Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(272)

Side by Side Diff: third_party/sqlite/sqlite-src-3080704/src/select.c

Issue 883353008: [sql] Import reference version of SQLite 3.8.7.4. (Closed) Base URL: http://chromium.googlesource.com/chromium/src.git@master
Patch Set: Hold back encoding change which is messing up patch. Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 ** 2001 September 15 2 ** 2001 September 15
3 ** 3 **
4 ** The author disclaims copyright to this source code. In place of 4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing: 5 ** a legal notice, here is a blessing:
6 ** 6 **
7 ** May you do good and not evil. 7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others. 8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give. 9 ** May you share freely, never taking more than you give.
10 ** 10 **
11 ************************************************************************* 11 *************************************************************************
12 ** This file contains C code routines that are called by the parser 12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite. 13 ** to handle SELECT statements in SQLite.
14 */ 14 */
15 #include "sqliteInt.h" 15 #include "sqliteInt.h"
16 16
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)) ,\
25 sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29
30
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38 u8 isTnct; /* True if the DISTINCT keyword is present */
39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
40 int tabTnct; /* Ephemeral table used for DISTINCT processing */
41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor; /* Cursor number for the sorter */
53 int regReturn; /* Register holding block-output return address */
54 int labelBkOut; /* Start label for the block-output subroutine */
55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
57 };
58 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
17 59
18 /* 60 /*
19 ** Delete all the content of a Select structure but do not deallocate 61 ** Delete all the content of a Select structure but do not deallocate
20 ** the select structure itself. 62 ** the select structure itself.
21 */ 63 */
22 static void clearSelect(sqlite3 *db, Select *p){ 64 static void clearSelect(sqlite3 *db, Select *p){
23 sqlite3ExprListDelete(db, p->pEList); 65 sqlite3ExprListDelete(db, p->pEList);
24 sqlite3SrcListDelete(db, p->pSrc); 66 sqlite3SrcListDelete(db, p->pSrc);
25 sqlite3ExprDelete(db, p->pWhere); 67 sqlite3ExprDelete(db, p->pWhere);
26 sqlite3ExprListDelete(db, p->pGroupBy); 68 sqlite3ExprListDelete(db, p->pGroupBy);
27 sqlite3ExprDelete(db, p->pHaving); 69 sqlite3ExprDelete(db, p->pHaving);
28 sqlite3ExprListDelete(db, p->pOrderBy); 70 sqlite3ExprListDelete(db, p->pOrderBy);
29 sqlite3SelectDelete(db, p->pPrior); 71 sqlite3SelectDelete(db, p->pPrior);
30 sqlite3ExprDelete(db, p->pLimit); 72 sqlite3ExprDelete(db, p->pLimit);
31 sqlite3ExprDelete(db, p->pOffset); 73 sqlite3ExprDelete(db, p->pOffset);
74 sqlite3WithDelete(db, p->pWith);
32 } 75 }
33 76
34 /* 77 /*
35 ** Initialize a SelectDest structure. 78 ** Initialize a SelectDest structure.
36 */ 79 */
37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 80 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
38 pDest->eDest = (u8)eDest; 81 pDest->eDest = (u8)eDest;
39 pDest->iParm = iParm; 82 pDest->iSDParm = iParm;
40 pDest->affinity = 0; 83 pDest->affSdst = 0;
41 pDest->iMem = 0; 84 pDest->iSdst = 0;
42 pDest->nMem = 0; 85 pDest->nSdst = 0;
43 } 86 }
44 87
45 88
46 /* 89 /*
47 ** Allocate a new Select structure and return a pointer to that 90 ** Allocate a new Select structure and return a pointer to that
48 ** structure. 91 ** structure.
49 */ 92 */
50 Select *sqlite3SelectNew( 93 Select *sqlite3SelectNew(
51 Parse *pParse, /* Parsing context */ 94 Parse *pParse, /* Parsing context */
52 ExprList *pEList, /* which columns to include in the result */ 95 ExprList *pEList, /* which columns to include in the result */
53 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 96 SrcList *pSrc, /* the FROM clause -- which tables to scan */
54 Expr *pWhere, /* the WHERE clause */ 97 Expr *pWhere, /* the WHERE clause */
55 ExprList *pGroupBy, /* the GROUP BY clause */ 98 ExprList *pGroupBy, /* the GROUP BY clause */
56 Expr *pHaving, /* the HAVING clause */ 99 Expr *pHaving, /* the HAVING clause */
57 ExprList *pOrderBy, /* the ORDER BY clause */ 100 ExprList *pOrderBy, /* the ORDER BY clause */
58 int isDistinct, /* true if the DISTINCT keyword is present */ 101 u16 selFlags, /* Flag parameters, such as SF_Distinct */
59 Expr *pLimit, /* LIMIT value. NULL means not used */ 102 Expr *pLimit, /* LIMIT value. NULL means not used */
60 Expr *pOffset /* OFFSET value. NULL means no offset */ 103 Expr *pOffset /* OFFSET value. NULL means no offset */
61 ){ 104 ){
62 Select *pNew; 105 Select *pNew;
63 Select standin; 106 Select standin;
64 sqlite3 *db = pParse->db; 107 sqlite3 *db = pParse->db;
65 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 108 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
66 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 109 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
67 if( pNew==0 ){ 110 if( pNew==0 ){
111 assert( db->mallocFailed );
68 pNew = &standin; 112 pNew = &standin;
69 memset(pNew, 0, sizeof(*pNew)); 113 memset(pNew, 0, sizeof(*pNew));
70 } 114 }
71 if( pEList==0 ){ 115 if( pEList==0 ){
72 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 116 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
73 } 117 }
74 pNew->pEList = pEList; 118 pNew->pEList = pEList;
119 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
75 pNew->pSrc = pSrc; 120 pNew->pSrc = pSrc;
76 pNew->pWhere = pWhere; 121 pNew->pWhere = pWhere;
77 pNew->pGroupBy = pGroupBy; 122 pNew->pGroupBy = pGroupBy;
78 pNew->pHaving = pHaving; 123 pNew->pHaving = pHaving;
79 pNew->pOrderBy = pOrderBy; 124 pNew->pOrderBy = pOrderBy;
80 pNew->selFlags = isDistinct ? SF_Distinct : 0; 125 pNew->selFlags = selFlags;
81 pNew->op = TK_SELECT; 126 pNew->op = TK_SELECT;
82 pNew->pLimit = pLimit; 127 pNew->pLimit = pLimit;
83 pNew->pOffset = pOffset; 128 pNew->pOffset = pOffset;
84 assert( pOffset==0 || pLimit!=0 ); 129 assert( pOffset==0 || pLimit!=0 );
85 pNew->addrOpenEphm[0] = -1; 130 pNew->addrOpenEphm[0] = -1;
86 pNew->addrOpenEphm[1] = -1; 131 pNew->addrOpenEphm[1] = -1;
87 pNew->addrOpenEphm[2] = -1;
88 if( db->mallocFailed ) { 132 if( db->mallocFailed ) {
89 clearSelect(db, pNew); 133 clearSelect(db, pNew);
90 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 134 if( pNew!=&standin ) sqlite3DbFree(db, pNew);
91 pNew = 0; 135 pNew = 0;
136 }else{
137 assert( pNew->pSrc!=0 || pParse->nErr>0 );
92 } 138 }
139 assert( pNew!=&standin );
93 return pNew; 140 return pNew;
94 } 141 }
95 142
143 #if SELECTTRACE_ENABLED
144 /*
145 ** Set the name of a Select object
146 */
147 void sqlite3SelectSetName(Select *p, const char *zName){
148 if( p && zName ){
149 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
150 }
151 }
152 #endif
153
154
96 /* 155 /*
97 ** Delete the given Select structure and all of its substructures. 156 ** Delete the given Select structure and all of its substructures.
98 */ 157 */
99 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 158 void sqlite3SelectDelete(sqlite3 *db, Select *p){
100 if( p ){ 159 if( p ){
101 clearSelect(db, p); 160 clearSelect(db, p);
102 sqlite3DbFree(db, p); 161 sqlite3DbFree(db, p);
103 } 162 }
104 } 163 }
105 164
106 /* 165 /*
107 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 166 ** Return a pointer to the right-most SELECT statement in a compound.
167 */
168 static Select *findRightmost(Select *p){
169 while( p->pNext ) p = p->pNext;
170 return p;
171 }
172
173 /*
174 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
108 ** type of join. Return an integer constant that expresses that type 175 ** type of join. Return an integer constant that expresses that type
109 ** in terms of the following bit values: 176 ** in terms of the following bit values:
110 ** 177 **
111 ** JT_INNER 178 ** JT_INNER
112 ** JT_CROSS 179 ** JT_CROSS
113 ** JT_OUTER 180 ** JT_OUTER
114 ** JT_NATURAL 181 ** JT_NATURAL
115 ** JT_LEFT 182 ** JT_LEFT
116 ** JT_RIGHT 183 ** JT_RIGHT
117 ** 184 **
(...skipping 134 matching lines...) Expand 10 before | Expand all | Expand 10 after
252 assert( pSrc->nSrc>iRight ); 319 assert( pSrc->nSrc>iRight );
253 assert( pSrc->a[iLeft].pTab ); 320 assert( pSrc->a[iLeft].pTab );
254 assert( pSrc->a[iRight].pTab ); 321 assert( pSrc->a[iRight].pTab );
255 322
256 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 323 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
257 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 324 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
258 325
259 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 326 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
260 if( pEq && isOuterJoin ){ 327 if( pEq && isOuterJoin ){
261 ExprSetProperty(pEq, EP_FromJoin); 328 ExprSetProperty(pEq, EP_FromJoin);
262 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) ); 329 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
263 ExprSetIrreducible(pEq); 330 ExprSetVVAProperty(pEq, EP_NoReduce);
264 pEq->iRightJoinTable = (i16)pE2->iTable; 331 pEq->iRightJoinTable = (i16)pE2->iTable;
265 } 332 }
266 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 333 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
267 } 334 }
268 335
269 /* 336 /*
270 ** Set the EP_FromJoin property on all terms of the given expression. 337 ** Set the EP_FromJoin property on all terms of the given expression.
271 ** And set the Expr.iRightJoinTable to iTable for every term in the 338 ** And set the Expr.iRightJoinTable to iTable for every term in the
272 ** expression. 339 ** expression.
273 ** 340 **
(...skipping 14 matching lines...) Expand all
288 ** The where clause needs to defer the handling of the t1.x=5 355 ** The where clause needs to defer the handling of the t1.x=5
289 ** term until after the t2 loop of the join. In that way, a 356 ** term until after the t2 loop of the join. In that way, a
290 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 357 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
291 ** defer the handling of t1.x=5, it will be processed immediately 358 ** defer the handling of t1.x=5, it will be processed immediately
292 ** after the t1 loop and rows with t1.x!=5 will never appear in 359 ** after the t1 loop and rows with t1.x!=5 will never appear in
293 ** the output, which is incorrect. 360 ** the output, which is incorrect.
294 */ 361 */
295 static void setJoinExpr(Expr *p, int iTable){ 362 static void setJoinExpr(Expr *p, int iTable){
296 while( p ){ 363 while( p ){
297 ExprSetProperty(p, EP_FromJoin); 364 ExprSetProperty(p, EP_FromJoin);
298 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 365 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
299 ExprSetIrreducible(p); 366 ExprSetVVAProperty(p, EP_NoReduce);
300 p->iRightJoinTable = (i16)iTable; 367 p->iRightJoinTable = (i16)iTable;
301 setJoinExpr(p->pLeft, iTable); 368 setJoinExpr(p->pLeft, iTable);
302 p = p->pRight; 369 p = p->pRight;
303 } 370 }
304 } 371 }
305 372
306 /* 373 /*
307 ** This routine processes the join information for a SELECT statement. 374 ** This routine processes the join information for a SELECT statement.
308 ** ON and USING clauses are converted into extra terms of the WHERE clause. 375 ** ON and USING clauses are converted into extra terms of the WHERE clause.
309 ** NATURAL joins also create extra WHERE clause terms. 376 ** NATURAL joins also create extra WHERE clause terms.
(...skipping 88 matching lines...) Expand 10 before | Expand all | Expand 10 after
398 return 1; 465 return 1;
399 } 466 }
400 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 467 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
401 isOuter, &p->pWhere); 468 isOuter, &p->pWhere);
402 } 469 }
403 } 470 }
404 } 471 }
405 return 0; 472 return 0;
406 } 473 }
407 474
475 /* Forward reference */
476 static KeyInfo *keyInfoFromExprList(
477 Parse *pParse, /* Parsing context */
478 ExprList *pList, /* Form the KeyInfo object from this ExprList */
479 int iStart, /* Begin with this column of pList */
480 int nExtra /* Add this many extra columns to the end */
481 );
482
408 /* 483 /*
409 ** Insert code into "v" that will push the record on the top of the 484 ** Generate code that will push the record in registers regData
410 ** stack into the sorter. 485 ** through regData+nData-1 onto the sorter.
411 */ 486 */
412 static void pushOntoSorter( 487 static void pushOntoSorter(
413 Parse *pParse, /* Parser context */ 488 Parse *pParse, /* Parser context */
414 ExprList *pOrderBy, /* The ORDER BY clause */ 489 SortCtx *pSort, /* Information about the ORDER BY clause */
415 Select *pSelect, /* The whole SELECT statement */ 490 Select *pSelect, /* The whole SELECT statement */
416 int regData /* Register holding data to be sorted */ 491 int regData, /* First register holding data to be sorted */
492 int nData, /* Number of elements in the data array */
493 int nPrefixReg /* No. of reg prior to regData available for use */
417 ){ 494 ){
418 Vdbe *v = pParse->pVdbe; 495 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
419 int nExpr = pOrderBy->nExpr; 496 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
420 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 497 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
421 int regRecord = sqlite3GetTempReg(pParse); 498 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
422 sqlite3ExprCacheClear(pParse); 499 int regBase; /* Regs for sorter record */
423 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 500 int regRecord = ++pParse->nMem; /* Assembled sorter record */
424 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 501 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
425 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 502 int op; /* Opcode to add sorter record to sorter */
426 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 503
427 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 504 assert( bSeq==0 || bSeq==1 );
428 sqlite3ReleaseTempReg(pParse, regRecord); 505 if( nPrefixReg ){
429 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 506 assert( nPrefixReg==nExpr+bSeq );
507 regBase = regData - nExpr - bSeq;
508 }else{
509 regBase = pParse->nMem + 1;
510 pParse->nMem += nBase;
511 }
512 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
513 if( bSeq ){
514 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
515 }
516 if( nPrefixReg==0 ){
517 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
518 }
519
520 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
521 if( nOBSat>0 ){
522 int regPrevKey; /* The first nOBSat columns of the previous row */
523 int addrFirst; /* Address of the OP_IfNot opcode */
524 int addrJmp; /* Address of the OP_Jump opcode */
525 VdbeOp *pOp; /* Opcode that opens the sorter */
526 int nKey; /* Number of sorting key columns, including OP_Sequence */
527 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
528
529 regPrevKey = pParse->nMem+1;
530 pParse->nMem += pSort->nOBSat;
531 nKey = nExpr - pSort->nOBSat + bSeq;
532 if( bSeq ){
533 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
534 }else{
535 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
536 }
537 VdbeCoverage(v);
538 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
539 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
540 if( pParse->db->mallocFailed ) return;
541 pOp->p2 = nKey + nData;
542 pKI = pOp->p4.pKeyInfo;
543 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
544 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
545 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1);
546 addrJmp = sqlite3VdbeCurrentAddr(v);
547 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
548 pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
549 pSort->regReturn = ++pParse->nMem;
550 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
551 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
552 sqlite3VdbeJumpHere(v, addrFirst);
553 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
554 sqlite3VdbeJumpHere(v, addrJmp);
555 }
556 if( pSort->sortFlags & SORTFLAG_UseSorter ){
557 op = OP_SorterInsert;
558 }else{
559 op = OP_IdxInsert;
560 }
561 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
430 if( pSelect->iLimit ){ 562 if( pSelect->iLimit ){
431 int addr1, addr2; 563 int addr1, addr2;
432 int iLimit; 564 int iLimit;
433 if( pSelect->iOffset ){ 565 if( pSelect->iOffset ){
434 iLimit = pSelect->iOffset+1; 566 iLimit = pSelect->iOffset+1;
435 }else{ 567 }else{
436 iLimit = pSelect->iLimit; 568 iLimit = pSelect->iLimit;
437 } 569 }
438 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 570 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
439 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 571 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
440 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 572 addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
441 sqlite3VdbeJumpHere(v, addr1); 573 sqlite3VdbeJumpHere(v, addr1);
442 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 574 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
443 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 575 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
444 sqlite3VdbeJumpHere(v, addr2); 576 sqlite3VdbeJumpHere(v, addr2);
445 } 577 }
446 } 578 }
447 579
448 /* 580 /*
449 ** Add code to implement the OFFSET 581 ** Add code to implement the OFFSET
450 */ 582 */
451 static void codeOffset( 583 static void codeOffset(
452 Vdbe *v, /* Generate code into this VM */ 584 Vdbe *v, /* Generate code into this VM */
453 Select *p, /* The SELECT statement being coded */ 585 int iOffset, /* Register holding the offset counter */
454 int iContinue /* Jump here to skip the current record */ 586 int iContinue /* Jump here to skip the current record */
455 ){ 587 ){
456 if( p->iOffset && iContinue!=0 ){ 588 if( iOffset>0 ){
457 int addr; 589 int addr;
458 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 590 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
459 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
460 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 591 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
461 VdbeComment((v, "skip OFFSET records")); 592 VdbeComment((v, "skip OFFSET records"));
462 sqlite3VdbeJumpHere(v, addr); 593 sqlite3VdbeJumpHere(v, addr);
463 } 594 }
464 } 595 }
465 596
466 /* 597 /*
467 ** Add code that will check to make sure the N registers starting at iMem 598 ** Add code that will check to make sure the N registers starting at iMem
468 ** form a distinct entry. iTab is a sorting index that holds previously 599 ** form a distinct entry. iTab is a sorting index that holds previously
469 ** seen combinations of the N values. A new entry is made in iTab 600 ** seen combinations of the N values. A new entry is made in iTab
470 ** if the current N values are new. 601 ** if the current N values are new.
471 ** 602 **
472 ** A jump to addrRepeat is made and the N+1 values are popped from the 603 ** A jump to addrRepeat is made and the N+1 values are popped from the
473 ** stack if the top N elements are not distinct. 604 ** stack if the top N elements are not distinct.
474 */ 605 */
475 static void codeDistinct( 606 static void codeDistinct(
476 Parse *pParse, /* Parsing and code generating context */ 607 Parse *pParse, /* Parsing and code generating context */
477 int iTab, /* A sorting index used to test for distinctness */ 608 int iTab, /* A sorting index used to test for distinctness */
478 int addrRepeat, /* Jump to here if not distinct */ 609 int addrRepeat, /* Jump to here if not distinct */
479 int N, /* Number of elements */ 610 int N, /* Number of elements */
480 int iMem /* First element */ 611 int iMem /* First element */
481 ){ 612 ){
482 Vdbe *v; 613 Vdbe *v;
483 int r1; 614 int r1;
484 615
485 v = pParse->pVdbe; 616 v = pParse->pVdbe;
486 r1 = sqlite3GetTempReg(pParse); 617 r1 = sqlite3GetTempReg(pParse);
487 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); 618 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
488 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 619 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
489 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 620 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
490 sqlite3ReleaseTempReg(pParse, r1); 621 sqlite3ReleaseTempReg(pParse, r1);
491 } 622 }
492 623
493 #ifndef SQLITE_OMIT_SUBQUERY 624 #ifndef SQLITE_OMIT_SUBQUERY
494 /* 625 /*
495 ** Generate an error message when a SELECT is used within a subexpression 626 ** Generate an error message when a SELECT is used within a subexpression
496 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 627 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
497 ** column. We do this in a subroutine because the error used to occur 628 ** column. We do this in a subroutine because the error used to occur
(...skipping 13 matching lines...) Expand all
511 }else{ 642 }else{
512 return 0; 643 return 0;
513 } 644 }
514 } 645 }
515 #endif 646 #endif
516 647
517 /* 648 /*
518 ** This routine generates the code for the inside of the inner loop 649 ** This routine generates the code for the inside of the inner loop
519 ** of a SELECT. 650 ** of a SELECT.
520 ** 651 **
521 ** If srcTab and nColumn are both zero, then the pEList expressions 652 ** If srcTab is negative, then the pEList expressions
522 ** are evaluated in order to get the data for this row. If nColumn>0 653 ** are evaluated in order to get the data for this row. If srcTab is
523 ** then data is pulled from srcTab and pEList is used only to get the 654 ** zero or more, then data is pulled from srcTab and pEList is used only
524 ** datatypes for each column. 655 ** to get number columns and the datatype for each column.
525 */ 656 */
526 static void selectInnerLoop( 657 static void selectInnerLoop(
527 Parse *pParse, /* The parser context */ 658 Parse *pParse, /* The parser context */
528 Select *p, /* The complete select statement being coded */ 659 Select *p, /* The complete select statement being coded */
529 ExprList *pEList, /* List of values being extracted */ 660 ExprList *pEList, /* List of values being extracted */
530 int srcTab, /* Pull data from this table */ 661 int srcTab, /* Pull data from this table */
531 int nColumn, /* Number of columns in the source table */ 662 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
532 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 663 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
533 int distinct, /* If >=0, make sure results are distinct */
534 SelectDest *pDest, /* How to dispose of the results */ 664 SelectDest *pDest, /* How to dispose of the results */
535 int iContinue, /* Jump here to continue with next row */ 665 int iContinue, /* Jump here to continue with next row */
536 int iBreak /* Jump here to break out of the inner loop */ 666 int iBreak /* Jump here to break out of the inner loop */
537 ){ 667 ){
538 Vdbe *v = pParse->pVdbe; 668 Vdbe *v = pParse->pVdbe;
539 int i; 669 int i;
540 int hasDistinct; /* True if the DISTINCT keyword is present */ 670 int hasDistinct; /* True if the DISTINCT keyword is present */
541 int regResult; /* Start of memory holding result set */ 671 int regResult; /* Start of memory holding result set */
542 int eDest = pDest->eDest; /* How to dispose of results */ 672 int eDest = pDest->eDest; /* How to dispose of results */
543 int iParm = pDest->iParm; /* First argument to disposal method */ 673 int iParm = pDest->iSDParm; /* First argument to disposal method */
544 int nResultCol; /* Number of result columns */ 674 int nResultCol; /* Number of result columns */
675 int nPrefixReg = 0; /* Number of extra registers before regResult */
545 676
546 assert( v ); 677 assert( v );
547 if( NEVER(v==0) ) return;
548 assert( pEList!=0 ); 678 assert( pEList!=0 );
549 hasDistinct = distinct>=0; 679 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
550 if( pOrderBy==0 && !hasDistinct ){ 680 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
551 codeOffset(v, p, iContinue); 681 if( pSort==0 && !hasDistinct ){
682 assert( iContinue!=0 );
683 codeOffset(v, p->iOffset, iContinue);
552 } 684 }
553 685
554 /* Pull the requested columns. 686 /* Pull the requested columns.
555 */ 687 */
556 if( nColumn>0 ){ 688 nResultCol = pEList->nExpr;
557 nResultCol = nColumn; 689
558 }else{ 690 if( pDest->iSdst==0 ){
559 nResultCol = pEList->nExpr; 691 if( pSort ){
692 nPrefixReg = pSort->pOrderBy->nExpr;
693 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
694 pParse->nMem += nPrefixReg;
695 }
696 pDest->iSdst = pParse->nMem+1;
697 pParse->nMem += nResultCol;
698 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
699 /* This is an error condition that can result, for example, when a SELECT
700 ** on the right-hand side of an INSERT contains more result columns than
701 ** there are columns in the table on the left. The error will be caught
702 ** and reported later. But we need to make sure enough memory is allocated
703 ** to avoid other spurious errors in the meantime. */
704 pParse->nMem += nResultCol;
560 } 705 }
561 if( pDest->iMem==0 ){ 706 pDest->nSdst = nResultCol;
562 pDest->iMem = pParse->nMem+1; 707 regResult = pDest->iSdst;
563 pDest->nMem = nResultCol; 708 if( srcTab>=0 ){
564 pParse->nMem += nResultCol; 709 for(i=0; i<nResultCol; i++){
565 }else{
566 assert( pDest->nMem==nResultCol );
567 }
568 regResult = pDest->iMem;
569 if( nColumn>0 ){
570 for(i=0; i<nColumn; i++){
571 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 710 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
711 VdbeComment((v, "%s", pEList->a[i].zName));
572 } 712 }
573 }else if( eDest!=SRT_Exists ){ 713 }else if( eDest!=SRT_Exists ){
574 /* If the destination is an EXISTS(...) expression, the actual 714 /* If the destination is an EXISTS(...) expression, the actual
575 ** values returned by the SELECT are not required. 715 ** values returned by the SELECT are not required.
576 */ 716 */
577 sqlite3ExprCacheClear(pParse); 717 sqlite3ExprCodeExprList(pParse, pEList, regResult,
578 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 718 (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
579 } 719 }
580 nColumn = nResultCol;
581 720
582 /* If the DISTINCT keyword was present on the SELECT statement 721 /* If the DISTINCT keyword was present on the SELECT statement
583 ** and this row has been seen before, then do not make this row 722 ** and this row has been seen before, then do not make this row
584 ** part of the result. 723 ** part of the result.
585 */ 724 */
586 if( hasDistinct ){ 725 if( hasDistinct ){
587 assert( pEList!=0 ); 726 switch( pDistinct->eTnctType ){
588 assert( pEList->nExpr==nColumn ); 727 case WHERE_DISTINCT_ORDERED: {
589 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 728 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
590 if( pOrderBy==0 ){ 729 int iJump; /* Jump destination */
591 codeOffset(v, p, iContinue); 730 int regPrev; /* Previous row content */
731
732 /* Allocate space for the previous row */
733 regPrev = pParse->nMem+1;
734 pParse->nMem += nResultCol;
735
736 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
737 ** sets the MEM_Cleared bit on the first register of the
738 ** previous value. This will cause the OP_Ne below to always
739 ** fail on the first iteration of the loop even if the first
740 ** row is all NULLs.
741 */
742 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
743 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
744 pOp->opcode = OP_Null;
745 pOp->p1 = 1;
746 pOp->p2 = regPrev;
747
748 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
749 for(i=0; i<nResultCol; i++){
750 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
751 if( i<nResultCol-1 ){
752 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
753 VdbeCoverage(v);
754 }else{
755 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
756 VdbeCoverage(v);
757 }
758 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
759 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
760 }
761 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
762 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
763 break;
764 }
765
766 case WHERE_DISTINCT_UNIQUE: {
767 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
768 break;
769 }
770
771 default: {
772 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
773 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResul t);
774 break;
775 }
776 }
777 if( pSort==0 ){
778 codeOffset(v, p->iOffset, iContinue);
592 } 779 }
593 } 780 }
594 781
595 switch( eDest ){ 782 switch( eDest ){
596 /* In this mode, write each query result to the key of the temporary 783 /* In this mode, write each query result to the key of the temporary
597 ** table iParm. 784 ** table iParm.
598 */ 785 */
599 #ifndef SQLITE_OMIT_COMPOUND_SELECT 786 #ifndef SQLITE_OMIT_COMPOUND_SELECT
600 case SRT_Union: { 787 case SRT_Union: {
601 int r1; 788 int r1;
602 r1 = sqlite3GetTempReg(pParse); 789 r1 = sqlite3GetTempReg(pParse);
603 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 790 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
604 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 791 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
605 sqlite3ReleaseTempReg(pParse, r1); 792 sqlite3ReleaseTempReg(pParse, r1);
606 break; 793 break;
607 } 794 }
608 795
609 /* Construct a record from the query result, but instead of 796 /* Construct a record from the query result, but instead of
610 ** saving that record, use it as a key to delete elements from 797 ** saving that record, use it as a key to delete elements from
611 ** the temporary table iParm. 798 ** the temporary table iParm.
612 */ 799 */
613 case SRT_Except: { 800 case SRT_Except: {
614 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 801 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
615 break; 802 break;
616 } 803 }
617 #endif 804 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
618 805
619 /* Store the result as data using a unique key. 806 /* Store the result as data using a unique key.
620 */ 807 */
808 case SRT_Fifo:
809 case SRT_DistFifo:
621 case SRT_Table: 810 case SRT_Table:
622 case SRT_EphemTab: { 811 case SRT_EphemTab: {
623 int r1 = sqlite3GetTempReg(pParse); 812 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
624 testcase( eDest==SRT_Table ); 813 testcase( eDest==SRT_Table );
625 testcase( eDest==SRT_EphemTab ); 814 testcase( eDest==SRT_EphemTab );
626 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 815 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
627 if( pOrderBy ){ 816 #ifndef SQLITE_OMIT_CTE
628 pushOntoSorter(pParse, pOrderBy, p, r1); 817 if( eDest==SRT_DistFifo ){
818 /* If the destination is DistFifo, then cursor (iParm+1) is open
819 ** on an ephemeral index. If the current row is already present
820 ** in the index, do not write it to the output. If not, add the
821 ** current row to the index and proceed with writing it to the
822 ** output table as well. */
823 int addr = sqlite3VdbeCurrentAddr(v) + 4;
824 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v) ;
825 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
826 assert( pSort==0 );
827 }
828 #endif
829 if( pSort ){
830 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg);
629 }else{ 831 }else{
630 int r2 = sqlite3GetTempReg(pParse); 832 int r2 = sqlite3GetTempReg(pParse);
631 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 833 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
632 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 834 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
633 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 835 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
634 sqlite3ReleaseTempReg(pParse, r2); 836 sqlite3ReleaseTempReg(pParse, r2);
635 } 837 }
636 sqlite3ReleaseTempReg(pParse, r1); 838 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
637 break; 839 break;
638 } 840 }
639 841
640 #ifndef SQLITE_OMIT_SUBQUERY 842 #ifndef SQLITE_OMIT_SUBQUERY
641 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 843 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
642 ** then there should be a single item on the stack. Write this 844 ** then there should be a single item on the stack. Write this
643 ** item into the set table with bogus data. 845 ** item into the set table with bogus data.
644 */ 846 */
645 case SRT_Set: { 847 case SRT_Set: {
646 assert( nColumn==1 ); 848 assert( nResultCol==1 );
647 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 849 pDest->affSdst =
648 if( pOrderBy ){ 850 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
851 if( pSort ){
649 /* At first glance you would think we could optimize out the 852 /* At first glance you would think we could optimize out the
650 ** ORDER BY in this case since the order of entries in the set 853 ** ORDER BY in this case since the order of entries in the set
651 ** does not matter. But there might be a LIMIT clause, in which 854 ** does not matter. But there might be a LIMIT clause, in which
652 ** case the order does matter */ 855 ** case the order does matter */
653 pushOntoSorter(pParse, pOrderBy, p, regResult); 856 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
654 }else{ 857 }else{
655 int r1 = sqlite3GetTempReg(pParse); 858 int r1 = sqlite3GetTempReg(pParse);
656 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 859 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
657 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 860 sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 861 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
659 sqlite3ReleaseTempReg(pParse, r1); 862 sqlite3ReleaseTempReg(pParse, r1);
660 } 863 }
661 break; 864 break;
662 } 865 }
663 866
664 /* If any row exist in the result set, record that fact and abort. 867 /* If any row exist in the result set, record that fact and abort.
665 */ 868 */
666 case SRT_Exists: { 869 case SRT_Exists: {
667 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 870 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
668 /* The LIMIT clause will terminate the loop for us */ 871 /* The LIMIT clause will terminate the loop for us */
669 break; 872 break;
670 } 873 }
671 874
672 /* If this is a scalar select that is part of an expression, then 875 /* If this is a scalar select that is part of an expression, then
673 ** store the results in the appropriate memory cell and break out 876 ** store the results in the appropriate memory cell and break out
674 ** of the scan loop. 877 ** of the scan loop.
675 */ 878 */
676 case SRT_Mem: { 879 case SRT_Mem: {
677 assert( nColumn==1 ); 880 assert( nResultCol==1 );
678 if( pOrderBy ){ 881 if( pSort ){
679 pushOntoSorter(pParse, pOrderBy, p, regResult); 882 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
680 }else{ 883 }else{
681 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 884 assert( regResult==iParm );
682 /* The LIMIT clause will jump out of the loop for us */ 885 /* The LIMIT clause will jump out of the loop for us */
683 } 886 }
684 break; 887 break;
685 } 888 }
686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 889 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
687 890
688 /* Send the data to the callback function or to a subroutine. In the 891 case SRT_Coroutine: /* Send data to a co-routine */
689 ** case of a subroutine, the subroutine itself is responsible for 892 case SRT_Output: { /* Return the results */
690 ** popping the data from the stack.
691 */
692 case SRT_Coroutine:
693 case SRT_Output: {
694 testcase( eDest==SRT_Coroutine ); 893 testcase( eDest==SRT_Coroutine );
695 testcase( eDest==SRT_Output ); 894 testcase( eDest==SRT_Output );
696 if( pOrderBy ){ 895 if( pSort ){
697 int r1 = sqlite3GetTempReg(pParse); 896 pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg);
698 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
699 pushOntoSorter(pParse, pOrderBy, p, r1);
700 sqlite3ReleaseTempReg(pParse, r1);
701 }else if( eDest==SRT_Coroutine ){ 897 }else if( eDest==SRT_Coroutine ){
702 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 898 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
703 }else{ 899 }else{
704 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 900 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
705 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 901 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
706 } 902 }
707 break; 903 break;
708 } 904 }
709 905
906 #ifndef SQLITE_OMIT_CTE
907 /* Write the results into a priority queue that is order according to
908 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
909 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
910 ** pSO->nExpr columns, then make sure all keys are unique by adding a
911 ** final OP_Sequence column. The last column is the record as a blob.
