groupBySort ){ |
4160 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); | 5198 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); |
| 5199 VdbeCoverage(v); |
4161 }else{ | 5200 }else{ |
4162 sqlite3WhereEnd(pWInfo); | 5201 sqlite3WhereEnd(pWInfo); |
4163 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); | 5202 sqlite3VdbeChangeToNoop(v, addrSortingIdx); |
4164 } | 5203 } |
4165 | 5204 |
4166 /* Output the final row of result | 5205 /* Output the final row of result |
4167 */ | 5206 */ |
4168 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); | 5207 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); |
4169 VdbeComment((v, "output final row")); | 5208 VdbeComment((v, "output final row")); |
4170 | 5209 |
4171 /* Jump over the subroutines | 5210 /* Jump over the subroutines |
4172 */ | 5211 */ |
4173 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); | 5212 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); |
4174 | 5213 |
4175 /* Generate a subroutine that outputs a single row of the result | 5214 /* Generate a subroutine that outputs a single row of the result |
4176 ** set. This subroutine first looks at the iUseFlag. If iUseFlag | 5215 ** set. This subroutine first looks at the iUseFlag. If iUseFlag |
4177 ** is less than or equal to zero, the subroutine is a no-op. If | 5216 ** is less than or equal to zero, the subroutine is a no-op. If |
4178 ** the processing calls for the query to abort, this subroutine | 5217 ** the processing calls for the query to abort, this subroutine |
4179 ** increments the iAbortFlag memory location before returning in | 5218 ** increments the iAbortFlag memory location before returning in |
4180 ** order to signal the caller to abort. | 5219 ** order to signal the caller to abort. |
4181 */ | 5220 */ |
4182 addrSetAbort = sqlite3VdbeCurrentAddr(v); | 5221 addrSetAbort = sqlite3VdbeCurrentAddr(v); |
4183 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); | 5222 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); |
4184 VdbeComment((v, "set abort flag")); | 5223 VdbeComment((v, "set abort flag")); |
4185 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); | 5224 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
4186 sqlite3VdbeResolveLabel(v, addrOutputRow); | 5225 sqlite3VdbeResolveLabel(v, addrOutputRow); |
4187 addrOutputRow = sqlite3VdbeCurrentAddr(v); | 5226 addrOutputRow = sqlite3VdbeCurrentAddr(v); |
4188 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); | 5227 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v)
; |
4189 VdbeComment((v, "Groupby result generator entry point")); | 5228 VdbeComment((v, "Groupby result generator entry point")); |
4190 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); | 5229 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
4191 finalizeAggFunctions(pParse, &sAggInfo); | 5230 finalizeAggFunctions(pParse, &sAggInfo); |
4192 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); | 5231 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); |
4193 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, | 5232 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, |
4194 distinct, pDest, | 5233 &sDistinct, pDest, |
4195 addrOutputRow+1, addrSetAbort); | 5234 addrOutputRow+1, addrSetAbort); |
4196 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); | 5235 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
4197 VdbeComment((v, "end groupby result generator")); | 5236 VdbeComment((v, "end groupby result generator")); |
4198 | 5237 |
4199 /* Generate a subroutine that will reset the group-by accumulator | 5238 /* Generate a subroutine that will reset the group-by accumulator |
4200 */ | 5239 */ |
