Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(45)

Side by Side Diff: third_party/sqlite/sqlite-src-3080704/src/insert.c

Issue 883353008: [sql] Import reference version of SQLite 3.8.7.4. (Closed) Base URL: http://chromium.googlesource.com/chromium/src.git@master
Patch Set: Hold back encoding change which is messing up patch. Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 ** 2001 September 15 2 ** 2001 September 15
3 ** 3 **
4 ** The author disclaims copyright to this source code. In place of 4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing: 5 ** a legal notice, here is a blessing:
6 ** 6 **
7 ** May you do good and not evil. 7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others. 8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give. 9 ** May you share freely, never taking more than you give.
10 ** 10 **
11 ************************************************************************* 11 *************************************************************************
12 ** This file contains C code routines that are called by the parser 12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite. 13 ** to handle INSERT statements in SQLite.
14 */ 14 */
15 #include "sqliteInt.h" 15 #include "sqliteInt.h"
16 16
17 /* 17 /*
18 ** Generate code that will open a table for reading. 18 ** Generate code that will
19 **
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
19 */ 25 */
20 void sqlite3OpenTable( 26 void sqlite3OpenTable(
21 Parse *p, /* Generate code into this VDBE */ 27 Parse *pParse, /* Generate code into this VDBE */
22 int iCur, /* The cursor number of the table */ 28 int iCur, /* The cursor number of the table */
23 int iDb, /* The database index in sqlite3.aDb[] */ 29 int iDb, /* The database index in sqlite3.aDb[] */
24 Table *pTab, /* The table to be opened */ 30 Table *pTab, /* The table to be opened */
25 int opcode /* OP_OpenRead or OP_OpenWrite */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */
26 ){ 32 ){
27 Vdbe *v; 33 Vdbe *v;
28 if( IsVirtual(pTab) ) return; 34 assert( !IsVirtual(pTab) );
29 v = sqlite3GetVdbe(p); 35 v = sqlite3GetVdbe(pParse);
30 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
31 sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); 37 sqlite3TableLock(pParse, iDb, pTab->tnum,
32 sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); 38 (opcode==OP_OpenWrite)?1:0, pTab->zName);
33 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); 39 if( HasRowid(pTab) ){
34 VdbeComment((v, "%s", pTab->zName)); 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41 VdbeComment((v, "%s", pTab->zName));
42 }else{
43 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44 assert( pPk!=0 );
45 assert( pPk->tnum=pTab->tnum );
46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48 VdbeComment((v, "%s", pTab->zName));
49 }
35 } 50 }
36 51
37 /* 52 /*
38 ** Return a pointer to the column affinity string associated with index 53 ** Return a pointer to the column affinity string associated with index
39 ** pIdx. A column affinity string has one character for each column in 54 ** pIdx. A column affinity string has one character for each column in
40 ** the table, according to the affinity of the column: 55 ** the table, according to the affinity of the column:
41 ** 56 **
42 ** Character Column affinity 57 ** Character Column affinity
43 ** ------------------------------ 58 ** ------------------------------
44 ** 'a' TEXT 59 ** 'A' NONE
45 ** 'b' NONE 60 ** 'B' TEXT
46 ** 'c' NUMERIC 61 ** 'C' NUMERIC
47 ** 'd' INTEGER 62 ** 'D' INTEGER
48 ** 'e' REAL 63 ** 'F' REAL
49 ** 64 **
50 ** An extra 'b' is appended to the end of the string to cover the 65 ** An extra 'D' is appended to the end of the string to cover the
51 ** rowid that appears as the last column in every index. 66 ** rowid that appears as the last column in every index.
52 ** 67 **
53 ** Memory for the buffer containing the column index affinity string 68 ** Memory for the buffer containing the column index affinity string
54 ** is managed along with the rest of the Index structure. It will be 69 ** is managed along with the rest of the Index structure. It will be
55 ** released when sqlite3DeleteIndex() is called. 70 ** released when sqlite3DeleteIndex() is called.
56 */ 71 */
57 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ 72 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
58 if( !pIdx->zColAff ){ 73 if( !pIdx->zColAff ){
59 /* The first time a column affinity string for a particular index is 74 /* The first time a column affinity string for a particular index is
60 ** required, it is allocated and populated here. It is then stored as 75 ** required, it is allocated and populated here. It is then stored as
61 ** a member of the Index structure for subsequent use. 76 ** a member of the Index structure for subsequent use.
62 ** 77 **
63 ** The column affinity string will eventually be deleted by 78 ** The column affinity string will eventually be deleted by
64 ** sqliteDeleteIndex() when the Index structure itself is cleaned 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned
65 ** up. 80 ** up.
66 */ 81 */
67 int n; 82 int n;
68 Table *pTab = pIdx->pTable; 83 Table *pTab = pIdx->pTable;
69 sqlite3 *db = sqlite3VdbeDb(v); 84 sqlite3 *db = sqlite3VdbeDb(v);
70 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+2); 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
71 if( !pIdx->zColAff ){ 86 if( !pIdx->zColAff ){
72 db->mallocFailed = 1; 87 db->mallocFailed = 1;
73 return 0; 88 return 0;
74 } 89 }
75 for(n=0; n<pIdx->nColumn; n++){ 90 for(n=0; n<pIdx->nColumn; n++){
76 pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; 91 i16 x = pIdx->aiColumn[n];
92 pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity;
77 } 93 }
78 pIdx->zColAff[n++] = SQLITE_AFF_NONE;
79 pIdx->zColAff[n] = 0; 94 pIdx->zColAff[n] = 0;
80 } 95 }
81 96
82 return pIdx->zColAff; 97 return pIdx->zColAff;
83 } 98 }
84 99
85 /* 100 /*
86 ** Set P4 of the most recently inserted opcode to a column affinity 101 ** Compute the affinity string for table pTab, if it has not already been
87 ** string for table pTab. A column affinity string has one character 102 ** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities.
88 ** for each column indexed by the index, according to the affinity of the 103 **
89 ** column: 104 ** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values) and
105 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
106 ** for register iReg and following. Or if affinities exists and iReg==0,
107 ** then just set the P4 operand of the previous opcode (which should be
108 ** an OP_MakeRecord) to the affinity string.
109 **
110 ** A column affinity string has one character per column:
90 ** 111 **
91 ** Character Column affinity 112 ** Character Column affinity
92 ** ------------------------------ 113 ** ------------------------------
93 ** 'a' TEXT 114 ** 'A' NONE
94 ** 'b' NONE 115 ** 'B' TEXT
95 ** 'c' NUMERIC 116 ** 'C' NUMERIC
96 ** 'd' INTEGER 117 ** 'D' INTEGER
97 ** 'e' REAL 118 ** 'E' REAL
98 */ 119 */
99 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ 120 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
100 /* The first time a column affinity string for a particular table 121 int i;
101 ** is required, it is allocated and populated here. It is then 122 char *zColAff = pTab->zColAff;
102 ** stored as a member of the Table structure for subsequent use. 123 if( zColAff==0 ){
103 **
104 ** The column affinity string will eventually be deleted by
105 ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
106 */
107 if( !pTab->zColAff ){
108 char *zColAff;
109 int i;
110 sqlite3 *db = sqlite3VdbeDb(v); 124 sqlite3 *db = sqlite3VdbeDb(v);
111
112 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 125 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
113 if( !zColAff ){ 126 if( !zColAff ){
114 db->mallocFailed = 1; 127 db->mallocFailed = 1;
115 return; 128 return;
116 } 129 }
117 130
118 for(i=0; i<pTab->nCol; i++){ 131 for(i=0; i<pTab->nCol; i++){
119 zColAff[i] = pTab->aCol[i].affinity; 132 zColAff[i] = pTab->aCol[i].affinity;
120 } 133 }
121 zColAff[pTab->nCol] = '\0'; 134 do{
122 135 zColAff[i--] = 0;
136 }while( i>=0 && zColAff[i]==SQLITE_AFF_NONE );
123 pTab->zColAff = zColAff; 137 pTab->zColAff = zColAff;
124 } 138 }
125 139 i = sqlite3Strlen30(zColAff);
126 sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT); 140 if( i ){
141 if( iReg ){
142 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
143 }else{
144 sqlite3VdbeChangeP4(v, -1, zColAff, i);
145 }
146 }
127 } 147 }
128 148
129 /* 149 /*
130 ** Return non-zero if the table pTab in database iDb or any of its indices 150 ** Return non-zero if the table pTab in database iDb or any of its indices
131 ** have been opened at any point in the VDBE program beginning at location 151 ** have been opened at any point in the VDBE program. This is used to see if
132 ** iStartAddr throught the end of the program. This is used to see if
133 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 152 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
134 ** run without using temporary table for the results of the SELECT. 153 ** run without using a temporary table for the results of the SELECT.
135 */ 154 */
136 static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){ 155 static int readsTable(Parse *p, int iDb, Table *pTab){
137 Vdbe *v = sqlite3GetVdbe(p); 156 Vdbe *v = sqlite3GetVdbe(p);
138 int i; 157 int i;
139 int iEnd = sqlite3VdbeCurrentAddr(v); 158 int iEnd = sqlite3VdbeCurrentAddr(v);
140 #ifndef SQLITE_OMIT_VIRTUALTABLE 159 #ifndef SQLITE_OMIT_VIRTUALTABLE
141 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 160 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
142 #endif 161 #endif
143 162
144 for(i=iStartAddr; i<iEnd; i++){ 163 for(i=1; i<iEnd; i++){
145 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 164 VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
146 assert( pOp!=0 ); 165 assert( pOp!=0 );
147 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 166 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
148 Index *pIndex; 167 Index *pIndex;
149 int tnum = pOp->p2; 168 int tnum = pOp->p2;
150 if( tnum==pTab->tnum ){ 169 if( tnum==pTab->tnum ){
151 return 1; 170 return 1;
152 } 171 }
153 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 172 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
154 if( tnum==pIndex->tnum ){ 173 if( tnum==pIndex->tnum ){
(...skipping 77 matching lines...) Expand 10 before | Expand all | Expand 10 after
232 ** only called from the top-level */ 251 ** only called from the top-level */
233 assert( pParse->pTriggerTab==0 ); 252 assert( pParse->pTriggerTab==0 );
234 assert( pParse==sqlite3ParseToplevel(pParse) ); 253 assert( pParse==sqlite3ParseToplevel(pParse) );
235 254
236 assert( v ); /* We failed long ago if this is not so */ 255 assert( v ); /* We failed long ago if this is not so */
237 for(p = pParse->pAinc; p; p = p->pNext){ 256 for(p = pParse->pAinc; p; p = p->pNext){
238 pDb = &db->aDb[p->iDb]; 257 pDb = &db->aDb[p->iDb];
239 memId = p->regCtr; 258 memId = p->regCtr;
240 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 259 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
241 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 260 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
261 sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
242 addr = sqlite3VdbeCurrentAddr(v); 262 addr = sqlite3VdbeCurrentAddr(v);
243 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); 263 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
244 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); 264 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v);
245 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); 265 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
246 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); 266 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v);
247 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 267 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
248 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); 268 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
249 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); 269 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
250 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); 270 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
251 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); 271 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v);
252 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); 272 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
253 sqlite3VdbeAddOp0(v, OP_Close); 273 sqlite3VdbeAddOp0(v, OP_Close);
254 } 274 }
255 } 275 }
256 276
257 /* 277 /*
258 ** Update the maximum rowid for an autoincrement calculation. 278 ** Update the maximum rowid for an autoincrement calculation.