912 */
913 case SRT_DistQueue:
914 case SRT_Queue: {
915 int nKey;
916 int r1, r2, r3;
917 int addrTest = 0;
918 ExprList *pSO;
919 pSO = pDest->pOrderBy;
920 assert( pSO );
921 nKey = pSO->nExpr;
922 r1 = sqlite3GetTempReg(pParse);
923 r2 = sqlite3GetTempRange(pParse, nKey+2);
924 r3 = r2+nKey+1;
925 if( eDest==SRT_DistQueue ){
926 /* If the destination is DistQueue, then cursor (iParm+1) is open
927 ** on a second ephemeral index that holds all values every previously
928 ** added to the queue. */
929 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
930 regResult, nResultCol);
931 VdbeCoverage(v);
932 }
933 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
934 if( eDest==SRT_DistQueue ){
935 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
936 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
937 }
938 for(i=0; i<nKey; i++){
939 sqlite3VdbeAddOp2(v, OP_SCopy,
940 regResult + pSO->a[i].u.x.iOrderByCol - 1,
941 r2+i);
942 }
943 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
944 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
945 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
946 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
947 sqlite3ReleaseTempReg(pParse, r1);
948 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
949 break;
950 }
951 #endif /* SQLITE_OMIT_CTE */
952
953
954
710 #if !defined(SQLITE_OMIT_TRIGGER) 955 #if !defined(SQLITE_OMIT_TRIGGER)
711 /* Discard the results. This is used for SELECT statements inside 956 /* Discard the results. This is used for SELECT statements inside
712 ** the body of a TRIGGER. The purpose of such selects is to call 957 ** the body of a TRIGGER. The purpose of such selects is to call
713 ** user-defined functions that have side effects. We do not care 958 ** user-defined functions that have side effects. We do not care
714 ** about the actual results of the select. 959 ** about the actual results of the select.
715 */ 960 */
716 default: { 961 default: {
717 assert( eDest==SRT_Discard ); 962 assert( eDest==SRT_Discard );
718 break; 963 break;
719 } 964 }
720 #endif 965 #endif
721 } 966 }
722 967
723 /* Jump to the end of the loop if the LIMIT is reached. Except, if 968 /* Jump to the end of the loop if the LIMIT is reached. Except, if
724 ** there is a sorter, in which case the sorter has already limited 969 ** there is a sorter, in which case the sorter has already limited
725 ** the output for us. 970 ** the output for us.
726 */ 971 */
727 if( pOrderBy==0 && p->iLimit ){ 972 if( pSort==0 && p->iLimit ){
728 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 973 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
729 } 974 }
730 } 975 }
731 976
732 /* 977 /*
978 ** Allocate a KeyInfo object sufficient for an index of N key columns and
979 ** X extra columns.
980 */
981 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
982 KeyInfo *p = sqlite3DbMallocZero(0,
983 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
984 if( p ){
985 p->aSortOrder = (u8*)&p->aColl[N+X];
986 p->nField = (u16)N;
987 p->nXField = (u16)X;
988 p->enc = ENC(db);
989 p->db = db;
990 p->nRef = 1;
991 }else{
992 db->mallocFailed = 1;
993 }
994 return p;
995 }
996
997 /*
998 ** Deallocate a KeyInfo object
999 */
1000 void sqlite3KeyInfoUnref(KeyInfo *p){
1001 if( p ){
1002 assert( p->nRef>0 );
1003 p->nRef--;
1004 if( p->nRef==0 ) sqlite3DbFree(0, p);
1005 }
1006 }
1007
1008 /*
1009 ** Make a new pointer to a KeyInfo object
1010 */
1011 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1012 if( p ){
1013 assert( p->nRef>0 );
1014 p->nRef++;
1015 }
1016 return p;
1017 }
1018
1019 #ifdef SQLITE_DEBUG
1020 /*
1021 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1022 ** can only be changed if this is just a single reference to the object.
1023 **
1024 ** This routine is used only inside of assert() statements.
1025 */
1026 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1027 #endif /* SQLITE_DEBUG */
1028
1029 /*
733 ** Given an expression list, generate a KeyInfo structure that records 1030 ** Given an expression list, generate a KeyInfo structure that records
734 ** the collating sequence for each expression in that expression list. 1031 ** the collating sequence for each expression in that expression list.
735 ** 1032 **
736 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1033 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
737 ** KeyInfo structure is appropriate for initializing a virtual index to 1034 ** KeyInfo structure is appropriate for initializing a virtual index to
738 ** implement that clause. If the ExprList is the result set of a SELECT 1035 ** implement that clause. If the ExprList is the result set of a SELECT
739 ** then the KeyInfo structure is appropriate for initializing a virtual 1036 ** then the KeyInfo structure is appropriate for initializing a virtual
740 ** index to implement a DISTINCT test. 1037 ** index to implement a DISTINCT test.
741 ** 1038 **
742 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 1039 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
743 ** function is responsible for seeing that this structure is eventually 1040 ** function is responsible for seeing that this structure is eventually
744 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 1041 ** freed.
745 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
746 */ 1042 */
747 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 1043 static KeyInfo *keyInfoFromExprList(
748 sqlite3 *db = pParse->db; 1044 Parse *pParse, /* Parsing context */
1045 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1046 int iStart, /* Begin with this column of pList */
1047 int nExtra /* Add this many extra columns to the end */
1048 ){
749 int nExpr; 1049 int nExpr;
750 KeyInfo *pInfo; 1050 KeyInfo *pInfo;
751 struct ExprList_item *pItem; 1051 struct ExprList_item *pItem;
1052 sqlite3 *db = pParse->db;
752 int i; 1053 int i;
753 1054
754 nExpr = pList->nExpr; 1055 nExpr = pList->nExpr;
755 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 1056 pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1);
756 if( pInfo ){ 1057 if( pInfo ){
757 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 1058 assert( sqlite3KeyInfoIsWriteable(pInfo) );
758 pInfo->nField = (u16)nExpr; 1059 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
759 pInfo->enc = ENC(db);
760 pInfo->db = db;
761 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
762 CollSeq *pColl; 1060 CollSeq *pColl;
763 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1061 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
764 if( !pColl ){ 1062 if( !pColl ) pColl = db->pDfltColl;
765 pColl = db->pDfltColl; 1063 pInfo->aColl[i-iStart] = pColl;
766 } 1064 pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
767 pInfo->aColl[i] = pColl;
768 pInfo->aSortOrder[i] = pItem->sortOrder;
769 } 1065 }
770 } 1066 }
771 return pInfo; 1067 return pInfo;
772 } 1068 }
773 1069
774 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1070 #ifndef SQLITE_OMIT_COMPOUND_SELECT
775 /* 1071 /*
776 ** Name of the connection operator, used for error messages. 1072 ** Name of the connection operator, used for error messages.
777 */ 1073 */
778 static const char *selectOpName(int id){ 1074 static const char *selectOpName(int id){
(...skipping 81 matching lines...) Expand 10 before | Expand all | Expand 10 after
860 1156
861 /* 1157 /*
862 ** If the inner loop was generated using a non-null pOrderBy argument, 1158 ** If the inner loop was generated using a non-null pOrderBy argument,
863 ** then the results were placed in a sorter. After the loop is terminated 1159 ** then the results were placed in a sorter. After the loop is terminated
864 ** we need to run the sorter and output the results. The following 1160 ** we need to run the sorter and output the results. The following
865 ** routine generates the code needed to do that. 1161 ** routine generates the code needed to do that.
866 */ 1162 */
867 static void generateSortTail( 1163 static void generateSortTail(
868 Parse *pParse, /* Parsing context */ 1164 Parse *pParse, /* Parsing context */
869 Select *p, /* The SELECT statement */ 1165 Select *p, /* The SELECT statement */
870 Vdbe *v, /* Generate code into this VDBE */ 1166 SortCtx *pSort, /* Information on the ORDER BY clause */
871 int nColumn, /* Number of columns of data */ 1167 int nColumn, /* Number of columns of data */
872 SelectDest *pDest /* Write the sorted results here */ 1168 SelectDest *pDest /* Write the sorted results here */
873 ){ 1169 ){
1170 Vdbe *v = pParse->pVdbe; /* The prepared statement */
874 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1171 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */
875 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1172 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
876 int addr; 1173 int addr;
1174 int addrOnce = 0;
877 int iTab; 1175 int iTab;
878 int pseudoTab = 0; 1176 ExprList *pOrderBy = pSort->pOrderBy;
879 ExprList *pOrderBy = p->pOrderBy;
880
881 int eDest = pDest->eDest; 1177 int eDest = pDest->eDest;
882 int iParm = pDest->iParm; 1178 int iParm = pDest->iSDParm;
883
884 int regRow; 1179 int regRow;
885 int regRowid; 1180 int regRowid;
1181 int nKey;
1182 int iSortTab; /* Sorter cursor to read from */
1183 int nSortData; /* Trailing values to read from sorter */
1184 int i;
1185 int bSeq; /* True if sorter record includes seq. no. */
1186 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1187 struct ExprList_item *aOutEx = p->pEList->a;
1188 #endif
886 1189
887 iTab = pOrderBy->iECursor; 1190 if( pSort->labelBkOut ){
888 regRow = sqlite3GetTempReg(pParse); 1191 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1192 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1193 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1194 }
1195 iTab = pSort->iECursor;
889 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1196 if( eDest==SRT_Output || eDest==SRT_Coroutine ){
890 pseudoTab = pParse->nTab++;
891 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
892 regRowid = 0; 1197 regRowid = 0;
1198 regRow = pDest->iSdst;
1199 nSortData = nColumn;
893 }else{ 1200 }else{
894 regRowid = sqlite3GetTempReg(pParse); 1201 regRowid = sqlite3GetTempReg(pParse);
1202 regRow = sqlite3GetTempReg(pParse);
1203 nSortData = 1;
895 } 1204 }
896 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 1205 nKey = pOrderBy->nExpr - pSort->nOBSat;
897 codeOffset(v, p, addrContinue); 1206 if( pSort->sortFlags & SORTFLAG_UseSorter ){
898 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 1207 int regSortOut = ++pParse->nMem;
1208 iSortTab = pParse->nTab++;
1209 if( pSort->labelBkOut ){
1210 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1211 }
1212 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1213 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1214 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1215 VdbeCoverage(v);
1216 codeOffset(v, p->iOffset, addrContinue);
1217 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1218 bSeq = 0;
1219 }else{
1220 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1221 codeOffset(v, p->iOffset, addrContinue);
1222 iSortTab = iTab;
1223 bSeq = 1;
1224 }
1225 for(i=0; i<nSortData; i++){
1226 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1227 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1228 }
899 switch( eDest ){ 1229 switch( eDest ){
900 case SRT_Table: 1230 case SRT_Table:
901 case SRT_EphemTab: { 1231 case SRT_EphemTab: {
902 testcase( eDest==SRT_Table ); 1232 testcase( eDest==SRT_Table );
903 testcase( eDest==SRT_EphemTab ); 1233 testcase( eDest==SRT_EphemTab );
904 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1234 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
905 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1235 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
906 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1236 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
907 break; 1237 break;
908 } 1238 }
909 #ifndef SQLITE_OMIT_SUBQUERY 1239 #ifndef SQLITE_OMIT_SUBQUERY
910 case SRT_Set: { 1240 case SRT_Set: {
911 assert( nColumn==1 ); 1241 assert( nColumn==1 );
912 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 1242 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1243 &pDest->affSdst, 1);
913 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1244 sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
914 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1245 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
915 break; 1246 break;
916 } 1247 }
917 case SRT_Mem: { 1248 case SRT_Mem: {
918 assert( nColumn==1 ); 1249 assert( nColumn==1 );
919 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1250 sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
920 /* The LIMIT clause will terminate the loop for us */ 1251 /* The LIMIT clause will terminate the loop for us */
921 break; 1252 break;
922 } 1253 }
923 #endif 1254 #endif
924 default: { 1255 default: {
925 int i;
926 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1256 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
927 testcase( eDest==SRT_Output ); 1257 testcase( eDest==SRT_Output );
928 testcase( eDest==SRT_Coroutine ); 1258 testcase( eDest==SRT_Coroutine );
929 for(i=0; i<nColumn; i++){
930 assert( regRow!=pDest->iMem+i );
931 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
932 if( i==0 ){
933 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
934 }
935 }
936 if( eDest==SRT_Output ){ 1259 if( eDest==SRT_Output ){
937 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 1260 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
938 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 1261 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
939 }else{ 1262 }else{
940 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 1263 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
941 } 1264 }
942 break; 1265 break;
943 } 1266 }
944 } 1267 }
945 sqlite3ReleaseTempReg(pParse, regRow); 1268 if( regRowid ){
946 sqlite3ReleaseTempReg(pParse, regRowid); 1269 sqlite3ReleaseTempReg(pParse, regRow);
947 1270 sqlite3ReleaseTempReg(pParse, regRowid);
1271 }
948 /* The bottom of the loop 1272 /* The bottom of the loop
949 */ 1273 */
950 sqlite3VdbeResolveLabel(v, addrContinue); 1274 sqlite3VdbeResolveLabel(v, addrContinue);
951 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 1275 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1276 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1277 }else{
1278 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1279 }
1280 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
952 sqlite3VdbeResolveLabel(v, addrBreak); 1281 sqlite3VdbeResolveLabel(v, addrBreak);
953 if( eDest==SRT_Output || eDest==SRT_Coroutine ){
954 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
955 }
956 } 1282 }
957 1283
958 /* 1284 /*
959 ** Return a pointer to a string containing the 'declaration type' of the 1285 ** Return a pointer to a string containing the 'declaration type' of the
960 ** expression pExpr. The string may be treated as static by the caller. 1286 ** expression pExpr. The string may be treated as static by the caller.
961 ** 1287 **
1288 ** Also try to estimate the size of the returned value and return that
1289 ** result in *pEstWidth.
1290 **
962 ** The declaration type is the exact datatype definition extracted from the 1291 ** The declaration type is the exact datatype definition extracted from the
963 ** original CREATE TABLE statement if the expression is a column. The 1292 ** original CREATE TABLE statement if the expression is a column. The
964 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1293 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
965 ** is considered a column can be complex in the presence of subqueries. The 1294 ** is considered a column can be complex in the presence of subqueries. The
966 ** result-set expression in all of the following SELECT statements is 1295 ** result-set expression in all of the following SELECT statements is
967 ** considered a column by this function. 1296 ** considered a column by this function.
968 ** 1297 **
969 ** SELECT col FROM tbl; 1298 ** SELECT col FROM tbl;
970 ** SELECT (SELECT col FROM tbl; 1299 ** SELECT (SELECT col FROM tbl;
971 ** SELECT (SELECT col FROM tbl); 1300 ** SELECT (SELECT col FROM tbl);
972 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1301 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
973 ** 1302 **
974 ** The declaration type for any expression other than a column is NULL. 1303 ** The declaration type for any expression other than a column is NULL.
1304 **
1305 ** This routine has either 3 or 6 parameters depending on whether or not
1306 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
975 */ 1307 */
976 static const char *columnType( 1308 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1309 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1310 static const char *columnTypeImpl(
977 NameContext *pNC, 1311 NameContext *pNC,
978 Expr *pExpr, 1312 Expr *pExpr,
979 const char **pzOriginDb, 1313 const char **pzOrigDb,
980 const char **pzOriginTab, 1314 const char **pzOrigTab,
981 const char **pzOriginCol 1315 const char **pzOrigCol,
1316 u8 *pEstWidth
982 ){ 1317 ){
1318 char const *zOrigDb = 0;
1319 char const *zOrigTab = 0;
1320 char const *zOrigCol = 0;
1321 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1322 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1323 static const char *columnTypeImpl(
1324 NameContext *pNC,
1325 Expr *pExpr,
1326 u8 *pEstWidth
1327 ){
1328 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
983 char const *zType = 0; 1329 char const *zType = 0;
984 char const *zOriginDb = 0;
985 char const *zOriginTab = 0;
986 char const *zOriginCol = 0;
987 int j; 1330 int j;
1331 u8 estWidth = 1;
1332
988 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1333 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
989
990 switch( pExpr->op ){ 1334 switch( pExpr->op ){
991 case TK_AGG_COLUMN: 1335 case TK_AGG_COLUMN:
992 case TK_COLUMN: { 1336 case TK_COLUMN: {
993 /* The expression is a column. Locate the table the column is being 1337 /* The expression is a column. Locate the table the column is being
994 ** extracted from in NameContext.pSrcList. This table may be real 1338 ** extracted from in NameContext.pSrcList. This table may be real
995 ** database table or a subquery. 1339 ** database table or a subquery.
996 */ 1340 */
997 Table *pTab = 0; /* Table structure column is extracted from */ 1341 Table *pTab = 0; /* Table structure column is extracted from */
998 Select *pS = 0; /* Select the column is extracted from */ 1342 Select *pS = 0; /* Select the column is extracted from */
999 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1343 int iCol = pExpr->iColumn; /* Index of column in pTab */
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
1040 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1384 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1041 /* If iCol is less than zero, then the expression requests the 1385 /* If iCol is less than zero, then the expression requests the
1042 ** rowid of the sub-select or view. This expression is legal (see 1386 ** rowid of the sub-select or view. This expression is legal (see
1043 ** test case misc2.2.2) - it always evaluates to NULL. 1387 ** test case misc2.2.2) - it always evaluates to NULL.
1044 */ 1388 */
1045 NameContext sNC; 1389 NameContext sNC;
1046 Expr *p = pS->pEList->a[iCol].pExpr; 1390 Expr *p = pS->pEList->a[iCol].pExpr;
1047 sNC.pSrcList = pS->pSrc; 1391 sNC.pSrcList = pS->pSrc;
1048 sNC.pNext = pNC; 1392 sNC.pNext = pNC;
1049 sNC.pParse = pNC->pParse; 1393 sNC.pParse = pNC->pParse;
1050 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1394 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1051 } 1395 }
1052 }else if( ALWAYS(pTab->pSchema) ){ 1396 }else if( pTab->pSchema ){
1053 /* A real table */ 1397 /* A real table */
1054 assert( !pS ); 1398 assert( !pS );
1055 if( iCol<0 ) iCol = pTab->iPKey; 1399 if( iCol<0 ) iCol = pTab->iPKey;
1056 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1400 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1401 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1057 if( iCol<0 ){ 1402 if( iCol<0 ){
1058 zType = "INTEGER"; 1403 zType = "INTEGER";
1059 zOriginCol = "rowid"; 1404 zOrigCol = "rowid";
1060 }else{ 1405 }else{
1061 zType = pTab->aCol[iCol].zType; 1406 zType = pTab->aCol[iCol].zType;
1062 zOriginCol = pTab->aCol[iCol].zName; 1407 zOrigCol = pTab->aCol[iCol].zName;
1408 estWidth = pTab->aCol[iCol].szEst;
1063 } 1409 }
1064 zOriginTab = pTab->zName; 1410 zOrigTab = pTab->zName;
1065 if( pNC->pParse ){ 1411 if( pNC->pParse ){
1066 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1412 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1067 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 1413 zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1068 } 1414 }
1415 #else
1416 if( iCol<0 ){
1417 zType = "INTEGER";
1418 }else{
1419 zType = pTab->aCol[iCol].zType;
1420 estWidth = pTab->aCol[iCol].szEst;
1421 }
1422 #endif
1069 } 1423 }
1070 break; 1424 break;
1071 } 1425 }
1072 #ifndef SQLITE_OMIT_SUBQUERY 1426 #ifndef SQLITE_OMIT_SUBQUERY
1073 case TK_SELECT: { 1427 case TK_SELECT: {
1074 /* The expression is a sub-select. Return the declaration type and 1428 /* The expression is a sub-select. Return the declaration type and
1075 ** origin info for the single column in the result set of the SELECT 1429 ** origin info for the single column in the result set of the SELECT
1076 ** statement. 1430 ** statement.
1077 */ 1431 */
1078 NameContext sNC; 1432 NameContext sNC;
1079 Select *pS = pExpr->x.pSelect; 1433 Select *pS = pExpr->x.pSelect;
1080 Expr *p = pS->pEList->a[0].pExpr; 1434 Expr *p = pS->pEList->a[0].pExpr;
1081 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1435 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1082 sNC.pSrcList = pS->pSrc; 1436 sNC.pSrcList = pS->pSrc;
1083 sNC.pNext = pNC; 1437 sNC.pNext = pNC;
1084 sNC.pParse = pNC->pParse; 1438 sNC.pParse = pNC->pParse;
1085 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1439 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1086 break; 1440 break;
1087 } 1441 }
1088 #endif 1442 #endif
1089 } 1443 }
1090 1444
1091 if( pzOriginDb ){ 1445 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1092 assert( pzOriginTab && pzOriginCol ); 1446 if( pzOrigDb ){
1093 *pzOriginDb = zOriginDb; 1447 assert( pzOrigTab && pzOrigCol );
1094 *pzOriginTab = zOriginTab; 1448 *pzOrigDb = zOrigDb;
1095 *pzOriginCol = zOriginCol; 1449 *pzOrigTab = zOrigTab;
1450 *pzOrigCol = zOrigCol;
1096 } 1451 }
1452 #endif
1453 if( pEstWidth ) *pEstWidth = estWidth;
1097 return zType; 1454 return zType;
1098 } 1455 }
1099 1456
1100 /* 1457 /*
1101 ** Generate code that will tell the VDBE the declaration types of columns 1458 ** Generate code that will tell the VDBE the declaration types of columns
1102 ** in the result set. 1459 ** in the result set.
1103 */ 1460 */
1104 static void generateColumnTypes( 1461 static void generateColumnTypes(
1105 Parse *pParse, /* Parser context */ 1462 Parse *pParse, /* Parser context */
1106 SrcList *pTabList, /* List of tables */ 1463 SrcList *pTabList, /* List of tables */
1107 ExprList *pEList /* Expressions defining the result set */ 1464 ExprList *pEList /* Expressions defining the result set */
1108 ){ 1465 ){
1109 #ifndef SQLITE_OMIT_DECLTYPE 1466 #ifndef SQLITE_OMIT_DECLTYPE
1110 Vdbe *v = pParse->pVdbe; 1467 Vdbe *v = pParse->pVdbe;
1111 int i; 1468 int i;
1112 NameContext sNC; 1469 NameContext sNC;
1113 sNC.pSrcList = pTabList; 1470 sNC.pSrcList = pTabList;
1114 sNC.pParse = pParse; 1471 sNC.pParse = pParse;
1115 for(i=0; i<pEList->nExpr; i++){ 1472 for(i=0; i<pEList->nExpr; i++){
1116 Expr *p = pEList->a[i].pExpr; 1473 Expr *p = pEList->a[i].pExpr;
1117 const char *zType; 1474 const char *zType;
1118 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1475 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1119 const char *zOrigDb = 0; 1476 const char *zOrigDb = 0;
1120 const char *zOrigTab = 0; 1477 const char *zOrigTab = 0;
1121 const char *zOrigCol = 0; 1478 const char *zOrigCol = 0;
1122 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1479 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1123 1480
1124 /* The vdbe must make its own copy of the column-type and other 1481 /* The vdbe must make its own copy of the column-type and other
1125 ** column specific strings, in case the schema is reset before this 1482 ** column specific strings, in case the schema is reset before this
1126 ** virtual machine is deleted. 1483 ** virtual machine is deleted.
1127 */ 1484 */
1128 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1485 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1129 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1486 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1130 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1487 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1131 #else 1488 #else
1132 zType = columnType(&sNC, p, 0, 0, 0); 1489 zType = columnType(&sNC, p, 0, 0, 0, 0);
1133 #endif 1490 #endif
1134 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1491 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1135 } 1492 }
1136 #endif /* SQLITE_OMIT_DECLTYPE */ 1493 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1137 } 1494 }
1138 1495
1139 /* 1496 /*
1140 ** Generate code that will tell the VDBE the names of columns 1497 ** Generate code that will tell the VDBE the names of columns
1141 ** in the result set. This information is used to provide the 1498 ** in the result set. This information is used to provide the
1142 ** azCol[] values in the callback. 1499 ** azCol[] values in the callback.
1143 */ 1500 */
1144 static void generateColumnNames( 1501 static void generateColumnNames(
1145 Parse *pParse, /* Parser context */ 1502 Parse *pParse, /* Parser context */
1146 SrcList *pTabList, /* List of tables */ 1503 SrcList *pTabList, /* List of tables */
(...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after
1190 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1547 sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1191 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1548 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1192 }else if( fullNames ){ 1549 }else if( fullNames ){
1193 char *zName = 0; 1550 char *zName = 0;
1194 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1551 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1195 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1552 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1196 }else{ 1553 }else{
1197 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1554 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1198 } 1555 }
1199 }else{ 1556 }else{
1200 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1557 const char *z = pEList->a[i].zSpan;
1201 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1558 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1559 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1202 } 1560 }
1203 } 1561 }
1204 generateColumnTypes(pParse, pTabList, pEList); 1562 generateColumnTypes(pParse, pTabList, pEList);
1205 } 1563 }
1206 1564
1207 /* 1565 /*
1208 ** Given a an expression list (which is really the list of expressions 1566 ** Given an expression list (which is really the list of expressions
1209 ** that form the result set of a SELECT statement) compute appropriate 1567 ** that form the result set of a SELECT statement) compute appropriate
1210 ** column names for a table that would hold the expression list. 1568 ** column names for a table that would hold the expression list.
1211 ** 1569 **
1212 ** All column names will be unique. 1570 ** All column names will be unique.
1213 ** 1571 **
1214 ** Only the column names are computed. Column.zType, Column.zColl, 1572 ** Only the column names are computed. Column.zType, Column.zColl,
1215 ** and other fields of Column are zeroed. 1573 ** and other fields of Column are zeroed.
1216 ** 1574 **
1217 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1575 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1218 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1576 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1219 */ 1577 */
1220 static int selectColumnsFromExprList( 1578 static int selectColumnsFromExprList(
1221 Parse *pParse, /* Parsing context */ 1579 Parse *pParse, /* Parsing context */
1222 ExprList *pEList, /* Expr list from which to derive column names */ 1580 ExprList *pEList, /* Expr list from which to derive column names */
1223 int *pnCol, /* Write the number of columns here */ 1581 i16 *pnCol, /* Write the number of columns here */
1224 Column **paCol /* Write the new column list here */ 1582 Column **paCol /* Write the new column list here */
1225 ){ 1583 ){
1226 sqlite3 *db = pParse->db; /* Database connection */ 1584 sqlite3 *db = pParse->db; /* Database connection */
1227 int i, j; /* Loop counters */ 1585 int i, j; /* Loop counters */
1228 int cnt; /* Index added to make the name unique */ 1586 int cnt; /* Index added to make the name unique */
1229 Column *aCol, *pCol; /* For looping over result columns */ 1587 Column *aCol, *pCol; /* For looping over result columns */
1230 int nCol; /* Number of columns in the result set */ 1588 int nCol; /* Number of columns in the result set */
1231 Expr *p; /* Expression for a single result column */ 1589 Expr *p; /* Expression for a single result column */
1232 char *zName; /* Column name */ 1590 char *zName; /* Column name */
1233 int nName; /* Size of name in zName[] */ 1591 int nName; /* Size of name in zName[] */
1234 1592
1235 *pnCol = nCol = pEList->nExpr; 1593 if( pEList ){
1236 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1594 nCol = pEList->nExpr;
1237 if( aCol==0 ) return SQLITE_NOMEM; 1595 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1596 testcase( aCol==0 );
1597 }else{
1598 nCol = 0;
1599 aCol = 0;
1600 }
1601 *pnCol = nCol;
1602 *paCol = aCol;
1603
1238 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1604 for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1239 /* Get an appropriate name for the column 1605 /* Get an appropriate name for the column
1240 */ 1606 */
1241 p = pEList->a[i].pExpr; 1607 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1242 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
1243 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
1244 if( (zName = pEList->a[i].zName)!=0 ){ 1608 if( (zName = pEList->a[i].zName)!=0 ){
1245 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1609 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1246 zName = sqlite3DbStrDup(db, zName); 1610 zName = sqlite3DbStrDup(db, zName);
1247 }else{ 1611 }else{
1248 Expr *pColExpr = p; /* The expression that is the result column name */ 1612 Expr *pColExpr = p; /* The expression that is the result column name */
1249 Table *pTab; /* Table associated with this expression */ 1613 Table *pTab; /* Table associated with this expression */
1250 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight; 1614 while( pColExpr->op==TK_DOT ){
1615 pColExpr = pColExpr->pRight;
1616 assert( pColExpr!=0 );
1617 }
1251 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1618 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1252 /* For columns use the column name name */ 1619 /* For columns use the column name name */
1253 int iCol = pColExpr->iColumn; 1620 int iCol = pColExpr->iColumn;
1254 pTab = pColExpr->pTab; 1621 pTab = pColExpr->pTab;
1255 if( iCol<0 ) iCol = pTab->iPKey; 1622 if( iCol<0 ) iCol = pTab->iPKey;
1256 zName = sqlite3MPrintf(db, "%s", 1623 zName = sqlite3MPrintf(db, "%s",
1257 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1624 iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1258 }else if( pColExpr->op==TK_ID ){ 1625 }else if( pColExpr->op==TK_ID ){
1259 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1626 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1260 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1627 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1261 }else{ 1628 }else{
1262 /* Use the original text of the column expression as its name */ 1629 /* Use the original text of the column expression as its name */
1263 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1630 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1264 } 1631 }
1265 } 1632 }
1266 if( db->mallocFailed ){ 1633 if( db->mallocFailed ){
1267 sqlite3DbFree(db, zName); 1634 sqlite3DbFree(db, zName);
1268 break; 1635 break;
1269 } 1636 }
1270 1637
1271 /* Make sure the column name is unique. If the name is not unique, 1638 /* Make sure the column name is unique. If the name is not unique,
1272 ** append a integer to the name so that it becomes unique. 1639 ** append an integer to the name so that it becomes unique.
1273 */ 1640 */
1274 nName = sqlite3Strlen30(zName); 1641 nName = sqlite3Strlen30(zName);
1275 for(j=cnt=0; j<i; j++){ 1642 for(j=cnt=0; j<i; j++){
1276 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1643 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1277 char *zNewName; 1644 char *zNewName;
1645 int k;
1646 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1647 if( k>=0 && zName[k]==':' ) nName = k;
1278 zName[nName] = 0; 1648 zName[nName] = 0;
1279 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1649 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1280 sqlite3DbFree(db, zName); 1650 sqlite3DbFree(db, zName);
1281 zName = zNewName; 1651 zName = zNewName;
1282 j = -1; 1652 j = -1;
1283 if( zName==0 ) break; 1653 if( zName==0 ) break;
1284 } 1654 }
1285 } 1655 }
1286 pCol->zName = zName; 1656 pCol->zName = zName;
1287 } 1657 }
(...skipping 15 matching lines...) Expand all
1303 ** 1673 **
1304 ** The column list presumably came from selectColumnNamesFromExprList(). 1674 ** The column list presumably came from selectColumnNamesFromExprList().
1305 ** The column list has only names, not types or collations. This 1675 ** The column list has only names, not types or collations. This
1306 ** routine goes through and adds the types and collations. 1676 ** routine goes through and adds the types and collations.
1307 ** 1677 **
1308 ** This routine requires that all identifiers in the SELECT 1678 ** This routine requires that all identifiers in the SELECT
1309 ** statement be resolved. 1679 ** statement be resolved.
1310 */ 1680 */
1311 static void selectAddColumnTypeAndCollation( 1681 static void selectAddColumnTypeAndCollation(
1312 Parse *pParse, /* Parsing contexts */ 1682 Parse *pParse, /* Parsing contexts */
1313 int nCol, /* Number of columns */ 1683 Table *pTab, /* Add column type information to this table */
1314 Column *aCol, /* List of columns */
1315 Select *pSelect /* SELECT used to determine types and collations */ 1684 Select *pSelect /* SELECT used to determine types and collations */
1316 ){ 1685 ){
1317 sqlite3 *db = pParse->db; 1686 sqlite3 *db = pParse->db;
1318 NameContext sNC; 1687 NameContext sNC;
1319 Column *pCol; 1688 Column *pCol;
1320 CollSeq *pColl; 1689 CollSeq *pColl;
1321 int i; 1690 int i;
1322 Expr *p; 1691 Expr *p;
1323 struct ExprList_item *a; 1692 struct ExprList_item *a;
1693 u64 szAll = 0;
1324 1694
1325 assert( pSelect!=0 ); 1695 assert( pSelect!=0 );
1326 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1696 assert( (pSelect->selFlags & SF_Resolved)!=0 );
1327 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1697 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1328 if( db->mallocFailed ) return; 1698 if( db->mallocFailed ) return;
1329 memset(&sNC, 0, sizeof(sNC)); 1699 memset(&sNC, 0, sizeof(sNC));
1330 sNC.pSrcList = pSelect->pSrc; 1700 sNC.pSrcList = pSelect->pSrc;
1331 a = pSelect->pEList->a; 1701 a = pSelect->pEList->a;
1332 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1702 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1333 p = a[i].pExpr; 1703 p = a[i].pExpr;
1334 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1704 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
1705 szAll += pCol->szEst;
1335 pCol->affinity = sqlite3ExprAffinity(p); 1706 pCol->affinity = sqlite3ExprAffinity(p);
1336 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1707 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1337 pColl = sqlite3ExprCollSeq(pParse, p); 1708 pColl = sqlite3ExprCollSeq(pParse, p);
1338 if( pColl ){ 1709 if( pColl ){
1339 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1710 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1340 } 1711 }
1341 } 1712 }
1713 pTab->szTabRow = sqlite3LogEst(szAll*4);
1342 } 1714 }
1343 1715
1344 /* 1716 /*
1345 ** Given a SELECT statement, generate a Table structure that describes 1717 ** Given a SELECT statement, generate a Table structure that describes
1346 ** the result set of that SELECT. 1718 ** the result set of that SELECT.