4201 sqlite3VdbeResolveLabel(v, addrReset); | 5240 sqlite3VdbeResolveLabel(v, addrReset); |
4202 resetAccumulator(pParse, &sAggInfo); | 5241 resetAccumulator(pParse, &sAggInfo); |
4203 sqlite3VdbeAddOp1(v, OP_Return, regReset); | 5242 sqlite3VdbeAddOp1(v, OP_Return, regReset); |
4204 | 5243 |
(...skipping 19 matching lines...) Expand all Loading... |
4224 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); | 5263 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
4225 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ | 5264 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ |
4226 Index *pIdx; /* Iterator variable */ | 5265 Index *pIdx; /* Iterator variable */ |
4227 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ | 5266 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ |
4228 Index *pBest = 0; /* Best index found so far */ | 5267 Index *pBest = 0; /* Best index found so far */ |
4229 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ | 5268 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ |
4230 | 5269 |
4231 sqlite3CodeVerifySchema(pParse, iDb); | 5270 sqlite3CodeVerifySchema(pParse, iDb); |
4232 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); | 5271 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
4233 | 5272 |
4234 /* Search for the index that has the least amount of columns. If | 5273 /* Search for the index that has the lowest scan cost. |
4235 ** there is such an index, and it has less columns than the table | 5274 ** |
4236 ** does, then we can assume that it consumes less space on disk and | 5275 ** (2011-04-15) Do not do a full scan of an unordered index. |
4237 ** will therefore be cheaper to scan to determine the query result. | 5276 ** |
4238 ** In this case set iRoot to the root page number of the index b-tree | 5277 ** (2013-10-03) Do not count the entries in a partial index. |
4239 ** and pKeyInfo to the KeyInfo structure required to navigate the | |
4240 ** index. | |
4241 ** | 5278 ** |
4242 ** In practice the KeyInfo structure will not be used. It is only | 5279 ** In practice the KeyInfo structure will not be used. It is only |
4243 ** passed to keep OP_OpenRead happy. | 5280 ** passed to keep OP_OpenRead happy. |
4244 */ | 5281 */ |
| 5282 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); |
4245 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | 5283 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
4246 if( !pBest || pIdx->nColumn<pBest->nColumn ){ | 5284 if( pIdx->bUnordered==0 |
| 5285 && pIdx->szIdxRow<pTab->szTabRow |
| 5286 && pIdx->pPartIdxWhere==0 |
| 5287 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) |
| 5288 ){ |
4247 pBest = pIdx; | 5289 pBest = pIdx; |
4248 } | 5290 } |
4249 } | 5291 } |
4250 if( pBest && pBest->nColumn<pTab->nCol ){ | 5292 if( pBest ){ |
4251 iRoot = pBest->tnum; | 5293 iRoot = pBest->tnum; |
4252 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); | 5294 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); |
4253 } | 5295 } |
4254 | 5296 |
4255 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ | 5297 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ |
4256 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); | 5298 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); |
4257 if( pKeyInfo ){ | 5299 if( pKeyInfo ){ |
4258 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); | 5300 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); |
4259 } | 5301 } |
4260 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); | 5302 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); |
4261 sqlite3VdbeAddOp1(v, OP_Close, iCsr); | 5303 sqlite3VdbeAddOp1(v, OP_Close, iCsr); |
4262 explainSimpleCount(pParse, pTab, pBest); | 5304 explainSimpleCount(pParse, pTab, pBest); |