259 ** 279 **
260 ** This routine should be called when the top of the stack holds a 280 ** This routine should be called when the top of the stack holds a
261 ** new rowid that is about to be inserted. If that new rowid is 281 ** new rowid that is about to be inserted. If that new rowid is
(...skipping 14 matching lines...) Expand all
276 ** routine just before the "exit" code. 296 ** routine just before the "exit" code.
277 */ 297 */
278 void sqlite3AutoincrementEnd(Parse *pParse){ 298 void sqlite3AutoincrementEnd(Parse *pParse){
279 AutoincInfo *p; 299 AutoincInfo *p;
280 Vdbe *v = pParse->pVdbe; 300 Vdbe *v = pParse->pVdbe;
281 sqlite3 *db = pParse->db; 301 sqlite3 *db = pParse->db;
282 302
283 assert( v ); 303 assert( v );
284 for(p = pParse->pAinc; p; p = p->pNext){ 304 for(p = pParse->pAinc; p; p = p->pNext){
285 Db *pDb = &db->aDb[p->iDb]; 305 Db *pDb = &db->aDb[p->iDb];
286 int j1, j2, j3, j4, j5; 306 int j1;
287 int iRec; 307 int iRec;
288 int memId = p->regCtr; 308 int memId = p->regCtr;
289 309
290 iRec = sqlite3GetTempReg(pParse); 310 iRec = sqlite3GetTempReg(pParse);
291 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 311 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
292 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 312 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
293 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); 313 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v);
294 j2 = sqlite3VdbeAddOp0(v, OP_Rewind);
295 j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec);
296 j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec);
297 sqlite3VdbeAddOp2(v, OP_Next, 0, j3);
298 sqlite3VdbeJumpHere(v, j2);
299 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); 314 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
300 j5 = sqlite3VdbeAddOp0(v, OP_Goto);
301 sqlite3VdbeJumpHere(v, j4);
302 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
303 sqlite3VdbeJumpHere(v, j1); 315 sqlite3VdbeJumpHere(v, j1);
304 sqlite3VdbeJumpHere(v, j5);
305 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); 316 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
306 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); 317 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
307 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 318 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
308 sqlite3VdbeAddOp0(v, OP_Close); 319 sqlite3VdbeAddOp0(v, OP_Close);
309 sqlite3ReleaseTempReg(pParse, iRec); 320 sqlite3ReleaseTempReg(pParse, iRec);
310 } 321 }
311 } 322 }
312 #else 323 #else
313 /* 324 /*
314 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 325 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
315 ** above are all no-ops 326 ** above are all no-ops
316 */ 327 */
317 # define autoIncBegin(A,B,C) (0) 328 # define autoIncBegin(A,B,C) (0)
318 # define autoIncStep(A,B,C) 329 # define autoIncStep(A,B,C)
319 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 330 #endif /* SQLITE_OMIT_AUTOINCREMENT */
320 331
321 332
322 /* Forward declaration */ 333 /* Forward declaration */
323 static int xferOptimization( 334 static int xferOptimization(
324 Parse *pParse, /* Parser context */ 335 Parse *pParse, /* Parser context */
325 Table *pDest, /* The table we are inserting into */ 336 Table *pDest, /* The table we are inserting into */
326 Select *pSelect, /* A SELECT statement to use as the data source */ 337 Select *pSelect, /* A SELECT statement to use as the data source */
327 int onError, /* How to handle constraint errors */ 338 int onError, /* How to handle constraint errors */
328 int iDbDest /* The database of pDest */ 339 int iDbDest /* The database of pDest */
329 ); 340 );
330 341
331 /* 342 /*
332 ** This routine is call to handle SQL of the following forms: 343 ** This routine is called to handle SQL of the following forms:
333 ** 344 **
334 ** insert into TABLE (IDLIST) values(EXPRLIST) 345 ** insert into TABLE (IDLIST) values(EXPRLIST)
335 ** insert into TABLE (IDLIST) select 346 ** insert into TABLE (IDLIST) select
336 ** 347 **
337 ** The IDLIST following the table name is always optional. If omitted, 348 ** The IDLIST following the table name is always optional. If omitted,
338 ** then a list of all columns for the table is substituted. The IDLIST 349 ** then a list of all columns for the table is substituted. The IDLIST
339 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. 350 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
340 ** 351 **
341 ** The pList parameter holds EXPRLIST in the first form of the INSERT 352 ** The pList parameter holds EXPRLIST in the first form of the INSERT
342 ** statement above, and pSelect is NULL. For the second form, pList is 353 ** statement above, and pSelect is NULL. For the second form, pList is
343 ** NULL and pSelect is a pointer to the select statement used to generate 354 ** NULL and pSelect is a pointer to the select statement used to generate
344 ** data for the insert. 355 ** data for the insert.
345 ** 356 **
346 ** The code generated follows one of four templates. For a simple 357 ** The code generated follows one of four templates. For a simple
347 ** select with data coming from a VALUES clause, the code executes 358 ** insert with data coming from a VALUES clause, the code executes
348 ** once straight down through. Pseudo-code follows (we call this 359 ** once straight down through. Pseudo-code follows (we call this
349 ** the "1st template"): 360 ** the "1st template"):
350 ** 361 **
351 ** open write cursor to <table> and its indices 362 ** open write cursor to <table> and its indices
352 ** puts VALUES clause expressions onto the stack 363 ** put VALUES clause expressions into registers
353 ** write the resulting record into <table> 364 ** write the resulting record into <table>
354 ** cleanup 365 ** cleanup
355 ** 366 **
356 ** The three remaining templates assume the statement is of the form 367 ** The three remaining templates assume the statement is of the form
357 ** 368 **
358 ** INSERT INTO <table> SELECT ... 369 ** INSERT INTO <table> SELECT ...
359 ** 370 **
360 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 371 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
361 ** in other words if the SELECT pulls all columns from a single table 372 ** in other words if the SELECT pulls all columns from a single table
362 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 373 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
(...skipping 11 matching lines...) Expand all
374 ** open a write cursor on the <table> index 385 ** open a write cursor on the <table> index
375 ** open a read cursor on the corresponding <table2> index 386 ** open a read cursor on the corresponding <table2> index
376 ** transfer all records from the read to the write cursors 387 ** transfer all records from the read to the write cursors
377 ** close cursors 388 ** close cursors
378 ** end foreach 389 ** end foreach
379 ** 390 **
380 ** The 3rd template is for when the second template does not apply 391 ** The 3rd template is for when the second template does not apply
381 ** and the SELECT clause does not read from <table> at any time. 392 ** and the SELECT clause does not read from <table> at any time.