1347 */ 1719 */
1348 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1720 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1349 Table *pTab; 1721 Table *pTab;
1350 sqlite3 *db = pParse->db; 1722 sqlite3 *db = pParse->db;
1351 int savedFlags; 1723 int savedFlags;
1352 1724
1353 savedFlags = db->flags; 1725 savedFlags = db->flags;
1354 db->flags &= ~SQLITE_FullColNames; 1726 db->flags &= ~SQLITE_FullColNames;
1355 db->flags |= SQLITE_ShortColNames; 1727 db->flags |= SQLITE_ShortColNames;
1356 sqlite3SelectPrep(pParse, pSelect, 0); 1728 sqlite3SelectPrep(pParse, pSelect, 0);
1357 if( pParse->nErr ) return 0; 1729 if( pParse->nErr ) return 0;
1358 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1730 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1359 db->flags = savedFlags; 1731 db->flags = savedFlags;
1360 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1732 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1361 if( pTab==0 ){ 1733 if( pTab==0 ){
1362 return 0; 1734 return 0;
1363 } 1735 }
1364 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1736 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1365 ** is disabled */ 1737 ** is disabled */
1366 assert( db->lookaside.bEnabled==0 ); 1738 assert( db->lookaside.bEnabled==0 );
1367 pTab->nRef = 1; 1739 pTab->nRef = 1;
1368 pTab->zName = 0; 1740 pTab->zName = 0;
1369 pTab->nRowEst = 1000000; 1741 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1370 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1742 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1371 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1743 selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1372 pTab->iPKey = -1; 1744 pTab->iPKey = -1;
1373 if( db->mallocFailed ){ 1745 if( db->mallocFailed ){
1374 sqlite3DeleteTable(db, pTab); 1746 sqlite3DeleteTable(db, pTab);
1375 return 0; 1747 return 0;
1376 } 1748 }
1377 return pTab; 1749 return pTab;
1378 } 1750 }
1379 1751
1380 /* 1752 /*
1381 ** Get a VDBE for the given parser context. Create a new one if necessary. 1753 ** Get a VDBE for the given parser context. Create a new one if necessary.
1382 ** If an error occurs, return NULL and leave a message in pParse. 1754 ** If an error occurs, return NULL and leave a message in pParse.
1383 */ 1755 */
1384 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1756 Vdbe *sqlite3GetVdbe(Parse *pParse){
1385 Vdbe *v = pParse->pVdbe; 1757 Vdbe *v = pParse->pVdbe;
1386 if( v==0 ){ 1758 if( v==0 ){
1387 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1759 v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1388 #ifndef SQLITE_OMIT_TRACE 1760 if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1389 if( v ){ 1761 if( pParse->pToplevel==0
1390 sqlite3VdbeAddOp0(v, OP_Trace); 1762 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1763 ){
1764 pParse->okConstFactor = 1;
1391 } 1765 }
1392 #endif 1766
1393 } 1767 }
1394 return v; 1768 return v;
1395 } 1769 }
1396 1770
1397 1771
1398 /* 1772 /*
1399 ** Compute the iLimit and iOffset fields of the SELECT based on the 1773 ** Compute the iLimit and iOffset fields of the SELECT based on the
1400 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1774 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
1401 ** that appear in the original SQL statement after the LIMIT and OFFSET 1775 ** that appear in the original SQL statement after the LIMIT and OFFSET
1402 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1776 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1403 ** are the integer memory register numbers for counters used to compute 1777 ** are the integer memory register numbers for counters used to compute
1404 ** the limit and offset. If there is no limit and/or offset, then 1778 ** the limit and offset. If there is no limit and/or offset, then
1405 ** iLimit and iOffset are negative. 1779 ** iLimit and iOffset are negative.
1406 ** 1780 **
1407 ** This routine changes the values of iLimit and iOffset only if 1781 ** This routine changes the values of iLimit and iOffset only if
1408 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1782 ** a limit or offset is defined by pLimit and pOffset. iLimit and
1409 ** iOffset should have been preset to appropriate default values 1783 ** iOffset should have been preset to appropriate default values (zero)
1410 ** (usually but not always -1) prior to calling this routine. 1784 ** prior to calling this routine.
1785 **
1786 ** The iOffset register (if it exists) is initialized to the value
1787 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
1788 ** iOffset+1 is initialized to LIMIT+OFFSET.
1789 **
1411 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1790 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1412 ** redefined. The UNION ALL operator uses this property to force 1791 ** redefined. The UNION ALL operator uses this property to force
1413 ** the reuse of the same limit and offset registers across multiple 1792 ** the reuse of the same limit and offset registers across multiple
1414 ** SELECT statements. 1793 ** SELECT statements.
1415 */ 1794 */
1416 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1795 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1417 Vdbe *v = 0; 1796 Vdbe *v = 0;
1418 int iLimit = 0; 1797 int iLimit = 0;
1419 int iOffset; 1798 int iOffset;
1420 int addr1, n; 1799 int addr1, n;
1421 if( p->iLimit ) return; 1800 if( p->iLimit ) return;
1422 1801
1423 /* 1802 /*
1424 ** "LIMIT -1" always shows all rows. There is some 1803 ** "LIMIT -1" always shows all rows. There is some
1425 ** contraversy about what the correct behavior should be. 1804 ** controversy about what the correct behavior should be.
1426 ** The current implementation interprets "LIMIT 0" to mean 1805 ** The current implementation interprets "LIMIT 0" to mean
1427 ** no rows. 1806 ** no rows.
1428 */ 1807 */
1429 sqlite3ExprCacheClear(pParse); 1808 sqlite3ExprCacheClear(pParse);
1430 assert( p->pOffset==0 || p->pLimit!=0 ); 1809 assert( p->pOffset==0 || p->pLimit!=0 );
1431 if( p->pLimit ){ 1810 if( p->pLimit ){
1432 p->iLimit = iLimit = ++pParse->nMem; 1811 p->iLimit = iLimit = ++pParse->nMem;
1433 v = sqlite3GetVdbe(pParse); 1812 v = sqlite3GetVdbe(pParse);
1434 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ 1813 assert( v!=0 );
1435 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1814 if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1436 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1815 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1437 VdbeComment((v, "LIMIT counter")); 1816 VdbeComment((v, "LIMIT counter"));
1438 if( n==0 ){ 1817 if( n==0 ){
1439 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1818 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1440 }else{ 1819 }else if( n>=0 && p->nSelectRow>(u64)n ){
1441 if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n; 1820 p->nSelectRow = n;
1442 } 1821 }
1443 }else{ 1822 }else{
1444 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1823 sqlite3ExprCode(pParse, p->pLimit, iLimit);
1445 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1824 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1446 VdbeComment((v, "LIMIT counter")); 1825 VdbeComment((v, "LIMIT counter"));
1447 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1826 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v);
1448 } 1827 }
1449 if( p->pOffset ){ 1828 if( p->pOffset ){
1450 p->iOffset = iOffset = ++pParse->nMem; 1829 p->iOffset = iOffset = ++pParse->nMem;
1451 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1830 pParse->nMem++; /* Allocate an extra register for limit+offset */
1452 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1831 sqlite3ExprCode(pParse, p->pOffset, iOffset);
1453 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1832 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1454 VdbeComment((v, "OFFSET counter")); 1833 VdbeComment((v, "OFFSET counter"));
1455 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1834 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1456 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1835 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1457 sqlite3VdbeJumpHere(v, addr1); 1836 sqlite3VdbeJumpHere(v, addr1);
1458 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1837 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1459 VdbeComment((v, "LIMIT+OFFSET")); 1838 VdbeComment((v, "LIMIT+OFFSET"));
1460 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1839 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1461 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1840 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1462 sqlite3VdbeJumpHere(v, addr1); 1841 sqlite3VdbeJumpHere(v, addr1);
1463 } 1842 }
1464 } 1843 }
1465 } 1844 }
1466 1845
1467 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1846 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1468 /* 1847 /*
1469 ** Return the appropriate collating sequence for the iCol-th column of 1848 ** Return the appropriate collating sequence for the iCol-th column of
1470 ** the result set for the compound-select statement "p". Return NULL if 1849 ** the result set for the compound-select statement "p". Return NULL if
1471 ** the column has no default collating sequence. 1850 ** the column has no default collating sequence.
1472 ** 1851 **
1473 ** The collating sequence for the compound select is taken from the 1852 ** The collating sequence for the compound select is taken from the
1474 ** left-most term of the select that has a collating sequence. 1853 ** left-most term of the select that has a collating sequence.
1475 */ 1854 */
1476 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1855 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1477 CollSeq *pRet; 1856 CollSeq *pRet;
1478 if( p->pPrior ){ 1857 if( p->pPrior ){
1479 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1858 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1480 }else{ 1859 }else{
1481 pRet = 0; 1860 pRet = 0;
1482 } 1861 }
1483 assert( iCol>=0 ); 1862 assert( iCol>=0 );
1484 if( pRet==0 && iCol<p->pEList->nExpr ){ 1863 if( pRet==0 && iCol<p->pEList->nExpr ){
1485 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1864 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1486 } 1865 }
1487 return pRet; 1866 return pRet;
1488 } 1867 }
1489 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1868
1490 1869 /*
1491 /* Forward reference */ 1870 ** The select statement passed as the second parameter is a compound SELECT
1871 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1872 ** structure suitable for implementing the ORDER BY.
1873 **
1874 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1875 ** function is responsible for ensuring that this structure is eventually
1876 ** freed.
1877 */
1878 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1879 ExprList *pOrderBy = p->pOrderBy;
1880 int nOrderBy = p->pOrderBy->nExpr;
1881 sqlite3 *db = pParse->db;
1882 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1883 if( pRet ){
1884 int i;
1885 for(i=0; i<nOrderBy; i++){
1886 struct ExprList_item *pItem = &pOrderBy->a[i];
1887 Expr *pTerm = pItem->pExpr;
1888 CollSeq *pColl;
1889
1890 if( pTerm->flags & EP_Collate ){
1891 pColl = sqlite3ExprCollSeq(pParse, pTerm);
1892 }else{
1893 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1894 if( pColl==0 ) pColl = db->pDfltColl;
1895 pOrderBy->a[i].pExpr =
1896 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1897 }
1898 assert( sqlite3KeyInfoIsWriteable(pRet) );
1899 pRet->aColl[i] = pColl;
1900 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1901 }
1902 }
1903
1904 return pRet;
1905 }
1906
1907 #ifndef SQLITE_OMIT_CTE
1908 /*
1909 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1910 ** query of the form:
1911 **
1912 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1913 ** \___________/ \_______________/
1914 ** p->pPrior p
1915 **
1916 **
1917 ** There is exactly one reference to the recursive-table in the FROM clause
1918 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1919 **
1920 ** The setup-query runs once to generate an initial set of rows that go
1921 ** into a Queue table. Rows are extracted from the Queue table one by
1922 ** one. Each row extracted from Queue is output to pDest. Then the single
1923 ** extracted row (now in the iCurrent table) becomes the content of the
1924 ** recursive-table for a recursive-query run. The output of the recursive-query
1925 ** is added back into the Queue table. Then another row is extracted from Queue
1926 ** and the iteration continues until the Queue table is empty.
1927 **
1928 ** If the compound query operator is UNION then no duplicate rows are ever
1929 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
1930 ** that have ever been inserted into Queue and causes duplicates to be
1931 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
1932 **
1933 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1934 ** ORDER BY order and the first entry is extracted for each cycle. Without
1935 ** an ORDER BY, the Queue table is just a FIFO.
1936 **
1937 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1938 ** have been output to pDest. A LIMIT of zero means to output no rows and a
1939 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
1940 ** with a positive value, then the first OFFSET outputs are discarded rather
1941 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
1942 ** rows have been skipped.
1943 */
1944 static void generateWithRecursiveQuery(
1945 Parse *pParse, /* Parsing context */
1946 Select *p, /* The recursive SELECT to be coded */
1947 SelectDest *pDest /* What to do with query results */
1948 ){
1949 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
1950 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
1951 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
1952 Select *pSetup = p->pPrior; /* The setup query */
1953 int addrTop; /* Top of the loop */
1954 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
1955 int iCurrent = 0; /* The Current table */
1956 int regCurrent; /* Register holding Current table */
1957 int iQueue; /* The Queue table */
1958 int iDistinct = 0; /* To ensure unique results if UNION */
1959 int eDest = SRT_Fifo; /* How to write to Queue */
1960 SelectDest destQueue; /* SelectDest targetting the Queue table */
1961 int i; /* Loop counter */
1962 int rc; /* Result code */
1963 ExprList *pOrderBy; /* The ORDER BY clause */
1964 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */
1965 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
1966
1967 /* Obtain authorization to do a recursive query */
1968 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1969
1970 /* Process the LIMIT and OFFSET clauses, if they exist */
1971 addrBreak = sqlite3VdbeMakeLabel(v);
1972 computeLimitRegisters(pParse, p, addrBreak);
1973 pLimit = p->pLimit;
1974 pOffset = p->pOffset;
1975 regLimit = p->iLimit;
1976 regOffset = p->iOffset;
1977 p->pLimit = p->pOffset = 0;
1978 p->iLimit = p->iOffset = 0;
1979 pOrderBy = p->pOrderBy;
1980
1981 /* Locate the cursor number of the Current table */
1982 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1983 if( pSrc->a[i].isRecursive ){
1984 iCurrent = pSrc->a[i].iCursor;
1985 break;
1986 }
1987 }
1988
1989 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
1990 ** the Distinct table must be exactly one greater than Queue in order
1991 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
1992 iQueue = pParse->nTab++;
1993 if( p->op==TK_UNION ){
1994 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
1995 iDistinct = pParse->nTab++;
1996 }else{
1997 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
1998 }
1999 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2000
2001 /* Allocate cursors for Current, Queue, and Distinct. */
2002 regCurrent = ++pParse->nMem;
2003 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2004 if( pOrderBy ){
2005 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2006 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2007 (char*)pKeyInfo, P4_KEYINFO);
2008 destQueue.pOrderBy = pOrderBy;
2009 }else{
2010 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2011 }
2012 VdbeComment((v, "Queue table"));
2013 if( iDistinct ){
2014 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2015 p->selFlags |= SF_UsesEphemeral;
2016 }
2017
2018 /* Detach the ORDER BY clause from the compound SELECT */
2019 p->pOrderBy = 0;
2020
2021 /* Store the results of the setup-query in Queue. */
2022 pSetup->pNext = 0;
2023 rc = sqlite3Select(pParse, pSetup, &destQueue);
2024 pSetup->pNext = p;
2025 if( rc ) goto end_of_recursive_query;
2026
2027 /* Find the next row in the Queue and output that row */
2028 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2029
2030 /* Transfer the next row in Queue over to Current */
2031 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2032 if( pOrderBy ){
2033 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2034 }else{
2035 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2036 }
2037 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2038
2039 /* Output the single row in Current */
2040 addrCont = sqlite3VdbeMakeLabel(v);
2041 codeOffset(v, regOffset, addrCont);
2042 selectInnerLoop(pParse, p, p->pEList, iCurrent,
2043 0, 0, pDest, addrCont, addrBreak);
2044 if( regLimit ){
2045 sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
2046 VdbeCoverage(v);
2047 }
2048 sqlite3VdbeResolveLabel(v, addrCont);
2049
2050 /* Execute the recursive SELECT taking the single row in Current as
2051 ** the value for the recursive-table. Store the results in the Queue.
2052 */
2053 p->pPrior = 0;
2054 sqlite3Select(pParse, p, &destQueue);
2055 assert( p->pPrior==0 );
2056 p->pPrior = pSetup;
2057
2058 /* Keep running the loop until the Queue is empty */
2059 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2060 sqlite3VdbeResolveLabel(v, addrBreak);
2061
2062 end_of_recursive_query:
2063 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2064 p->pOrderBy = pOrderBy;
2065 p->pLimit = pLimit;
2066 p->pOffset = pOffset;
2067 return;
2068 }
2069 #endif /* SQLITE_OMIT_CTE */
2070
2071 /* Forward references */
1492 static int multiSelectOrderBy( 2072 static int multiSelectOrderBy(
1493 Parse *pParse, /* Parsing context */ 2073 Parse *pParse, /* Parsing context */
1494 Select *p, /* The right-most of SELECTs to be coded */ 2074 Select *p, /* The right-most of SELECTs to be coded */
1495 SelectDest *pDest /* What to do with query results */ 2075 SelectDest *pDest /* What to do with query results */
1496 ); 2076 );
1497 2077
1498 2078
1499 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1500 /* 2079 /*
1501 ** This routine is called to process a compound query form from 2080 ** This routine is called to process a compound query form from
1502 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2081 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1503 ** INTERSECT 2082 ** INTERSECT
1504 ** 2083 **
1505 ** "p" points to the right-most of the two queries. the query on the 2084 ** "p" points to the right-most of the two queries. the query on the
1506 ** left is p->pPrior. The left query could also be a compound query 2085 ** left is p->pPrior. The left query could also be a compound query
1507 ** in which case this routine will be called recursively. 2086 ** in which case this routine will be called recursively.
1508 ** 2087 **
1509 ** The results of the total query are to be written into a destination 2088 ** The results of the total query are to be written into a destination
(...skipping 23 matching lines...) Expand all
1533 Select *p, /* The right-most of SELECTs to be coded */ 2112 Select *p, /* The right-most of SELECTs to be coded */
1534 SelectDest *pDest /* What to do with query results */ 2113 SelectDest *pDest /* What to do with query results */
1535 ){ 2114 ){
1536 int rc = SQLITE_OK; /* Success code from a subroutine */ 2115 int rc = SQLITE_OK; /* Success code from a subroutine */
1537 Select *pPrior; /* Another SELECT immediately to our left */ 2116 Select *pPrior; /* Another SELECT immediately to our left */
1538 Vdbe *v; /* Generate code to this VDBE */ 2117 Vdbe *v; /* Generate code to this VDBE */
1539 SelectDest dest; /* Alternative data destination */ 2118 SelectDest dest; /* Alternative data destination */
1540 Select *pDelete = 0; /* Chain of simple selects to delete */ 2119 Select *pDelete = 0; /* Chain of simple selects to delete */
1541 sqlite3 *db; /* Database connection */ 2120 sqlite3 *db; /* Database connection */
1542 #ifndef SQLITE_OMIT_EXPLAIN 2121 #ifndef SQLITE_OMIT_EXPLAIN
1543 int iSub1; /* EQP id of left-hand query */ 2122 int iSub1 = 0; /* EQP id of left-hand query */
1544 int iSub2; /* EQP id of right-hand query */ 2123 int iSub2 = 0; /* EQP id of right-hand query */
1545 #endif 2124 #endif
1546 2125
1547 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2126 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
1548 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2127 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1549 */ 2128 */
1550 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2129 assert( p && p->pPrior ); /* Calling function guarantees this much */
2130 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
1551 db = pParse->db; 2131 db = pParse->db;
1552 pPrior = p->pPrior; 2132 pPrior = p->pPrior;
1553 assert( pPrior->pRightmost!=pPrior );
1554 assert( pPrior->pRightmost==p->pRightmost );
1555 dest = *pDest; 2133 dest = *pDest;
1556 if( pPrior->pOrderBy ){ 2134 if( pPrior->pOrderBy ){
1557 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2135 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1558 selectOpName(p->op)); 2136 selectOpName(p->op));
1559 rc = 1; 2137 rc = 1;
1560 goto multi_select_end; 2138 goto multi_select_end;
1561 } 2139 }
1562 if( pPrior->pLimit ){ 2140 if( pPrior->pLimit ){
1563 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2141 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1564 selectOpName(p->op)); 2142 selectOpName(p->op));
1565 rc = 1; 2143 rc = 1;
1566 goto multi_select_end; 2144 goto multi_select_end;
1567 } 2145 }
1568 2146
1569 v = sqlite3GetVdbe(pParse); 2147 v = sqlite3GetVdbe(pParse);
1570 assert( v!=0 ); /* The VDBE already created by calling function */ 2148 assert( v!=0 ); /* The VDBE already created by calling function */
1571 2149
1572 /* Create the destination temporary table if necessary 2150 /* Create the destination temporary table if necessary
1573 */ 2151 */
1574 if( dest.eDest==SRT_EphemTab ){ 2152 if( dest.eDest==SRT_EphemTab ){
1575 assert( p->pEList ); 2153 assert( p->pEList );
1576 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 2154 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
1577 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2155 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1578 dest.eDest = SRT_Table; 2156 dest.eDest = SRT_Table;
1579 } 2157 }
1580 2158
1581 /* Make sure all SELECTs in the statement have the same number of elements 2159 /* Make sure all SELECTs in the statement have the same number of elements
1582 ** in their result sets. 2160 ** in their result sets.
1583 */ 2161 */
1584 assert( p->pEList && pPrior->pEList ); 2162 assert( p->pEList && pPrior->pEList );
1585 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2163 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1586 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2164 if( p->selFlags & SF_Values ){
1587 " do not have the same number of result columns", selectOpName(p->op)); 2165 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2166 }else{
2167 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2168 " do not have the same number of result columns", selectOpName(p->op));
2169 }
1588 rc = 1; 2170 rc = 1;
1589 goto multi_select_end; 2171 goto multi_select_end;
1590 } 2172 }
1591 2173
2174 #ifndef SQLITE_OMIT_CTE
2175 if( p->selFlags & SF_Recursive ){
2176 generateWithRecursiveQuery(pParse, p, &dest);
2177 }else
2178 #endif
2179
1592 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2180 /* Compound SELECTs that have an ORDER BY clause are handled separately.
1593 */ 2181 */
1594 if( p->pOrderBy ){ 2182 if( p->pOrderBy ){
1595 return multiSelectOrderBy(pParse, p, pDest); 2183 return multiSelectOrderBy(pParse, p, pDest);
1596 } 2184 }else
1597 2185
1598 /* Generate code for the left and right SELECT statements. 2186 /* Generate code for the left and right SELECT statements.
1599 */ 2187 */
1600 switch( p->op ){ 2188 switch( p->op ){
1601 case TK_ALL: { 2189 case TK_ALL: {
1602 int addr = 0; 2190 int addr = 0;
1603 int nLimit; 2191 int nLimit;
1604 assert( !pPrior->pLimit ); 2192 assert( !pPrior->pLimit );
2193 pPrior->iLimit = p->iLimit;
2194 pPrior->iOffset = p->iOffset;
1605 pPrior->pLimit = p->pLimit; 2195 pPrior->pLimit = p->pLimit;
1606 pPrior->pOffset = p->pOffset; 2196 pPrior->pOffset = p->pOffset;
1607 explainSetInteger(iSub1, pParse->iNextSelectId); 2197 explainSetInteger(iSub1, pParse->iNextSelectId);
1608 rc = sqlite3Select(pParse, pPrior, &dest); 2198 rc = sqlite3Select(pParse, pPrior, &dest);
1609 p->pLimit = 0; 2199 p->pLimit = 0;
1610 p->pOffset = 0; 2200 p->pOffset = 0;
1611 if( rc ){ 2201 if( rc ){
1612 goto multi_select_end; 2202 goto multi_select_end;
1613 } 2203 }
1614 p->pPrior = 0; 2204 p->pPrior = 0;
1615 p->iLimit = pPrior->iLimit; 2205 p->iLimit = pPrior->iLimit;
1616 p->iOffset = pPrior->iOffset; 2206 p->iOffset = pPrior->iOffset;
1617 if( p->iLimit ){ 2207 if( p->iLimit ){
1618 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 2208 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v);
1619 VdbeComment((v, "Jump ahead if LIMIT reached")); 2209 VdbeComment((v, "Jump ahead if LIMIT reached"));
1620 } 2210 }
1621 explainSetInteger(iSub2, pParse->iNextSelectId); 2211 explainSetInteger(iSub2, pParse->iNextSelectId);
1622 rc = sqlite3Select(pParse, p, &dest); 2212 rc = sqlite3Select(pParse, p, &dest);
1623 testcase( rc!=SQLITE_OK ); 2213 testcase( rc!=SQLITE_OK );
1624 pDelete = p->pPrior; 2214 pDelete = p->pPrior;
1625 p->pPrior = pPrior; 2215 p->pPrior = pPrior;
1626 p->nSelectRow += pPrior->nSelectRow; 2216 p->nSelectRow += pPrior->nSelectRow;
1627 if( pPrior->pLimit 2217 if( pPrior->pLimit
1628 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2218 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
1629 && p->nSelectRow > (double)nLimit 2219 && nLimit>0 && p->nSelectRow > (u64)nLimit
1630 ){ 2220 ){
1631 p->nSelectRow = (double)nLimit; 2221 p->nSelectRow = nLimit;
1632 } 2222 }
1633 if( addr ){ 2223 if( addr ){
1634 sqlite3VdbeJumpHere(v, addr); 2224 sqlite3VdbeJumpHere(v, addr);
1635 } 2225 }
1636 break; 2226 break;
1637 } 2227 }
1638 case TK_EXCEPT: 2228 case TK_EXCEPT:
1639 case TK_UNION: { 2229 case TK_UNION: {
1640 int unionTab; /* Cursor number of the temporary table holding result */ 2230 int unionTab; /* Cursor number of the temporary table holding result */
1641 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2231 u8 op = 0; /* One of the SRT_ operations to apply to self */
1642 int priorOp; /* The SRT_ operation to apply to prior selects */ 2232 int priorOp; /* The SRT_ operation to apply to prior selects */
1643 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2233 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1644 int addr; 2234 int addr;
1645 SelectDest uniondest; 2235 SelectDest uniondest;
1646 2236
1647 testcase( p->op==TK_EXCEPT ); 2237 testcase( p->op==TK_EXCEPT );
1648 testcase( p->op==TK_UNION ); 2238 testcase( p->op==TK_UNION );
1649 priorOp = SRT_Union; 2239 priorOp = SRT_Union;
1650 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 2240 if( dest.eDest==priorOp ){
1651 /* We can reuse a temporary table generated by a SELECT to our 2241 /* We can reuse a temporary table generated by a SELECT to our
1652 ** right. 2242 ** right.
1653 */ 2243 */
1654 assert( p->pRightmost!=p ); /* Can only happen for leftward elements
1655 ** of a 3-way or more compound */
1656 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2244 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
1657 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2245 assert( p->pOffset==0 ); /* Not allowed on leftward elements */
1658 unionTab = dest.iParm; 2246 unionTab = dest.iSDParm;
1659 }else{ 2247 }else{
1660 /* We will need to create our own temporary table to hold the 2248 /* We will need to create our own temporary table to hold the
1661 ** intermediate results. 2249 ** intermediate results.
1662 */ 2250 */
1663 unionTab = pParse->nTab++; 2251 unionTab = pParse->nTab++;
1664 assert( p->pOrderBy==0 ); 2252 assert( p->pOrderBy==0 );
1665 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2253 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1666 assert( p->addrOpenEphm[0] == -1 ); 2254 assert( p->addrOpenEphm[0] == -1 );
1667 p->addrOpenEphm[0] = addr; 2255 p->addrOpenEphm[0] = addr;
1668 p->pRightmost->selFlags |= SF_UsesEphemeral; 2256 findRightmost(p)->selFlags |= SF_UsesEphemeral;
1669 assert( p->pEList ); 2257 assert( p->pEList );
1670 } 2258 }
1671 2259
1672 /* Code the SELECT statements to our left 2260 /* Code the SELECT statements to our left
1673 */ 2261 */
1674 assert( !pPrior->pOrderBy ); 2262 assert( !pPrior->pOrderBy );
1675 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2263 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1676 explainSetInteger(iSub1, pParse->iNextSelectId); 2264 explainSetInteger(iSub1, pParse->iNextSelectId);
1677 rc = sqlite3Select(pParse, pPrior, &uniondest); 2265 rc = sqlite3Select(pParse, pPrior, &uniondest);
1678 if( rc ){ 2266 if( rc ){
(...skipping 26 matching lines...) Expand all
1705 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2293 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
1706 sqlite3ExprDelete(db, p->pLimit); 2294 sqlite3ExprDelete(db, p->pLimit);
1707 p->pLimit = pLimit; 2295 p->pLimit = pLimit;
1708 p->pOffset = pOffset; 2296 p->pOffset = pOffset;
1709 p->iLimit = 0; 2297 p->iLimit = 0;
1710 p->iOffset = 0; 2298 p->iOffset = 0;
1711 2299
1712 /* Convert the data in the temporary table into whatever form 2300 /* Convert the data in the temporary table into whatever form
1713 ** it is that we currently need. 2301 ** it is that we currently need.
1714 */ 2302 */
1715 assert( unionTab==dest.iParm || dest.eDest!=priorOp ); 2303 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
1716 if( dest.eDest!=priorOp ){ 2304 if( dest.eDest!=priorOp ){
1717 int iCont, iBreak, iStart; 2305 int iCont, iBreak, iStart;
1718 assert( p->pEList ); 2306 assert( p->pEList );
1719 if( dest.eDest==SRT_Output ){ 2307 if( dest.eDest==SRT_Output ){
1720 Select *pFirst = p; 2308 Select *pFirst = p;
1721 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2309 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1722 generateColumnNames(pParse, 0, pFirst->pEList); 2310 generateColumnNames(pParse, 0, pFirst->pEList);
1723 } 2311 }
1724 iBreak = sqlite3VdbeMakeLabel(v); 2312 iBreak = sqlite3VdbeMakeLabel(v);
1725 iCont = sqlite3VdbeMakeLabel(v); 2313 iCont = sqlite3VdbeMakeLabel(v);
1726 computeLimitRegisters(pParse, p, iBreak); 2314 computeLimitRegisters(pParse, p, iBreak);
1727 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 2315 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
1728 iStart = sqlite3VdbeCurrentAddr(v); 2316 iStart = sqlite3VdbeCurrentAddr(v);
1729 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 2317 selectInnerLoop(pParse, p, p->pEList, unionTab,
1730 0, -1, &dest, iCont, iBreak); 2318 0, 0, &dest, iCont, iBreak);
1731 sqlite3VdbeResolveLabel(v, iCont); 2319 sqlite3VdbeResolveLabel(v, iCont);
1732 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 2320 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
1733 sqlite3VdbeResolveLabel(v, iBreak); 2321 sqlite3VdbeResolveLabel(v, iBreak);
1734 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2322 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1735 } 2323 }
1736 break; 2324 break;
1737 } 2325 }
1738 default: assert( p->op==TK_INTERSECT ); { 2326 default: assert( p->op==TK_INTERSECT ); {
1739 int tab1, tab2; 2327 int tab1, tab2;
1740 int iCont, iBreak, iStart; 2328 int iCont, iBreak, iStart;
1741 Expr *pLimit, *pOffset; 2329 Expr *pLimit, *pOffset;
1742 int addr; 2330 int addr;
1743 SelectDest intersectdest; 2331 SelectDest intersectdest;
1744 int r1; 2332 int r1;
1745 2333
1746 /* INTERSECT is different from the others since it requires 2334 /* INTERSECT is different from the others since it requires
1747 ** two temporary tables. Hence it has its own case. Begin 2335 ** two temporary tables. Hence it has its own case. Begin
1748 ** by allocating the tables we will need. 2336 ** by allocating the tables we will need.
1749 */ 2337 */
1750 tab1 = pParse->nTab++; 2338 tab1 = pParse->nTab++;
1751 tab2 = pParse->nTab++; 2339 tab2 = pParse->nTab++;
1752 assert( p->pOrderBy==0 ); 2340 assert( p->pOrderBy==0 );
1753 2341
1754 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2342 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1755 assert( p->addrOpenEphm[0] == -1 ); 2343 assert( p->addrOpenEphm[0] == -1 );
1756 p->addrOpenEphm[0] = addr; 2344 p->addrOpenEphm[0] = addr;
1757 p->pRightmost->selFlags |= SF_UsesEphemeral; 2345 findRightmost(p)->selFlags |= SF_UsesEphemeral;
1758 assert( p->pEList ); 2346 assert( p->pEList );
1759 2347
1760 /* Code the SELECTs to our left into temporary table "tab1". 2348 /* Code the SELECTs to our left into temporary table "tab1".