4263 }else | 5305 }else |
4264 #endif /* SQLITE_OMIT_BTREECOUNT */ | 5306 #endif /* SQLITE_OMIT_BTREECOUNT */ |
4265 { | 5307 { |
4266 /* Check if the query is of one of the following forms: | 5308 /* Check if the query is of one of the following forms: |
4267 ** | 5309 ** |
4268 ** SELECT min(x) FROM ... | 5310 ** SELECT min(x) FROM ... |
4269 ** SELECT max(x) FROM ... | 5311 ** SELECT max(x) FROM ... |
4270 ** | 5312 ** |
4271 ** If it is, then ask the code in where.c to attempt to sort results | 5313 ** If it is, then ask the code in where.c to attempt to sort results |
4272 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. | 5314 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. |
4273 ** If where.c is able to produce results sorted in this order, then | 5315 ** If where.c is able to produce results sorted in this order, then |
4274 ** add vdbe code to break out of the processing loop after the | 5316 ** add vdbe code to break out of the processing loop after the |
4275 ** first iteration (since the first iteration of the loop is | 5317 ** first iteration (since the first iteration of the loop is |
4276 ** guaranteed to operate on the row with the minimum or maximum | 5318 ** guaranteed to operate on the row with the minimum or maximum |
4277 ** value of x, the only row required). | 5319 ** value of x, the only row required). |
4278 ** | 5320 ** |
4279 ** A special flag must be passed to sqlite3WhereBegin() to slightly | 5321 ** A special flag must be passed to sqlite3WhereBegin() to slightly |
4280 ** modify behaviour as follows: | 5322 ** modify behavior as follows: |
4281 ** | 5323 ** |
4282 ** + If the query is a "SELECT min(x)", then the loop coded by | 5324 ** + If the query is a "SELECT min(x)", then the loop coded by |
4283 ** where.c should not iterate over any values with a NULL value | 5325 ** where.c should not iterate over any values with a NULL value |
4284 ** for x. | 5326 ** for x. |
4285 ** | 5327 ** |
4286 ** + The optimizer code in where.c (the thing that decides which | 5328 ** + The optimizer code in where.c (the thing that decides which |
4287 ** index or indices to use) should place a different priority on | 5329 ** index or indices to use) should place a different priority on |
4288 ** satisfying the 'ORDER BY' clause than it does in other cases. | 5330 ** satisfying the 'ORDER BY' clause than it does in other cases. |
4289 ** Refer to code and comments in where.c for details. | 5331 ** Refer to code and comments in where.c for details. |
4290 */ | 5332 */ |
4291 ExprList *pMinMax = 0; | 5333 ExprList *pMinMax = 0; |
4292 u8 flag = minMaxQuery(p); | 5334 u8 flag = WHERE_ORDERBY_NORMAL; |
| 5335 |
| 5336 assert( p->pGroupBy==0 ); |
| 5337 assert( flag==0 ); |
| 5338 if( p->pHaving==0 ){ |
| 5339 flag = minMaxQuery(&sAggInfo, &pMinMax); |
| 5340 } |
| 5341 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); |
| 5342 |
4293 if( flag ){ | 5343 if( flag ){ |
4294 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); | 5344 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); |
4295 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); | |
4296 pDel = pMinMax; | 5345 pDel = pMinMax; |
4297 if( pMinMax && !db->mallocFailed ){ | 5346 if( pMinMax && !db->mallocFailed ){ |
4298 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; | 5347 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; |
4299 pMinMax->a[0].pExpr->op = TK_COLUMN; | 5348 pMinMax->a[0].pExpr->op = TK_COLUMN; |
4300 } | 5349 } |
4301 } | 5350 } |
4302 | 5351 |
4303 /* This case runs if the aggregate has no GROUP BY clause. The | 5352 /* This case runs if the aggregate has no GROUP BY clause. The |
4304 ** processing is much simpler since there is only a single row | 5353 ** processing is much simpler since there is only a single row |