382 ** The generated code follows this template: 393 ** The generated code follows this template:
383 ** 394 **
384 ** EOF <- 0
385 ** X <- A 395 ** X <- A
386 ** goto B 396 ** goto B
387 ** A: setup for the SELECT 397 ** A: setup for the SELECT
388 ** loop over the rows in the SELECT 398 ** loop over the rows in the SELECT
389 ** load values into registers R..R+n 399 ** load values into registers R..R+n
390 ** yield X 400 ** yield X
391 ** end loop 401 ** end loop
392 ** cleanup after the SELECT 402 ** cleanup after the SELECT
393 ** EOF <- 1 403 ** end-coroutine X
394 ** yield X
395 ** goto A
396 ** B: open write cursor to <table> and its indices 404 ** B: open write cursor to <table> and its indices
397 ** C: yield X 405 ** C: yield X, at EOF goto D
398 ** if EOF goto D
399 ** insert the select result into <table> from R..R+n 406 ** insert the select result into <table> from R..R+n
400 ** goto C 407 ** goto C
401 ** D: cleanup 408 ** D: cleanup
402 ** 409 **
403 ** The 4th template is used if the insert statement takes its 410 ** The 4th template is used if the insert statement takes its
404 ** values from a SELECT but the data is being inserted into a table 411 ** values from a SELECT but the data is being inserted into a table
405 ** that is also read as part of the SELECT. In the third form, 412 ** that is also read as part of the SELECT. In the third form,
406 ** we have to use a intermediate table to store the results of 413 ** we have to use an intermediate table to store the results of
407 ** the select. The template is like this: 414 ** the select. The template is like this:
408 ** 415 **
409 ** EOF <- 0
410 ** X <- A 416 ** X <- A
411 ** goto B 417 ** goto B
412 ** A: setup for the SELECT 418 ** A: setup for the SELECT
413 ** loop over the tables in the SELECT 419 ** loop over the tables in the SELECT
414 ** load value into register R..R+n 420 ** load value into register R..R+n
415 ** yield X 421 ** yield X
416 ** end loop 422 ** end loop
417 ** cleanup after the SELECT 423 ** cleanup after the SELECT
418 ** EOF <- 1 424 ** end co-routine R
419 ** yield X
420 ** halt-error
421 ** B: open temp table 425 ** B: open temp table
422 ** L: yield X 426 ** L: yield X, at EOF goto M
423 ** if EOF goto M
424 ** insert row from R..R+n into temp table 427 ** insert row from R..R+n into temp table
425 ** goto L 428 ** goto L
426 ** M: open write cursor to <table> and its indices 429 ** M: open write cursor to <table> and its indices
427 ** rewind temp table 430 ** rewind temp table
428 ** C: loop over rows of intermediate table 431 ** C: loop over rows of intermediate table
429 ** transfer values form intermediate table into <table> 432 ** transfer values form intermediate table into <table>
430 ** end loop 433 ** end loop
431 ** D: cleanup 434 ** D: cleanup
432 */ 435 */
433 void sqlite3Insert( 436 void sqlite3Insert(
434 Parse *pParse, /* Parser context */ 437 Parse *pParse, /* Parser context */
435 SrcList *pTabList, /* Name of table into which we are inserting */ 438 SrcList *pTabList, /* Name of table into which we are inserting */
436 ExprList *pList, /* List of values to be inserted */
437 Select *pSelect, /* A SELECT statement to use as the data source */ 439 Select *pSelect, /* A SELECT statement to use as the data source */
438 IdList *pColumn, /* Column names corresponding to IDLIST. */ 440 IdList *pColumn, /* Column names corresponding to IDLIST. */
439 int onError /* How to handle constraint errors */ 441 int onError /* How to handle constraint errors */
440 ){ 442 ){
441 sqlite3 *db; /* The main database structure */ 443 sqlite3 *db; /* The main database structure */
442 Table *pTab; /* The table to insert into. aka TABLE */ 444 Table *pTab; /* The table to insert into. aka TABLE */
443 char *zTab; /* Name of the table into which we are inserting */ 445 char *zTab; /* Name of the table into which we are inserting */
444 const char *zDb; /* Name of the database holding this table */ 446 const char *zDb; /* Name of the database holding this table */
445 int i, j, idx; /* Loop counters */ 447 int i, j, idx; /* Loop counters */
446 Vdbe *v; /* Generate code into this virtual machine */ 448 Vdbe *v; /* Generate code into this virtual machine */
447 Index *pIdx; /* For looping over indices of the table */ 449 Index *pIdx; /* For looping over indices of the table */
448 int nColumn; /* Number of columns in the data */ 450 int nColumn; /* Number of columns in the data */
449 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 451 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
450 int baseCur = 0; /* VDBE Cursor number for pTab */ 452 int iDataCur = 0; /* VDBE cursor that is the main data repository */
451 int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 453 int iIdxCur = 0; /* First index cursor */
454 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
452 int endOfLoop; /* Label for the end of the insertion loop */ 455 int endOfLoop; /* Label for the end of the insertion loop */
453 int useTempTable = 0; /* Store SELECT results in intermediate table */
454 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 456 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
455 int addrInsTop = 0; /* Jump to label "D" */ 457 int addrInsTop = 0; /* Jump to label "D" */
456 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 458 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
457 int addrSelect = 0; /* Address of coroutine that implements the SELECT */
458 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 459 SelectDest dest; /* Destination for SELECT on rhs of INSERT */
459 int iDb; /* Index of database holding TABLE */ 460 int iDb; /* Index of database holding TABLE */
460 Db *pDb; /* The database containing table being inserted into */ 461 Db *pDb; /* The database containing table being inserted into */
461 int appendFlag = 0; /* True if the insert is likely to be an append */ 462 u8 useTempTable = 0; /* Store SELECT results in intermediate table */
463 u8 appendFlag = 0; /* True if the insert is likely to be an append */
464 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
465 u8 bIdListInOrder = 1; /* True if IDLIST is in table order */
466 ExprList *pList = 0; /* List of VALUES() to be inserted */
462 467
463 /* Register allocations */ 468 /* Register allocations */
464 int regFromSelect = 0;/* Base register for data coming from SELECT */ 469 int regFromSelect = 0;/* Base register for data coming from SELECT */
465 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 470 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
466 int regRowCount = 0; /* Memory cell used for the row counter */ 471 int regRowCount = 0; /* Memory cell used for the row counter */
467 int regIns; /* Block of regs holding rowid+data being inserted */ 472 int regIns; /* Block of regs holding rowid+data being inserted */
468 int regRowid; /* registers holding insert rowid */ 473 int regRowid; /* registers holding insert rowid */
469 int regData; /* register holding first column to insert */ 474 int regData; /* register holding first column to insert */
470 int regEof = 0; /* Register recording end of SELECT data */
471 int *aRegIdx = 0; /* One register allocated to each index */ 475 int *aRegIdx = 0; /* One register allocated to each index */
472 476
473 #ifndef SQLITE_OMIT_TRIGGER 477 #ifndef SQLITE_OMIT_TRIGGER
474 int isView; /* True if attempting to insert into a view */ 478 int isView; /* True if attempting to insert into a view */
475 Trigger *pTrigger; /* List of triggers on pTab, if required */ 479 Trigger *pTrigger; /* List of triggers on pTab, if required */
476 int tmask; /* Mask of trigger times */ 480 int tmask; /* Mask of trigger times */
477 #endif 481 #endif
478 482
479 db = pParse->db; 483 db = pParse->db;
480 memset(&dest, 0, sizeof(dest)); 484 memset(&dest, 0, sizeof(dest));
481 if( pParse->nErr || db->mallocFailed ){ 485 if( pParse->nErr || db->mallocFailed ){
482 goto insert_cleanup; 486 goto insert_cleanup;
483 } 487 }
484 488
489 /* If the Select object is really just a simple VALUES() list with a
490 ** single row values (the common case) then keep that one row of values
491 ** and go ahead and discard the Select object
492 */
493 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
494 pList = pSelect->pEList;
495 pSelect->pEList = 0;
496 sqlite3SelectDelete(db, pSelect);
497 pSelect = 0;
498 }
499
485 /* Locate the table into which we will be inserting new information. 500 /* Locate the table into which we will be inserting new information.
486 */ 501 */
487 assert( pTabList->nSrc==1 ); 502 assert( pTabList->nSrc==1 );
488 zTab = pTabList->a[0].zName; 503 zTab = pTabList->a[0].zName;
489 if( NEVER(zTab==0) ) goto insert_cleanup; 504 if( NEVER(zTab==0) ) goto insert_cleanup;
490 pTab = sqlite3SrcListLookup(pParse, pTabList); 505 pTab = sqlite3SrcListLookup(pParse, pTabList);
491 if( pTab==0 ){ 506 if( pTab==0 ){
492 goto insert_cleanup; 507 goto insert_cleanup;
493 } 508 }
494 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 509 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
495 assert( iDb<db->nDb ); 510 assert( iDb<db->nDb );
496 pDb = &db->aDb[iDb]; 511 pDb = &db->aDb[iDb];
497 zDb = pDb->zName; 512 zDb = pDb->zName;
498 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ 513 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
499 goto insert_cleanup; 514 goto insert_cleanup;
500 } 515 }
516 withoutRowid = !HasRowid(pTab);
501 517
502 /* Figure out if we have any triggers and if the table being 518 /* Figure out if we have any triggers and if the table being
503 ** inserted into is a view 519 ** inserted into is a view
504 */ 520 */
505 #ifndef SQLITE_OMIT_TRIGGER 521 #ifndef SQLITE_OMIT_TRIGGER
506 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 522 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
507 isView = pTab->pSelect!=0; 523 isView = pTab->pSelect!=0;
508 #else 524 #else
509 # define pTrigger 0 525 # define pTrigger 0
510 # define tmask 0 526 # define tmask 0
511 # define isView 0 527 # define isView 0
512 #endif 528 #endif
513 #ifdef SQLITE_OMIT_VIEW 529 #ifdef SQLITE_OMIT_VIEW
514 # undef isView 530 # undef isView
515 # define isView 0 531 # define isView 0
516 #endif 532 #endif
517 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 533 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
518 534
519 /* If pTab is really a view, make sure it has been initialized. 535 /* If pTab is really a view, make sure it has been initialized.
520 ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 536 ** ViewGetColumnNames() is a no-op if pTab is not a view.
521 ** module table).
522 */ 537 */
523 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 538 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
524 goto insert_cleanup; 539 goto insert_cleanup;
525 } 540 }
526 541
527 /* Ensure that: 542 /* Cannot insert into a read-only table.
528 * (a) the table is not read-only,
529 * (b) that if it is a view then ON INSERT triggers exist
530 */ 543 */
531 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 544 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
532 goto insert_cleanup; 545 goto insert_cleanup;
533 } 546 }
534 547
535 /* Allocate a VDBE 548 /* Allocate a VDBE
536 */ 549 */
537 v = sqlite3GetVdbe(pParse); 550 v = sqlite3GetVdbe(pParse);
538 if( v==0 ) goto insert_cleanup; 551 if( v==0 ) goto insert_cleanup;
539 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 552 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
(...skipping 14 matching lines...) Expand all
554 assert( pList==0 ); 567 assert( pList==0 );
555 goto insert_end; 568 goto insert_end;
556 } 569 }
557 #endif /* SQLITE_OMIT_XFER_OPT */ 570 #endif /* SQLITE_OMIT_XFER_OPT */
558 571
559 /* If this is an AUTOINCREMENT table, look up the sequence number in the 572 /* If this is an AUTOINCREMENT table, look up the sequence number in the
560 ** sqlite_sequence table and store it in memory cell regAutoinc. 573 ** sqlite_sequence table and store it in memory cell regAutoinc.
561 */ 574 */
562 regAutoinc = autoIncBegin(pParse, iDb, pTab); 575 regAutoinc = autoIncBegin(pParse, iDb, pTab);
563 576
577 /* Allocate registers for holding the rowid of the new row,
578 ** the content of the new row, and the assembled row record.
579 */
580 regRowid = regIns = pParse->nMem+1;
581 pParse->nMem += pTab->nCol + 1;
582 if( IsVirtual(pTab) ){
583 regRowid++;
584 pParse->nMem++;
585 }
586 regData = regRowid+1;
587
588 /* If the INSERT statement included an IDLIST term, then make sure
589 ** all elements of the IDLIST really are columns of the table and
590 ** remember the column indices.