1761 */ 2349 */
1762 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2350 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1763 explainSetInteger(iSub1, pParse->iNextSelectId); 2351 explainSetInteger(iSub1, pParse->iNextSelectId);
1764 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2352 rc = sqlite3Select(pParse, pPrior, &intersectdest);
1765 if( rc ){ 2353 if( rc ){
1766 goto multi_select_end; 2354 goto multi_select_end;
1767 } 2355 }
1768 2356
1769 /* Code the current SELECT into temporary table "tab2" 2357 /* Code the current SELECT into temporary table "tab2"
1770 */ 2358 */
1771 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2359 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1772 assert( p->addrOpenEphm[1] == -1 ); 2360 assert( p->addrOpenEphm[1] == -1 );
1773 p->addrOpenEphm[1] = addr; 2361 p->addrOpenEphm[1] = addr;
1774 p->pPrior = 0; 2362 p->pPrior = 0;
1775 pLimit = p->pLimit; 2363 pLimit = p->pLimit;
1776 p->pLimit = 0; 2364 p->pLimit = 0;
1777 pOffset = p->pOffset; 2365 pOffset = p->pOffset;
1778 p->pOffset = 0; 2366 p->pOffset = 0;
1779 intersectdest.iParm = tab2; 2367 intersectdest.iSDParm = tab2;
1780 explainSetInteger(iSub2, pParse->iNextSelectId); 2368 explainSetInteger(iSub2, pParse->iNextSelectId);
1781 rc = sqlite3Select(pParse, p, &intersectdest); 2369 rc = sqlite3Select(pParse, p, &intersectdest);
1782 testcase( rc!=SQLITE_OK ); 2370 testcase( rc!=SQLITE_OK );
1783 pDelete = p->pPrior; 2371 pDelete = p->pPrior;
1784 p->pPrior = pPrior; 2372 p->pPrior = pPrior;
1785 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2373 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
1786 sqlite3ExprDelete(db, p->pLimit); 2374 sqlite3ExprDelete(db, p->pLimit);
1787 p->pLimit = pLimit; 2375 p->pLimit = pLimit;
1788 p->pOffset = pOffset; 2376 p->pOffset = pOffset;
1789 2377
1790 /* Generate code to take the intersection of the two temporary 2378 /* Generate code to take the intersection of the two temporary
1791 ** tables. 2379 ** tables.
1792 */ 2380 */
1793 assert( p->pEList ); 2381 assert( p->pEList );
1794 if( dest.eDest==SRT_Output ){ 2382 if( dest.eDest==SRT_Output ){
1795 Select *pFirst = p; 2383 Select *pFirst = p;
1796 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2384 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1797 generateColumnNames(pParse, 0, pFirst->pEList); 2385 generateColumnNames(pParse, 0, pFirst->pEList);
1798 } 2386 }
1799 iBreak = sqlite3VdbeMakeLabel(v); 2387 iBreak = sqlite3VdbeMakeLabel(v);
1800 iCont = sqlite3VdbeMakeLabel(v); 2388 iCont = sqlite3VdbeMakeLabel(v);
1801 computeLimitRegisters(pParse, p, iBreak); 2389 computeLimitRegisters(pParse, p, iBreak);
1802 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 2390 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
1803 r1 = sqlite3GetTempReg(pParse); 2391 r1 = sqlite3GetTempReg(pParse);
1804 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2392 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1805 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2393 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
1806 sqlite3ReleaseTempReg(pParse, r1); 2394 sqlite3ReleaseTempReg(pParse, r1);
1807 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 2395 selectInnerLoop(pParse, p, p->pEList, tab1,
1808 0, -1, &dest, iCont, iBreak); 2396 0, 0, &dest, iCont, iBreak);
1809 sqlite3VdbeResolveLabel(v, iCont); 2397 sqlite3VdbeResolveLabel(v, iCont);
1810 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 2398 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
1811 sqlite3VdbeResolveLabel(v, iBreak); 2399 sqlite3VdbeResolveLabel(v, iBreak);
1812 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2400 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1813 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2401 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1814 break; 2402 break;
1815 } 2403 }
1816 } 2404 }
1817 2405
1818 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2406 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
1819 2407
1820 /* Compute collating sequences used by 2408 /* Compute collating sequences used by
1821 ** temporary tables needed to implement the compound select. 2409 ** temporary tables needed to implement the compound select.
1822 ** Attach the KeyInfo structure to all temporary tables. 2410 ** Attach the KeyInfo structure to all temporary tables.
1823 ** 2411 **
1824 ** This section is run by the right-most SELECT statement only. 2412 ** This section is run by the right-most SELECT statement only.
1825 ** SELECT statements to the left always skip this part. The right-most 2413 ** SELECT statements to the left always skip this part. The right-most
1826 ** SELECT might also skip this part if it has no ORDER BY clause and 2414 ** SELECT might also skip this part if it has no ORDER BY clause and
1827 ** no temp tables are required. 2415 ** no temp tables are required.
1828 */ 2416 */
1829 if( p->selFlags & SF_UsesEphemeral ){ 2417 if( p->selFlags & SF_UsesEphemeral ){
1830 int i; /* Loop counter */ 2418 int i; /* Loop counter */
1831 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2419 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
1832 Select *pLoop; /* For looping through SELECT statements */ 2420 Select *pLoop; /* For looping through SELECT statements */
1833 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2421 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
1834 int nCol; /* Number of columns in result set */ 2422 int nCol; /* Number of columns in result set */
1835 2423
1836 assert( p->pRightmost==p ); 2424 assert( p->pNext==0 );
1837 nCol = p->pEList->nExpr; 2425 nCol = p->pEList->nExpr;
1838 pKeyInfo = sqlite3DbMallocZero(db, 2426 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
1839 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1840 if( !pKeyInfo ){ 2427 if( !pKeyInfo ){
1841 rc = SQLITE_NOMEM; 2428 rc = SQLITE_NOMEM;
1842 goto multi_select_end; 2429 goto multi_select_end;
1843 } 2430 }
1844
1845 pKeyInfo->enc = ENC(db);
1846 pKeyInfo->nField = (u16)nCol;
1847
1848 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2431 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1849 *apColl = multiSelectCollSeq(pParse, p, i); 2432 *apColl = multiSelectCollSeq(pParse, p, i);
1850 if( 0==*apColl ){ 2433 if( 0==*apColl ){
1851 *apColl = db->pDfltColl; 2434 *apColl = db->pDfltColl;
1852 } 2435 }
1853 } 2436 }
1854 2437
1855 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2438 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1856 for(i=0; i<2; i++){ 2439 for(i=0; i<2; i++){
1857 int addr = pLoop->addrOpenEphm[i]; 2440 int addr = pLoop->addrOpenEphm[i];
1858 if( addr<0 ){ 2441 if( addr<0 ){
1859 /* If [0] is unused then [1] is also unused. So we can 2442 /* If [0] is unused then [1] is also unused. So we can
1860 ** always safely abort as soon as the first unused slot is found */ 2443 ** always safely abort as soon as the first unused slot is found */
1861 assert( pLoop->addrOpenEphm[1]<0 ); 2444 assert( pLoop->addrOpenEphm[1]<0 );
1862 break; 2445 break;
1863 } 2446 }
1864 sqlite3VdbeChangeP2(v, addr, nCol); 2447 sqlite3VdbeChangeP2(v, addr, nCol);
1865 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 2448 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2449 P4_KEYINFO);
1866 pLoop->addrOpenEphm[i] = -1; 2450 pLoop->addrOpenEphm[i] = -1;
1867 } 2451 }
1868 } 2452 }
1869 sqlite3DbFree(db, pKeyInfo); 2453 sqlite3KeyInfoUnref(pKeyInfo);
1870 } 2454 }
1871 2455
1872 multi_select_end: 2456 multi_select_end:
1873 pDest->iMem = dest.iMem; 2457 pDest->iSdst = dest.iSdst;
1874 pDest->nMem = dest.nMem; 2458 pDest->nSdst = dest.nSdst;
1875 sqlite3SelectDelete(db, pDelete); 2459 sqlite3SelectDelete(db, pDelete);
1876 return rc; 2460 return rc;
1877 } 2461 }
1878 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2462 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1879 2463
1880 /* 2464 /*
1881 ** Code an output subroutine for a coroutine implementation of a 2465 ** Code an output subroutine for a coroutine implementation of a
1882 ** SELECT statment. 2466 ** SELECT statment.
1883 ** 2467 **
1884 ** The data to be output is contained in pIn->iMem. There are 2468 ** The data to be output is contained in pIn->iSdst. There are
1885 ** pIn->nMem columns to be output. pDest is where the output should 2469 ** pIn->nSdst columns to be output. pDest is where the output should
1886 ** be sent. 2470 ** be sent.
1887 ** 2471 **
1888 ** regReturn is the number of the register holding the subroutine 2472 ** regReturn is the number of the register holding the subroutine
1889 ** return address. 2473 ** return address.
1890 ** 2474 **
1891 ** If regPrev>0 then it is the first register in a vector that 2475 ** If regPrev>0 then it is the first register in a vector that
1892 ** records the previous output. mem[regPrev] is a flag that is false 2476 ** records the previous output. mem[regPrev] is a flag that is false
1893 ** if there has been no previous output. If regPrev>0 then code is 2477 ** if there has been no previous output. If regPrev>0 then code is
1894 ** generated to suppress duplicates. pKeyInfo is used for comparing 2478 ** generated to suppress duplicates. pKeyInfo is used for comparing
1895 ** keys. 2479 ** keys.
1896 ** 2480 **
1897 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2481 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1898 ** iBreak. 2482 ** iBreak.
1899 */ 2483 */
1900 static int generateOutputSubroutine( 2484 static int generateOutputSubroutine(
1901 Parse *pParse, /* Parsing context */ 2485 Parse *pParse, /* Parsing context */
1902 Select *p, /* The SELECT statement */ 2486 Select *p, /* The SELECT statement */
1903 SelectDest *pIn, /* Coroutine supplying data */ 2487 SelectDest *pIn, /* Coroutine supplying data */
1904 SelectDest *pDest, /* Where to send the data */ 2488 SelectDest *pDest, /* Where to send the data */
1905 int regReturn, /* The return address register */ 2489 int regReturn, /* The return address register */
1906 int regPrev, /* Previous result register. No uniqueness if 0 */ 2490 int regPrev, /* Previous result register. No uniqueness if 0 */
1907 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2491 KeyInfo *pKeyInfo, /* For comparing with previous entry */
1908 int p4type, /* The p4 type for pKeyInfo */
1909 int iBreak /* Jump here if we hit the LIMIT */ 2492 int iBreak /* Jump here if we hit the LIMIT */
1910 ){ 2493 ){
1911 Vdbe *v = pParse->pVdbe; 2494 Vdbe *v = pParse->pVdbe;
1912 int iContinue; 2495 int iContinue;
1913 int addr; 2496 int addr;
1914 2497
1915 addr = sqlite3VdbeCurrentAddr(v); 2498 addr = sqlite3VdbeCurrentAddr(v);
1916 iContinue = sqlite3VdbeMakeLabel(v); 2499 iContinue = sqlite3VdbeMakeLabel(v);
1917 2500
1918 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2501 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1919 */ 2502 */
1920 if( regPrev ){ 2503 if( regPrev ){
1921 int j1, j2; 2504 int j1, j2;
1922 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 2505 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
1923 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 2506 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
1924 (char*)pKeyInfo, p4type); 2507 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
1925 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 2508 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
1926 sqlite3VdbeJumpHere(v, j1); 2509 sqlite3VdbeJumpHere(v, j1);
1927 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 2510 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
1928 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2511 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1929 } 2512 }
1930 if( pParse->db->mallocFailed ) return 0; 2513 if( pParse->db->mallocFailed ) return 0;
1931 2514
1932 /* Suppress the the first OFFSET entries if there is an OFFSET clause 2515 /* Suppress the first OFFSET entries if there is an OFFSET clause
1933 */ 2516 */
1934 codeOffset(v, p, iContinue); 2517 codeOffset(v, p->iOffset, iContinue);
1935 2518
1936 switch( pDest->eDest ){ 2519 switch( pDest->eDest ){
1937 /* Store the result as data using a unique key. 2520 /* Store the result as data using a unique key.
1938 */ 2521 */
1939 case SRT_Table: 2522 case SRT_Table:
1940 case SRT_EphemTab: { 2523 case SRT_EphemTab: {
1941 int r1 = sqlite3GetTempReg(pParse); 2524 int r1 = sqlite3GetTempReg(pParse);
1942 int r2 = sqlite3GetTempReg(pParse); 2525 int r2 = sqlite3GetTempReg(pParse);
1943 testcase( pDest->eDest==SRT_Table ); 2526 testcase( pDest->eDest==SRT_Table );
1944 testcase( pDest->eDest==SRT_EphemTab ); 2527 testcase( pDest->eDest==SRT_EphemTab );
1945 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 2528 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
1946 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 2529 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
1947 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 2530 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
1948 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2531 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1949 sqlite3ReleaseTempReg(pParse, r2); 2532 sqlite3ReleaseTempReg(pParse, r2);
1950 sqlite3ReleaseTempReg(pParse, r1); 2533 sqlite3ReleaseTempReg(pParse, r1);
1951 break; 2534 break;
1952 } 2535 }
1953 2536
1954 #ifndef SQLITE_OMIT_SUBQUERY 2537 #ifndef SQLITE_OMIT_SUBQUERY
1955 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2538 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1956 ** then there should be a single item on the stack. Write this 2539 ** then there should be a single item on the stack. Write this
1957 ** item into the set table with bogus data. 2540 ** item into the set table with bogus data.
1958 */ 2541 */
1959 case SRT_Set: { 2542 case SRT_Set: {
1960 int r1; 2543 int r1;
1961 assert( pIn->nMem==1 ); 2544 assert( pIn->nSdst==1 );
1962 p->affinity = 2545 pDest->affSdst =
1963 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 2546 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
1964 r1 = sqlite3GetTempReg(pParse); 2547 r1 = sqlite3GetTempReg(pParse);
1965 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 2548 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
1966 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 2549 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
1967 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 2550 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
1968 sqlite3ReleaseTempReg(pParse, r1); 2551 sqlite3ReleaseTempReg(pParse, r1);
1969 break; 2552 break;
1970 } 2553 }
1971 2554
1972 #if 0 /* Never occurs on an ORDER BY query */ 2555 #if 0 /* Never occurs on an ORDER BY query */
1973 /* If any row exist in the result set, record that fact and abort. 2556 /* If any row exist in the result set, record that fact and abort.
1974 */ 2557 */
1975 case SRT_Exists: { 2558 case SRT_Exists: {
1976 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 2559 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
1977 /* The LIMIT clause will terminate the loop for us */ 2560 /* The LIMIT clause will terminate the loop for us */
1978 break; 2561 break;
1979 } 2562 }
1980 #endif 2563 #endif
1981 2564
1982 /* If this is a scalar select that is part of an expression, then 2565 /* If this is a scalar select that is part of an expression, then
1983 ** store the results in the appropriate memory cell and break out 2566 ** store the results in the appropriate memory cell and break out
1984 ** of the scan loop. 2567 ** of the scan loop.
1985 */ 2568 */
1986 case SRT_Mem: { 2569 case SRT_Mem: {
1987 assert( pIn->nMem==1 ); 2570 assert( pIn->nSdst==1 );
1988 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 2571 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
1989 /* The LIMIT clause will jump out of the loop for us */ 2572 /* The LIMIT clause will jump out of the loop for us */
1990 break; 2573 break;
1991 } 2574 }
1992 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2575 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1993 2576
1994 /* The results are stored in a sequence of registers 2577 /* The results are stored in a sequence of registers
1995 ** starting at pDest->iMem. Then the co-routine yields. 2578 ** starting at pDest->iSdst. Then the co-routine yields.
1996 */ 2579 */
1997 case SRT_Coroutine: { 2580 case SRT_Coroutine: {
1998 if( pDest->iMem==0 ){ 2581 if( pDest->iSdst==0 ){
1999 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 2582 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2000 pDest->nMem = pIn->nMem; 2583 pDest->nSdst = pIn->nSdst;
2001 } 2584 }
2002 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 2585 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2003 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 2586 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2004 break; 2587 break;
2005 } 2588 }
2006 2589
2007 /* If none of the above, then the result destination must be 2590 /* If none of the above, then the result destination must be
2008 ** SRT_Output. This routine is never called with any other 2591 ** SRT_Output. This routine is never called with any other
2009 ** destination other than the ones handled above or SRT_Output. 2592 ** destination other than the ones handled above or SRT_Output.
2010 ** 2593 **
2011 ** For SRT_Output, results are stored in a sequence of registers. 2594 ** For SRT_Output, results are stored in a sequence of registers.
2012 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2595 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2013 ** return the next row of result. 2596 ** return the next row of result.
2014 */ 2597 */
2015 default: { 2598 default: {
2016 assert( pDest->eDest==SRT_Output ); 2599 assert( pDest->eDest==SRT_Output );
2017 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 2600 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2018 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 2601 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2019 break; 2602 break;
2020 } 2603 }
2021 } 2604 }
2022 2605
2023 /* Jump to the end of the loop if the LIMIT is reached. 2606 /* Jump to the end of the loop if the LIMIT is reached.
2024 */ 2607 */
2025 if( p->iLimit ){ 2608 if( p->iLimit ){
2026 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 2609 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
2027 } 2610 }
2028 2611
2029 /* Generate the subroutine return 2612 /* Generate the subroutine return
2030 */ 2613 */
2031 sqlite3VdbeResolveLabel(v, iContinue); 2614 sqlite3VdbeResolveLabel(v, iContinue);
2032 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2615 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2033 2616
2034 return addr; 2617 return addr;
2035 } 2618 }
2036 2619
(...skipping 87 matching lines...) Expand 10 before | Expand all | Expand 10 after
2124 Parse *pParse, /* Parsing context */ 2707 Parse *pParse, /* Parsing context */
2125 Select *p, /* The right-most of SELECTs to be coded */ 2708 Select *p, /* The right-most of SELECTs to be coded */
2126 SelectDest *pDest /* What to do with query results */ 2709 SelectDest *pDest /* What to do with query results */
2127 ){ 2710 ){
2128 int i, j; /* Loop counters */ 2711 int i, j; /* Loop counters */
2129 Select *pPrior; /* Another SELECT immediately to our left */ 2712 Select *pPrior; /* Another SELECT immediately to our left */
2130 Vdbe *v; /* Generate code to this VDBE */ 2713 Vdbe *v; /* Generate code to this VDBE */
2131 SelectDest destA; /* Destination for coroutine A */ 2714 SelectDest destA; /* Destination for coroutine A */
2132 SelectDest destB; /* Destination for coroutine B */ 2715 SelectDest destB; /* Destination for coroutine B */
2133 int regAddrA; /* Address register for select-A coroutine */ 2716 int regAddrA; /* Address register for select-A coroutine */
2134 int regEofA; /* Flag to indicate when select-A is complete */
2135 int regAddrB; /* Address register for select-B coroutine */ 2717 int regAddrB; /* Address register for select-B coroutine */
2136 int regEofB; /* Flag to indicate when select-B is complete */
2137 int addrSelectA; /* Address of the select-A coroutine */ 2718 int addrSelectA; /* Address of the select-A coroutine */
2138 int addrSelectB; /* Address of the select-B coroutine */ 2719 int addrSelectB; /* Address of the select-B coroutine */
2139 int regOutA; /* Address register for the output-A subroutine */ 2720 int regOutA; /* Address register for the output-A subroutine */
2140 int regOutB; /* Address register for the output-B subroutine */ 2721 int regOutB; /* Address register for the output-B subroutine */
2141 int addrOutA; /* Address of the output-A subroutine */ 2722 int addrOutA; /* Address of the output-A subroutine */
2142 int addrOutB = 0; /* Address of the output-B subroutine */ 2723 int addrOutB = 0; /* Address of the output-B subroutine */
2143 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2724 int addrEofA; /* Address of the select-A-exhausted subroutine */
2725 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
2144 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2726 int addrEofB; /* Address of the select-B-exhausted subroutine */
2145 int addrAltB; /* Address of the A<B subroutine */ 2727 int addrAltB; /* Address of the A<B subroutine */
2146 int addrAeqB; /* Address of the A==B subroutine */ 2728 int addrAeqB; /* Address of the A==B subroutine */
2147 int addrAgtB; /* Address of the A>B subroutine */ 2729 int addrAgtB; /* Address of the A>B subroutine */
2148 int regLimitA; /* Limit register for select-A */ 2730 int regLimitA; /* Limit register for select-A */
2149 int regLimitB; /* Limit register for select-A */ 2731 int regLimitB; /* Limit register for select-A */
2150 int regPrev; /* A range of registers to hold previous output */ 2732 int regPrev; /* A range of registers to hold previous output */
2151 int savedLimit; /* Saved value of p->iLimit */ 2733 int savedLimit; /* Saved value of p->iLimit */
2152 int savedOffset; /* Saved value of p->iOffset */ 2734 int savedOffset; /* Saved value of p->iOffset */
2153 int labelCmpr; /* Label for the start of the merge algorithm */ 2735 int labelCmpr; /* Label for the start of the merge algorithm */
(...skipping 30 matching lines...) Expand all
2184 nOrderBy = pOrderBy->nExpr; 2766 nOrderBy = pOrderBy->nExpr;
2185 2767
2186 /* For operators other than UNION ALL we have to make sure that 2768 /* For operators other than UNION ALL we have to make sure that
2187 ** the ORDER BY clause covers every term of the result set. Add 2769 ** the ORDER BY clause covers every term of the result set. Add
2188 ** terms to the ORDER BY clause as necessary. 2770 ** terms to the ORDER BY clause as necessary.
2189 */ 2771 */
2190 if( op!=TK_ALL ){ 2772 if( op!=TK_ALL ){
2191 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2773 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2192 struct ExprList_item *pItem; 2774 struct ExprList_item *pItem;
2193 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2775 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2194 assert( pItem->iCol>0 ); 2776 assert( pItem->u.x.iOrderByCol>0 );
2195 if( pItem->iCol==i ) break; 2777 if( pItem->u.x.iOrderByCol==i ) break;
2196 } 2778 }
2197 if( j==nOrderBy ){ 2779 if( j==nOrderBy ){
2198 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2780 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2199 if( pNew==0 ) return SQLITE_NOMEM; 2781 if( pNew==0 ) return SQLITE_NOMEM;
2200 pNew->flags |= EP_IntValue; 2782 pNew->flags |= EP_IntValue;
2201 pNew->u.iValue = i; 2783 pNew->u.iValue = i;
2202 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2784 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2203 pOrderBy->a[nOrderBy++].iCol = (u16)i; 2785 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2204 } 2786 }
2205 } 2787 }
2206 } 2788 }
2207 2789
2208 /* Compute the comparison permutation and keyinfo that is used with 2790 /* Compute the comparison permutation and keyinfo that is used with
2209 ** the permutation used to determine if the next 2791 ** the permutation used to determine if the next
2210 ** row of results comes from selectA or selectB. Also add explicit 2792 ** row of results comes from selectA or selectB. Also add explicit
2211 ** collations to the ORDER BY clause terms so that when the subqueries 2793 ** collations to the ORDER BY clause terms so that when the subqueries
2212 ** to the right and the left are evaluated, they use the correct 2794 ** to the right and the left are evaluated, they use the correct
2213 ** collation. 2795 ** collation.
2214 */ 2796 */
2215 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2797 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2216 if( aPermute ){ 2798 if( aPermute ){
2217 struct ExprList_item *pItem; 2799 struct ExprList_item *pItem;
2218 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2800 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2219 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); 2801 assert( pItem->u.x.iOrderByCol>0
2220 aPermute[i] = pItem->iCol - 1; 2802 && pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2803 aPermute[i] = pItem->u.x.iOrderByCol - 1;
2221 } 2804 }
2222 pKeyMerge = 2805 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2223 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2224 if( pKeyMerge ){
2225 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2226 pKeyMerge->nField = (u16)nOrderBy;
2227 pKeyMerge->enc = ENC(db);
2228 for(i=0; i<nOrderBy; i++){
2229 CollSeq *pColl;
2230 Expr *pTerm = pOrderBy->a[i].pExpr;
2231 if( pTerm->flags & EP_ExpCollate ){
2232 pColl = pTerm->pColl;
2233 }else{
2234 pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2235 pTerm->flags |= EP_ExpCollate;
2236 pTerm->pColl = pColl;
2237 }
2238 pKeyMerge->aColl[i] = pColl;
2239 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2240 }
2241 }
2242 }else{ 2806 }else{
2243 pKeyMerge = 0; 2807 pKeyMerge = 0;
2244 } 2808 }
2245 2809
2246 /* Reattach the ORDER BY clause to the query. 2810 /* Reattach the ORDER BY clause to the query.
2247 */ 2811 */
2248 p->pOrderBy = pOrderBy; 2812 p->pOrderBy = pOrderBy;
2249 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2813 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2250 2814
2251 /* Allocate a range of temporary registers and the KeyInfo needed 2815 /* Allocate a range of temporary registers and the KeyInfo needed
2252 ** for the logic that removes duplicate result rows when the 2816 ** for the logic that removes duplicate result rows when the
2253 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2817 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2254 */ 2818 */
2255 if( op==TK_ALL ){ 2819 if( op==TK_ALL ){
2256 regPrev = 0; 2820 regPrev = 0;
2257 }else{ 2821 }else{
2258 int nExpr = p->pEList->nExpr; 2822 int nExpr = p->pEList->nExpr;
2259 assert( nOrderBy>=nExpr || db->mallocFailed ); 2823 assert( nOrderBy>=nExpr || db->mallocFailed );
2260 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2824 regPrev = pParse->nMem+1;
2825 pParse->nMem += nExpr+1;
2261 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2826 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2262 pKeyDup = sqlite3DbMallocZero(db, 2827 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2263 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2264 if( pKeyDup ){ 2828 if( pKeyDup ){
2265 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2829 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2266 pKeyDup->nField = (u16)nExpr;
2267 pKeyDup->enc = ENC(db);
2268 for(i=0; i<nExpr; i++){ 2830 for(i=0; i<nExpr; i++){
2269 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2831 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2270 pKeyDup->aSortOrder[i] = 0; 2832 pKeyDup->aSortOrder[i] = 0;
2271 } 2833 }
2272 } 2834 }
2273 } 2835 }
2274 2836
2275 /* Separate the left and the right query from one another 2837 /* Separate the left and the right query from one another
2276 */ 2838 */
2277 p->pPrior = 0; 2839 p->pPrior = 0;
2840 pPrior->pNext = 0;
2278 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2841 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2279 if( pPrior->pPrior==0 ){ 2842 if( pPrior->pPrior==0 ){
2280 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2843 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2281 } 2844 }
2282 2845
2283 /* Compute the limit registers */ 2846 /* Compute the limit registers */
2284 computeLimitRegisters(pParse, p, labelEnd); 2847 computeLimitRegisters(pParse, p, labelEnd);
2285 if( p->iLimit && op==TK_ALL ){ 2848 if( p->iLimit && op==TK_ALL ){
2286 regLimitA = ++pParse->nMem; 2849 regLimitA = ++pParse->nMem;
2287 regLimitB = ++pParse->nMem; 2850 regLimitB = ++pParse->nMem;
2288 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2851 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2289 regLimitA); 2852 regLimitA);
2290 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2853 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2291 }else{ 2854 }else{
2292 regLimitA = regLimitB = 0; 2855 regLimitA = regLimitB = 0;
2293 } 2856 }
2294 sqlite3ExprDelete(db, p->pLimit); 2857 sqlite3ExprDelete(db, p->pLimit);
2295 p->pLimit = 0; 2858 p->pLimit = 0;
2296 sqlite3ExprDelete(db, p->pOffset); 2859 sqlite3ExprDelete(db, p->pOffset);
2297 p->pOffset = 0; 2860 p->pOffset = 0;
2298 2861
2299 regAddrA = ++pParse->nMem; 2862 regAddrA = ++pParse->nMem;
2300 regEofA = ++pParse->nMem;
2301 regAddrB = ++pParse->nMem; 2863 regAddrB = ++pParse->nMem;
2302 regEofB = ++pParse->nMem;
2303 regOutA = ++pParse->nMem; 2864 regOutA = ++pParse->nMem;
2304 regOutB = ++pParse->nMem; 2865 regOutB = ++pParse->nMem;
2305 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2866 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2306 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2867 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2307 2868
2308 /* Jump past the various subroutines and coroutines to the main
2309 ** merge loop
2310 */
2311 j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2312 addrSelectA = sqlite3VdbeCurrentAddr(v);
2313
2314
2315 /* Generate a coroutine to evaluate the SELECT statement to the 2869 /* Generate a coroutine to evaluate the SELECT statement to the
2316 ** left of the compound operator - the "A" select. 2870 ** left of the compound operator - the "A" select.
2317 */ 2871 */
2318 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2872 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2873 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2874 VdbeComment((v, "left SELECT"));
2319 pPrior->iLimit = regLimitA; 2875 pPrior->iLimit = regLimitA;
2320 explainSetInteger(iSub1, pParse->iNextSelectId); 2876 explainSetInteger(iSub1, pParse->iNextSelectId);
2321 sqlite3Select(pParse, pPrior, &destA); 2877 sqlite3Select(pParse, pPrior, &destA);
2322 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2878 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2323 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2879 sqlite3VdbeJumpHere(v, j1);
2324 VdbeNoopComment((v, "End coroutine for left SELECT"));
2325 2880
2326 /* Generate a coroutine to evaluate the SELECT statement on 2881 /* Generate a coroutine to evaluate the SELECT statement on
2327 ** the right - the "B" select 2882 ** the right - the "B" select
2328 */ 2883 */
2329 addrSelectB = sqlite3VdbeCurrentAddr(v); 2884 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2330 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2885 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2886 VdbeComment((v, "right SELECT"));
2331 savedLimit = p->iLimit; 2887 savedLimit = p->iLimit;
2332 savedOffset = p->iOffset; 2888 savedOffset = p->iOffset;
2333 p->iLimit = regLimitB; 2889 p->iLimit = regLimitB;
2334 p->iOffset = 0; 2890 p->iOffset = 0;
2335 explainSetInteger(iSub2, pParse->iNextSelectId); 2891 explainSetInteger(iSub2, pParse->iNextSelectId);
2336 sqlite3Select(pParse, p, &destB); 2892 sqlite3Select(pParse, p, &destB);
2337 p->iLimit = savedLimit; 2893 p->iLimit = savedLimit;
2338 p->iOffset = savedOffset; 2894 p->iOffset = savedOffset;
2339 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2895 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2340 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2341 VdbeNoopComment((v, "End coroutine for right SELECT"));
2342 2896
2343 /* Generate a subroutine that outputs the current row of the A 2897 /* Generate a subroutine that outputs the current row of the A
2344 ** select as the next output row of the compound select. 2898 ** select as the next output row of the compound select.
2345 */ 2899 */
2346 VdbeNoopComment((v, "Output routine for A")); 2900 VdbeNoopComment((v, "Output routine for A"));
2347 addrOutA = generateOutputSubroutine(pParse, 2901 addrOutA = generateOutputSubroutine(pParse,
2348 p, &destA, pDest, regOutA, 2902 p, &destA, pDest, regOutA,
2349 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2903 regPrev, pKeyDup, labelEnd);
2350 2904
2351 /* Generate a subroutine that outputs the current row of the B 2905 /* Generate a subroutine that outputs the current row of the B
2352 ** select as the next output row of the compound select. 2906 ** select as the next output row of the compound select.
2353 */ 2907 */
2354 if( op==TK_ALL || op==TK_UNION ){ 2908 if( op==TK_ALL || op==TK_UNION ){
2355 VdbeNoopComment((v, "Output routine for B")); 2909 VdbeNoopComment((v, "Output routine for B"));
2356 addrOutB = generateOutputSubroutine(pParse, 2910 addrOutB = generateOutputSubroutine(pParse,
2357 p, &destB, pDest, regOutB, 2911 p, &destB, pDest, regOutB,
2358 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2912 regPrev, pKeyDup, labelEnd);
2359 } 2913 }
2914 sqlite3KeyInfoUnref(pKeyDup);
2360 2915
2361 /* Generate a subroutine to run when the results from select A 2916 /* Generate a subroutine to run when the results from select A
2362 ** are exhausted and only data in select B remains. 2917 ** are exhausted and only data in select B remains.
2363 */ 2918 */
2364 VdbeNoopComment((v, "eof-A subroutine"));
2365 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2919 if( op==TK_EXCEPT || op==TK_INTERSECT ){
2366 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2920 addrEofA_noB = addrEofA = labelEnd;
2367 }else{ 2921 }else{
2368 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2922 VdbeNoopComment((v, "eof-A subroutine"));
2369 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2923 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2370 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2924 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2925 VdbeCoverage(v);
2371 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2926 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2372 p->nSelectRow += pPrior->nSelectRow; 2927 p->nSelectRow += pPrior->nSelectRow;
2373 } 2928 }
2374 2929
2375 /* Generate a subroutine to run when the results from select B 2930 /* Generate a subroutine to run when the results from select B
2376 ** are exhausted and only data in select A remains. 2931 ** are exhausted and only data in select A remains.