4305 ** of output. | 5354 ** of output. |
4306 */ | 5355 */ |
4307 resetAccumulator(pParse, &sAggInfo); | 5356 resetAccumulator(pParse, &sAggInfo); |
4308 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); | 5357 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); |
4309 if( pWInfo==0 ){ | 5358 if( pWInfo==0 ){ |
4310 sqlite3ExprListDelete(db, pDel); | 5359 sqlite3ExprListDelete(db, pDel); |
4311 goto select_end; | 5360 goto select_end; |
4312 } | 5361 } |
4313 updateAccumulator(pParse, &sAggInfo); | 5362 updateAccumulator(pParse, &sAggInfo); |
4314 if( !pMinMax && flag ){ | 5363 assert( pMinMax==0 || pMinMax->nExpr==1 ); |
4315 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); | 5364 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ |
| 5365 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); |
4316 VdbeComment((v, "%s() by index", | 5366 VdbeComment((v, "%s() by index", |
4317 (flag==WHERE_ORDERBY_MIN?"min":"max"))); | 5367 (flag==WHERE_ORDERBY_MIN?"min":"max"))); |
4318 } | 5368 } |
4319 sqlite3WhereEnd(pWInfo); | 5369 sqlite3WhereEnd(pWInfo); |
4320 finalizeAggFunctions(pParse, &sAggInfo); | 5370 finalizeAggFunctions(pParse, &sAggInfo); |
4321 } | 5371 } |
4322 | 5372 |
4323 pOrderBy = 0; | 5373 sSort.pOrderBy = 0; |
4324 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); | 5374 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); |
4325 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, | 5375 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, |
4326 pDest, addrEnd, addrEnd); | 5376 pDest, addrEnd, addrEnd); |
4327 sqlite3ExprListDelete(db, pDel); | 5377 sqlite3ExprListDelete(db, pDel); |
4328 } | 5378 } |
4329 sqlite3VdbeResolveLabel(v, addrEnd); | 5379 sqlite3VdbeResolveLabel(v, addrEnd); |
4330 | 5380 |
4331 } /* endif aggregate query */ | 5381 } /* endif aggregate query */ |
4332 | 5382 |
4333 if( distinct>=0 ){ | 5383 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ |
4334 explainTempTable(pParse, "DISTINCT"); | 5384 explainTempTable(pParse, "DISTINCT"); |
4335 } | 5385 } |
4336 | 5386 |
4337 /* If there is an ORDER BY clause, then we need to sort the results | 5387 /* If there is an ORDER BY clause, then we need to sort the results |
4338 ** and send them to the callback one by one. | 5388 ** and send them to the callback one by one. |
4339 */ | 5389 */ |
4340 if( pOrderBy ){ | 5390 if( sSort.pOrderBy ){ |
4341 explainTempTable(pParse, "ORDER BY"); | 5391 explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY
"); |
4342 generateSortTail(pParse, p, v, pEList->nExpr, pDest); | 5392 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); |
4343 } | 5393 } |
4344 | 5394 |
4345 /* Jump here to skip this query | 5395 /* Jump here to skip this query |
4346 */ | 5396 */ |
4347 sqlite3VdbeResolveLabel(v, iEnd); | 5397 sqlite3VdbeResolveLabel(v, iEnd); |
4348 | 5398 |
4349 /* The SELECT was successfully coded. Set the return code to 0 | 5399 /* The SELECT was successfully coded. Set the return code to 0 |
4350 ** to indicate no errors. | 5400 ** to indicate no errors. |
4351 */ | 5401 */ |
4352 rc = 0; | 5402 rc = 0; |
4353 | 5403 |
4354 /* Control jumps to here if an error is encountered above, or upon | 5404 /* Control jumps to here if an error is encountered above, or upon |
4355 ** successful coding of the SELECT. | 5405 ** successful coding of the SELECT. |
4356 */ | 5406 */ |
4357 select_end: | 5407 select_end: |
4358 explainSetInteger(pParse->iSelectId, iRestoreSelectId); | 5408 explainSetInteger(pParse->iSelectId, iRestoreSelectId); |
4359 | 5409 |
4360 /* Identify column names if results of the SELECT are to be output. | 5410 /* Identify column names if results of the SELECT are to be output. |