591 **
592 ** If the table has an INTEGER PRIMARY KEY column and that column
593 ** is named in the IDLIST, then record in the ipkColumn variable
594 ** the index into IDLIST of the primary key column. ipkColumn is
595 ** the index of the primary key as it appears in IDLIST, not as
596 ** is appears in the original table. (The index of the INTEGER
597 ** PRIMARY KEY in the original table is pTab->iPKey.)
598 */
599 if( pColumn ){
600 for(i=0; i<pColumn->nId; i++){
601 pColumn->a[i].idx = -1;
602 }
603 for(i=0; i<pColumn->nId; i++){
604 for(j=0; j<pTab->nCol; j++){
605 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
606 pColumn->a[i].idx = j;
607 if( i!=j ) bIdListInOrder = 0;
608 if( j==pTab->iPKey ){
609 ipkColumn = i; assert( !withoutRowid );
610 }
611 break;
612 }
613 }
614 if( j>=pTab->nCol ){
615 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
616 ipkColumn = i;
617 bIdListInOrder = 0;
618 }else{
619 sqlite3ErrorMsg(pParse, "table %S has no column named %s",
620 pTabList, 0, pColumn->a[i].zName);
621 pParse->checkSchema = 1;
622 goto insert_cleanup;
623 }
624 }
625 }
626 }
627
564 /* Figure out how many columns of data are supplied. If the data 628 /* Figure out how many columns of data are supplied. If the data
565 ** is coming from a SELECT statement, then generate a co-routine that 629 ** is coming from a SELECT statement, then generate a co-routine that
566 ** produces a single row of the SELECT on each invocation. The 630 ** produces a single row of the SELECT on each invocation. The
567 ** co-routine is the common header to the 3rd and 4th templates. 631 ** co-routine is the common header to the 3rd and 4th templates.
568 */ 632 */
569 if( pSelect ){ 633 if( pSelect ){
570 /* Data is coming from a SELECT. Generate code to implement that SELECT 634 /* Data is coming from a SELECT. Generate a co-routine to run the SELECT */
571 ** as a co-routine. The code is common to both the 3rd and 4th 635 int regYield; /* Register holding co-routine entry-point */
572 ** templates: 636 int addrTop; /* Top of the co-routine */
573 ** 637 int rc; /* Result code */
574 ** EOF <- 0
575 ** X <- A
576 ** goto B
577 ** A: setup for the SELECT
578 ** loop over the tables in the SELECT
579 ** load value into register R..R+n
580 ** yield X
581 ** end loop
582 ** cleanup after the SELECT
583 ** EOF <- 1
584 ** yield X
585 ** halt-error
586 **
587 ** On each invocation of the co-routine, it puts a single row of the
588 ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
589 ** (These output registers are allocated by sqlite3Select().) When
590 ** the SELECT completes, it sets the EOF flag stored in regEof.
591 */
592 int rc, j1;
593 638
594 regEof = ++pParse->nMem; 639 regYield = ++pParse->nMem;
595 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ 640 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
596 VdbeComment((v, "SELECT eof flag")); 641 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
597 sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem); 642 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
598 addrSelect = sqlite3VdbeCurrentAddr(v)+2; 643 dest.iSdst = bIdListInOrder ? regData : 0;
599 sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm); 644 dest.nSdst = pTab->nCol;
600 j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
601 VdbeComment((v, "Jump over SELECT coroutine"));
602
603 /* Resolve the expressions in the SELECT statement and execute it. */
604 rc = sqlite3Select(pParse, pSelect, &dest); 645 rc = sqlite3Select(pParse, pSelect, &dest);
646 regFromSelect = dest.iSdst;
605 assert( pParse->nErr==0 || rc ); 647 assert( pParse->nErr==0 || rc );
606 if( rc || NEVER(pParse->nErr) || db->mallocFailed ){ 648 if( rc || db->mallocFailed ) goto insert_cleanup;
607 goto insert_cleanup; 649 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
608 } 650 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
609 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */
610 sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */
611 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
612 VdbeComment((v, "End of SELECT coroutine"));
613 sqlite3VdbeJumpHere(v, j1); /* label B: */
614
615 regFromSelect = dest.iMem;
616 assert( pSelect->pEList ); 651 assert( pSelect->pEList );
617 nColumn = pSelect->pEList->nExpr; 652 nColumn = pSelect->pEList->nExpr;
618 assert( dest.nMem==nColumn );
619 653
620 /* Set useTempTable to TRUE if the result of the SELECT statement 654 /* Set useTempTable to TRUE if the result of the SELECT statement
621 ** should be written into a temporary table (template 4). Set to 655 ** should be written into a temporary table (template 4). Set to
622 ** FALSE if each* row of the SELECT can be written directly into 656 ** FALSE if each output row of the SELECT can be written directly into
623 ** the destination table (template 3). 657 ** the destination table (template 3).
624 ** 658 **
625 ** A temp table must be used if the table being updated is also one 659 ** A temp table must be used if the table being updated is also one
626 ** of the tables being read by the SELECT statement. Also use a 660 ** of the tables being read by the SELECT statement. Also use a
627 ** temp table in the case of row triggers. 661 ** temp table in the case of row triggers.
628 */ 662 */
629 if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){ 663 if( pTrigger || readsTable(pParse, iDb, pTab) ){
630 useTempTable = 1; 664 useTempTable = 1;
631 } 665 }
632 666
633 if( useTempTable ){ 667 if( useTempTable ){
634 /* Invoke the coroutine to extract information from the SELECT 668 /* Invoke the coroutine to extract information from the SELECT
635 ** and add it to a transient table srcTab. The code generated 669 ** and add it to a transient table srcTab. The code generated
636 ** here is from the 4th template: 670 ** here is from the 4th template:
637 ** 671 **
638 ** B: open temp table 672 ** B: open temp table
639 ** L: yield X 673 ** L: yield X, goto M at EOF
640 ** if EOF goto M
641 ** insert row from R..R+n into temp table 674 ** insert row from R..R+n into temp table
642 ** goto L 675 ** goto L
643 ** M: ... 676 ** M: ...
644 */ 677 */
645 int regRec; /* Register to hold packed record */ 678 int regRec; /* Register to hold packed record */
646 int regTempRowid; /* Register to hold temp table ROWID */ 679 int regTempRowid; /* Register to hold temp table ROWID */
647 int addrTop; /* Label "L" */ 680 int addrL; /* Label "L" */
648 int addrIf; /* Address of jump to M */
649 681
650 srcTab = pParse->nTab++; 682 srcTab = pParse->nTab++;
651 regRec = sqlite3GetTempReg(pParse); 683 regRec = sqlite3GetTempReg(pParse);
652 regTempRowid = sqlite3GetTempReg(pParse); 684 regTempRowid = sqlite3GetTempReg(pParse);
653 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 685 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
654 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); 686 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
655 addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
656 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 687 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
657 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 688 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
658 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 689 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
659 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 690 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL);
660 sqlite3VdbeJumpHere(v, addrIf); 691 sqlite3VdbeJumpHere(v, addrL);
661 sqlite3ReleaseTempReg(pParse, regRec); 692 sqlite3ReleaseTempReg(pParse, regRec);
662 sqlite3ReleaseTempReg(pParse, regTempRowid); 693 sqlite3ReleaseTempReg(pParse, regTempRowid);
663 } 694 }
664 }else{ 695 }else{
665 /* This is the case if the data for the INSERT is coming from a VALUES 696 /* This is the case if the data for the INSERT is coming from a VALUES
666 ** clause 697 ** clause
667 */ 698 */
668 NameContext sNC; 699 NameContext sNC;
669 memset(&sNC, 0, sizeof(sNC)); 700 memset(&sNC, 0, sizeof(sNC));
670 sNC.pParse = pParse; 701 sNC.pParse = pParse;
671 srcTab = -1; 702 srcTab = -1;
672 assert( useTempTable==0 ); 703 assert( useTempTable==0 );
673 nColumn = pList ? pList->nExpr : 0; 704 nColumn = pList ? pList->nExpr : 0;
674 for(i=0; i<nColumn; i++){ 705 for(i=0; i<nColumn; i++){
675 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ 706 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
676 goto insert_cleanup; 707 goto insert_cleanup;
677 } 708 }
678 } 709 }
679 } 710 }
680 711
712 /* If there is no IDLIST term but the table has an integer primary
713 ** key, the set the ipkColumn variable to the integer primary key
714 ** column index in the original table definition.
715 */
716 if( pColumn==0 && nColumn>0 ){
717 ipkColumn = pTab->iPKey;
718 }
719
681 /* Make sure the number of columns in the source data matches the number 720 /* Make sure the number of columns in the source data matches the number
682 ** of columns to be inserted into the table. 721 ** of columns to be inserted into the table.
683 */ 722 */
684 if( IsVirtual(pTab) ){ 723 if( IsVirtual(pTab) ){
685 for(i=0; i<pTab->nCol; i++){ 724 for(i=0; i<pTab->nCol; i++){
686 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 725 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
687 } 726 }
688 } 727 }
689 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 728 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
690 sqlite3ErrorMsg(pParse, 729 sqlite3ErrorMsg(pParse,
691 "table %S has %d columns but %d values were supplied", 730 "table %S has %d columns but %d values were supplied",
692 pTabList, 0, pTab->nCol-nHidden, nColumn); 731 pTabList, 0, pTab->nCol-nHidden, nColumn);
693 goto insert_cleanup; 732 goto insert_cleanup;
694 } 733 }
695 if( pColumn!=0 && nColumn!=pColumn->nId ){ 734 if( pColumn!=0 && nColumn!=pColumn->nId ){
696 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 735 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
697 goto insert_cleanup; 736 goto insert_cleanup;
698 } 737 }
699
700 /* If the INSERT statement included an IDLIST term, then make sure
701 ** all elements of the IDLIST really are columns of the table and
702 ** remember the column indices.
703 **
704 ** If the table has an INTEGER PRIMARY KEY column and that column
705 ** is named in the IDLIST, then record in the keyColumn variable
706 ** the index into IDLIST of the primary key column. keyColumn is
707 ** the index of the primary key as it appears in IDLIST, not as
708 ** is appears in the original table. (The index of the primary
709 ** key in the original table is pTab->iPKey.)