2377 */ 2932 */
2378 if( op==TK_INTERSECT ){ 2933 if( op==TK_INTERSECT ){
2379 addrEofB = addrEofA; 2934 addrEofB = addrEofA;
2380 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2935 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2381 }else{ 2936 }else{
2382 VdbeNoopComment((v, "eof-B subroutine")); 2937 VdbeNoopComment((v, "eof-B subroutine"));
2383 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2938 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2384 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2939 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
2385 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2386 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2940 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2387 } 2941 }
2388 2942
2389 /* Generate code to handle the case of A<B 2943 /* Generate code to handle the case of A<B
2390 */ 2944 */
2391 VdbeNoopComment((v, "A-lt-B subroutine")); 2945 VdbeNoopComment((v, "A-lt-B subroutine"));
2392 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2946 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2393 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2947 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2394 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2395 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2948 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2396 2949
2397 /* Generate code to handle the case of A==B 2950 /* Generate code to handle the case of A==B
2398 */ 2951 */
2399 if( op==TK_ALL ){ 2952 if( op==TK_ALL ){
2400 addrAeqB = addrAltB; 2953 addrAeqB = addrAltB;
2401 }else if( op==TK_INTERSECT ){ 2954 }else if( op==TK_INTERSECT ){
2402 addrAeqB = addrAltB; 2955 addrAeqB = addrAltB;
2403 addrAltB++; 2956 addrAltB++;
2404 }else{ 2957 }else{
2405 VdbeNoopComment((v, "A-eq-B subroutine")); 2958 VdbeNoopComment((v, "A-eq-B subroutine"));
2406 addrAeqB = 2959 addrAeqB =
2407 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2960 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2408 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2409 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2961 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2410 } 2962 }
2411 2963
2412 /* Generate code to handle the case of A>B 2964 /* Generate code to handle the case of A>B
2413 */ 2965 */
2414 VdbeNoopComment((v, "A-gt-B subroutine")); 2966 VdbeNoopComment((v, "A-gt-B subroutine"));
2415 addrAgtB = sqlite3VdbeCurrentAddr(v); 2967 addrAgtB = sqlite3VdbeCurrentAddr(v);
2416 if( op==TK_ALL || op==TK_UNION ){ 2968 if( op==TK_ALL || op==TK_UNION ){
2417 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2969 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2418 } 2970 }
2419 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2971 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2420 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2421 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2972 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2422 2973
2423 /* This code runs once to initialize everything. 2974 /* This code runs once to initialize everything.
2424 */ 2975 */
2425 sqlite3VdbeJumpHere(v, j1); 2976 sqlite3VdbeJumpHere(v, j1);
2426 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2977 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
2427 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2978 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2428 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2429 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2430 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2431 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2432 2979
2433 /* Implement the main merge loop 2980 /* Implement the main merge loop
2434 */ 2981 */
2435 sqlite3VdbeResolveLabel(v, labelCmpr); 2982 sqlite3VdbeResolveLabel(v, labelCmpr);
2436 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2983 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2437 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2984 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
2438 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2985 (char*)pKeyMerge, P4_KEYINFO);
2439 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2986 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
2440 2987 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
2441 /* Release temporary registers
2442 */
2443 if( regPrev ){
2444 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2445 }
2446 2988
2447 /* Jump to the this point in order to terminate the query. 2989 /* Jump to the this point in order to terminate the query.
2448 */ 2990 */
2449 sqlite3VdbeResolveLabel(v, labelEnd); 2991 sqlite3VdbeResolveLabel(v, labelEnd);
2450 2992
2451 /* Set the number of output columns 2993 /* Set the number of output columns
2452 */ 2994 */
2453 if( pDest->eDest==SRT_Output ){ 2995 if( pDest->eDest==SRT_Output ){
2454 Select *pFirst = pPrior; 2996 Select *pFirst = pPrior;
2455 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2997 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2456 generateColumnNames(pParse, 0, pFirst->pEList); 2998 generateColumnNames(pParse, 0, pFirst->pEList);
2457 } 2999 }
2458 3000
2459 /* Reassembly the compound query so that it will be freed correctly 3001 /* Reassembly the compound query so that it will be freed correctly
2460 ** by the calling function */ 3002 ** by the calling function */
2461 if( p->pPrior ){ 3003 if( p->pPrior ){
2462 sqlite3SelectDelete(db, p->pPrior); 3004 sqlite3SelectDelete(db, p->pPrior);
2463 } 3005 }
2464 p->pPrior = pPrior; 3006 p->pPrior = pPrior;
3007 pPrior->pNext = p;
2465 3008
2466 /*** TBD: Insert subroutine calls to close cursors on incomplete 3009 /*** TBD: Insert subroutine calls to close cursors on incomplete
2467 **** subqueries ****/ 3010 **** subqueries ****/
2468 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3011 explainComposite(pParse, p->op, iSub1, iSub2, 0);
2469 return SQLITE_OK; 3012 return SQLITE_OK;
2470 } 3013 }
2471 #endif 3014 #endif
2472 3015
2473 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3016 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2474 /* Forward Declarations */ 3017 /* Forward Declarations */
(...skipping 21 matching lines...) Expand all
2496 ){ 3039 ){
2497 if( pExpr==0 ) return 0; 3040 if( pExpr==0 ) return 0;
2498 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3041 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2499 if( pExpr->iColumn<0 ){ 3042 if( pExpr->iColumn<0 ){
2500 pExpr->op = TK_NULL; 3043 pExpr->op = TK_NULL;
2501 }else{ 3044 }else{
2502 Expr *pNew; 3045 Expr *pNew;
2503 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3046 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2504 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3047 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2505 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3048 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2506 if( pNew && pExpr->pColl ){
2507 pNew->pColl = pExpr->pColl;
2508 }
2509 sqlite3ExprDelete(db, pExpr); 3049 sqlite3ExprDelete(db, pExpr);
2510 pExpr = pNew; 3050 pExpr = pNew;
2511 } 3051 }
2512 }else{ 3052 }else{
2513 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3053 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2514 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3054 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2515 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3055 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2516 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3056 substSelect(db, pExpr->x.pSelect, iTable, pEList);
2517 }else{ 3057 }else{
2518 substExprList(db, pExpr->x.pList, iTable, pEList); 3058 substExprList(db, pExpr->x.pList, iTable, pEList);
(...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after
2553 if( ALWAYS(pSrc) ){ 3093 if( ALWAYS(pSrc) ){
2554 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3094 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2555 substSelect(db, pItem->pSelect, iTable, pEList); 3095 substSelect(db, pItem->pSelect, iTable, pEList);
2556 } 3096 }
2557 } 3097 }
2558 } 3098 }
2559 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3099 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2560 3100
2561 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3101 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2562 /* 3102 /*
2563 ** This routine attempts to flatten subqueries in order to speed 3103 ** This routine attempts to flatten subqueries as a performance optimization.
2564 ** execution. It returns 1 if it makes changes and 0 if no flattening 3104 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
2565 ** occurs.
2566 ** 3105 **
2567 ** To understand the concept of flattening, consider the following 3106 ** To understand the concept of flattening, consider the following
2568 ** query: 3107 ** query:
2569 ** 3108 **
2570 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3109 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2571 ** 3110 **
2572 ** The default way of implementing this query is to execute the 3111 ** The default way of implementing this query is to execute the
2573 ** subquery first and store the results in a temporary table, then 3112 ** subquery first and store the results in a temporary table, then
2574 ** run the outer query on that temporary table. This requires two 3113 ** run the outer query on that temporary table. This requires two
2575 ** passes over the data. Furthermore, because the temporary table 3114 ** passes over the data. Furthermore, because the temporary table
2576 ** has no indices, the WHERE clause on the outer query cannot be 3115 ** has no indices, the WHERE clause on the outer query cannot be
2577 ** optimized. 3116 ** optimized.
2578 ** 3117 **
2579 ** This routine attempts to rewrite queries such as the above into 3118 ** This routine attempts to rewrite queries such as the above into
2580 ** a single flat select, like this: 3119 ** a single flat select, like this:
2581 ** 3120 **
2582 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3121 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2583 ** 3122 **
2584 ** The code generated for this simpification gives the same result 3123 ** The code generated for this simplification gives the same result
2585 ** but only has to scan the data once. And because indices might 3124 ** but only has to scan the data once. And because indices might
2586 ** exist on the table t1, a complete scan of the data might be 3125 ** exist on the table t1, a complete scan of the data might be
2587 ** avoided. 3126 ** avoided.
2588 ** 3127 **
2589 ** Flattening is only attempted if all of the following are true: 3128 ** Flattening is only attempted if all of the following are true:
2590 ** 3129 **
2591 ** (1) The subquery and the outer query do not both use aggregates. 3130 ** (1) The subquery and the outer query do not both use aggregates.
2592 ** 3131 **
2593 ** (2) The subquery is not an aggregate or the outer query is not a join. 3132 ** (2) The subquery is not an aggregate or the outer query is not a join.
2594 ** 3133 **
2595 ** (3) The subquery is not the right operand of a left outer join 3134 ** (3) The subquery is not the right operand of a left outer join
2596 ** (Originally ticket #306. Strengthened by ticket #3300) 3135 ** (Originally ticket #306. Strengthened by ticket #3300)
2597 ** 3136 **
2598 ** (4) The subquery is not DISTINCT. 3137 ** (4) The subquery is not DISTINCT.
2599 ** 3138 **
2600 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3139 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
2601 ** sub-queries that were excluded from this optimization. Restriction 3140 ** sub-queries that were excluded from this optimization. Restriction
2602 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3141 ** (4) has since been expanded to exclude all DISTINCT subqueries.
2603 ** 3142 **
2604 ** (6) The subquery does not use aggregates or the outer query is not 3143 ** (6) The subquery does not use aggregates or the outer query is not
2605 ** DISTINCT. 3144 ** DISTINCT.
2606 ** 3145 **
2607 ** (7) The subquery has a FROM clause. 3146 ** (7) The subquery has a FROM clause. TODO: For subqueries without
3147 ** A FROM clause, consider adding a FROM close with the special
3148 ** table sqlite_once that consists of a single row containing a
3149 ** single NULL.
2608 ** 3150 **
2609 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3151 ** (8) The subquery does not use LIMIT or the outer query is not a join.
2610 ** 3152 **
2611 ** (9) The subquery does not use LIMIT or the outer query does not use 3153 ** (9) The subquery does not use LIMIT or the outer query does not use
2612 ** aggregates. 3154 ** aggregates.
2613 ** 3155 **
2614 ** (10) The subquery does not use aggregates or the outer query does not 3156 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
2615 ** use LIMIT. 3157 ** accidently carried the comment forward until 2014-09-15. Original
3158 ** text: "The subquery does not use aggregates or the outer query does no t
3159 ** use LIMIT."
2616 ** 3160 **
2617 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3161 ** (11) The subquery and the outer query do not both have ORDER BY clauses.
2618 ** 3162 **
2619 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3163 ** (**) Not implemented. Subsumed into restriction (3). Was previously
2620 ** a separate restriction deriving from ticket #350. 3164 ** a separate restriction deriving from ticket #350.
2621 ** 3165 **
2622 ** (13) The subquery and outer query do not both use LIMIT. 3166 ** (13) The subquery and outer query do not both use LIMIT.
2623 ** 3167 **
2624 ** (14) The subquery does not use OFFSET. 3168 ** (14) The subquery does not use OFFSET.
2625 ** 3169 **
2626 ** (15) The outer query is not part of a compound select or the 3170 ** (15) The outer query is not part of a compound select or the
2627 ** subquery does not have a LIMIT clause. 3171 ** subquery does not have a LIMIT clause.
2628 ** (See ticket #2339 and ticket [02a8e81d44]). 3172 ** (See ticket #2339 and ticket [02a8e81d44]).
2629 ** 3173 **
2630 ** (16) The outer query is not an aggregate or the subquery does 3174 ** (16) The outer query is not an aggregate or the subquery does
2631 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3175 ** not contain ORDER BY. (Ticket #2942) This used to not matter
2632 ** until we introduced the group_concat() function. 3176 ** until we introduced the group_concat() function.
2633 ** 3177 **
2634 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3178 ** (17) The sub-query is not a compound select, or it is a UNION ALL
2635 ** compound clause made up entirely of non-aggregate queries, and 3179 ** compound clause made up entirely of non-aggregate queries, and
2636 ** the parent query: 3180 ** the parent query:
2637 ** 3181 **
2638 ** * is not itself part of a compound select, 3182 ** * is not itself part of a compound select,
2639 ** * is not an aggregate or DISTINCT query, and 3183 ** * is not an aggregate or DISTINCT query, and
2640 ** * has no other tables or sub-selects in the FROM clause. 3184 ** * is not a join
2641 ** 3185 **
2642 ** The parent and sub-query may contain WHERE clauses. Subject to 3186 ** The parent and sub-query may contain WHERE clauses. Subject to
2643 ** rules (11), (13) and (14), they may also contain ORDER BY, 3187 ** rules (11), (13) and (14), they may also contain ORDER BY,
2644 ** LIMIT and OFFSET clauses. 3188 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3189 ** operator other than UNION ALL because all the other compound
3190 ** operators have an implied DISTINCT which is disallowed by
3191 ** restriction (4).
3192 **
3193 ** Also, each component of the sub-query must return the same number
3194 ** of result columns. This is actually a requirement for any compound
3195 ** SELECT statement, but all the code here does is make sure that no
3196 ** such (illegal) sub-query is flattened. The caller will detect the
3197 ** syntax error and return a detailed message.
2645 ** 3198 **
2646 ** (18) If the sub-query is a compound select, then all terms of the 3199 ** (18) If the sub-query is a compound select, then all terms of the
2647 ** ORDER by clause of the parent must be simple references to 3200 ** ORDER by clause of the parent must be simple references to
2648 ** columns of the sub-query. 3201 ** columns of the sub-query.
2649 ** 3202 **
2650 ** (19) The subquery does not use LIMIT or the outer query does not 3203 ** (19) The subquery does not use LIMIT or the outer query does not
2651 ** have a WHERE clause. 3204 ** have a WHERE clause.
2652 ** 3205 **
2653 ** (20) If the sub-query is a compound select, then it must not use 3206 ** (20) If the sub-query is a compound select, then it must not use
2654 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3207 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
2655 ** somewhat by saying that the terms of the ORDER BY clause must 3208 ** somewhat by saying that the terms of the ORDER BY clause must
2656 ** appear as unmodified result columns in the outer query. But 3209 ** appear as unmodified result columns in the outer query. But we
2657 ** have other optimizations in mind to deal with that case. 3210 ** have other optimizations in mind to deal with that case.
2658 ** 3211 **
2659 ** (21) The subquery does not use LIMIT or the outer query is not 3212 ** (21) The subquery does not use LIMIT or the outer query is not
2660 ** DISTINCT. (See ticket [752e1646fc]). 3213 ** DISTINCT. (See ticket [752e1646fc]).
2661 ** 3214 **
3215 ** (22) The subquery is not a recursive CTE.
3216 **
3217 ** (23) The parent is not a recursive CTE, or the sub-query is not a
3218 ** compound query. This restriction is because transforming the
3219 ** parent to a compound query confuses the code that handles
3220 ** recursive queries in multiSelect().
3221 **
3222 ** (24) The subquery is not an aggregate that uses the built-in min() or
3223 ** or max() functions. (Without this restriction, a query like:
3224 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3225 ** return the value X for which Y was maximal.)
3226 **
3227 **
2662 ** In this routine, the "p" parameter is a pointer to the outer query. 3228 ** In this routine, the "p" parameter is a pointer to the outer query.
2663 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3229 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
2664 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3230 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2665 ** 3231 **
2666 ** If flattening is not attempted, this routine is a no-op and returns 0. 3232 ** If flattening is not attempted, this routine is a no-op and returns 0.
2667 ** If flattening is attempted this routine returns 1. 3233 ** If flattening is attempted this routine returns 1.
2668 ** 3234 **
2669 ** All of the expression analysis must occur on both the outer query and 3235 ** All of the expression analysis must occur on both the outer query and
2670 ** the subquery before this routine runs. 3236 ** the subquery before this routine runs.
2671 */ 3237 */
(...skipping 14 matching lines...) Expand all
2686 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3252 int iParent; /* VDBE cursor number of the pSub result set temp table */
2687 int i; /* Loop counter */ 3253 int i; /* Loop counter */
2688 Expr *pWhere; /* The WHERE clause */ 3254 Expr *pWhere; /* The WHERE clause */
2689 struct SrcList_item *pSubitem; /* The subquery */ 3255 struct SrcList_item *pSubitem; /* The subquery */
2690 sqlite3 *db = pParse->db; 3256 sqlite3 *db = pParse->db;
2691 3257
2692 /* Check to see if flattening is permitted. Return 0 if not. 3258 /* Check to see if flattening is permitted. Return 0 if not.
2693 */ 3259 */
2694 assert( p!=0 ); 3260 assert( p!=0 );
2695 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3261 assert( p->pPrior==0 ); /* Unable to flatten compound queries */
2696 if( db->flags & SQLITE_QueryFlattener ) return 0; 3262 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
2697 pSrc = p->pSrc; 3263 pSrc = p->pSrc;
2698 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3264 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2699 pSubitem = &pSrc->a[iFrom]; 3265 pSubitem = &pSrc->a[iFrom];
2700 iParent = pSubitem->iCursor; 3266 iParent = pSubitem->iCursor;
2701 pSub = pSubitem->pSelect; 3267 pSub = pSubitem->pSelect;
2702 assert( pSub!=0 ); 3268 assert( pSub!=0 );
2703 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 3269 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
2704 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 3270 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */
2705 pSubSrc = pSub->pSrc; 3271 pSubSrc = pSub->pSrc;
2706 assert( pSubSrc ); 3272 assert( pSubSrc );
2707 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3273 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2708 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 3274 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
2709 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3275 ** because they could be computed at compile-time. But when LIMIT and OFFSET
2710 ** became arbitrary expressions, we were forced to add restrictions (13) 3276 ** became arbitrary expressions, we were forced to add restrictions (13)
2711 ** and (14). */ 3277 ** and (14). */
2712 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3278 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
2713 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3279 if( pSub->pOffset ) return 0; /* Restriction (14) */
2714 if( p->pRightmost && pSub->pLimit ){ 3280 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
2715 return 0; /* Restriction (15) */ 3281 return 0; /* Restriction (15) */
2716 } 3282 }
2717 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3283 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
2718 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3284 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */
2719 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3285 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
2720 return 0; /* Restrictions (8)(9) */ 3286 return 0; /* Restrictions (8)(9) */
2721 } 3287 }
2722 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3288 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2723 return 0; /* Restriction (6) */ 3289 return 0; /* Restriction (6) */
2724 } 3290 }
2725 if( p->pOrderBy && pSub->pOrderBy ){ 3291 if( p->pOrderBy && pSub->pOrderBy ){
2726 return 0; /* Restriction (11) */ 3292 return 0; /* Restriction (11) */
2727 } 3293 }
2728 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3294 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
2729 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3295 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
2730 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3296 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
2731 return 0; /* Restriction (21) */ 3297 return 0; /* Restriction (21) */
2732 } 3298 }
3299 testcase( pSub->selFlags & SF_Recursive );
3300 testcase( pSub->selFlags & SF_MinMaxAgg );
3301 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3302 return 0; /* Restrictions (22) and (24) */
3303 }
3304 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3305 return 0; /* Restriction (23) */
3306 }
2733 3307
2734 /* OBSOLETE COMMENT 1: 3308 /* OBSOLETE COMMENT 1:
2735 ** Restriction 3: If the subquery is a join, make sure the subquery is 3309 ** Restriction 3: If the subquery is a join, make sure the subquery is
2736 ** not used as the right operand of an outer join. Examples of why this 3310 ** not used as the right operand of an outer join. Examples of why this
2737 ** is not allowed: 3311 ** is not allowed:
2738 ** 3312 **
2739 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3313 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
2740 ** 3314 **
2741 ** If we flatten the above, we would get 3315 ** If we flatten the above, we would get
2742 ** 3316 **
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after
2775 if( pSub->pPrior ){ 3349 if( pSub->pPrior ){
2776 if( pSub->pOrderBy ){ 3350 if( pSub->pOrderBy ){
2777 return 0; /* Restriction 20 */ 3351 return 0; /* Restriction 20 */
2778 } 3352 }
2779 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3353 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2780 return 0; 3354 return 0;
2781 } 3355 }
2782 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3356 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2783 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3357 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2784 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3358 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3359 assert( pSub->pSrc!=0 );
2785 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3360 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2786 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3361 || (pSub1->pPrior && pSub1->op!=TK_ALL)
2787 || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1 3362 || pSub1->pSrc->nSrc<1
3363 || pSub->pEList->nExpr!=pSub1->pEList->nExpr
2788 ){ 3364 ){
2789 return 0; 3365 return 0;
2790 } 3366 }
3367 testcase( pSub1->pSrc->nSrc>1 );
2791 } 3368 }
2792 3369
2793 /* Restriction 18. */ 3370 /* Restriction 18. */
2794 if( p->pOrderBy ){ 3371 if( p->pOrderBy ){
2795 int ii; 3372 int ii;
2796 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3373 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2797 if( p->pOrderBy->a[ii].iCol==0 ) return 0; 3374 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
2798 } 3375 }
2799 } 3376 }
2800 } 3377 }
2801 3378
2802 /***** If we reach this point, flattening is permitted. *****/ 3379 /***** If we reach this point, flattening is permitted. *****/
3380 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3381 pSub->zSelName, pSub, iFrom));
2803 3382
2804 /* Authorize the subquery */ 3383 /* Authorize the subquery */
2805 pParse->zAuthContext = pSubitem->zName; 3384 pParse->zAuthContext = pSubitem->zName;
2806 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3385 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3386 testcase( i==SQLITE_DENY );
2807 pParse->zAuthContext = zSavedAuthContext; 3387 pParse->zAuthContext = zSavedAuthContext;
2808 3388
2809 /* If the sub-query is a compound SELECT statement, then (by restrictions 3389 /* If the sub-query is a compound SELECT statement, then (by restrictions
2810 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3390 ** 17 and 18 above) it must be a UNION ALL and the parent query must
2811 ** be of the form: 3391 ** be of the form:
2812 ** 3392 **
2813 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3393 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
2814 ** 3394 **
2815 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3395 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2816 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3396 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
(...skipping 19 matching lines...) Expand all
2836 ** UNION ALL 3416 ** UNION ALL
2837 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3417 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2838 ** ORDER BY 1 3418 ** ORDER BY 1
2839 ** 3419 **
2840 ** We call this the "compound-subquery flattening". 3420 ** We call this the "compound-subquery flattening".
2841 */ 3421 */
2842 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3422 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2843 Select *pNew; 3423 Select *pNew;
2844 ExprList *pOrderBy = p->pOrderBy; 3424 ExprList *pOrderBy = p->pOrderBy;
2845 Expr *pLimit = p->pLimit; 3425 Expr *pLimit = p->pLimit;
3426 Expr *pOffset = p->pOffset;
2846 Select *pPrior = p->pPrior; 3427 Select *pPrior = p->pPrior;
2847 p->pOrderBy = 0; 3428 p->pOrderBy = 0;
2848 p->pSrc = 0; 3429 p->pSrc = 0;
2849 p->pPrior = 0; 3430 p->pPrior = 0;
2850 p->pLimit = 0; 3431 p->pLimit = 0;
3432 p->pOffset = 0;
2851 pNew = sqlite3SelectDup(db, p, 0); 3433 pNew = sqlite3SelectDup(db, p, 0);
3434 sqlite3SelectSetName(pNew, pSub->zSelName);
3435 p->pOffset = pOffset;
2852 p->pLimit = pLimit; 3436 p->pLimit = pLimit;
2853 p->pOrderBy = pOrderBy; 3437 p->pOrderBy = pOrderBy;
2854 p->pSrc = pSrc; 3438 p->pSrc = pSrc;
2855 p->op = TK_ALL; 3439 p->op = TK_ALL;
2856 p->pRightmost = 0;
2857 if( pNew==0 ){ 3440 if( pNew==0 ){
2858 pNew = pPrior; 3441 p->pPrior = pPrior;
2859 }else{ 3442 }else{
2860 pNew->pPrior = pPrior; 3443 pNew->pPrior = pPrior;
2861 pNew->pRightmost = 0; 3444 if( pPrior ) pPrior->pNext = pNew;
3445 pNew->pNext = p;
3446 p->pPrior = pNew;
3447 SELECTTRACE(2,pParse,p,
3448 ("compound-subquery flattener creates %s.%p as peer\n",
3449 pNew->zSelName, pNew));
2862 } 3450 }
2863 p->pPrior = pNew;
2864 if( db->mallocFailed ) return 1; 3451 if( db->mallocFailed ) return 1;
2865 } 3452 }
2866 3453
2867 /* Begin flattening the iFrom-th entry of the FROM clause 3454 /* Begin flattening the iFrom-th entry of the FROM clause
2868 ** in the outer query. 3455 ** in the outer query.
2869 */ 3456 */
2870 pSub = pSub1 = pSubitem->pSelect; 3457 pSub = pSub1 = pSubitem->pSelect;
2871 3458
2872 /* Delete the transient table structure associated with the 3459 /* Delete the transient table structure associated with the
2873 ** subquery 3460 ** subquery
(...skipping 97 matching lines...) Expand 10 before | Expand all | Expand 10 after
2971 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3558 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2972 ** \ \_____________ subquery __________/ / 3559 ** \ \_____________ subquery __________/ /
2973 ** \_____________________ outer query ______________________________/ 3560 ** \_____________________ outer query ______________________________/
2974 ** 3561 **
2975 ** We look at every expression in the outer query and every place we see 3562 ** We look at every expression in the outer query and every place we see
2976 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3563 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2977 */ 3564 */
2978 pList = pParent->pEList; 3565 pList = pParent->pEList;
2979 for(i=0; i<pList->nExpr; i++){ 3566 for(i=0; i<pList->nExpr; i++){
2980 if( pList->a[i].zName==0 ){ 3567 if( pList->a[i].zName==0 ){
2981 const char *zSpan = pList->a[i].zSpan; 3568 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
2982 if( ALWAYS(zSpan) ){ 3569 sqlite3Dequote(zName);
2983 pList->a[i].zName = sqlite3DbStrDup(db, zSpan); 3570 pList->a[i].zName = zName;
2984 }
2985 } 3571 }
2986 } 3572 }
2987 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3573 substExprList(db, pParent->pEList, iParent, pSub->pEList);
2988 if( isAgg ){ 3574 if( isAgg ){
2989 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3575 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
2990 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3576 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2991 } 3577 }
2992 if( pSub->pOrderBy ){ 3578 if( pSub->pOrderBy ){
3579 /* At this point, any non-zero iOrderByCol values indicate that the
3580 ** ORDER BY column expression is identical to the iOrderByCol'th
3581 ** expression returned by SELECT statement pSub. Since these values
3582 ** do not necessarily correspond to columns in SELECT statement pParent,
3583 ** zero them before transfering the ORDER BY clause.
3584 **
3585 ** Not doing this may cause an error if a subsequent call to this
3586 ** function attempts to flatten a compound sub-query into pParent
3587 ** (the only way this can happen is if the compound sub-query is
3588 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
3589 ExprList *pOrderBy = pSub->pOrderBy;
3590 for(i=0; i<pOrderBy->nExpr; i++){
3591 pOrderBy->a[i].u.x.iOrderByCol = 0;
3592 }
2993 assert( pParent->pOrderBy==0 ); 3593 assert( pParent->pOrderBy==0 );
2994 pParent->pOrderBy = pSub->pOrderBy; 3594 assert( pSub->pPrior==0 );
3595 pParent->pOrderBy = pOrderBy;
2995 pSub->pOrderBy = 0; 3596 pSub->pOrderBy = 0;
2996 }else if( pParent->pOrderBy ){ 3597 }else if( pParent->pOrderBy ){
2997 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3598 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
2998 } 3599 }
2999 if( pSub->pWhere ){ 3600 if( pSub->pWhere ){
3000 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3601 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3001 }else{ 3602 }else{
3002 pWhere = 0; 3603 pWhere = 0;
3003 } 3604 }
3004 if( subqueryIsAgg ){ 3605 if( subqueryIsAgg ){
(...skipping 25 matching lines...) Expand all
3030 pParent->pLimit = pSub->pLimit; 3631 pParent->pLimit = pSub->pLimit;
3031 pSub->pLimit = 0; 3632 pSub->pLimit = 0;
3032 } 3633 }
3033 } 3634 }
3034 3635
3035 /* Finially, delete what is left of the subquery and return 3636 /* Finially, delete what is left of the subquery and return
3036 ** success. 3637 ** success.
3037 */ 3638 */
3038 sqlite3SelectDelete(db, pSub1); 3639 sqlite3SelectDelete(db, pSub1);
3039 3640
3641 #if SELECTTRACE_ENABLED
3642 if( sqlite3SelectTrace & 0x100 ){
3643 sqlite3DebugPrintf("After flattening:\n");
3644 sqlite3TreeViewSelect(0, p, 0);
3645 }
3646 #endif
3647
3040 return 1; 3648 return 1;
3041 } 3649 }
3042 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3650 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3043 3651
3044 /* 3652 /*
3045 ** Analyze the SELECT statement passed as an argument to see if it 3653 ** Based on the contents of the AggInfo structure indicated by the first
3046 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 3654 ** argument, this function checks if the following are true:
3047 ** it is, or 0 otherwise. At present, a query is considered to be
3048 ** a min()/max() query if:
3049 ** 3655 **
3050 ** 1. There is a single object in the FROM clause. 3656 ** * the query contains just a single aggregate function,
3657 ** * the aggregate function is either min() or max(), and
3658 ** * the argument to the aggregate function is a column value.
3051 ** 3659 **
3052 ** 2. There is a single expression in the result set, and it is 3660 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3053 ** either min(x) or max(x), where x is a column reference. 3661 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3662 ** list of arguments passed to the aggregate before returning.
3663 **
3664 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3665 ** WHERE_ORDERBY_NORMAL is returned.
3054 */ 3666 */
3055 static u8 minMaxQuery(Select *p){ 3667 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3056 Expr *pExpr; 3668 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
3057 ExprList *pEList = p->pEList;
3058 3669
3059 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 3670 *ppMinMax = 0;
3060 pExpr = pEList->a[0].pExpr; 3671 if( pAggInfo->nFunc==1 ){
3061 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3672 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3062 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; 3673 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */
3063 pEList = pExpr->x.pList; 3674
3064 if( pEList==0 || pEList->nExpr!=1 ) return 0; 3675 assert( pExpr->op==TK_AGG_FUNCTION );
3065 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 3676 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3066 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3677 const char *zFunc = pExpr->u.zToken;
3067 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){ 3678 if( sqlite3StrICmp(zFunc, "min")==0 ){
3068 return WHERE_ORDERBY_MIN; 3679 eRet = WHERE_ORDERBY_MIN;
3069 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){ 3680 *ppMinMax = pEList;
3070 return WHERE_ORDERBY_MAX; 3681 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3682 eRet = WHERE_ORDERBY_MAX;
3683 *ppMinMax = pEList;
3684 }
3685 }
3071 } 3686 }
3072 return WHERE_ORDERBY_NORMAL; 3687
3688 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3689 return eRet;
3073 } 3690 }
3074 3691
3075 /* 3692 /*
3076 ** The select statement passed as the first argument is an aggregate query. 3693 ** The select statement passed as the first argument is an aggregate query.
3077 ** The second argment is the associated aggregate-info object. This 3694 ** The second argument is the associated aggregate-info object. This
3078 ** function tests if the SELECT is of the form: 3695 ** function tests if the SELECT is of the form:
3079 ** 3696 **
3080 ** SELECT count(*) FROM <tbl> 3697 ** SELECT count(*) FROM <tbl>
3081 ** 3698 **
3082 ** where table is a database table, not a sub-select or view. If the query 3699 ** where table is a database table, not a sub-select or view. If the query
3083 ** does match this pattern, then a pointer to the Table object representing 3700 ** does match this pattern, then a pointer to the Table object representing
3084 ** <tbl> is returned. Otherwise, 0 is returned. 3701 ** <tbl> is returned. Otherwise, 0 is returned.
3085 */ 3702 */
3086 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3703 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3087 Table *pTab; 3704 Table *pTab;
3088 Expr *pExpr; 3705 Expr *pExpr;
3089 3706
3090 assert( !p->pGroupBy ); 3707 assert( !p->pGroupBy );
3091 3708
3092 if( p->pWhere || p->pEList->nExpr!=1 3709 if( p->pWhere || p->pEList->nExpr!=1
3093 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3710 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3094 ){ 3711 ){
3095 return 0; 3712 return 0;
3096 } 3713 }
3097 pTab = p->pSrc->a[0].pTab; 3714 pTab = p->pSrc->a[0].pTab;
3098 pExpr = p->pEList->a[0].pExpr; 3715 pExpr = p->pEList->a[0].pExpr;
3099 assert( pTab && !pTab->pSelect && pExpr ); 3716 assert( pTab && !pTab->pSelect && pExpr );
3100 3717
3101 if( IsVirtual(pTab) ) return 0; 3718 if( IsVirtual(pTab) ) return 0;
3102 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3719 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3103 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 3720 if( NEVER(pAggInfo->nFunc==0) ) return 0;
3721 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3104 if( pExpr->flags&EP_Distinct ) return 0; 3722 if( pExpr->flags&EP_Distinct ) return 0;
3105 3723
3106 return pTab; 3724 return pTab;
3107 } 3725 }
3108 3726
3109 /* 3727 /*
3110 ** If the source-list item passed as an argument was augmented with an 3728 ** If the source-list item passed as an argument was augmented with an
3111 ** INDEXED BY clause, then try to locate the specified index. If there 3729 ** INDEXED BY clause, then try to locate the specified index. If there
3112 ** was such a clause and the named index cannot be found, return 3730 ** was such a clause and the named index cannot be found, return
3113 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3731 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
(...skipping 10 matching lines...) Expand all
3124 ); 3742 );
3125 if( !pIdx ){ 3743 if( !pIdx ){
3126 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3744 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3127 pParse->checkSchema = 1; 3745 pParse->checkSchema = 1;
3128 return SQLITE_ERROR; 3746 return SQLITE_ERROR;
3129 } 3747 }
3130 pFrom->pIndex = pIdx; 3748 pFrom->pIndex = pIdx;
3131 } 3749 }
3132 return SQLITE_OK; 3750 return SQLITE_OK;
3133 } 3751 }
3752 /*
3753 ** Detect compound SELECT statements that use an ORDER BY clause with
3754 ** an alternative collating sequence.