4361 */ | 5411 */ |
4362 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ | 5412 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ |
4363 generateColumnNames(pParse, pTabList, pEList); | 5413 generateColumnNames(pParse, pTabList, pEList); |
4364 } | 5414 } |
4365 | 5415 |
4366 sqlite3DbFree(db, sAggInfo.aCol); | 5416 sqlite3DbFree(db, sAggInfo.aCol); |
4367 sqlite3DbFree(db, sAggInfo.aFunc); | 5417 sqlite3DbFree(db, sAggInfo.aFunc); |
| 5418 #if SELECTTRACE_ENABLED |
| 5419 SELECTTRACE(1,pParse,p,("end processing\n")); |
| 5420 pParse->nSelectIndent--; |
| 5421 #endif |
4368 return rc; | 5422 return rc; |
4369 } | 5423 } |
4370 | 5424 |
4371 #if defined(SQLITE_DEBUG) | 5425 #ifdef SQLITE_DEBUG |
4372 /* | 5426 /* |
4373 ******************************************************************************* | 5427 ** Generate a human-readable description of a the Select object. |
4374 ** The following code is used for testing and debugging only. The code | |
4375 ** that follows does not appear in normal builds. | |
4376 ** | |
4377 ** These routines are used to print out the content of all or part of a | |
4378 ** parse structures such as Select or Expr. Such printouts are useful | |
4379 ** for helping to understand what is happening inside the code generator | |
4380 ** during the execution of complex SELECT statements. | |
4381 ** | |
4382 ** These routine are not called anywhere from within the normal | |
4383 ** code base. Then are intended to be called from within the debugger | |
4384 ** or from temporary "printf" statements inserted for debugging. | |
4385 */ | 5428 */ |
4386 void sqlite3PrintExpr(Expr *p){ | 5429 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ |
4387 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ | 5430 int n = 0; |
4388 sqlite3DebugPrintf("(%s", p->u.zToken); | 5431 pView = sqlite3TreeViewPush(pView, moreToFollow); |
4389 }else{ | 5432 sqlite3TreeViewLine(pView, "SELECT%s%s", |
4390 sqlite3DebugPrintf("(%d", p->op); | 5433 ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""), |
4391 } | 5434 ((p->selFlags & SF_Aggregate) ? " agg_flag" : "") |
4392 if( p->pLeft ){ | 5435 ); |
4393 sqlite3DebugPrintf(" "); | 5436 if( p->pSrc && p->pSrc->nSrc ) n++; |
4394 sqlite3PrintExpr(p->pLeft); | 5437 if( p->pWhere ) n++; |
4395 } | 5438 if( p->pGroupBy ) n++; |
4396 if( p->pRight ){ | 5439 if( p->pHaving ) n++; |
4397 sqlite3DebugPrintf(" "); | 5440 if( p->pOrderBy ) n++; |
4398 sqlite3PrintExpr(p->pRight); | 5441 if( p->pLimit ) n++; |
4399 } | 5442 if( p->pOffset ) n++; |
4400 sqlite3DebugPrintf(")"); | 5443 if( p->pPrior ) n++; |
4401 } | 5444 sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set"); |
4402 void sqlite3PrintExprList(ExprList *pList){ | 5445 if( p->pSrc && p->pSrc->nSrc ){ |
4403 int i; | |
4404 for(i=0; i<pList->nExpr; i++){ | |
4405 sqlite3PrintExpr(pList->a[i].pExpr); | |
4406 if( i<pList->nExpr-1 ){ | |
4407 sqlite3DebugPrintf(", "); | |
4408 } | |
4409 } | |
4410 } | |
4411 void sqlite3PrintSelect(Select *p, int indent){ | |
4412 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); | |
4413 sqlite3PrintExprList(p->pEList); | |
4414 sqlite3DebugPrintf("\n"); | |
4415 if( p->pSrc ){ | |
4416 char *zPrefix; | |
4417 int i; | 5446 int i; |
4418 zPrefix = "FROM"; | 5447 pView = sqlite3TreeViewPush(pView, (n--)>0); |
| 5448 sqlite3TreeViewLine(pView, "FROM"); |
4419 for(i=0; i<p->pSrc->nSrc; i++){ | 5449 for(i=0; i<p->pSrc->nSrc; i++){ |
4420 struct SrcList_item *pItem = &p->pSrc->a[i]; | 5450 struct SrcList_item *pItem = &p->pSrc->a[i]; |
4421 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); | 5451 StrAccum x; |
4422 zPrefix = ""; | 5452 char zLine[100]; |