710 */
711 if( pColumn ){
712 for(i=0; i<pColumn->nId; i++){
713 pColumn->a[i].idx = -1;
714 }
715 for(i=0; i<pColumn->nId; i++){
716 for(j=0; j<pTab->nCol; j++){
717 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
718 pColumn->a[i].idx = j;
719 if( j==pTab->iPKey ){
720 keyColumn = i;
721 }
722 break;
723 }
724 }
725 if( j>=pTab->nCol ){
726 if( sqlite3IsRowid(pColumn->a[i].zName) ){
727 keyColumn = i;
728 }else{
729 sqlite3ErrorMsg(pParse, "table %S has no column named %s",
730 pTabList, 0, pColumn->a[i].zName);
731 pParse->checkSchema = 1;
732 goto insert_cleanup;
733 }
734 }
735 }
736 }
737
738 /* If there is no IDLIST term but the table has an integer primary
739 ** key, the set the keyColumn variable to the primary key column index
740 ** in the original table definition.
741 */
742 if( pColumn==0 && nColumn>0 ){
743 keyColumn = pTab->iPKey;
744 }
745 738
746 /* Initialize the count of rows to be inserted 739 /* Initialize the count of rows to be inserted
747 */ 740 */
748 if( db->flags & SQLITE_CountRows ){ 741 if( db->flags & SQLITE_CountRows ){
749 regRowCount = ++pParse->nMem; 742 regRowCount = ++pParse->nMem;
750 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 743 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
751 } 744 }
752 745
753 /* If this is not a view, open the table and and all indices */ 746 /* If this is not a view, open the table and and all indices */
754 if( !isView ){ 747 if( !isView ){
755 int nIdx; 748 int nIdx;
756 749 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0,
757 baseCur = pParse->nTab; 750 &iDataCur, &iIdxCur);
758 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
759 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); 751 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
760 if( aRegIdx==0 ){ 752 if( aRegIdx==0 ){
761 goto insert_cleanup; 753 goto insert_cleanup;
762 } 754 }
763 for(i=0; i<nIdx; i++){ 755 for(i=0; i<nIdx; i++){
764 aRegIdx[i] = ++pParse->nMem; 756 aRegIdx[i] = ++pParse->nMem;
765 } 757 }
766 } 758 }
767 759
768 /* This is the top of the main insertion loop */ 760 /* This is the top of the main insertion loop */
769 if( useTempTable ){ 761 if( useTempTable ){
770 /* This block codes the top of loop only. The complete loop is the 762 /* This block codes the top of loop only. The complete loop is the
771 ** following pseudocode (template 4): 763 ** following pseudocode (template 4):
772 ** 764 **
773 ** rewind temp table 765 ** rewind temp table, if empty goto D
774 ** C: loop over rows of intermediate table 766 ** C: loop over rows of intermediate table
775 ** transfer values form intermediate table into <table> 767 ** transfer values form intermediate table into <table>
776 ** end loop 768 ** end loop
777 ** D: ... 769 ** D: ...
778 */ 770 */
779 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); 771 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
780 addrCont = sqlite3VdbeCurrentAddr(v); 772 addrCont = sqlite3VdbeCurrentAddr(v);
781 }else if( pSelect ){ 773 }else if( pSelect ){
782 /* This block codes the top of loop only. The complete loop is the 774 /* This block codes the top of loop only. The complete loop is the
783 ** following pseudocode (template 3): 775 ** following pseudocode (template 3):
784 ** 776 **
785 ** C: yield X 777 ** C: yield X, at EOF goto D
786 ** if EOF goto D
787 ** insert the select result into <table> from R..R+n 778 ** insert the select result into <table> from R..R+n
788 ** goto C 779 ** goto C
789 ** D: ... 780 ** D: ...
790 */ 781 */
791 addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); 782 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
792 addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); 783 VdbeCoverage(v);
793 } 784 }
794 785
795 /* Allocate registers for holding the rowid of the new row,
796 ** the content of the new row, and the assemblied row record.
797 */
798 regRowid = regIns = pParse->nMem+1;
799 pParse->nMem += pTab->nCol + 1;
800 if( IsVirtual(pTab) ){
801 regRowid++;
802 pParse->nMem++;
803 }
804 regData = regRowid+1;
805
806 /* Run the BEFORE and INSTEAD OF triggers, if there are any 786 /* Run the BEFORE and INSTEAD OF triggers, if there are any
807 */ 787 */
808 endOfLoop = sqlite3VdbeMakeLabel(v); 788 endOfLoop = sqlite3VdbeMakeLabel(v);
809 if( tmask & TRIGGER_BEFORE ){ 789 if( tmask & TRIGGER_BEFORE ){
810 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 790 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
811 791
812 /* build the NEW.* reference row. Note that if there is an INTEGER 792 /* build the NEW.* reference row. Note that if there is an INTEGER
813 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 793 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
814 ** translated into a unique ID for the row. But on a BEFORE trigger, 794 ** translated into a unique ID for the row. But on a BEFORE trigger,
815 ** we do not know what the unique ID will be (because the insert has 795 ** we do not know what the unique ID will be (because the insert has
816 ** not happened yet) so we substitute a rowid of -1 796 ** not happened yet) so we substitute a rowid of -1
817 */ 797 */
818 if( keyColumn<0 ){ 798 if( ipkColumn<0 ){
819 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 799 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
820 }else{ 800 }else{
821 int j1; 801 int j1;
802 assert( !withoutRowid );
822 if( useTempTable ){ 803 if( useTempTable ){
823 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols); 804 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
824 }else{ 805 }else{
825 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 806 assert( pSelect==0 ); /* Otherwise useTempTable is true */
826 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols); 807 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
827 } 808 }
828 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); 809 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
829 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 810 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
830 sqlite3VdbeJumpHere(v, j1); 811 sqlite3VdbeJumpHere(v, j1);
831 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); 812 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
832 } 813 }
833 814
834 /* Cannot have triggers on a virtual table. If it were possible, 815 /* Cannot have triggers on a virtual table. If it were possible,
835 ** this block would have to account for hidden column. 816 ** this block would have to account for hidden column.
836 */ 817 */
837 assert( !IsVirtual(pTab) ); 818 assert( !IsVirtual(pTab) );
838 819
839 /* Create the new column data 820 /* Create the new column data
840 */ 821 */
841 for(i=0; i<pTab->nCol; i++){ 822 for(i=0; i<pTab->nCol; i++){
(...skipping 13 matching lines...) Expand all
855 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 836 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
856 } 837 }
857 } 838 }
858 839
859 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 840 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
860 ** do not attempt any conversions before assembling the record. 841 ** do not attempt any conversions before assembling the record.
861 ** If this is a real table, attempt conversions as required by the 842 ** If this is a real table, attempt conversions as required by the
862 ** table column affinities. 843 ** table column affinities.
863 */ 844 */
864 if( !isView ){ 845 if( !isView ){
865 sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol); 846 sqlite3TableAffinity(v, pTab, regCols+1);
866 sqlite3TableAffinityStr(v, pTab);
867 } 847 }
868 848
869 /* Fire BEFORE or INSTEAD OF triggers */ 849 /* Fire BEFORE or INSTEAD OF triggers */
870 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 850 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
871 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 851 pTab, regCols-pTab->nCol-1, onError, endOfLoop);
872 852
873 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 853 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
874 } 854 }
875 855
876 /* Push the record number for the new entry onto the stack. The 856 /* Compute the content of the next row to insert into a range of
877 ** record number is a randomly generate integer created by NewRowid 857 ** registers beginning at regIns.
878 ** except when the table has an INTEGER PRIMARY KEY column, in which
879 ** case the record number is the same as that column.
880 */ 858 */
881 if( !isView ){ 859 if( !isView ){
882 if( IsVirtual(pTab) ){ 860 if( IsVirtual(pTab) ){
883 /* The row that the VUpdate opcode will delete: none */ 861 /* The row that the VUpdate opcode will delete: none */
884 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 862 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
885 } 863 }
886 if( keyColumn>=0 ){ 864 if( ipkColumn>=0 ){
887 if( useTempTable ){ 865 if( useTempTable ){
888 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); 866 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
889 }else if( pSelect ){ 867 }else if( pSelect ){
890 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid); 868 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
891 }else{ 869 }else{
892 VdbeOp *pOp; 870 VdbeOp *pOp;
893 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); 871 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
894 pOp = sqlite3VdbeGetOp(v, -1); 872 pOp = sqlite3VdbeGetOp(v, -1);
895 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 873 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
896 appendFlag = 1; 874 appendFlag = 1;
897 pOp->opcode = OP_NewRowid; 875 pOp->opcode = OP_NewRowid;
898 pOp->p1 = baseCur; 876 pOp->p1 = iDataCur;
899 pOp->p2 = regRowid; 877 pOp->p2 = regRowid;
900 pOp->p3 = regAutoinc; 878 pOp->p3 = regAutoinc;
901 } 879 }
902 } 880 }
903 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 881 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
904 ** to generate a unique primary key value. 882 ** to generate a unique primary key value.
905 */ 883 */
906 if( !appendFlag ){ 884 if( !appendFlag ){
907 int j1; 885 int j1;
908 if( !IsVirtual(pTab) ){ 886 if( !IsVirtual(pTab) ){
909 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); 887 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
910 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); 888 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
911 sqlite3VdbeJumpHere(v, j1); 889 sqlite3VdbeJumpHere(v, j1);
912 }else{ 890 }else{
913 j1 = sqlite3VdbeCurrentAddr(v); 891 j1 = sqlite3VdbeCurrentAddr(v);
914 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); 892 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); VdbeCoverage(v);
915 } 893 }
916 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); 894 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
917 } 895 }
918 }else if( IsVirtual(pTab) ){ 896 }else if( IsVirtual(pTab) || withoutRowid ){
919 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 897 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
920 }else{ 898 }else{
921 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); 899 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
922 appendFlag = 1; 900 appendFlag = 1;
923 } 901 }
924 autoIncStep(pParse, regAutoinc, regRowid); 902 autoIncStep(pParse, regAutoinc, regRowid);
925 903
926 /* Push onto the stack, data for all columns of the new entry, beginning 904 /* Compute data for all columns of the new entry, beginning
927 ** with the first column. 905 ** with the first column.