3755 **
3756 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3757 **
3758 ** These are rewritten as a subquery:
3759 **
3760 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3761 ** ORDER BY ... COLLATE ...
3762 **
3763 ** This transformation is necessary because the multiSelectOrderBy() routine
3764 ** above that generates the code for a compound SELECT with an ORDER BY clause
3765 ** uses a merge algorithm that requires the same collating sequence on the
3766 ** result columns as on the ORDER BY clause. See ticket
3767 ** http://www.sqlite.org/src/info/6709574d2a
3768 **
3769 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3770 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3771 ** there are COLLATE terms in the ORDER BY.
3772 */
3773 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3774 int i;
3775 Select *pNew;
3776 Select *pX;
3777 sqlite3 *db;
3778 struct ExprList_item *a;
3779 SrcList *pNewSrc;
3780 Parse *pParse;
3781 Token dummy;
3782
3783 if( p->pPrior==0 ) return WRC_Continue;
3784 if( p->pOrderBy==0 ) return WRC_Continue;
3785 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3786 if( pX==0 ) return WRC_Continue;
3787 a = p->pOrderBy->a;
3788 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3789 if( a[i].pExpr->flags & EP_Collate ) break;
3790 }
3791 if( i<0 ) return WRC_Continue;
3792
3793 /* If we reach this point, that means the transformation is required. */
3794
3795 pParse = pWalker->pParse;
3796 db = pParse->db;
3797 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3798 if( pNew==0 ) return WRC_Abort;
3799 memset(&dummy, 0, sizeof(dummy));
3800 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3801 if( pNewSrc==0 ) return WRC_Abort;
3802 *pNew = *p;
3803 p->pSrc = pNewSrc;
3804 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3805 p->op = TK_SELECT;
3806 p->pWhere = 0;
3807 pNew->pGroupBy = 0;
3808 pNew->pHaving = 0;
3809 pNew->pOrderBy = 0;
3810 p->pPrior = 0;
3811 p->pNext = 0;
3812 p->selFlags &= ~SF_Compound;
3813 assert( pNew->pPrior!=0 );
3814 pNew->pPrior->pNext = pNew;
3815 pNew->pLimit = 0;
3816 pNew->pOffset = 0;
3817 return WRC_Continue;
3818 }
3819
3820 #ifndef SQLITE_OMIT_CTE
3821 /*
3822 ** Argument pWith (which may be NULL) points to a linked list of nested
3823 ** WITH contexts, from inner to outermost. If the table identified by
3824 ** FROM clause element pItem is really a common-table-expression (CTE)
3825 ** then return a pointer to the CTE definition for that table. Otherwise
3826 ** return NULL.
3827 **
3828 ** If a non-NULL value is returned, set *ppContext to point to the With
3829 ** object that the returned CTE belongs to.
3830 */
3831 static struct Cte *searchWith(
3832 With *pWith, /* Current outermost WITH clause */
3833 struct SrcList_item *pItem, /* FROM clause element to resolve */
3834 With **ppContext /* OUT: WITH clause return value belongs to */
3835 ){
3836 const char *zName;
3837 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3838 With *p;
3839 for(p=pWith; p; p=p->pOuter){
3840 int i;
3841 for(i=0; i<p->nCte; i++){
3842 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3843 *ppContext = p;
3844 return &p->a[i];
3845 }
3846 }
3847 }
3848 }
3849 return 0;
3850 }
3851
3852 /* The code generator maintains a stack of active WITH clauses
3853 ** with the inner-most WITH clause being at the top of the stack.
3854 **
3855 ** This routine pushes the WITH clause passed as the second argument
3856 ** onto the top of the stack. If argument bFree is true, then this
3857 ** WITH clause will never be popped from the stack. In this case it
3858 ** should be freed along with the Parse object. In other cases, when
3859 ** bFree==0, the With object will be freed along with the SELECT
3860 ** statement with which it is associated.
3861 */
3862 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
3863 assert( bFree==0 || pParse->pWith==0 );
3864 if( pWith ){
3865 pWith->pOuter = pParse->pWith;
3866 pParse->pWith = pWith;
3867 pParse->bFreeWith = bFree;
3868 }
3869 }
3870
3871 /*
3872 ** This function checks if argument pFrom refers to a CTE declared by
3873 ** a WITH clause on the stack currently maintained by the parser. And,
3874 ** if currently processing a CTE expression, if it is a recursive
3875 ** reference to the current CTE.
3876 **
3877 ** If pFrom falls into either of the two categories above, pFrom->pTab
3878 ** and other fields are populated accordingly. The caller should check
3879 ** (pFrom->pTab!=0) to determine whether or not a successful match
3880 ** was found.
3881 **
3882 ** Whether or not a match is found, SQLITE_OK is returned if no error
3883 ** occurs. If an error does occur, an error message is stored in the
3884 ** parser and some error code other than SQLITE_OK returned.
3885 */
3886 static int withExpand(
3887 Walker *pWalker,
3888 struct SrcList_item *pFrom
3889 ){
3890 Parse *pParse = pWalker->pParse;
3891 sqlite3 *db = pParse->db;
3892 struct Cte *pCte; /* Matched CTE (or NULL if no match) */
3893 With *pWith; /* WITH clause that pCte belongs to */
3894
3895 assert( pFrom->pTab==0 );
3896
3897 pCte = searchWith(pParse->pWith, pFrom, &pWith);
3898 if( pCte ){
3899 Table *pTab;
3900 ExprList *pEList;
3901 Select *pSel;
3902 Select *pLeft; /* Left-most SELECT statement */
3903 int bMayRecursive; /* True if compound joined by UNION [ALL] */
3904 With *pSavedWith; /* Initial value of pParse->pWith */
3905
3906 /* If pCte->zErr is non-NULL at this point, then this is an illegal
3907 ** recursive reference to CTE pCte. Leave an error in pParse and return
3908 ** early. If pCte->zErr is NULL, then this is not a recursive reference.
3909 ** In this case, proceed. */
3910 if( pCte->zErr ){
3911 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
3912 return SQLITE_ERROR;
3913 }
3914
3915 assert( pFrom->pTab==0 );
3916 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3917 if( pTab==0 ) return WRC_Abort;
3918 pTab->nRef = 1;
3919 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
3920 pTab->iPKey = -1;
3921 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
3922 pTab->tabFlags |= TF_Ephemeral;
3923 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
3924 if( db->mallocFailed ) return SQLITE_NOMEM;
3925 assert( pFrom->pSelect );
3926
3927 /* Check if this is a recursive CTE. */
3928 pSel = pFrom->pSelect;
3929 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
3930 if( bMayRecursive ){
3931 int i;
3932 SrcList *pSrc = pFrom->pSelect->pSrc;
3933 for(i=0; i<pSrc->nSrc; i++){
3934 struct SrcList_item *pItem = &pSrc->a[i];
3935 if( pItem->zDatabase==0
3936 && pItem->zName!=0
3937 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
3938 ){
3939 pItem->pTab = pTab;
3940 pItem->isRecursive = 1;
3941 pTab->nRef++;
3942 pSel->selFlags |= SF_Recursive;
3943 }
3944 }
3945 }
3946
3947 /* Only one recursive reference is permitted. */
3948 if( pTab->nRef>2 ){
3949 sqlite3ErrorMsg(
3950 pParse, "multiple references to recursive table: %s", pCte->zName
3951 );
3952 return SQLITE_ERROR;
3953 }
3954 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
3955
3956 pCte->zErr = "circular reference: %s";
3957 pSavedWith = pParse->pWith;
3958 pParse->pWith = pWith;
3959 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
3960
3961 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
3962 pEList = pLeft->pEList;
3963 if( pCte->pCols ){
3964 if( pEList->nExpr!=pCte->pCols->nExpr ){
3965 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
3966 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
3967 );
3968 pParse->pWith = pSavedWith;
3969 return SQLITE_ERROR;
3970 }
3971 pEList = pCte->pCols;
3972 }
3973
3974 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
3975 if( bMayRecursive ){
3976 if( pSel->selFlags & SF_Recursive ){
3977 pCte->zErr = "multiple recursive references: %s";
3978 }else{
3979 pCte->zErr = "recursive reference in a subquery: %s";
3980 }
3981 sqlite3WalkSelect(pWalker, pSel);
3982 }
3983 pCte->zErr = 0;
3984 pParse->pWith = pSavedWith;
3985 }
3986
3987 return SQLITE_OK;
3988 }
3989 #endif
3990
3991 #ifndef SQLITE_OMIT_CTE
3992 /*
3993 ** If the SELECT passed as the second argument has an associated WITH
3994 ** clause, pop it from the stack stored as part of the Parse object.
3995 **
3996 ** This function is used as the xSelectCallback2() callback by
3997 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
3998 ** names and other FROM clause elements.
3999 */
4000 static void selectPopWith(Walker *pWalker, Select *p){
4001 Parse *pParse = pWalker->pParse;
4002 With *pWith = findRightmost(p)->pWith;
4003 if( pWith!=0 ){
4004 assert( pParse->pWith==pWith );
4005 pParse->pWith = pWith->pOuter;
4006 }
4007 }
4008 #else
4009 #define selectPopWith 0
4010 #endif
3134 4011
3135 /* 4012 /*
3136 ** This routine is a Walker callback for "expanding" a SELECT statement. 4013 ** This routine is a Walker callback for "expanding" a SELECT statement.
3137 ** "Expanding" means to do the following: 4014 ** "Expanding" means to do the following:
3138 ** 4015 **
3139 ** (1) Make sure VDBE cursor numbers have been assigned to every 4016 ** (1) Make sure VDBE cursor numbers have been assigned to every
3140 ** element of the FROM clause. 4017 ** element of the FROM clause.
3141 ** 4018 **
3142 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4019 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
3143 ** defines FROM clause. When views appear in the FROM clause, 4020 ** defines FROM clause. When views appear in the FROM clause,
3144 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4021 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
3145 ** that implements the view. A copy is made of the view's SELECT 4022 ** that implements the view. A copy is made of the view's SELECT
3146 ** statement so that we can freely modify or delete that statement 4023 ** statement so that we can freely modify or delete that statement
3147 ** without worrying about messing up the presistent representation 4024 ** without worrying about messing up the persistent representation
3148 ** of the view. 4025 ** of the view.
3149 ** 4026 **
3150 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 4027 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
3151 ** on joins and the ON and USING clause of joins. 4028 ** on joins and the ON and USING clause of joins.
3152 ** 4029 **
3153 ** (4) Scan the list of columns in the result set (pEList) looking 4030 ** (4) Scan the list of columns in the result set (pEList) looking
3154 ** for instances of the "*" operator or the TABLE.* operator. 4031 ** for instances of the "*" operator or the TABLE.* operator.
3155 ** If found, expand each "*" to be every column in every table 4032 ** If found, expand each "*" to be every column in every table
3156 ** and TABLE.* to be every column in TABLE. 4033 ** and TABLE.* to be every column in TABLE.
3157 ** 4034 **
3158 */ 4035 */
3159 static int selectExpander(Walker *pWalker, Select *p){ 4036 static int selectExpander(Walker *pWalker, Select *p){
3160 Parse *pParse = pWalker->pParse; 4037 Parse *pParse = pWalker->pParse;
3161 int i, j, k; 4038 int i, j, k;
3162 SrcList *pTabList; 4039 SrcList *pTabList;
3163 ExprList *pEList; 4040 ExprList *pEList;
3164 struct SrcList_item *pFrom; 4041 struct SrcList_item *pFrom;
3165 sqlite3 *db = pParse->db; 4042 sqlite3 *db = pParse->db;
4043 Expr *pE, *pRight, *pExpr;
4044 u16 selFlags = p->selFlags;
3166 4045
4046 p->selFlags |= SF_Expanded;
3167 if( db->mallocFailed ){ 4047 if( db->mallocFailed ){
3168 return WRC_Abort; 4048 return WRC_Abort;
3169 } 4049 }
3170 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ 4050 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
3171 return WRC_Prune; 4051 return WRC_Prune;
3172 } 4052 }
3173 p->selFlags |= SF_Expanded;
3174 pTabList = p->pSrc; 4053 pTabList = p->pSrc;
3175 pEList = p->pEList; 4054 pEList = p->pEList;
4055 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
3176 4056
3177 /* Make sure cursor numbers have been assigned to all entries in 4057 /* Make sure cursor numbers have been assigned to all entries in
3178 ** the FROM clause of the SELECT statement. 4058 ** the FROM clause of the SELECT statement.
3179 */ 4059 */
3180 sqlite3SrcListAssignCursors(pParse, pTabList); 4060 sqlite3SrcListAssignCursors(pParse, pTabList);
3181 4061
3182 /* Look up every table named in the FROM clause of the select. If 4062 /* Look up every table named in the FROM clause of the select. If
3183 ** an entry of the FROM clause is a subquery instead of a table or view, 4063 ** an entry of the FROM clause is a subquery instead of a table or view,
3184 ** then create a transient table structure to describe the subquery. 4064 ** then create a transient table structure to describe the subquery.
3185 */ 4065 */
3186 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4066 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3187 Table *pTab; 4067 Table *pTab;
4068 assert( pFrom->isRecursive==0 || pFrom->pTab );
4069 if( pFrom->isRecursive ) continue;
3188 if( pFrom->pTab!=0 ){ 4070 if( pFrom->pTab!=0 ){
3189 /* This statement has already been prepared. There is no need 4071 /* This statement has already been prepared. There is no need
3190 ** to go further. */ 4072 ** to go further. */
3191 assert( i==0 ); 4073 assert( i==0 );
4074 #ifndef SQLITE_OMIT_CTE
4075 selectPopWith(pWalker, p);
4076 #endif
3192 return WRC_Prune; 4077 return WRC_Prune;
3193 } 4078 }
4079 #ifndef SQLITE_OMIT_CTE
4080 if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4081 if( pFrom->pTab ) {} else
4082 #endif
3194 if( pFrom->zName==0 ){ 4083 if( pFrom->zName==0 ){
3195 #ifndef SQLITE_OMIT_SUBQUERY 4084 #ifndef SQLITE_OMIT_SUBQUERY
3196 Select *pSel = pFrom->pSelect; 4085 Select *pSel = pFrom->pSelect;
3197 /* A sub-query in the FROM clause of a SELECT */ 4086 /* A sub-query in the FROM clause of a SELECT */
3198 assert( pSel!=0 ); 4087 assert( pSel!=0 );
3199 assert( pFrom->pTab==0 ); 4088 assert( pFrom->pTab==0 );
3200 sqlite3WalkSelect(pWalker, pSel); 4089 sqlite3WalkSelect(pWalker, pSel);
3201 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4090 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3202 if( pTab==0 ) return WRC_Abort; 4091 if( pTab==0 ) return WRC_Abort;
3203 pTab->nRef = 1; 4092 pTab->nRef = 1;
3204 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 4093 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
3205 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4094 while( pSel->pPrior ){ pSel = pSel->pPrior; }
3206 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 4095 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3207 pTab->iPKey = -1; 4096 pTab->iPKey = -1;
3208 pTab->nRowEst = 1000000; 4097 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
3209 pTab->tabFlags |= TF_Ephemeral; 4098 pTab->tabFlags |= TF_Ephemeral;
3210 #endif 4099 #endif
3211 }else{ 4100 }else{
3212 /* An ordinary table or view name in the FROM clause */ 4101 /* An ordinary table or view name in the FROM clause */
3213 assert( pFrom->pTab==0 ); 4102 assert( pFrom->pTab==0 );
3214 pFrom->pTab = pTab = 4103 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
3215 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3216 if( pTab==0 ) return WRC_Abort; 4104 if( pTab==0 ) return WRC_Abort;
4105 if( pTab->nRef==0xffff ){
4106 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4107 pTab->zName);
4108 pFrom->pTab = 0;
4109 return WRC_Abort;
4110 }
3217 pTab->nRef++; 4111 pTab->nRef++;
3218 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4112 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3219 if( pTab->pSelect || IsVirtual(pTab) ){ 4113 if( pTab->pSelect || IsVirtual(pTab) ){
3220 /* We reach here if the named table is a really a view */ 4114 /* We reach here if the named table is a really a view */
3221 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4115 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3222 assert( pFrom->pSelect==0 ); 4116 assert( pFrom->pSelect==0 );
3223 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4117 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4118 sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
3224 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4119 sqlite3WalkSelect(pWalker, pFrom->pSelect);
3225 } 4120 }
3226 #endif 4121 #endif
3227 } 4122 }
3228 4123
3229 /* Locate the index named by the INDEXED BY clause, if any. */ 4124 /* Locate the index named by the INDEXED BY clause, if any. */
3230 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4125 if( sqlite3IndexedByLookup(pParse, pFrom) ){
3231 return WRC_Abort; 4126 return WRC_Abort;
3232 } 4127 }
3233 } 4128 }
3234 4129
3235 /* Process NATURAL keywords, and ON and USING clauses of joins. 4130 /* Process NATURAL keywords, and ON and USING clauses of joins.
3236 */ 4131 */
3237 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4132 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3238 return WRC_Abort; 4133 return WRC_Abort;
3239 } 4134 }
3240 4135
3241 /* For every "*" that occurs in the column list, insert the names of 4136 /* For every "*" that occurs in the column list, insert the names of
3242 ** all columns in all tables. And for every TABLE.* insert the names 4137 ** all columns in all tables. And for every TABLE.* insert the names
3243 ** of all columns in TABLE. The parser inserted a special expression 4138 ** of all columns in TABLE. The parser inserted a special expression
3244 ** with the TK_ALL operator for each "*" that it found in the column list. 4139 ** with the TK_ALL operator for each "*" that it found in the column list.
3245 ** The following code just has to locate the TK_ALL expressions and expand 4140 ** The following code just has to locate the TK_ALL expressions and expand
3246 ** each one to the list of all columns in all tables. 4141 ** each one to the list of all columns in all tables.
3247 ** 4142 **
3248 ** The first loop just checks to see if there are any "*" operators 4143 ** The first loop just checks to see if there are any "*" operators
3249 ** that need expanding. 4144 ** that need expanding.
3250 */ 4145 */
3251 for(k=0; k<pEList->nExpr; k++){ 4146 for(k=0; k<pEList->nExpr; k++){
3252 Expr *pE = pEList->a[k].pExpr; 4147 pE = pEList->a[k].pExpr;
3253 if( pE->op==TK_ALL ) break; 4148 if( pE->op==TK_ALL ) break;
3254 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4149 assert( pE->op!=TK_DOT || pE->pRight!=0 );
3255 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4150 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3256 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4151 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3257 } 4152 }
3258 if( k<pEList->nExpr ){ 4153 if( k<pEList->nExpr ){
3259 /* 4154 /*
3260 ** If we get here it means the result set contains one or more "*" 4155 ** If we get here it means the result set contains one or more "*"
3261 ** operators that need to be expanded. Loop through each expression 4156 ** operators that need to be expanded. Loop through each expression
3262 ** in the result set and expand them one by one. 4157 ** in the result set and expand them one by one.
3263 */ 4158 */
3264 struct ExprList_item *a = pEList->a; 4159 struct ExprList_item *a = pEList->a;
3265 ExprList *pNew = 0; 4160 ExprList *pNew = 0;
3266 int flags = pParse->db->flags; 4161 int flags = pParse->db->flags;
3267 int longNames = (flags & SQLITE_FullColNames)!=0 4162 int longNames = (flags & SQLITE_FullColNames)!=0
3268 && (flags & SQLITE_ShortColNames)==0; 4163 && (flags & SQLITE_ShortColNames)==0;
3269 4164
4165 /* When processing FROM-clause subqueries, it is always the case
4166 ** that full_column_names=OFF and short_column_names=ON. The
4167 ** sqlite3ResultSetOfSelect() routine makes it so. */
4168 assert( (p->selFlags & SF_NestedFrom)==0
4169 || ((flags & SQLITE_FullColNames)==0 &&
4170 (flags & SQLITE_ShortColNames)!=0) );
4171
3270 for(k=0; k<pEList->nExpr; k++){ 4172 for(k=0; k<pEList->nExpr; k++){
3271 Expr *pE = a[k].pExpr; 4173 pE = a[k].pExpr;
3272 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4174 pRight = pE->pRight;
3273 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ 4175 assert( pE->op!=TK_DOT || pRight!=0 );
4176 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
3274 /* This particular expression does not need to be expanded. 4177 /* This particular expression does not need to be expanded.
3275 */ 4178 */
3276 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4179 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
3277 if( pNew ){ 4180 if( pNew ){
3278 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4181 pNew->a[pNew->nExpr-1].zName = a[k].zName;
3279 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4182 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
3280 a[k].zName = 0; 4183 a[k].zName = 0;
3281 a[k].zSpan = 0; 4184 a[k].zSpan = 0;
3282 } 4185 }
3283 a[k].pExpr = 0; 4186 a[k].pExpr = 0;
3284 }else{ 4187 }else{
3285 /* This expression is a "*" or a "TABLE.*" and needs to be 4188 /* This expression is a "*" or a "TABLE.*" and needs to be
3286 ** expanded. */ 4189 ** expanded. */
3287 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4190 int tableSeen = 0; /* Set to 1 when TABLE matches */
3288 char *zTName; /* text of name of TABLE */ 4191 char *zTName = 0; /* text of name of TABLE */
3289 if( pE->op==TK_DOT ){ 4192 if( pE->op==TK_DOT ){
3290 assert( pE->pLeft!=0 ); 4193 assert( pE->pLeft!=0 );
3291 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4194 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
3292 zTName = pE->pLeft->u.zToken; 4195 zTName = pE->pLeft->u.zToken;
3293 }else{
3294 zTName = 0;
3295 } 4196 }
3296 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4197 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3297 Table *pTab = pFrom->pTab; 4198 Table *pTab = pFrom->pTab;
4199 Select *pSub = pFrom->pSelect;
3298 char *zTabName = pFrom->zAlias; 4200 char *zTabName = pFrom->zAlias;
4201 const char *zSchemaName = 0;
4202 int iDb;
3299 if( zTabName==0 ){ 4203 if( zTabName==0 ){
3300 zTabName = pTab->zName; 4204 zTabName = pTab->zName;
3301 } 4205 }
3302 if( db->mallocFailed ) break; 4206 if( db->mallocFailed ) break;
3303 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4207 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
3304 continue; 4208 pSub = 0;
4209 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4210 continue;
4211 }
4212 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4213 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
3305 } 4214 }
3306 tableSeen = 1;
3307 for(j=0; j<pTab->nCol; j++){ 4215 for(j=0; j<pTab->nCol; j++){
3308 Expr *pExpr, *pRight;
3309 char *zName = pTab->aCol[j].zName; 4216 char *zName = pTab->aCol[j].zName;
3310 char *zColname; /* The computed column name */ 4217 char *zColname; /* The computed column name */
3311 char *zToFree; /* Malloced string that needs to be freed */ 4218 char *zToFree; /* Malloced string that needs to be freed */
3312 Token sColname; /* Computed column name as a token */ 4219 Token sColname; /* Computed column name as a token */
3313 4220
4221 assert( zName );
4222 if( zTName && pSub
4223 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4224 ){
4225 continue;
4226 }
4227
3314 /* If a column is marked as 'hidden' (currently only possible 4228 /* If a column is marked as 'hidden' (currently only possible
3315 ** for virtual tables), do not include it in the expanded 4229 ** for virtual tables), do not include it in the expanded
3316 ** result-set list. 4230 ** result-set list.
3317 */ 4231 */
3318 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4232 if( IsHiddenColumn(&pTab->aCol[j]) ){
3319 assert(IsVirtual(pTab)); 4233 assert(IsVirtual(pTab));
3320 continue; 4234 continue;
3321 } 4235 }
4236 tableSeen = 1;
3322 4237
3323 if( i>0 && zTName==0 ){ 4238 if( i>0 && zTName==0 ){
3324 if( (pFrom->jointype & JT_NATURAL)!=0 4239 if( (pFrom->jointype & JT_NATURAL)!=0
3325 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4240 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
3326 ){ 4241 ){
3327 /* In a NATURAL join, omit the join columns from the 4242 /* In a NATURAL join, omit the join columns from the
3328 ** table to the right of the join */ 4243 ** table to the right of the join */
3329 continue; 4244 continue;
3330 } 4245 }
3331 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4246 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
3332 /* In a join with a USING clause, omit columns in the 4247 /* In a join with a USING clause, omit columns in the
3333 ** using clause from the table on the right. */ 4248 ** using clause from the table on the right. */
3334 continue; 4249 continue;
3335 } 4250 }
3336 } 4251 }
3337 pRight = sqlite3Expr(db, TK_ID, zName); 4252 pRight = sqlite3Expr(db, TK_ID, zName);
3338 zColname = zName; 4253 zColname = zName;
3339 zToFree = 0; 4254 zToFree = 0;
3340 if( longNames || pTabList->nSrc>1 ){ 4255 if( longNames || pTabList->nSrc>1 ){
3341 Expr *pLeft; 4256 Expr *pLeft;
3342 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4257 pLeft = sqlite3Expr(db, TK_ID, zTabName);
3343 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4258 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4259 if( zSchemaName ){
4260 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4261 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4262 }
3344 if( longNames ){ 4263 if( longNames ){
3345 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4264 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
3346 zToFree = zColname; 4265 zToFree = zColname;
3347 } 4266 }
3348 }else{ 4267 }else{
3349 pExpr = pRight; 4268 pExpr = pRight;
3350 } 4269 }
3351 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4270 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
3352 sColname.z = zColname; 4271 sColname.z = zColname;
3353 sColname.n = sqlite3Strlen30(zColname); 4272 sColname.n = sqlite3Strlen30(zColname);
3354 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4273 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4274 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4275 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4276 if( pSub ){
4277 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4278 testcase( pX->zSpan==0 );
4279 }else{
4280 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4281 zSchemaName, zTabName, zColname);
4282 testcase( pX->zSpan==0 );
4283 }
4284 pX->bSpanIsTab = 1;
4285 }
3355 sqlite3DbFree(db, zToFree); 4286 sqlite3DbFree(db, zToFree);
3356 } 4287 }
3357 } 4288 }
3358 if( !tableSeen ){ 4289 if( !tableSeen ){
3359 if( zTName ){ 4290 if( zTName ){
3360 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4291 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3361 }else{ 4292 }else{
3362 sqlite3ErrorMsg(pParse, "no tables specified"); 4293 sqlite3ErrorMsg(pParse, "no tables specified");
3363 } 4294 }
3364 } 4295 }
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after
3397 ** Expanding a SELECT statement is the first step in processing a 4328 ** Expanding a SELECT statement is the first step in processing a
3398 ** SELECT statement. The SELECT statement must be expanded before 4329 ** SELECT statement. The SELECT statement must be expanded before
3399 ** name resolution is performed. 4330 ** name resolution is performed.
3400 ** 4331 **
3401 ** If anything goes wrong, an error message is written into pParse. 4332 ** If anything goes wrong, an error message is written into pParse.
3402 ** The calling function can detect the problem by looking at pParse->nErr 4333 ** The calling function can detect the problem by looking at pParse->nErr
3403 ** and/or pParse->db->mallocFailed. 4334 ** and/or pParse->db->mallocFailed.
3404 */ 4335 */
3405 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4336 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3406 Walker w; 4337 Walker w;
3407 w.xSelectCallback = selectExpander; 4338 memset(&w, 0, sizeof(w));
3408 w.xExprCallback = exprWalkNoop; 4339 w.xExprCallback = exprWalkNoop;
3409 w.pParse = pParse; 4340 w.pParse = pParse;
4341 if( pParse->hasCompound ){
4342 w.xSelectCallback = convertCompoundSelectToSubquery;
4343 sqlite3WalkSelect(&w, pSelect);
4344 }
4345 w.xSelectCallback = selectExpander;
4346 w.xSelectCallback2 = selectPopWith;
3410 sqlite3WalkSelect(&w, pSelect); 4347 sqlite3WalkSelect(&w, pSelect);
3411 } 4348 }
3412 4349
3413 4350
3414 #ifndef SQLITE_OMIT_SUBQUERY 4351 #ifndef SQLITE_OMIT_SUBQUERY
3415 /* 4352 /*
3416 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4353 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3417 ** interface. 4354 ** interface.
3418 ** 4355 **
3419 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4356 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3420 ** information to the Table structure that represents the result set 4357 ** information to the Table structure that represents the result set
3421 ** of that subquery. 4358 ** of that subquery.
3422 ** 4359 **
3423 ** The Table structure that represents the result set was constructed 4360 ** The Table structure that represents the result set was constructed
3424 ** by selectExpander() but the type and collation information was omitted 4361 ** by selectExpander() but the type and collation information was omitted
3425 ** at that point because identifiers had not yet been resolved. This 4362 ** at that point because identifiers had not yet been resolved. This
3426 ** routine is called after identifier resolution. 4363 ** routine is called after identifier resolution.
3427 */ 4364 */
3428 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4365 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3429 Parse *pParse; 4366 Parse *pParse;
3430 int i; 4367 int i;
3431 SrcList *pTabList; 4368 SrcList *pTabList;
3432 struct SrcList_item *pFrom; 4369 struct SrcList_item *pFrom;
3433 4370
3434 assert( p->selFlags & SF_Resolved ); 4371 assert( p->selFlags & SF_Resolved );
3435 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4372 if( (p->selFlags & SF_HasTypeInfo)==0 ){
3436 p->selFlags |= SF_HasTypeInfo; 4373 p->selFlags |= SF_HasTypeInfo;
3437 pParse = pWalker->pParse; 4374 pParse = pWalker->pParse;
3438 pTabList = p->pSrc; 4375 pTabList = p->pSrc;
3439 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4376 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3440 Table *pTab = pFrom->pTab; 4377 Table *pTab = pFrom->pTab;
3441 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4378 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3442 /* A sub-query in the FROM clause of a SELECT */ 4379 /* A sub-query in the FROM clause of a SELECT */
3443 Select *pSel = pFrom->pSelect; 4380 Select *pSel = pFrom->pSelect;
3444 assert( pSel ); 4381 if( pSel ){
3445 while( pSel->pPrior ) pSel = pSel->pPrior; 4382 while( pSel->pPrior ) pSel = pSel->pPrior;
3446 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 4383 selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4384 }
3447 } 4385 }
3448 } 4386 }
3449 } 4387 }
3450 return WRC_Continue;
3451 } 4388 }
3452 #endif 4389 #endif
3453 4390
3454 4391
3455 /* 4392 /*
3456 ** This routine adds datatype and collating sequence information to 4393 ** This routine adds datatype and collating sequence information to
3457 ** the Table structures of all FROM-clause subqueries in a 4394 ** the Table structures of all FROM-clause subqueries in a
3458 ** SELECT statement. 4395 ** SELECT statement.
3459 ** 4396 **
3460 ** Use this routine after name resolution. 4397 ** Use this routine after name resolution.
3461 */ 4398 */
3462 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4399 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3463 #ifndef SQLITE_OMIT_SUBQUERY 4400 #ifndef SQLITE_OMIT_SUBQUERY
3464 Walker w; 4401 Walker w;
3465 w.xSelectCallback = selectAddSubqueryTypeInfo; 4402 memset(&w, 0, sizeof(w));
4403 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
3466 w.xExprCallback = exprWalkNoop; 4404 w.xExprCallback = exprWalkNoop;
3467 w.pParse = pParse; 4405 w.pParse = pParse;
3468 sqlite3WalkSelect(&w, pSelect); 4406 sqlite3WalkSelect(&w, pSelect);
3469 #endif 4407 #endif
3470 } 4408 }
3471 4409
3472 4410
3473 /* 4411 /*
3474 ** This routine sets of a SELECT statement for processing. The 4412 ** This routine sets up a SELECT statement for processing. The
3475 ** following is accomplished: 4413 ** following is accomplished:
3476 ** 4414 **
3477 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4415 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
3478 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4416 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
3479 ** * ON and USING clauses are shifted into WHERE statements 4417 ** * ON and USING clauses are shifted into WHERE statements
3480 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4418 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
3481 ** * Identifiers in expression are matched to tables. 4419 ** * Identifiers in expression are matched to tables.
3482 ** 4420 **
3483 ** This routine acts recursively on all subqueries within the SELECT. 4421 ** This routine acts recursively on all subqueries within the SELECT.
3484 */ 4422 */
3485 void sqlite3SelectPrep( 4423 void sqlite3SelectPrep(
3486 Parse *pParse, /* The parser context */ 4424 Parse *pParse, /* The parser context */
3487 Select *p, /* The SELECT statement being coded. */ 4425 Select *p, /* The SELECT statement being coded. */
3488 NameContext *pOuterNC /* Name context for container */ 4426 NameContext *pOuterNC /* Name context for container */
3489 ){ 4427 ){
3490 sqlite3 *db; 4428 sqlite3 *db;
3491 if( NEVER(p==0) ) return; 4429 if( NEVER(p==0) ) return;
3492 db = pParse->db; 4430 db = pParse->db;
4431 if( db->mallocFailed ) return;
3493 if( p->selFlags & SF_HasTypeInfo ) return; 4432 if( p->selFlags & SF_HasTypeInfo ) return;
3494 sqlite3SelectExpand(pParse, p); 4433 sqlite3SelectExpand(pParse, p);
3495 if( pParse->nErr || db->mallocFailed ) return; 4434 if( pParse->nErr || db->mallocFailed ) return;
3496 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4435 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3497 if( pParse->nErr || db->mallocFailed ) return; 4436 if( pParse->nErr || db->mallocFailed ) return;
3498 sqlite3SelectAddTypeInfo(pParse, p); 4437 sqlite3SelectAddTypeInfo(pParse, p);
3499 } 4438 }
3500 4439
3501 /* 4440 /*
3502 ** Reset the aggregate accumulator. 4441 ** Reset the aggregate accumulator.