4423 if( pItem->pSelect ){ | 5453 sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0); |
4424 sqlite3DebugPrintf("(\n"); | 5454 sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor); |
4425 sqlite3PrintSelect(pItem->pSelect, indent+10); | 5455 if( pItem->zDatabase ){ |
4426 sqlite3DebugPrintf("%*s)", indent+8, ""); | 5456 sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName); |
4427 }else if( pItem->zName ){ | 5457 }else if( pItem->zName ){ |
4428 sqlite3DebugPrintf("%s", pItem->zName); | 5458 sqlite3XPrintf(&x, 0, " %s", pItem->zName); |
4429 } | 5459 } |
4430 if( pItem->pTab ){ | 5460 if( pItem->pTab ){ |
4431 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); | 5461 sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName); |
4432 } | 5462 } |
4433 if( pItem->zAlias ){ | 5463 if( pItem->zAlias ){ |
4434 sqlite3DebugPrintf(" AS %s", pItem->zAlias); | 5464 sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias); |
4435 } | 5465 } |
4436 if( i<p->pSrc->nSrc-1 ){ | 5466 if( pItem->jointype & JT_LEFT ){ |
4437 sqlite3DebugPrintf(","); | 5467 sqlite3XPrintf(&x, 0, " LEFT-JOIN"); |
4438 } | 5468 } |
4439 sqlite3DebugPrintf("\n"); | 5469 sqlite3StrAccumFinish(&x); |
| 5470 sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); |
| 5471 if( pItem->pSelect ){ |
| 5472 sqlite3TreeViewSelect(pView, pItem->pSelect, 0); |
| 5473 } |
| 5474 sqlite3TreeViewPop(pView); |
4440 } | 5475 } |
| 5476 sqlite3TreeViewPop(pView); |
4441 } | 5477 } |
4442 if( p->pWhere ){ | 5478 if( p->pWhere ){ |
4443 sqlite3DebugPrintf("%*s WHERE ", indent, ""); | 5479 sqlite3TreeViewItem(pView, "WHERE", (n--)>0); |
4444 sqlite3PrintExpr(p->pWhere); | 5480 sqlite3TreeViewExpr(pView, p->pWhere, 0); |
4445 sqlite3DebugPrintf("\n"); | 5481 sqlite3TreeViewPop(pView); |
4446 } | 5482 } |
4447 if( p->pGroupBy ){ | 5483 if( p->pGroupBy ){ |
4448 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); | 5484 sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY"); |
4449 sqlite3PrintExprList(p->pGroupBy); | |
4450 sqlite3DebugPrintf("\n"); | |
4451 } | 5485 } |
4452 if( p->pHaving ){ | 5486 if( p->pHaving ){ |
4453 sqlite3DebugPrintf("%*s HAVING ", indent, ""); | 5487 sqlite3TreeViewItem(pView, "HAVING", (n--)>0); |
4454 sqlite3PrintExpr(p->pHaving); | 5488 sqlite3TreeViewExpr(pView, p->pHaving, 0); |
4455 sqlite3DebugPrintf("\n"); | 5489 sqlite3TreeViewPop(pView); |
4456 } | 5490 } |
4457 if( p->pOrderBy ){ | 5491 if( p->pOrderBy ){ |
4458 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); | 5492 sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY"); |
4459 sqlite3PrintExprList(p->pOrderBy); | |
4460 sqlite3DebugPrintf("\n"); | |
4461 } | 5493 } |
| 5494 if( p->pLimit ){ |
| 5495 sqlite3TreeViewItem(pView, "LIMIT", (n--)>0); |
| 5496 sqlite3TreeViewExpr(pView, p->pLimit, 0); |
| 5497 sqlite3TreeViewPop(pView); |
| 5498 } |
| 5499 if( p->pOffset ){ |
| 5500 sqlite3TreeViewItem(pView, "OFFSET", (n--)>0); |
| 5501 sqlite3TreeViewExpr(pView, p->pOffset, 0); |
| 5502 sqlite3TreeViewPop(pView); |
| 5503 } |
| 5504 if( p->pPrior ){ |
| 5505 const char *zOp = "UNION"; |
| 5506 switch( p->op ){ |
| 5507 case TK_ALL: zOp = "UNION ALL"; break; |
| 5508 case TK_INTERSECT: zOp = "INTERSECT"; break; |
| 5509 case TK_EXCEPT: zOp = "EXCEPT"; break; |
| 5510 } |
| 5511 sqlite3TreeViewItem(pView, zOp, (n--)>0); |
| 5512 sqlite3TreeViewSelect(pView, p->pPrior, 0); |
| 5513 sqlite3TreeViewPop(pView); |
| 5514 } |
| 5515 sqlite3TreeViewPop(pView); |
4462 } | 5516 } |
4463 /* End of the structure debug printing code | 5517 #endif /* SQLITE_DEBUG */ |
4464 *****************************************************************************/ | |
4465 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ | |
OLD | NEW |