928 */ 906 */
929 nHidden = 0; 907 nHidden = 0;
930 for(i=0; i<pTab->nCol; i++){ 908 for(i=0; i<pTab->nCol; i++){
931 int iRegStore = regRowid+1+i; 909 int iRegStore = regRowid+1+i;
932 if( i==pTab->iPKey ){ 910 if( i==pTab->iPKey ){
933 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 911 /* The value of the INTEGER PRIMARY KEY column is always a NULL.
934 ** Whenever this column is read, the record number will be substituted 912 ** Whenever this column is read, the rowid will be substituted
935 ** in its place. So will fill this column with a NULL to avoid 913 ** in its place. Hence, fill this column with a NULL to avoid
936 ** taking up data space with information that will never be used. */ 914 ** taking up data space with information that will never be used.
937 sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); 915 ** As there may be shallow copies of this value, make it a soft-NULL */
916 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
938 continue; 917 continue;
939 } 918 }
940 if( pColumn==0 ){ 919 if( pColumn==0 ){
941 if( IsHiddenColumn(&pTab->aCol[i]) ){ 920 if( IsHiddenColumn(&pTab->aCol[i]) ){
942 assert( IsVirtual(pTab) ); 921 assert( IsVirtual(pTab) );
943 j = -1; 922 j = -1;
944 nHidden++; 923 nHidden++;
945 }else{ 924 }else{
946 j = i - nHidden; 925 j = i - nHidden;
947 } 926 }
948 }else{ 927 }else{
949 for(j=0; j<pColumn->nId; j++){ 928 for(j=0; j<pColumn->nId; j++){
950 if( pColumn->a[j].idx==i ) break; 929 if( pColumn->a[j].idx==i ) break;
951 } 930 }
952 } 931 }
953 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 932 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
954 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); 933 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
955 }else if( useTempTable ){ 934 }else if( useTempTable ){
956 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 935 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
957 }else if( pSelect ){ 936 }else if( pSelect ){
958 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 937 if( regFromSelect!=regData ){
938 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
939 }
959 }else{ 940 }else{
960 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 941 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
961 } 942 }
962 } 943 }
963 944
964 /* Generate code to check constraints and generate index keys and 945 /* Generate code to check constraints and generate index keys and
965 ** do the insertion. 946 ** do the insertion.
966 */ 947 */
967 #ifndef SQLITE_OMIT_VIRTUALTABLE 948 #ifndef SQLITE_OMIT_VIRTUALTABLE
968 if( IsVirtual(pTab) ){ 949 if( IsVirtual(pTab) ){
969 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 950 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
970 sqlite3VtabMakeWritable(pParse, pTab); 951 sqlite3VtabMakeWritable(pParse, pTab);
971 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 952 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
953 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
972 sqlite3MayAbort(pParse); 954 sqlite3MayAbort(pParse);
973 }else 955 }else
974 #endif 956 #endif
975 { 957 {
976 int isReplace; /* Set to true if constraints may cause a replace */ 958 int isReplace; /* Set to true if constraints may cause a replace */
977 sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, 959 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
978 keyColumn>=0, 0, onError, endOfLoop, &isReplace 960 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace
979 ); 961 );
980 sqlite3FkCheck(pParse, pTab, 0, regIns); 962 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
981 sqlite3CompleteInsertion( 963 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
982 pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0 964 regIns, aRegIdx, 0, appendFlag, isReplace==0);
983 );
984 } 965 }
985 } 966 }
986 967
987 /* Update the count of rows that are inserted 968 /* Update the count of rows that are inserted
988 */ 969 */
989 if( (db->flags & SQLITE_CountRows)!=0 ){ 970 if( (db->flags & SQLITE_CountRows)!=0 ){
990 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 971 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
991 } 972 }
992 973
993 if( pTrigger ){ 974 if( pTrigger ){
994 /* Code AFTER triggers */ 975 /* Code AFTER triggers */
995 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 976 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
996 pTab, regData-2-pTab->nCol, onError, endOfLoop); 977 pTab, regData-2-pTab->nCol, onError, endOfLoop);
997 } 978 }
998 979
999 /* The bottom of the main insertion loop, if the data source 980 /* The bottom of the main insertion loop, if the data source
1000 ** is a SELECT statement. 981 ** is a SELECT statement.
1001 */ 982 */
1002 sqlite3VdbeResolveLabel(v, endOfLoop); 983 sqlite3VdbeResolveLabel(v, endOfLoop);
1003 if( useTempTable ){ 984 if( useTempTable ){
1004 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); 985 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1005 sqlite3VdbeJumpHere(v, addrInsTop); 986 sqlite3VdbeJumpHere(v, addrInsTop);
1006 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 987 sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1007 }else if( pSelect ){ 988 }else if( pSelect ){
1008 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); 989 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
1009 sqlite3VdbeJumpHere(v, addrInsTop); 990 sqlite3VdbeJumpHere(v, addrInsTop);
1010 } 991 }
1011 992
1012 if( !IsVirtual(pTab) && !isView ){ 993 if( !IsVirtual(pTab) && !isView ){
1013 /* Close all tables opened */ 994 /* Close all tables opened */
1014 sqlite3VdbeAddOp1(v, OP_Close, baseCur); 995 if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur);
1015 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 996 for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
1016 sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur); 997 sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur);
1017 } 998 }
1018 } 999 }
1019 1000
1020 insert_end: 1001 insert_end:
1021 /* Update the sqlite_sequence table by storing the content of the 1002 /* Update the sqlite_sequence table by storing the content of the
1022 ** maximum rowid counter values recorded while inserting into 1003 ** maximum rowid counter values recorded while inserting into
1023 ** autoincrement tables. 1004 ** autoincrement tables.
1024 */ 1005 */
1025 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1006 if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1026 sqlite3AutoincrementEnd(pParse); 1007 sqlite3AutoincrementEnd(pParse);
(...skipping 12 matching lines...) Expand all
1039 1020
1040 insert_cleanup: 1021 insert_cleanup:
1041 sqlite3SrcListDelete(db, pTabList); 1022 sqlite3SrcListDelete(db, pTabList);
1042 sqlite3ExprListDelete(db, pList); 1023 sqlite3ExprListDelete(db, pList);
1043 sqlite3SelectDelete(db, pSelect); 1024 sqlite3SelectDelete(db, pSelect);
1044 sqlite3IdListDelete(db, pColumn); 1025 sqlite3IdListDelete(db, pColumn);
1045 sqlite3DbFree(db, aRegIdx); 1026 sqlite3DbFree(db, aRegIdx);
1046 } 1027 }
1047 1028
1048 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1029 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1049 ** thely may interfere with compilation of other functions in this file 1030 ** they may interfere with compilation of other functions in this file
1050 ** (or in another file, if this file becomes part of the amalgamation). */ 1031 ** (or in another file, if this file becomes part of the amalgamation). */
1051 #ifdef isView 1032 #ifdef isView
1052 #undef isView 1033 #undef isView
1053 #endif 1034 #endif
1054 #ifdef pTrigger 1035 #ifdef pTrigger
1055 #undef pTrigger 1036 #undef pTrigger
1056 #endif 1037 #endif
1057 #ifdef tmask 1038 #ifdef tmask
1058 #undef tmask 1039 #undef tmask
1059 #endif 1040 #endif
1060 1041
1061
1062 /* 1042 /*
1063 ** Generate code to do constraint checks prior to an INSERT or an UPDATE. 1043 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1044 ** on table pTab.
1064 ** 1045 **
1065 ** The input is a range of consecutive registers as follows: 1046 ** The regNewData parameter is the first register in a range that contains
1047 ** the data to be inserted or the data after the update. There will be
1048 ** pTab->nCol+1 registers in this range. The first register (the one
1049 ** that regNewData points to) will contain the new rowid, or NULL in the
1050 ** case of a WITHOUT ROWID table. The second register in the range will
1051 ** contain the content of the first table column. The third register will
1052 ** contain the content of the second table column. And so forth.
1066 ** 1053 **
1067 ** 1. The rowid of the row after the update. 1054 ** The regOldData parameter is similar to regNewData except that it contains
1055 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1056 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1057 ** checking regOldData for zero.
1068 ** 1058 **
1069 ** 2. The data in the first column of the entry after the update. 1059 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1060 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1061 ** might be modified by the UPDATE. If pkChng is false, then the key of
1062 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1070 ** 1063 **
1071 ** i. Data from middle columns... 1064 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1065 ** was explicitly specified as part of the INSERT statement. If pkChng
1066 ** is zero, it means that the either rowid is computed automatically or
1067 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1068 ** pkChng will only be true if the INSERT statement provides an integer
1069 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1072 ** 1070 **
1073 ** N. The data in the last column of the entry after the update. 1071 ** The code generated by this routine will store new index entries into
1074 **
1075 ** The regRowid parameter is the index of the register containing (1).
1076 **
1077 ** If isUpdate is true and rowidChng is non-zero, then rowidChng contains
1078 ** the address of a register containing the rowid before the update takes
1079 ** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate
1080 ** is false, indicating an INSERT statement, then a non-zero rowidChng
1081 ** indicates that the rowid was explicitly specified as part of the
1082 ** INSERT statement. If rowidChng is false, it means that the rowid is
1083 ** computed automatically in an insert or that the rowid value is not
1084 ** modified by an update.
1085 **
1086 ** The code generated by this routine store new index entries into
1087 ** registers identified by aRegIdx[]. No index entry is created for 1072 ** registers identified by aRegIdx[]. No index entry is created for
1088 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1073 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1089 ** the same as the order of indices on the linked list of indices 1074 ** the same as the order of indices on the linked list of indices
1090 ** attached to the table. 1075 ** at pTab->pIndex.
1076 **
1077 ** The caller must have already opened writeable cursors on the main
1078 ** table and all applicable indices (that is to say, all indices for which
1079 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1080 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1081 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1082 ** for the first index in the pTab->pIndex list. Cursors for other indices
1083 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1091 ** 1084 **
1092 ** This routine also generates code to check constraints. NOT NULL, 1085 ** This routine also generates code to check constraints. NOT NULL,
1093 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1086 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1094 ** then the appropriate action is performed. There are five possible 1087 ** then the appropriate action is performed. There are five possible
1095 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1088 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1096 ** 1089 **
1097 ** Constraint type Action What Happens 1090 ** Constraint type Action What Happens
1098 ** --------------- ---------- ---------------------------------------- 1091 ** --------------- ---------- ----------------------------------------
1099 ** any ROLLBACK The current transaction is rolled back and 1092 ** any ROLLBACK The current transaction is rolled back and
1100 ** sqlite3_exec() returns immediately with a 1093 ** sqlite3_step() returns immediately with a
1101 ** return code of SQLITE_CONSTRAINT. 1094 ** return code of SQLITE_CONSTRAINT.