3503 ** 4442 **
3504 ** The aggregate accumulator is a set of memory cells that hold 4443 ** The aggregate accumulator is a set of memory cells that hold
3505 ** intermediate results while calculating an aggregate. This 4444 ** intermediate results while calculating an aggregate. This
3506 ** routine simply stores NULLs in all of those memory cells. 4445 ** routine generates code that stores NULLs in all of those memory
4446 ** cells.
3507 */ 4447 */
3508 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4448 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3509 Vdbe *v = pParse->pVdbe; 4449 Vdbe *v = pParse->pVdbe;
3510 int i; 4450 int i;
3511 struct AggInfo_func *pFunc; 4451 struct AggInfo_func *pFunc;
3512 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 4452 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
3513 return; 4453 if( nReg==0 ) return;
4454 #ifdef SQLITE_DEBUG
4455 /* Verify that all AggInfo registers are within the range specified by
4456 ** AggInfo.mnReg..AggInfo.mxReg */
4457 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4458 for(i=0; i<pAggInfo->nColumn; i++){
4459 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4460 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
3514 } 4461 }
3515 for(i=0; i<pAggInfo->nColumn; i++){ 4462 for(i=0; i<pAggInfo->nFunc; i++){
3516 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 4463 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4464 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
3517 } 4465 }
4466 #endif
4467 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
3518 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4468 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3519 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3520 if( pFunc->iDistinct>=0 ){ 4469 if( pFunc->iDistinct>=0 ){
3521 Expr *pE = pFunc->pExpr; 4470 Expr *pE = pFunc->pExpr;
3522 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4471 assert( !ExprHasProperty(pE, EP_xIsSelect) );
3523 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4472 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3524 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4473 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3525 "argument"); 4474 "argument");
3526 pFunc->iDistinct = -1; 4475 pFunc->iDistinct = -1;
3527 }else{ 4476 }else{
3528 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 4477 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
3529 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4478 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3530 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 4479 (char*)pKeyInfo, P4_KEYINFO);
3531 } 4480 }
3532 } 4481 }
3533 } 4482 }
3534 } 4483 }
3535 4484
3536 /* 4485 /*
3537 ** Invoke the OP_AggFinalize opcode for every aggregate function 4486 ** Invoke the OP_AggFinalize opcode for every aggregate function
3538 ** in the AggInfo structure. 4487 ** in the AggInfo structure.
3539 */ 4488 */
3540 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4489 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3541 Vdbe *v = pParse->pVdbe; 4490 Vdbe *v = pParse->pVdbe;
3542 int i; 4491 int i;
3543 struct AggInfo_func *pF; 4492 struct AggInfo_func *pF;
3544 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4493 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3545 ExprList *pList = pF->pExpr->x.pList; 4494 ExprList *pList = pF->pExpr->x.pList;
3546 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4495 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3547 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4496 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3548 (void*)pF->pFunc, P4_FUNCDEF); 4497 (void*)pF->pFunc, P4_FUNCDEF);
3549 } 4498 }
3550 } 4499 }
3551 4500
3552 /* 4501 /*
3553 ** Update the accumulator memory cells for an aggregate based on 4502 ** Update the accumulator memory cells for an aggregate based on
3554 ** the current cursor position. 4503 ** the current cursor position.
3555 */ 4504 */
3556 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4505 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3557 Vdbe *v = pParse->pVdbe; 4506 Vdbe *v = pParse->pVdbe;
3558 int i; 4507 int i;
4508 int regHit = 0;
4509 int addrHitTest = 0;
3559 struct AggInfo_func *pF; 4510 struct AggInfo_func *pF;
3560 struct AggInfo_col *pC; 4511 struct AggInfo_col *pC;
3561 4512
3562 pAggInfo->directMode = 1; 4513 pAggInfo->directMode = 1;
3563 sqlite3ExprCacheClear(pParse);
3564 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4514 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3565 int nArg; 4515 int nArg;
3566 int addrNext = 0; 4516 int addrNext = 0;
3567 int regAgg; 4517 int regAgg;
3568 ExprList *pList = pF->pExpr->x.pList; 4518 ExprList *pList = pF->pExpr->x.pList;
3569 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4519 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3570 if( pList ){ 4520 if( pList ){
3571 nArg = pList->nExpr; 4521 nArg = pList->nExpr;
3572 regAgg = sqlite3GetTempRange(pParse, nArg); 4522 regAgg = sqlite3GetTempRange(pParse, nArg);
3573 sqlite3ExprCodeExprList(pParse, pList, regAgg, 1); 4523 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
3574 }else{ 4524 }else{
3575 nArg = 0; 4525 nArg = 0;
3576 regAgg = 0; 4526 regAgg = 0;
3577 } 4527 }
3578 if( pF->iDistinct>=0 ){ 4528 if( pF->iDistinct>=0 ){
3579 addrNext = sqlite3VdbeMakeLabel(v); 4529 addrNext = sqlite3VdbeMakeLabel(v);
3580 assert( nArg==1 ); 4530 assert( nArg==1 );
3581 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4531 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3582 } 4532 }
3583 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 4533 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3584 CollSeq *pColl = 0; 4534 CollSeq *pColl = 0;
3585 struct ExprList_item *pItem; 4535 struct ExprList_item *pItem;
3586 int j; 4536 int j;
3587 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4537 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
3588 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4538 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3589 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4539 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3590 } 4540 }
3591 if( !pColl ){ 4541 if( !pColl ){
3592 pColl = pParse->db->pDfltColl; 4542 pColl = pParse->db->pDfltColl;
3593 } 4543 }
3594 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4544 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4545 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
3595 } 4546 }
3596 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 4547 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3597 (void*)pF->pFunc, P4_FUNCDEF); 4548 (void*)pF->pFunc, P4_FUNCDEF);
3598 sqlite3VdbeChangeP5(v, (u8)nArg); 4549 sqlite3VdbeChangeP5(v, (u8)nArg);
3599 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4550 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3600 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4551 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3601 if( addrNext ){ 4552 if( addrNext ){
3602 sqlite3VdbeResolveLabel(v, addrNext); 4553 sqlite3VdbeResolveLabel(v, addrNext);
3603 sqlite3ExprCacheClear(pParse); 4554 sqlite3ExprCacheClear(pParse);
3604 } 4555 }
3605 } 4556 }
3606 4557
3607 /* Before populating the accumulator registers, clear the column cache. 4558 /* Before populating the accumulator registers, clear the column cache.
3608 ** Otherwise, if any of the required column values are already present 4559 ** Otherwise, if any of the required column values are already present
3609 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4560 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
3610 ** to pC->iMem. But by the time the value is used, the original register 4561 ** to pC->iMem. But by the time the value is used, the original register
3611 ** may have been used, invalidating the underlying buffer holding the 4562 ** may have been used, invalidating the underlying buffer holding the
3612 ** text or blob value. See ticket [883034dcb5]. 4563 ** text or blob value. See ticket [883034dcb5].
3613 ** 4564 **
3614 ** Another solution would be to change the OP_SCopy used to copy cached 4565 ** Another solution would be to change the OP_SCopy used to copy cached
3615 ** values to an OP_Copy. 4566 ** values to an OP_Copy.
3616 */ 4567 */
4568 if( regHit ){
4569 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4570 }
3617 sqlite3ExprCacheClear(pParse); 4571 sqlite3ExprCacheClear(pParse);
3618 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4572 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3619 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4573 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3620 } 4574 }
3621 pAggInfo->directMode = 0; 4575 pAggInfo->directMode = 0;
3622 sqlite3ExprCacheClear(pParse); 4576 sqlite3ExprCacheClear(pParse);
4577 if( addrHitTest ){
4578 sqlite3VdbeJumpHere(v, addrHitTest);
4579 }
3623 } 4580 }
3624 4581
3625 /* 4582 /*
3626 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4583 ** Add a single OP_Explain instruction to the VDBE to explain a simple
3627 ** count(*) query ("SELECT count(*) FROM pTab"). 4584 ** count(*) query ("SELECT count(*) FROM pTab").
3628 */ 4585 */
3629 #ifndef SQLITE_OMIT_EXPLAIN 4586 #ifndef SQLITE_OMIT_EXPLAIN
3630 static void explainSimpleCount( 4587 static void explainSimpleCount(
3631 Parse *pParse, /* Parse context */ 4588 Parse *pParse, /* Parse context */
3632 Table *pTab, /* Table being queried */ 4589 Table *pTab, /* Table being queried */
3633 Index *pIdx /* Index used to optimize scan, or NULL */ 4590 Index *pIdx /* Index used to optimize scan, or NULL */
3634 ){ 4591 ){
3635 if( pParse->explain==2 ){ 4592 if( pParse->explain==2 ){
3636 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)", 4593 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
3637 pTab->zName, 4594 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
3638 pIdx ? "USING COVERING INDEX " : "", 4595 pTab->zName,
3639 pIdx ? pIdx->zName : "", 4596 bCover ? " USING COVERING INDEX " : "",
3640 pTab->nRowEst 4597 bCover ? pIdx->zName : ""
3641 ); 4598 );
3642 sqlite3VdbeAddOp4( 4599 sqlite3VdbeAddOp4(
3643 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4600 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
3644 ); 4601 );
3645 } 4602 }
3646 } 4603 }
3647 #else 4604 #else
3648 # define explainSimpleCount(a,b,c) 4605 # define explainSimpleCount(a,b,c)
3649 #endif 4606 #endif
3650 4607
3651 /* 4608 /*
3652 ** Generate code for the SELECT statement given in the p argument. 4609 ** Generate code for the SELECT statement given in the p argument.
3653 ** 4610 **
3654 ** The results are distributed in various ways depending on the 4611 ** The results are returned according to the SelectDest structure.
3655 ** contents of the SelectDest structure pointed to by argument pDest 4612 ** See comments in sqliteInt.h for further information.
3656 ** as follows:
3657 **
3658 ** pDest->eDest Result
3659 ** ------------ -------------------------------------------
3660 ** SRT_Output Generate a row of output (using the OP_ResultRow
3661 ** opcode) for each row in the result set.
3662 **
3663 ** SRT_Mem Only valid if the result is a single column.
3664 ** Store the first column of the first result row
3665 ** in register pDest->iParm then abandon the rest
3666 ** of the query. This destination implies "LIMIT 1".
3667 **
3668 ** SRT_Set The result must be a single column. Store each
3669 ** row of result as the key in table pDest->iParm.
3670 ** Apply the affinity pDest->affinity before storing
3671 ** results. Used to implement "IN (SELECT ...)".
3672 **
3673 ** SRT_Union Store results as a key in a temporary table pDest->iParm.
3674 **
3675 ** SRT_Except Remove results from the temporary table pDest->iParm.
3676 **
3677 ** SRT_Table Store results in temporary table pDest->iParm.
3678 ** This is like SRT_EphemTab except that the table
3679 ** is assumed to already be open.
3680 **
3681 ** SRT_EphemTab Create an temporary table pDest->iParm and store
3682 ** the result there. The cursor is left open after
3683 ** returning. This is like SRT_Table except that
3684 ** this destination uses OP_OpenEphemeral to create
3685 ** the table first.
3686 **
3687 ** SRT_Coroutine Generate a co-routine that returns a new row of
3688 ** results each time it is invoked. The entry point
3689 ** of the co-routine is stored in register pDest->iParm.
3690 **
3691 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result
3692 ** set is not empty.
3693 **
3694 ** SRT_Discard Throw the results away. This is used by SELECT
3695 ** statements within triggers whose only purpose is
3696 ** the side-effects of functions.
3697 ** 4613 **
3698 ** This routine returns the number of errors. If any errors are 4614 ** This routine returns the number of errors. If any errors are
3699 ** encountered, then an appropriate error message is left in 4615 ** encountered, then an appropriate error message is left in
3700 ** pParse->zErrMsg. 4616 ** pParse->zErrMsg.
3701 ** 4617 **
3702 ** This routine does NOT free the Select structure passed in. The 4618 ** This routine does NOT free the Select structure passed in. The
3703 ** calling function needs to do that. 4619 ** calling function needs to do that.
3704 */ 4620 */
3705 int sqlite3Select( 4621 int sqlite3Select(
3706 Parse *pParse, /* The parser context */ 4622 Parse *pParse, /* The parser context */
3707 Select *p, /* The SELECT statement being coded. */ 4623 Select *p, /* The SELECT statement being coded. */
3708 SelectDest *pDest /* What to do with the query results */ 4624 SelectDest *pDest /* What to do with the query results */
3709 ){ 4625 ){
3710 int i, j; /* Loop counters */ 4626 int i, j; /* Loop counters */
3711 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4627 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
3712 Vdbe *v; /* The virtual machine under construction */ 4628 Vdbe *v; /* The virtual machine under construction */
3713 int isAgg; /* True for select lists like "count(*)" */ 4629 int isAgg; /* True for select lists like "count(*)" */
3714 ExprList *pEList; /* List of columns to extract. */ 4630 ExprList *pEList; /* List of columns to extract. */
3715 SrcList *pTabList; /* List of tables to select from */ 4631 SrcList *pTabList; /* List of tables to select from */
3716 Expr *pWhere; /* The WHERE clause. May be NULL */ 4632 Expr *pWhere; /* The WHERE clause. May be NULL */
3717 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
3718 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4633 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
3719 Expr *pHaving; /* The HAVING clause. May be NULL */ 4634 Expr *pHaving; /* The HAVING clause. May be NULL */
3720 int isDistinct; /* True if the DISTINCT keyword is present */
3721 int distinct; /* Table to use for the distinct set */
3722 int rc = 1; /* Value to return from this function */ 4635 int rc = 1; /* Value to return from this function */
3723 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 4636 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4637 SortCtx sSort; /* Info on how to code the ORDER BY clause */
3724 AggInfo sAggInfo; /* Information used by aggregate queries */ 4638 AggInfo sAggInfo; /* Information used by aggregate queries */
3725 int iEnd; /* Address of the end of the query */ 4639 int iEnd; /* Address of the end of the query */
3726 sqlite3 *db; /* The database connection */ 4640 sqlite3 *db; /* The database connection */
3727 4641
3728 #ifndef SQLITE_OMIT_EXPLAIN 4642 #ifndef SQLITE_OMIT_EXPLAIN
3729 int iRestoreSelectId = pParse->iSelectId; 4643 int iRestoreSelectId = pParse->iSelectId;
3730 pParse->iSelectId = pParse->iNextSelectId++; 4644 pParse->iSelectId = pParse->iNextSelectId++;
3731 #endif 4645 #endif
3732 4646
3733 db = pParse->db; 4647 db = pParse->db;
3734 if( p==0 || db->mallocFailed || pParse->nErr ){ 4648 if( p==0 || db->mallocFailed || pParse->nErr ){
3735 return 1; 4649 return 1;
3736 } 4650 }
3737 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4651 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3738 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4652 memset(&sAggInfo, 0, sizeof(sAggInfo));
4653 #if SELECTTRACE_ENABLED
4654 pParse->nSelectIndent++;
4655 SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4656 if( sqlite3SelectTrace & 0x100 ){
4657 sqlite3TreeViewSelect(0, p, 0);
4658 }
4659 #endif
3739 4660
4661 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4662 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4663 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4664 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
3740 if( IgnorableOrderby(pDest) ){ 4665 if( IgnorableOrderby(pDest) ){
3741 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4666 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3742 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 4667 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4668 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
4669 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
3743 /* If ORDER BY makes no difference in the output then neither does 4670 /* If ORDER BY makes no difference in the output then neither does
3744 ** DISTINCT so it can be removed too. */ 4671 ** DISTINCT so it can be removed too. */
3745 sqlite3ExprListDelete(db, p->pOrderBy); 4672 sqlite3ExprListDelete(db, p->pOrderBy);
3746 p->pOrderBy = 0; 4673 p->pOrderBy = 0;
3747 p->selFlags &= ~SF_Distinct; 4674 p->selFlags &= ~SF_Distinct;
3748 } 4675 }
3749 sqlite3SelectPrep(pParse, p, 0); 4676 sqlite3SelectPrep(pParse, p, 0);
3750 pOrderBy = p->pOrderBy; 4677 memset(&sSort, 0, sizeof(sSort));
4678 sSort.pOrderBy = p->pOrderBy;
3751 pTabList = p->pSrc; 4679 pTabList = p->pSrc;
3752 pEList = p->pEList; 4680 pEList = p->pEList;
3753 if( pParse->nErr || db->mallocFailed ){ 4681 if( pParse->nErr || db->mallocFailed ){
3754 goto select_end; 4682 goto select_end;
3755 } 4683 }
3756 isAgg = (p->selFlags & SF_Aggregate)!=0; 4684 isAgg = (p->selFlags & SF_Aggregate)!=0;
3757 assert( pEList!=0 ); 4685 assert( pEList!=0 );
3758 4686
3759 /* Begin generating code. 4687 /* Begin generating code.
3760 */ 4688 */
(...skipping 11 matching lines...) Expand all
3772 4700
3773 /* Generate code for all sub-queries in the FROM clause 4701 /* Generate code for all sub-queries in the FROM clause
3774 */ 4702 */
3775 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4703 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3776 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4704 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3777 struct SrcList_item *pItem = &pTabList->a[i]; 4705 struct SrcList_item *pItem = &pTabList->a[i];
3778 SelectDest dest; 4706 SelectDest dest;
3779 Select *pSub = pItem->pSelect; 4707 Select *pSub = pItem->pSelect;
3780 int isAggSub; 4708 int isAggSub;
3781 4709
3782 if( pSub==0 || pItem->isPopulated ) continue; 4710 if( pSub==0 ) continue;
4711
4712 /* Sometimes the code for a subquery will be generated more than
4713 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4714 ** for example. In that case, do not regenerate the code to manifest
4715 ** a view or the co-routine to implement a view. The first instance
4716 ** is sufficient, though the subroutine to manifest the view does need
4717 ** to be invoked again. */
4718 if( pItem->addrFillSub ){
4719 if( pItem->viaCoroutine==0 ){
4720 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4721 }
4722 continue;
4723 }
3783 4724
3784 /* Increment Parse.nHeight by the height of the largest expression 4725 /* Increment Parse.nHeight by the height of the largest expression
3785 ** tree refered to by this, the parent select. The child select 4726 ** tree referred to by this, the parent select. The child select
3786 ** may contain expression trees of at most 4727 ** may contain expression trees of at most
3787 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4728 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3788 ** more conservative than necessary, but much easier than enforcing 4729 ** more conservative than necessary, but much easier than enforcing
3789 ** an exact limit. 4730 ** an exact limit.
3790 */ 4731 */
3791 pParse->nHeight += sqlite3SelectExprHeight(p); 4732 pParse->nHeight += sqlite3SelectExprHeight(p);
3792 4733
3793 /* Check to see if the subquery can be absorbed into the parent. */
3794 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4734 isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3795 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4735 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4736 /* This subquery can be absorbed into its parent. */
3796 if( isAggSub ){ 4737 if( isAggSub ){
3797 isAgg = 1; 4738 isAgg = 1;
3798 p->selFlags |= SF_Aggregate; 4739 p->selFlags |= SF_Aggregate;
3799 } 4740 }
3800 i = -1; 4741 i = -1;
3801 }else{ 4742 }else if( pTabList->nSrc==1
3802 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4743 && OptimizationEnabled(db, SQLITE_SubqCoroutine)
3803 assert( pItem->isPopulated==0 ); 4744 ){
4745 /* Implement a co-routine that will return a single row of the result
4746 ** set on each invocation.
4747 */
4748 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4749 pItem->regReturn = ++pParse->nMem;
4750 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4751 VdbeComment((v, "%s", pItem->pTab->zName));
4752 pItem->addrFillSub = addrTop;
4753 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
3804 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4754 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
3805 sqlite3Select(pParse, pSub, &dest); 4755 sqlite3Select(pParse, pSub, &dest);
3806 pItem->isPopulated = 1; 4756 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
3807 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; 4757 pItem->viaCoroutine = 1;
4758 pItem->regResult = dest.iSdst;
4759 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4760 sqlite3VdbeJumpHere(v, addrTop-1);
4761 sqlite3ClearTempRegCache(pParse);
4762 }else{
4763 /* Generate a subroutine that will fill an ephemeral table with
4764 ** the content of this subquery. pItem->addrFillSub will point
4765 ** to the address of the generated subroutine. pItem->regReturn
4766 ** is a register allocated to hold the subroutine return address
4767 */
4768 int topAddr;
4769 int onceAddr = 0;
4770 int retAddr;
4771 assert( pItem->addrFillSub==0 );
4772 pItem->regReturn = ++pParse->nMem;
4773 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4774 pItem->addrFillSub = topAddr+1;
4775 if( pItem->isCorrelated==0 ){
4776 /* If the subquery is not correlated and if we are not inside of
4777 ** a trigger, then we only need to compute the value of the subquery
4778 ** once. */
4779 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4780 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4781 }else{
4782 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4783 }
4784 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4785 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4786 sqlite3Select(pParse, pSub, &dest);
4787 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4788 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4789 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4790 VdbeComment((v, "end %s", pItem->pTab->zName));
4791 sqlite3VdbeChangeP1(v, topAddr, retAddr);
4792 sqlite3ClearTempRegCache(pParse);
3808 } 4793 }
3809 if( /*pParse->nErr ||*/ db->mallocFailed ){ 4794 if( /*pParse->nErr ||*/ db->mallocFailed ){
3810 goto select_end; 4795 goto select_end;
3811 } 4796 }
3812 pParse->nHeight -= sqlite3SelectExprHeight(p); 4797 pParse->nHeight -= sqlite3SelectExprHeight(p);
3813 pTabList = p->pSrc; 4798 pTabList = p->pSrc;
3814 if( !IgnorableOrderby(pDest) ){ 4799 if( !IgnorableOrderby(pDest) ){
3815 pOrderBy = p->pOrderBy; 4800 sSort.pOrderBy = p->pOrderBy;
3816 } 4801 }
3817 } 4802 }
3818 pEList = p->pEList; 4803 pEList = p->pEList;
3819 #endif 4804 #endif
3820 pWhere = p->pWhere; 4805 pWhere = p->pWhere;
3821 pGroupBy = p->pGroupBy; 4806 pGroupBy = p->pGroupBy;
3822 pHaving = p->pHaving; 4807 pHaving = p->pHaving;
3823 isDistinct = (p->selFlags & SF_Distinct)!=0; 4808 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
3824 4809
3825 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4810 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3826 /* If there is are a sequence of queries, do the earlier ones first. 4811 /* If there is are a sequence of queries, do the earlier ones first.
3827 */ 4812 */
3828 if( p->pPrior ){ 4813 if( p->pPrior ){
3829 if( p->pRightmost==0 ){
3830 Select *pLoop, *pRight = 0;
3831 int cnt = 0;
3832 int mxSelect;
3833 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3834 pLoop->pRightmost = p;
3835 pLoop->pNext = pRight;
3836 pRight = pLoop;
3837 }
3838 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3839 if( mxSelect && cnt>mxSelect ){
3840 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3841 goto select_end;
3842 }
3843 }
3844 rc = multiSelect(pParse, p, pDest); 4814 rc = multiSelect(pParse, p, pDest);
3845 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4815 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4816 #if SELECTTRACE_ENABLED
4817 SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4818 pParse->nSelectIndent--;
4819 #endif
3846 return rc; 4820 return rc;
3847 } 4821 }
3848 #endif 4822 #endif
3849 4823
3850 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 4824 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
3851 ** GROUP BY might use an index, DISTINCT never does. 4825 ** if the select-list is the same as the ORDER BY list, then this query
4826 ** can be rewritten as a GROUP BY. In other words, this:
4827 **
4828 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
4829 **
4830 ** is transformed to:
4831 **
4832 ** SELECT xyz FROM ... GROUP BY xyz
4833 **
4834 ** The second form is preferred as a single index (or temp-table) may be
4835 ** used for both the ORDER BY and DISTINCT processing. As originally
4836 ** written the query must use a temp-table for at least one of the ORDER
4837 ** BY and DISTINCT, and an index or separate temp-table for the other.
3852 */ 4838 */
3853 assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 ); 4839 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
3854 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){ 4840 && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
4841 ){
4842 p->selFlags &= ~SF_Distinct;
3855 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 4843 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
3856 pGroupBy = p->pGroupBy; 4844 pGroupBy = p->pGroupBy;
3857 p->selFlags &= ~SF_Distinct; 4845 sSort.pOrderBy = 0;
3858 } 4846 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
3859 4847 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
3860 /* If there is both a GROUP BY and an ORDER BY clause and they are 4848 ** original setting of the SF_Distinct flag, not the current setting */
3861 ** identical, then disable the ORDER BY clause since the GROUP BY 4849 assert( sDistinct.isTnct );
3862 ** will cause elements to come out in the correct order. This is
3863 ** an optimization - the correct answer should result regardless.
3864 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
3865 ** to disable this optimization for testing purposes.
3866 */
3867 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
3868 && (db->flags & SQLITE_GroupByOrder)==0 ){
3869 pOrderBy = 0;
3870 } 4850 }
3871 4851
3872 /* If there is an ORDER BY clause, then this sorting 4852 /* If there is an ORDER BY clause, then this sorting
3873 ** index might end up being unused if the data can be 4853 ** index might end up being unused if the data can be
3874 ** extracted in pre-sorted order. If that is the case, then the 4854 ** extracted in pre-sorted order. If that is the case, then the
3875 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 4855 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3876 ** we figure out that the sorting index is not needed. The addrSortIndex 4856 ** we figure out that the sorting index is not needed. The addrSortIndex
3877 ** variable is used to facilitate that change. 4857 ** variable is used to facilitate that change.
3878 */ 4858 */
3879 if( pOrderBy ){ 4859 if( sSort.pOrderBy ){
3880 KeyInfo *pKeyInfo; 4860 KeyInfo *pKeyInfo;
3881 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 4861 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0);
3882 pOrderBy->iECursor = pParse->nTab++; 4862 sSort.iECursor = pParse->nTab++;
3883 p->addrOpenEphm[2] = addrSortIndex = 4863 sSort.addrSortIndex =
3884 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4864 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3885 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 4865 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
3886 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 4866 (char*)pKeyInfo, P4_KEYINFO
4867 );
3887 }else{ 4868 }else{
3888 addrSortIndex = -1; 4869 sSort.addrSortIndex = -1;
3889 } 4870 }
3890 4871
3891 /* If the output is destined for a temporary table, open that table. 4872 /* If the output is destined for a temporary table, open that table.
3892 */ 4873 */
3893 if( pDest->eDest==SRT_EphemTab ){ 4874 if( pDest->eDest==SRT_EphemTab ){
3894 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 4875 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
3895 } 4876 }
3896 4877
3897 /* Set the limiter. 4878 /* Set the limiter.
3898 */ 4879 */
3899 iEnd = sqlite3VdbeMakeLabel(v); 4880 iEnd = sqlite3VdbeMakeLabel(v);
3900 p->nSelectRow = (double)LARGEST_INT64; 4881 p->nSelectRow = LARGEST_INT64;
3901 computeLimitRegisters(pParse, p, iEnd); 4882 computeLimitRegisters(pParse, p, iEnd);
4883 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
4884 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
4885 sSort.sortFlags |= SORTFLAG_UseSorter;
4886 }
3902 4887
3903 /* Open a virtual index to use for the distinct set. 4888 /* Open a virtual index to use for the distinct set.
3904 */ 4889 */
3905 if( p->selFlags & SF_Distinct ){ 4890 if( p->selFlags & SF_Distinct ){
3906 KeyInfo *pKeyInfo; 4891 sDistinct.tabTnct = pParse->nTab++;
3907 assert( isAgg || pGroupBy ); 4892 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3908 distinct = pParse->nTab++; 4893 sDistinct.tabTnct, 0, 0,
3909 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 4894 (char*)keyInfoFromExprList(pParse, p->pEList,0,0 ),
3910 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 4895 P4_KEYINFO);
3911 (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3912 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4896 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4897 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
3913 }else{ 4898 }else{
3914 distinct = -1; 4899 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
3915 } 4900 }
3916 4901
3917 /* Aggregate and non-aggregate queries are handled differently */
3918 if( !isAgg && pGroupBy==0 ){ 4902 if( !isAgg && pGroupBy==0 ){
3919 /* This case is for non-aggregate queries 4903 /* No aggregate functions and no GROUP BY clause */
3920 ** Begin the database scan 4904 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
3921 */ 4905
3922 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); 4906 /* Begin the database scan. */
4907 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
4908 p->pEList, wctrlFlags, 0);
3923 if( pWInfo==0 ) goto select_end; 4909 if( pWInfo==0 ) goto select_end;
3924 if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut; 4910 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
4911 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
4912 }
4913 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
4914 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
4915 }
4916 if( sSort.pOrderBy ){
4917 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
4918 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
4919 sSort.pOrderBy = 0;
4920 }
4921 }
3925 4922
3926 /* If sorting index that was created by a prior OP_OpenEphemeral 4923 /* If sorting index that was created by a prior OP_OpenEphemeral
3927 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4924 ** instruction ended up not being needed, then change the OP_OpenEphemeral
3928 ** into an OP_Noop. 4925 ** into an OP_Noop.
3929 */ 4926 */
3930 if( addrSortIndex>=0 && pOrderBy==0 ){ 4927 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
3931 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 4928 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
3932 p->addrOpenEphm[2] = -1;
3933 } 4929 }
3934 4930
3935 /* Use the standard inner loop 4931 /* Use the standard inner loop. */
3936 */ 4932 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
3937 assert(!isDistinct); 4933 sqlite3WhereContinueLabel(pWInfo),
3938 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 4934 sqlite3WhereBreakLabel(pWInfo));
3939 pWInfo->iContinue, pWInfo->iBreak);
3940 4935
3941 /* End the database scan loop. 4936 /* End the database scan loop.
3942 */ 4937 */
3943 sqlite3WhereEnd(pWInfo); 4938 sqlite3WhereEnd(pWInfo);
3944 }else{ 4939 }else{
3945 /* This is the processing for aggregate queries */ 4940 /* This case when there exist aggregate functions or a GROUP BY clause
4941 ** or both */
3946 NameContext sNC; /* Name context for processing aggregate information */ 4942 NameContext sNC; /* Name context for processing aggregate information */
3947 int iAMem; /* First Mem address for storing current GROUP BY */ 4943 int iAMem; /* First Mem address for storing current GROUP BY */
3948 int iBMem; /* First Mem address for previous GROUP BY */ 4944 int iBMem; /* First Mem address for previous GROUP BY */
3949 int iUseFlag; /* Mem address holding flag indicating that at least 4945 int iUseFlag; /* Mem address holding flag indicating that at least
3950 ** one row of the input to the aggregator has been 4946 ** one row of the input to the aggregator has been
3951 ** processed */ 4947 ** processed */
3952 int iAbortFlag; /* Mem address which causes query abort if positive */ 4948 int iAbortFlag; /* Mem address which causes query abort if positive */
3953 int groupBySort; /* Rows come from source in GROUP BY order */ 4949 int groupBySort; /* Rows come from source in GROUP BY order */
3954 int addrEnd; /* End of processing for this SELECT */ 4950 int addrEnd; /* End of processing for this SELECT */
4951 int sortPTab = 0; /* Pseudotable used to decode sorting results */
4952 int sortOut = 0; /* Output register from the sorter */
4953 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
3955 4954
3956 /* Remove any and all aliases between the result set and the 4955 /* Remove any and all aliases between the result set and the
3957 ** GROUP BY clause. 4956 ** GROUP BY clause.
3958 */ 4957 */
3959 if( pGroupBy ){ 4958 if( pGroupBy ){
3960 int k; /* Loop counter */ 4959 int k; /* Loop counter */
3961 struct ExprList_item *pItem; /* For looping over expression in a list */ 4960 struct ExprList_item *pItem; /* For looping over expression in a list */
3962 4961
3963 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 4962 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
3964 pItem->iAlias = 0; 4963 pItem->u.x.iAlias = 0;
3965 } 4964 }
3966 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 4965 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
3967 pItem->iAlias = 0; 4966 pItem->u.x.iAlias = 0;
3968 } 4967 }
3969 if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100; 4968 if( p->nSelectRow>100 ) p->nSelectRow = 100;
3970 }else{ 4969 }else{
3971 p->nSelectRow = (double)1; 4970 p->nSelectRow = 1;
3972 } 4971 }
3973 4972
4973
4974 /* If there is both a GROUP BY and an ORDER BY clause and they are
4975 ** identical, then it may be possible to disable the ORDER BY clause
4976 ** on the grounds that the GROUP BY will cause elements to come out
4977 ** in the correct order. It also may not - the GROUP BY may use a
4978 ** database index that causes rows to be grouped together as required
4979 ** but not actually sorted. Either way, record the fact that the
4980 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
4981 ** variable. */
4982 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
4983 orderByGrp = 1;
4984 }
3974 4985
3975 /* Create a label to jump to when we want to abort the query */ 4986 /* Create a label to jump to when we want to abort the query */
3976 addrEnd = sqlite3VdbeMakeLabel(v); 4987 addrEnd = sqlite3VdbeMakeLabel(v);
3977 4988
3978 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 4989 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3979 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 4990 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3980 ** SELECT statement. 4991 ** SELECT statement.