1102 ** 1095 **
1103 ** any ABORT Back out changes from the current command 1096 ** any ABORT Back out changes from the current command
1104 ** only (do not do a complete rollback) then 1097 ** only (do not do a complete rollback) then
1105 ** cause sqlite3_exec() to return immediately 1098 ** cause sqlite3_step() to return immediately
1106 ** with SQLITE_CONSTRAINT. 1099 ** with SQLITE_CONSTRAINT.
1107 ** 1100 **
1108 ** any FAIL Sqlite_exec() returns immediately with a 1101 ** any FAIL Sqlite3_step() returns immediately with a
1109 ** return code of SQLITE_CONSTRAINT. The 1102 ** return code of SQLITE_CONSTRAINT. The
1110 ** transaction is not rolled back and any 1103 ** transaction is not rolled back and any
1111 ** prior changes are retained. 1104 ** changes to prior rows are retained.
1112 ** 1105 **
1113 ** any IGNORE The record number and data is popped from 1106 ** any IGNORE The attempt in insert or update the current
1114 ** the stack and there is an immediate jump 1107 ** row is skipped, without throwing an error.
1115 ** to label ignoreDest. 1108 ** Processing continues with the next row.
1109 ** (There is an immediate jump to ignoreDest.)
1116 ** 1110 **
1117 ** NOT NULL REPLACE The NULL value is replace by the default 1111 ** NOT NULL REPLACE The NULL value is replace by the default
1118 ** value for that column. If the default value 1112 ** value for that column. If the default value
1119 ** is NULL, the action is the same as ABORT. 1113 ** is NULL, the action is the same as ABORT.
1120 ** 1114 **
1121 ** UNIQUE REPLACE The other row that conflicts with the row 1115 ** UNIQUE REPLACE The other row that conflicts with the row
1122 ** being inserted is removed. 1116 ** being inserted is removed.
1123 ** 1117 **
1124 ** CHECK REPLACE Illegal. The results in an exception. 1118 ** CHECK REPLACE Illegal. The results in an exception.
1125 ** 1119 **
1126 ** Which action to take is determined by the overrideError parameter. 1120 ** Which action to take is determined by the overrideError parameter.
1127 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1121 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1128 ** is used. Or if pParse->onError==OE_Default then the onError value 1122 ** is used. Or if pParse->onError==OE_Default then the onError value
1129 ** for the constraint is used. 1123 ** for the constraint is used.
1130 **
1131 ** The calling routine must open a read/write cursor for pTab with
1132 ** cursor number "baseCur". All indices of pTab must also have open
1133 ** read/write cursors with cursor number baseCur+i for the i-th cursor.
1134 ** Except, if there is no possibility of a REPLACE action then
1135 ** cursors do not need to be open for indices where aRegIdx[i]==0.
1136 */ 1124 */
1137 void sqlite3GenerateConstraintChecks( 1125 void sqlite3GenerateConstraintChecks(
1138 Parse *pParse, /* The parser context */ 1126 Parse *pParse, /* The parser context */
1139 Table *pTab, /* the table into which we are inserting */ 1127 Table *pTab, /* The table being inserted or updated */
1140 int baseCur, /* Index of a read/write cursor pointing at pTab */ 1128 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
1141 int regRowid, /* Index of the range of input registers */ 1129 int iDataCur, /* Canonical data cursor (main table or PK index) */
1142 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1130 int iIdxCur, /* First index cursor */
1143 int rowidChng, /* True if the rowid might collide with existing entry */ 1131 int regNewData, /* First register in a range holding values to insert */
1144 int isUpdate, /* True for UPDATE, False for INSERT */ 1132 int regOldData, /* Previous content. 0 for INSERTs */
1145 int overrideError, /* Override onError to this if not OE_Default */ 1133 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
1146 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1134 u8 overrideError, /* Override onError to this if not OE_Default */
1147 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ 1135 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
1136 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */
1148 ){ 1137 ){
1149 int i; /* loop counter */ 1138 Vdbe *v; /* VDBE under constrution */
1150 Vdbe *v; /* VDBE under constrution */
1151 int nCol; /* Number of columns */
1152 int onError; /* Conflict resolution strategy */
1153 int j1; /* Addresss of jump instruction */
1154 int j2 = 0, j3; /* Addresses of jump instructions */
1155 int regData; /* Register containing first data column */
1156 int iCur; /* Table cursor number */
1157 Index *pIdx; /* Pointer to one of the indices */ 1139 Index *pIdx; /* Pointer to one of the indices */
1140 Index *pPk = 0; /* The PRIMARY KEY index */
1141 sqlite3 *db; /* Database connection */
1142 int i; /* loop counter */
1143 int ix; /* Index loop counter */
1144 int nCol; /* Number of columns */
1145 int onError; /* Conflict resolution strategy */
1146 int j1; /* Address of jump instruction */
1158 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1147 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1159 int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid; 1148 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1149 int ipkTop = 0; /* Top of the rowid change constraint check */
1150 int ipkBottom = 0; /* Bottom of the rowid change constraint check */
1151 u8 isUpdate; /* True if this is an UPDATE operation */
1152 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
1153 int regRowid = -1; /* Register holding ROWID value */
1160 1154
1155 isUpdate = regOldData!=0;
1156 db = pParse->db;
1161 v = sqlite3GetVdbe(pParse); 1157 v = sqlite3GetVdbe(pParse);
1162 assert( v!=0 ); 1158 assert( v!=0 );
1163 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1159 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1164 nCol = pTab->nCol; 1160 nCol = pTab->nCol;
1165 regData = regRowid + 1; 1161
1162 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1163 ** normal rowid tables. nPkField is the number of key fields in the
1164 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1165 ** number of fields in the true primary key of the table. */
1166 if( HasRowid(pTab) ){
1167 pPk = 0;
1168 nPkField = 1;
1169 }else{
1170 pPk = sqlite3PrimaryKeyIndex(pTab);
1171 nPkField = pPk->nKeyCol;
1172 }
1173
1174 /* Record that this module has started */
1175 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1176 iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1166 1177
1167 /* Test all NOT NULL constraints. 1178 /* Test all NOT NULL constraints.
1168 */ 1179 */
1169 for(i=0; i<nCol; i++){ 1180 for(i=0; i<nCol; i++){
1170 if( i==pTab->iPKey ){ 1181 if( i==pTab->iPKey ){
1171 continue; 1182 continue;
1172 } 1183 }
1173 onError = pTab->aCol[i].notNull; 1184 onError = pTab->aCol[i].notNull;
1174 if( onError==OE_None ) continue; 1185 if( onError==OE_None ) continue;
1175 if( overrideError!=OE_Default ){ 1186 if( overrideError!=OE_Default ){
1176 onError = overrideError; 1187 onError = overrideError;
1177 }else if( onError==OE_Default ){ 1188 }else if( onError==OE_Default ){
1178 onError = OE_Abort; 1189 onError = OE_Abort;
1179 } 1190 }
1180 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1191 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1181 onError = OE_Abort; 1192 onError = OE_Abort;
1182 } 1193 }
1183 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1194 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1184 || onError==OE_Ignore || onError==OE_Replace ); 1195 || onError==OE_Ignore || onError==OE_Replace );
1185 switch( onError ){ 1196 switch( onError ){
1186 case OE_Abort: 1197 case OE_Abort:
1187 sqlite3MayAbort(pParse); 1198 sqlite3MayAbort(pParse);
1199 /* Fall through */
1188 case OE_Rollback: 1200 case OE_Rollback:
1189 case OE_Fail: { 1201 case OE_Fail: {
1190 char *zMsg; 1202 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1191 sqlite3VdbeAddOp3(v, OP_HaltIfNull, 1203 pTab->aCol[i].zName);
1192 SQLITE_CONSTRAINT, onError, regData+i); 1204 sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1193 zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL", 1205 regNewData+1+i, zMsg, P4_DYNAMIC);
1194 pTab->zName, pTab->aCol[i].zName); 1206 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1195 sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); 1207 VdbeCoverage(v);
1196 break; 1208 break;
1197 } 1209 }
1198 case OE_Ignore: { 1210 case OE_Ignore: {
1199 sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest); 1211 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1212 VdbeCoverage(v);
1200 break; 1213 break;
1201 } 1214 }
1202 default: { 1215 default: {
1203 assert( onError==OE_Replace ); 1216 assert( onError==OE_Replace );
1204 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i); 1217 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); VdbeCoverage(v);
1205 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i); 1218 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1206 sqlite3VdbeJumpHere(v, j1); 1219 sqlite3VdbeJumpHere(v, j1);
1207 break; 1220 break;
1208 } 1221 }
1209 } 1222 }
1210 } 1223 }
1211 1224
1212 /* Test all CHECK constraints 1225 /* Test all CHECK constraints
1213 */ 1226 */
1214 #ifndef SQLITE_OMIT_CHECK 1227 #ifndef SQLITE_OMIT_CHECK
1215 if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ 1228 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1216 int allOk = sqlite3VdbeMakeLabel(v); 1229 ExprList *pCheck = pTab->pCheck;
1217 pParse->ckBase = regData; 1230 pParse->ckBase = regNewData+1;
1218 sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
1219 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1231 onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1220 if( onError==OE_Ignore ){ 1232 for(i=0; i<pCheck->nExpr; i++){
1221 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1233 int allOk = sqlite3VdbeMakeLabel(v);
1222 }else{ 1234 sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL);
1223 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ 1235 if( onError==OE_Ignore ){
1224 sqlite3HaltConstraint(pParse, onError, 0, 0); 1236 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1237 }else{
1238 char *zName = pCheck->a[i].zName;
1239 if( zName==0 ) zName = pTab->zName;
1240 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1241 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1242 onError, zName, P4_TRANSIENT,
1243 P5_ConstraintCheck);
1244 }
1245 sqlite3VdbeResolveLabel(v, allOk);
1225 } 1246 }
1226 sqlite3VdbeResolveLabel(v, allOk);
1227 } 1247 }
1228 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1248 #endif /* !defined(SQLITE_OMIT_CHECK) */
1229 1249
1230 /* If we have an INTEGER PRIMARY KEY, make sure the primary key 1250 /* If rowid is changing, make sure the new rowid does not previously
1231 ** of the new record does not previously exist. Except, if this 1251 ** exist in the table.