3981 */ 4992 */
3982 memset(&sNC, 0, sizeof(sNC)); 4993 memset(&sNC, 0, sizeof(sNC));
3983 sNC.pParse = pParse; 4994 sNC.pParse = pParse;
3984 sNC.pSrcList = pTabList; 4995 sNC.pSrcList = pTabList;
3985 sNC.pAggInfo = &sAggInfo; 4996 sNC.pAggInfo = &sAggInfo;
3986 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 4997 sAggInfo.mnReg = pParse->nMem+1;
4998 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
3987 sAggInfo.pGroupBy = pGroupBy; 4999 sAggInfo.pGroupBy = pGroupBy;
3988 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5000 sqlite3ExprAnalyzeAggList(&sNC, pEList);
3989 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 5001 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
3990 if( pHaving ){ 5002 if( pHaving ){
3991 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5003 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3992 } 5004 }
3993 sAggInfo.nAccumulator = sAggInfo.nColumn; 5005 sAggInfo.nAccumulator = sAggInfo.nColumn;
3994 for(i=0; i<sAggInfo.nFunc; i++){ 5006 for(i=0; i<sAggInfo.nFunc; i++){
3995 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5007 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5008 sNC.ncFlags |= NC_InAggFunc;
3996 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5009 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5010 sNC.ncFlags &= ~NC_InAggFunc;
3997 } 5011 }
5012 sAggInfo.mxReg = pParse->nMem;
3998 if( db->mallocFailed ) goto select_end; 5013 if( db->mallocFailed ) goto select_end;
3999 5014
4000 /* Processing for aggregates with GROUP BY is very different and 5015 /* Processing for aggregates with GROUP BY is very different and
4001 ** much more complex than aggregates without a GROUP BY. 5016 ** much more complex than aggregates without a GROUP BY.
4002 */ 5017 */
4003 if( pGroupBy ){ 5018 if( pGroupBy ){
4004 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5019 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
4005 int j1; /* A-vs-B comparision jump */ 5020 int j1; /* A-vs-B comparision jump */
4006 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5021 int addrOutputRow; /* Start of subroutine that outputs a result row */
4007 int regOutputRow; /* Return address register for output subroutine */ 5022 int regOutputRow; /* Return address register for output subroutine */
4008 int addrSetAbort; /* Set the abort flag and return */ 5023 int addrSetAbort; /* Set the abort flag and return */
4009 int addrTopOfLoop; /* Top of the input loop */ 5024 int addrTopOfLoop; /* Top of the input loop */
4010 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5025 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4011 int addrReset; /* Subroutine for resetting the accumulator */ 5026 int addrReset; /* Subroutine for resetting the accumulator */
4012 int regReset; /* Return address register for reset subroutine */ 5027 int regReset; /* Return address register for reset subroutine */
4013 5028
4014 /* If there is a GROUP BY clause we might need a sorting index to 5029 /* If there is a GROUP BY clause we might need a sorting index to
4015 ** implement it. Allocate that sorting index now. If it turns out 5030 ** implement it. Allocate that sorting index now. If it turns out
4016 ** that we do not need it after all, the OpenEphemeral instruction 5031 ** that we do not need it after all, the OP_SorterOpen instruction
4017 ** will be converted into a Noop. 5032 ** will be converted into a Noop.
4018 */ 5033 */
4019 sAggInfo.sortingIdx = pParse->nTab++; 5034 sAggInfo.sortingIdx = pParse->nTab++;
4020 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 5035 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0);
4021 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5036 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
4022 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5037 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4023 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 5038 0, (char*)pKeyInfo, P4_KEYINFO);
4024 5039
4025 /* Initialize memory locations used by GROUP BY aggregate processing 5040 /* Initialize memory locations used by GROUP BY aggregate processing
4026 */ 5041 */
4027 iUseFlag = ++pParse->nMem; 5042 iUseFlag = ++pParse->nMem;
4028 iAbortFlag = ++pParse->nMem; 5043 iAbortFlag = ++pParse->nMem;
4029 regOutputRow = ++pParse->nMem; 5044 regOutputRow = ++pParse->nMem;
4030 addrOutputRow = sqlite3VdbeMakeLabel(v); 5045 addrOutputRow = sqlite3VdbeMakeLabel(v);
4031 regReset = ++pParse->nMem; 5046 regReset = ++pParse->nMem;
4032 addrReset = sqlite3VdbeMakeLabel(v); 5047 addrReset = sqlite3VdbeMakeLabel(v);
4033 iAMem = pParse->nMem + 1; 5048 iAMem = pParse->nMem + 1;
4034 pParse->nMem += pGroupBy->nExpr; 5049 pParse->nMem += pGroupBy->nExpr;
4035 iBMem = pParse->nMem + 1; 5050 iBMem = pParse->nMem + 1;
4036 pParse->nMem += pGroupBy->nExpr; 5051 pParse->nMem += pGroupBy->nExpr;
4037 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5052 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4038 VdbeComment((v, "clear abort flag")); 5053 VdbeComment((v, "clear abort flag"));
4039 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5054 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4040 VdbeComment((v, "indicate accumulator empty")); 5055 VdbeComment((v, "indicate accumulator empty"));
5056 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
4041 5057
4042 /* Begin a loop that will extract all source rows in GROUP BY order. 5058 /* Begin a loop that will extract all source rows in GROUP BY order.
4043 ** This might involve two separate loops with an OP_Sort in between, or 5059 ** This might involve two separate loops with an OP_Sort in between, or
4044 ** it might be a single loop that uses an index to extract information 5060 ** it might be a single loop that uses an index to extract information
4045 ** in the right order to begin with. 5061 ** in the right order to begin with.
4046 */ 5062 */
4047 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5063 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4048 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); 5064 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5065 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5066 );
4049 if( pWInfo==0 ) goto select_end; 5067 if( pWInfo==0 ) goto select_end;
4050 if( pGroupBy==0 ){ 5068 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
4051 /* The optimizer is able to deliver rows in group by order so 5069 /* The optimizer is able to deliver rows in group by order so
4052 ** we do not have to sort. The OP_OpenEphemeral table will be 5070 ** we do not have to sort. The OP_OpenEphemeral table will be
4053 ** cancelled later because we still need to use the pKeyInfo 5071 ** cancelled later because we still need to use the pKeyInfo
4054 */ 5072 */
4055 pGroupBy = p->pGroupBy;
4056 groupBySort = 0; 5073 groupBySort = 0;
4057 }else{ 5074 }else{
4058 /* Rows are coming out in undetermined order. We have to push 5075 /* Rows are coming out in undetermined order. We have to push
4059 ** each row into a sorting index, terminate the first loop, 5076 ** each row into a sorting index, terminate the first loop,
4060 ** then loop over the sorting index in order to get the output 5077 ** then loop over the sorting index in order to get the output
4061 ** in sorted order 5078 ** in sorted order
4062 */ 5079 */
4063 int regBase; 5080 int regBase;
4064 int regRecord; 5081 int regRecord;
4065 int nCol; 5082 int nCol;
4066 int nGroupBy; 5083 int nGroupBy;
4067 5084
4068 explainTempTable(pParse, 5085 explainTempTable(pParse,
4069 isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY"); 5086 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5087 "DISTINCT" : "GROUP BY");
4070 5088
4071 groupBySort = 1; 5089 groupBySort = 1;
4072 nGroupBy = pGroupBy->nExpr; 5090 nGroupBy = pGroupBy->nExpr;
4073 nCol = nGroupBy + 1; 5091 nCol = nGroupBy;
4074 j = nGroupBy+1; 5092 j = nGroupBy;
4075 for(i=0; i<sAggInfo.nColumn; i++){ 5093 for(i=0; i<sAggInfo.nColumn; i++){
4076 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5094 if( sAggInfo.aCol[i].iSorterColumn>=j ){
4077 nCol++; 5095 nCol++;
4078 j++; 5096 j++;
4079 } 5097 }
4080 } 5098 }
4081 regBase = sqlite3GetTempRange(pParse, nCol); 5099 regBase = sqlite3GetTempRange(pParse, nCol);
4082 sqlite3ExprCacheClear(pParse); 5100 sqlite3ExprCacheClear(pParse);
4083 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 5101 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4084 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 5102 j = nGroupBy;
4085 j = nGroupBy+1;
4086 for(i=0; i<sAggInfo.nColumn; i++){ 5103 for(i=0; i<sAggInfo.nColumn; i++){
4087 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5104 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4088 if( pCol->iSorterColumn>=j ){ 5105 if( pCol->iSorterColumn>=j ){
4089 int r1 = j + regBase; 5106 int r1 = j + regBase;
4090 int r2; 5107 int r2;
4091 5108
4092 r2 = sqlite3ExprCodeGetColumn(pParse, 5109 r2 = sqlite3ExprCodeGetColumn(pParse,
4093 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5110 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
4094 if( r1!=r2 ){ 5111 if( r1!=r2 ){
4095 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5112 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
4096 } 5113 }
4097 j++; 5114 j++;
4098 } 5115 }
4099 } 5116 }
4100 regRecord = sqlite3GetTempReg(pParse); 5117 regRecord = sqlite3GetTempReg(pParse);
4101 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5118 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
4102 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 5119 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
4103 sqlite3ReleaseTempReg(pParse, regRecord); 5120 sqlite3ReleaseTempReg(pParse, regRecord);
4104 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5121 sqlite3ReleaseTempRange(pParse, regBase, nCol);
4105 sqlite3WhereEnd(pWInfo); 5122 sqlite3WhereEnd(pWInfo);
4106 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 5123 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
4107 VdbeComment((v, "GROUP BY sort")); 5124 sortOut = sqlite3GetTempReg(pParse);
5125 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5126 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5127 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
4108 sAggInfo.useSortingIdx = 1; 5128 sAggInfo.useSortingIdx = 1;
4109 sqlite3ExprCacheClear(pParse); 5129 sqlite3ExprCacheClear(pParse);
5130
5131 }
5132
5133 /* If the index or temporary table used by the GROUP BY sort
5134 ** will naturally deliver rows in the order required by the ORDER BY
5135 ** clause, cancel the ephemeral table open coded earlier.
5136 **
5137 ** This is an optimization - the correct answer should result regardless.
5138 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5139 ** disable this optimization for testing purposes. */
5140 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5141 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5142 ){
5143 sSort.pOrderBy = 0;
5144 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
4110 } 5145 }
4111 5146
4112 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5147 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
4113 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5148 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
4114 ** Then compare the current GROUP BY terms against the GROUP BY terms 5149 ** Then compare the current GROUP BY terms against the GROUP BY terms
4115 ** from the previous row currently stored in a0, a1, a2... 5150 ** from the previous row currently stored in a0, a1, a2...
4116 */ 5151 */
4117 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5152 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
4118 sqlite3ExprCacheClear(pParse); 5153 sqlite3ExprCacheClear(pParse);
5154 if( groupBySort ){
5155 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTa b);
5156 }
4119 for(j=0; j<pGroupBy->nExpr; j++){ 5157 for(j=0; j<pGroupBy->nExpr; j++){
4120 if( groupBySort ){ 5158 if( groupBySort ){
4121 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 5159 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
4122 }else{ 5160 }else{
4123 sAggInfo.directMode = 1; 5161 sAggInfo.directMode = 1;
4124 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5162 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
4125 } 5163 }
4126 } 5164 }
4127 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5165 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
4128 (char*)pKeyInfo, P4_KEYINFO); 5166 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
4129 j1 = sqlite3VdbeCurrentAddr(v); 5167 j1 = sqlite3VdbeCurrentAddr(v);
4130 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 5168 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
4131 5169
4132 /* Generate code that runs whenever the GROUP BY changes. 5170 /* Generate code that runs whenever the GROUP BY changes.
4133 ** Changes in the GROUP BY are detected by the previous code 5171 ** Changes in the GROUP BY are detected by the previous code
4134 ** block. If there were no changes, this block is skipped. 5172 ** block. If there were no changes, this block is skipped.
4135 ** 5173 **
4136 ** This code copies current group by terms in b0,b1,b2,... 5174 ** This code copies current group by terms in b0,b1,b2,...
4137 ** over to a0,a1,a2. It then calls the output subroutine 5175 ** over to a0,a1,a2. It then calls the output subroutine
4138 ** and resets the aggregate accumulator registers in preparation 5176 ** and resets the aggregate accumulator registers in preparation
4139 ** for the next GROUP BY batch. 5177 ** for the next GROUP BY batch.
4140 */ 5178 */
4141 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5179 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
4142 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5180 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4143 VdbeComment((v, "output one row")); 5181 VdbeComment((v, "output one row"));
4144 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 5182 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
4145 VdbeComment((v, "check abort flag")); 5183 VdbeComment((v, "check abort flag"));
4146 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5184 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4147 VdbeComment((v, "reset accumulator")); 5185 VdbeComment((v, "reset accumulator"));
4148 5186
4149 /* Update the aggregate accumulators based on the content of 5187 /* Update the aggregate accumulators based on the content of
4150 ** the current row 5188 ** the current row
4151 */ 5189 */
4152 sqlite3VdbeJumpHere(v, j1); 5190 sqlite3VdbeJumpHere(v, j1);
4153 updateAccumulator(pParse, &sAggInfo); 5191 updateAccumulator(pParse, &sAggInfo);
4154 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5192 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4155 VdbeComment((v, "indicate data in accumulator")); 5193 VdbeComment((v, "indicate data in accumulator"));
4156 5194
4157 /* End of the loop 5195 /* End of the loop
4158 */ 5196 */
4159 if( groupBySort ){ 5197 if( groupBySort ){
4160 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 5198 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5199 VdbeCoverage(v);
4161 }else{ 5200 }else{
4162 sqlite3WhereEnd(pWInfo); 5201 sqlite3WhereEnd(pWInfo);
4163 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 5202 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
4164 } 5203 }
4165 5204
4166 /* Output the final row of result 5205 /* Output the final row of result
4167 */ 5206 */
4168 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5207 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4169 VdbeComment((v, "output final row")); 5208 VdbeComment((v, "output final row"));
4170 5209
4171 /* Jump over the subroutines 5210 /* Jump over the subroutines
4172 */ 5211 */
4173 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5212 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
4174 5213
4175 /* Generate a subroutine that outputs a single row of the result 5214 /* Generate a subroutine that outputs a single row of the result
4176 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5215 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
4177 ** is less than or equal to zero, the subroutine is a no-op. If 5216 ** is less than or equal to zero, the subroutine is a no-op. If
4178 ** the processing calls for the query to abort, this subroutine 5217 ** the processing calls for the query to abort, this subroutine
4179 ** increments the iAbortFlag memory location before returning in 5218 ** increments the iAbortFlag memory location before returning in
4180 ** order to signal the caller to abort. 5219 ** order to signal the caller to abort.
4181 */ 5220 */
4182 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5221 addrSetAbort = sqlite3VdbeCurrentAddr(v);
4183 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5222 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
4184 VdbeComment((v, "set abort flag")); 5223 VdbeComment((v, "set abort flag"));
4185 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5224 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4186 sqlite3VdbeResolveLabel(v, addrOutputRow); 5225 sqlite3VdbeResolveLabel(v, addrOutputRow);
4187 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5226 addrOutputRow = sqlite3VdbeCurrentAddr(v);
4188 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5227 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v) ;
4189 VdbeComment((v, "Groupby result generator entry point")); 5228 VdbeComment((v, "Groupby result generator entry point"));
4190 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5229 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4191 finalizeAggFunctions(pParse, &sAggInfo); 5230 finalizeAggFunctions(pParse, &sAggInfo);
4192 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5231 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
4193 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 5232 selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
4194 distinct, pDest, 5233 &sDistinct, pDest,
4195 addrOutputRow+1, addrSetAbort); 5234 addrOutputRow+1, addrSetAbort);
4196 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5235 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4197 VdbeComment((v, "end groupby result generator")); 5236 VdbeComment((v, "end groupby result generator"));
4198 5237
4199 /* Generate a subroutine that will reset the group-by accumulator 5238 /* Generate a subroutine that will reset the group-by accumulator
4200 */ 5239 */
4201 sqlite3VdbeResolveLabel(v, addrReset); 5240 sqlite3VdbeResolveLabel(v, addrReset);
4202 resetAccumulator(pParse, &sAggInfo); 5241 resetAccumulator(pParse, &sAggInfo);
4203 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5242 sqlite3VdbeAddOp1(v, OP_Return, regReset);
4204 5243
(...skipping 19 matching lines...) Expand all
4224 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5263 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4225 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5264 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
4226 Index *pIdx; /* Iterator variable */ 5265 Index *pIdx; /* Iterator variable */
4227 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5266 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
4228 Index *pBest = 0; /* Best index found so far */ 5267 Index *pBest = 0; /* Best index found so far */
4229 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5268 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
4230 5269
4231 sqlite3CodeVerifySchema(pParse, iDb); 5270 sqlite3CodeVerifySchema(pParse, iDb);
4232 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5271 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4233 5272
4234 /* Search for the index that has the least amount of columns. If 5273 /* Search for the index that has the lowest scan cost.
4235 ** there is such an index, and it has less columns than the table 5274 **
4236 ** does, then we can assume that it consumes less space on disk and 5275 ** (2011-04-15) Do not do a full scan of an unordered index.
4237 ** will therefore be cheaper to scan to determine the query result. 5276 **
4238 ** In this case set iRoot to the root page number of the index b-tree 5277 ** (2013-10-03) Do not count the entries in a partial index.
4239 ** and pKeyInfo to the KeyInfo structure required to navigate the
4240 ** index.
4241 ** 5278 **
4242 ** In practice the KeyInfo structure will not be used. It is only 5279 ** In practice the KeyInfo structure will not be used. It is only
4243 ** passed to keep OP_OpenRead happy. 5280 ** passed to keep OP_OpenRead happy.
4244 */ 5281 */
5282 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
4245 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5283 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4246 if( !pBest || pIdx->nColumn<pBest->nColumn ){ 5284 if( pIdx->bUnordered==0
5285 && pIdx->szIdxRow<pTab->szTabRow
5286 && pIdx->pPartIdxWhere==0
5287 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5288 ){
4247 pBest = pIdx; 5289 pBest = pIdx;
4248 } 5290 }
4249 } 5291 }
4250 if( pBest && pBest->nColumn<pTab->nCol ){ 5292 if( pBest ){
4251 iRoot = pBest->tnum; 5293 iRoot = pBest->tnum;
4252 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 5294 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
4253 } 5295 }
4254 5296
4255 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5297 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4256 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 5298 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
4257 if( pKeyInfo ){ 5299 if( pKeyInfo ){
4258 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 5300 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
4259 } 5301 }
4260 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5302 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4261 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5303 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4262 explainSimpleCount(pParse, pTab, pBest); 5304 explainSimpleCount(pParse, pTab, pBest);
4263 }else 5305 }else
4264 #endif /* SQLITE_OMIT_BTREECOUNT */ 5306 #endif /* SQLITE_OMIT_BTREECOUNT */
4265 { 5307 {
4266 /* Check if the query is of one of the following forms: 5308 /* Check if the query is of one of the following forms:
4267 ** 5309 **
4268 ** SELECT min(x) FROM ... 5310 ** SELECT min(x) FROM ...
4269 ** SELECT max(x) FROM ... 5311 ** SELECT max(x) FROM ...
4270 ** 5312 **
4271 ** If it is, then ask the code in where.c to attempt to sort results 5313 ** If it is, then ask the code in where.c to attempt to sort results
4272 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5314 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4273 ** If where.c is able to produce results sorted in this order, then 5315 ** If where.c is able to produce results sorted in this order, then
4274 ** add vdbe code to break out of the processing loop after the 5316 ** add vdbe code to break out of the processing loop after the
4275 ** first iteration (since the first iteration of the loop is 5317 ** first iteration (since the first iteration of the loop is
4276 ** guaranteed to operate on the row with the minimum or maximum 5318 ** guaranteed to operate on the row with the minimum or maximum
4277 ** value of x, the only row required). 5319 ** value of x, the only row required).
4278 ** 5320 **
4279 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5321 ** A special flag must be passed to sqlite3WhereBegin() to slightly
4280 ** modify behaviour as follows: 5322 ** modify behavior as follows:
4281 ** 5323 **
4282 ** + If the query is a "SELECT min(x)", then the loop coded by 5324 ** + If the query is a "SELECT min(x)", then the loop coded by
4283 ** where.c should not iterate over any values with a NULL value 5325 ** where.c should not iterate over any values with a NULL value
4284 ** for x. 5326 ** for x.
4285 ** 5327 **
4286 ** + The optimizer code in where.c (the thing that decides which 5328 ** + The optimizer code in where.c (the thing that decides which
4287 ** index or indices to use) should place a different priority on 5329 ** index or indices to use) should place a different priority on
4288 ** satisfying the 'ORDER BY' clause than it does in other cases. 5330 ** satisfying the 'ORDER BY' clause than it does in other cases.
4289 ** Refer to code and comments in where.c for details. 5331 ** Refer to code and comments in where.c for details.
4290 */ 5332 */
4291 ExprList *pMinMax = 0; 5333 ExprList *pMinMax = 0;
4292 u8 flag = minMaxQuery(p); 5334 u8 flag = WHERE_ORDERBY_NORMAL;
5335
5336 assert( p->pGroupBy==0 );
5337 assert( flag==0 );
5338 if( p->pHaving==0 ){
5339 flag = minMaxQuery(&sAggInfo, &pMinMax);
5340 }
5341 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5342
4293 if( flag ){ 5343 if( flag ){
4294 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 5344 pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
4295 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4296 pDel = pMinMax; 5345 pDel = pMinMax;
4297 if( pMinMax && !db->mallocFailed ){ 5346 if( pMinMax && !db->mallocFailed ){
4298 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5347 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4299 pMinMax->a[0].pExpr->op = TK_COLUMN; 5348 pMinMax->a[0].pExpr->op = TK_COLUMN;
4300 } 5349 }
4301 } 5350 }
4302 5351
4303 /* This case runs if the aggregate has no GROUP BY clause. The 5352 /* This case runs if the aggregate has no GROUP BY clause. The
4304 ** processing is much simpler since there is only a single row 5353 ** processing is much simpler since there is only a single row
4305 ** of output. 5354 ** of output.
4306 */ 5355 */
4307 resetAccumulator(pParse, &sAggInfo); 5356 resetAccumulator(pParse, &sAggInfo);
4308 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); 5357 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
4309 if( pWInfo==0 ){ 5358 if( pWInfo==0 ){
4310 sqlite3ExprListDelete(db, pDel); 5359 sqlite3ExprListDelete(db, pDel);
4311 goto select_end; 5360 goto select_end;
4312 } 5361 }
4313 updateAccumulator(pParse, &sAggInfo); 5362 updateAccumulator(pParse, &sAggInfo);
4314 if( !pMinMax && flag ){ 5363 assert( pMinMax==0 || pMinMax->nExpr==1 );
4315 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 5364 if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5365 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
4316 VdbeComment((v, "%s() by index", 5366 VdbeComment((v, "%s() by index",
4317 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5367 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4318 } 5368 }
4319 sqlite3WhereEnd(pWInfo); 5369 sqlite3WhereEnd(pWInfo);
4320 finalizeAggFunctions(pParse, &sAggInfo); 5370 finalizeAggFunctions(pParse, &sAggInfo);
4321 } 5371 }
4322 5372
4323 pOrderBy = 0; 5373 sSort.pOrderBy = 0;
4324 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5374 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4325 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 5375 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
4326 pDest, addrEnd, addrEnd); 5376 pDest, addrEnd, addrEnd);
4327 sqlite3ExprListDelete(db, pDel); 5377 sqlite3ExprListDelete(db, pDel);
4328 } 5378 }
4329 sqlite3VdbeResolveLabel(v, addrEnd); 5379 sqlite3VdbeResolveLabel(v, addrEnd);
4330 5380
4331 } /* endif aggregate query */ 5381 } /* endif aggregate query */
4332 5382
4333 if( distinct>=0 ){ 5383 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
4334 explainTempTable(pParse, "DISTINCT"); 5384 explainTempTable(pParse, "DISTINCT");
4335 } 5385 }
4336 5386
4337 /* If there is an ORDER BY clause, then we need to sort the results 5387 /* If there is an ORDER BY clause, then we need to sort the results
4338 ** and send them to the callback one by one. 5388 ** and send them to the callback one by one.
4339 */ 5389 */
4340 if( pOrderBy ){ 5390 if( sSort.pOrderBy ){
4341 explainTempTable(pParse, "ORDER BY"); 5391 explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY ");
4342 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 5392 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
4343 } 5393 }
4344 5394
4345 /* Jump here to skip this query 5395 /* Jump here to skip this query
4346 */ 5396 */
4347 sqlite3VdbeResolveLabel(v, iEnd); 5397 sqlite3VdbeResolveLabel(v, iEnd);
4348 5398
4349 /* The SELECT was successfully coded. Set the return code to 0 5399 /* The SELECT was successfully coded. Set the return code to 0
4350 ** to indicate no errors. 5400 ** to indicate no errors.
4351 */ 5401 */
4352 rc = 0; 5402 rc = 0;
4353 5403
4354 /* Control jumps to here if an error is encountered above, or upon 5404 /* Control jumps to here if an error is encountered above, or upon
4355 ** successful coding of the SELECT. 5405 ** successful coding of the SELECT.
4356 */ 5406 */
4357 select_end: 5407 select_end:
4358 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5408 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4359 5409
4360 /* Identify column names if results of the SELECT are to be output. 5410 /* Identify column names if results of the SELECT are to be output.
4361 */ 5411 */
4362 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5412 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4363 generateColumnNames(pParse, pTabList, pEList); 5413 generateColumnNames(pParse, pTabList, pEList);
4364 } 5414 }
4365 5415
4366 sqlite3DbFree(db, sAggInfo.aCol); 5416 sqlite3DbFree(db, sAggInfo.aCol);
4367 sqlite3DbFree(db, sAggInfo.aFunc); 5417 sqlite3DbFree(db, sAggInfo.aFunc);
5418 #if SELECTTRACE_ENABLED
5419 SELECTTRACE(1,pParse,p,("end processing\n"));
5420 pParse->nSelectIndent--;
5421 #endif
4368 return rc; 5422 return rc;
4369 } 5423 }
4370 5424
4371 #if defined(SQLITE_DEBUG) 5425 #ifdef SQLITE_DEBUG
4372 /* 5426 /*
4373 ******************************************************************************* 5427 ** Generate a human-readable description of a the Select object.
4374 ** The following code is used for testing and debugging only. The code
4375 ** that follows does not appear in normal builds.
4376 **
4377 ** These routines are used to print out the content of all or part of a
4378 ** parse structures such as Select or Expr. Such printouts are useful
4379 ** for helping to understand what is happening inside the code generator
4380 ** during the execution of complex SELECT statements.
4381 **
4382 ** These routine are not called anywhere from within the normal
4383 ** code base. Then are intended to be called from within the debugger
4384 ** or from temporary "printf" statements inserted for debugging.
4385 */ 5428 */
4386 void sqlite3PrintExpr(Expr *p){ 5429 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
4387 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 5430 int n = 0;
4388 sqlite3DebugPrintf("(%s", p->u.zToken); 5431 pView = sqlite3TreeViewPush(pView, moreToFollow);
4389 }else{ 5432 sqlite3TreeViewLine(pView, "SELECT%s%s",
4390 sqlite3DebugPrintf("(%d", p->op); 5433 ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
4391 } 5434 ((p->selFlags & SF_Aggregate) ? " agg_flag" : "")
4392 if( p->pLeft ){ 5435 );
4393 sqlite3DebugPrintf(" "); 5436 if( p->pSrc && p->pSrc->nSrc ) n++;
4394 sqlite3PrintExpr(p->pLeft); 5437 if( p->pWhere ) n++;
4395 } 5438 if( p->pGroupBy ) n++;
4396 if( p->pRight ){ 5439 if( p->pHaving ) n++;
4397 sqlite3DebugPrintf(" "); 5440 if( p->pOrderBy ) n++;
4398 sqlite3PrintExpr(p->pRight); 5441 if( p->pLimit ) n++;
4399 } 5442 if( p->pOffset ) n++;
4400 sqlite3DebugPrintf(")"); 5443 if( p->pPrior ) n++;
4401 } 5444 sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set");
4402 void sqlite3PrintExprList(ExprList *pList){ 5445 if( p->pSrc && p->pSrc->nSrc ){
4403 int i;
4404 for(i=0; i<pList->nExpr; i++){
4405 sqlite3PrintExpr(pList->a[i].pExpr);
4406 if( i<pList->nExpr-1 ){
4407 sqlite3DebugPrintf(", ");
4408 }
4409 }
4410 }
4411 void sqlite3PrintSelect(Select *p, int indent){
4412 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4413 sqlite3PrintExprList(p->pEList);
4414 sqlite3DebugPrintf("\n");
4415 if( p->pSrc ){
4416 char *zPrefix;
4417 int i; 5446 int i;
4418 zPrefix = "FROM"; 5447 pView = sqlite3TreeViewPush(pView, (n--)>0);
5448 sqlite3TreeViewLine(pView, "FROM");
4419 for(i=0; i<p->pSrc->nSrc; i++){ 5449 for(i=0; i<p->pSrc->nSrc; i++){
4420 struct SrcList_item *pItem = &p->pSrc->a[i]; 5450 struct SrcList_item *pItem = &p->pSrc->a[i];
4421 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 5451 StrAccum x;
4422 zPrefix = ""; 5452 char zLine[100];
4423 if( pItem->pSelect ){ 5453 sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0);
4424 sqlite3DebugPrintf("(\n"); 5454 sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor);
4425 sqlite3PrintSelect(pItem->pSelect, indent+10); 5455 if( pItem->zDatabase ){
4426 sqlite3DebugPrintf("%*s)", indent+8, ""); 5456 sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName);
4427 }else if( pItem->zName ){ 5457 }else if( pItem->zName ){
4428 sqlite3DebugPrintf("%s", pItem->zName); 5458 sqlite3XPrintf(&x, 0, " %s", pItem->zName);
4429 } 5459 }
4430 if( pItem->pTab ){ 5460 if( pItem->pTab ){
4431 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 5461 sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName);
4432 } 5462 }
4433 if( pItem->zAlias ){ 5463 if( pItem->zAlias ){
4434 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 5464 sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias);
4435 } 5465 }
4436 if( i<p->pSrc->nSrc-1 ){ 5466 if( pItem->jointype & JT_LEFT ){
4437 sqlite3DebugPrintf(","); 5467 sqlite3XPrintf(&x, 0, " LEFT-JOIN");
4438 } 5468 }
4439 sqlite3DebugPrintf("\n"); 5469 sqlite3StrAccumFinish(&x);
5470 sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1);
5471 if( pItem->pSelect ){
5472 sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
5473 }
5474 sqlite3TreeViewPop(pView);
4440 } 5475 }
5476 sqlite3TreeViewPop(pView);
4441 } 5477 }
4442 if( p->pWhere ){ 5478 if( p->pWhere ){
4443 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 5479 sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
4444 sqlite3PrintExpr(p->pWhere); 5480 sqlite3TreeViewExpr(pView, p->pWhere, 0);
4445 sqlite3DebugPrintf("\n"); 5481 sqlite3TreeViewPop(pView);
4446 } 5482 }
4447 if( p->pGroupBy ){ 5483 if( p->pGroupBy ){
4448 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 5484 sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY");
4449 sqlite3PrintExprList(p->pGroupBy);
4450 sqlite3DebugPrintf("\n");
4451 } 5485 }
4452 if( p->pHaving ){ 5486 if( p->pHaving ){
4453 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 5487 sqlite3TreeViewItem(pView, "HAVING", (n--)>0);
4454 sqlite3PrintExpr(p->pHaving); 5488 sqlite3TreeViewExpr(pView, p->pHaving, 0);
4455 sqlite3DebugPrintf("\n"); 5489 sqlite3TreeViewPop(pView);
4456 } 5490 }
4457 if( p->pOrderBy ){ 5491 if( p->pOrderBy ){
4458 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 5492 sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY");
4459 sqlite3PrintExprList(p->pOrderBy);
4460 sqlite3DebugPrintf("\n");
4461 } 5493 }
5494 if( p->pLimit ){
5495 sqlite3TreeViewItem(pView, "LIMIT", (n--)>0);
5496 sqlite3TreeViewExpr(pView, p->pLimit, 0);
5497 sqlite3TreeViewPop(pView);
5498 }
5499 if( p->pOffset ){
5500 sqlite3TreeViewItem(pView, "OFFSET", (n--)>0);
5501 sqlite3TreeViewExpr(pView, p->pOffset, 0);
5502 sqlite3TreeViewPop(pView);
5503 }
5504 if( p->pPrior ){
5505 const char *zOp = "UNION";
5506 switch( p->op ){
5507 case TK_ALL: zOp = "UNION ALL"; break;
5508 case TK_INTERSECT: zOp = "INTERSECT"; break;
5509 case TK_EXCEPT: zOp = "EXCEPT"; break;
5510 }
5511 sqlite3TreeViewItem(pView, zOp, (n--)>0);
5512 sqlite3TreeViewSelect(pView, p->pPrior, 0);
5513 sqlite3TreeViewPop(pView);
5514 }
5515 sqlite3TreeViewPop(pView);
4462 } 5516 }
4463 /* End of the structure debug printing code 5517 #endif /* SQLITE_DEBUG */
4464 *****************************************************************************/
4465 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3080704/src/rowset.c ('k') | third_party/sqlite/sqlite-src-3080704/src/shell.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698