1232 ** is an UPDATE and the primary key is not changing, that is OK.
1233 */ 1252 */
1234 if( rowidChng ){ 1253 if( pkChng && pPk==0 ){
1254 int addrRowidOk = sqlite3VdbeMakeLabel(v);
1255
1256 /* Figure out what action to take in case of a rowid collision */
1235 onError = pTab->keyConf; 1257 onError = pTab->keyConf;
1236 if( overrideError!=OE_Default ){ 1258 if( overrideError!=OE_Default ){
1237 onError = overrideError; 1259 onError = overrideError;
1238 }else if( onError==OE_Default ){ 1260 }else if( onError==OE_Default ){
1239 onError = OE_Abort; 1261 onError = OE_Abort;
1240 } 1262 }
1241 1263
1242 if( isUpdate ){ 1264 if( isUpdate ){
1243 j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng); 1265 /* pkChng!=0 does not mean that the rowid has change, only that
1266 ** it might have changed. Skip the conflict logic below if the rowid
1267 ** is unchanged. */
1268 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1269 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1270 VdbeCoverage(v);
1244 } 1271 }
1245 j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); 1272
1273 /* If the response to a rowid conflict is REPLACE but the response
1274 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1275 ** to defer the running of the rowid conflict checking until after
1276 ** the UNIQUE constraints have run.
1277 */
1278 if( onError==OE_Replace && overrideError!=OE_Replace ){
1279 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1280 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
1281 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
1282 break;
1283 }
1284 }
1285 }
1286
1287 /* Check to see if the new rowid already exists in the table. Skip
1288 ** the following conflict logic if it does not. */
1289 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1290 VdbeCoverage(v);
1291
1292 /* Generate code that deals with a rowid collision */
1246 switch( onError ){ 1293 switch( onError ){
1247 default: { 1294 default: {
1248 onError = OE_Abort; 1295 onError = OE_Abort;
1249 /* Fall thru into the next case */ 1296 /* Fall thru into the next case */
1250 } 1297 }
1251 case OE_Rollback: 1298 case OE_Rollback:
1252 case OE_Abort: 1299 case OE_Abort:
1253 case OE_Fail: { 1300 case OE_Fail: {
1254 sqlite3HaltConstraint( 1301 sqlite3RowidConstraint(pParse, onError, pTab);
1255 pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
1256 break; 1302 break;
1257 } 1303 }
1258 case OE_Replace: { 1304 case OE_Replace: {
1259 /* If there are DELETE triggers on this table and the 1305 /* If there are DELETE triggers on this table and the
1260 ** recursive-triggers flag is set, call GenerateRowDelete() to 1306 ** recursive-triggers flag is set, call GenerateRowDelete() to
1261 ** remove the conflicting row from the the table. This will fire 1307 ** remove the conflicting row from the table. This will fire
1262 ** the triggers and remove both the table and index b-tree entries. 1308 ** the triggers and remove both the table and index b-tree entries.
1263 ** 1309 **
1264 ** Otherwise, if there are no triggers or the recursive-triggers 1310 ** Otherwise, if there are no triggers or the recursive-triggers
1265 ** flag is not set, but the table has one or more indexes, call 1311 ** flag is not set, but the table has one or more indexes, call
1266 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1312 ** GenerateRowIndexDelete(). This removes the index b-tree entries
1267 ** only. The table b-tree entry will be replaced by the new entry 1313 ** only. The table b-tree entry will be replaced by the new entry
1268 ** when it is inserted. 1314 ** when it is inserted.
1269 ** 1315 **
1270 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1316 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1271 ** also invoke MultiWrite() to indicate that this VDBE may require 1317 ** also invoke MultiWrite() to indicate that this VDBE may require
1272 ** statement rollback (if the statement is aborted after the delete 1318 ** statement rollback (if the statement is aborted after the delete
1273 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1319 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1274 ** but being more selective here allows statements like: 1320 ** but being more selective here allows statements like:
1275 ** 1321 **
1276 ** REPLACE INTO t(rowid) VALUES($newrowid) 1322 ** REPLACE INTO t(rowid) VALUES($newrowid)
1277 ** 1323 **
1278 ** to run without a statement journal if there are no indexes on the 1324 ** to run without a statement journal if there are no indexes on the
1279 ** table. 1325 ** table.
1280 */ 1326 */
1281 Trigger *pTrigger = 0; 1327 Trigger *pTrigger = 0;
1282 if( pParse->db->flags&SQLITE_RecTriggers ){ 1328 if( db->flags&SQLITE_RecTriggers ){
1283 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1329 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1284 } 1330 }
1285 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1331 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1286 sqlite3MultiWrite(pParse); 1332 sqlite3MultiWrite(pParse);
1287 sqlite3GenerateRowDelete( 1333 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1288 pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace 1334 regNewData, 1, 0, OE_Replace, 1);
1289 );
1290 }else if( pTab->pIndex ){ 1335 }else if( pTab->pIndex ){
1291 sqlite3MultiWrite(pParse); 1336 sqlite3MultiWrite(pParse);
1292 sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); 1337 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0);
1293 } 1338 }
1294 seenReplace = 1; 1339 seenReplace = 1;
1295 break; 1340 break;
1296 } 1341 }
1297 case OE_Ignore: { 1342 case OE_Ignore: {
1298 assert( seenReplace==0 ); 1343 /*assert( seenReplace==0 );*/
1299 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1344 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1300 break; 1345 break;
1301 } 1346 }
1302 } 1347 }
1303 sqlite3VdbeJumpHere(v, j3); 1348 sqlite3VdbeResolveLabel(v, addrRowidOk);
1304 if( isUpdate ){ 1349 if( ipkTop ){
1305 sqlite3VdbeJumpHere(v, j2); 1350 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1351 sqlite3VdbeJumpHere(v, ipkTop);
1306 } 1352 }
1307 } 1353 }
1308 1354
1309 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1355 /* Test all UNIQUE constraints by creating entries for each UNIQUE
1310 ** index and making sure that duplicate entries do not already exist. 1356 ** index and making sure that duplicate entries do not already exist.
1311 ** Add the new records to the indices as we go. 1357 ** Compute the revised record entries for indices as we go.
1358 **
1359 ** This loop also handles the case of the PRIMARY KEY index for a
1360 ** WITHOUT ROWID table.
1312 */ 1361 */
1313 for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ 1362 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1314 int regIdx; 1363 int regIdx; /* Range of registers hold conent for pIdx */
1315 int regR; 1364 int regR; /* Range of registers holding conflicting PK */
1365 int iThisCur; /* Cursor for this UNIQUE index */
1366 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
1316 1367
1317 if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ 1368 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
1369 if( bAffinityDone==0 ){
1370 sqlite3TableAffinity(v, pTab, regNewData+1);
1371 bAffinityDone = 1;
1372 }
1373 iThisCur = iIdxCur+ix;
1374 addrUniqueOk = sqlite3VdbeMakeLabel(v);
1318 1375
1319 /* Create a key for accessing the index entry */ 1376 /* Skip partial indices for which the WHERE clause is not true */
1320 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); 1377 if( pIdx->pPartIdxWhere ){
1378 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1379 pParse->ckBase = regNewData+1;
1380 sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1381 SQLITE_JUMPIFNULL);
1382 pParse->ckBase = 0;
1383 }
1384
1385 /* Create a record for this index entry as it should appear after
1386 ** the insert or update. Store that record in the aRegIdx[ix] register
1387 */
1388 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn);
1321 for(i=0; i<pIdx->nColumn; i++){ 1389 for(i=0; i<pIdx->nColumn; i++){
1322 int idx = pIdx->aiColumn[i]; 1390 int iField = pIdx->aiColumn[i];
1323 if( idx==pTab->iPKey ){ 1391 int x;
1324 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); 1392 if( iField<0 || iField==pTab->iPKey ){
1393 if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */
1394 x = regNewData;
1395 regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i;
1325 }else{ 1396 }else{
1326 sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); 1397 x = iField + regNewData + 1;
1327 } 1398 }
1399 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
1400 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1328 } 1401 }
1329 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); 1402 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1330 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); 1403 VdbeComment((v, "for %s", pIdx->zName));
1331 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT); 1404 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);
1332 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
1333 1405
1334 /* Find out what action to take in case there is an indexing conflict */ 1406 /* In an UPDATE operation, if this index is the PRIMARY KEY index
1407 ** of a WITHOUT ROWID table and there has been no change the
1408 ** primary key, then no collision is possible. The collision detection
1409 ** logic below can all be skipped. */
1410 if( isUpdate && pPk==pIdx && pkChng==0 ){
1411 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1412 continue;
1413 }
1414
1415 /* Find out what action to take in case there is a uniqueness conflict */
1335 onError = pIdx->onError; 1416 onError = pIdx->onError;
1336 if( onError==OE_None ){ 1417 if( onError==OE_None ){
1337 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); 1418 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1419 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1338 continue; /* pIdx is not a UNIQUE index */ 1420 continue; /* pIdx is not a UNIQUE index */
1339 } 1421 }
1340 if( overrideError!=OE_Default ){ 1422 if( overrideError!=OE_Default ){
1341 onError = overrideError; 1423 onError = overrideError;
1342 }else if( onError==OE_Default ){ 1424 }else if( onError==OE_Default ){
1343 onError = OE_Abort; 1425 onError = OE_Abort;
1344 } 1426 }
1345 if( seenReplace ){
1346 if( onError==OE_Ignore ) onError = OE_Replace;
1347 else if( onError==OE_Fail ) onError = OE_Abort;
1348 }
1349 1427
1350 /* Check to see if the new index entry will be unique */ 1428 /* Check to see if the new index entry will be unique */
1351 regR = sqlite3GetTempReg(pParse); 1429 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1352 sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR); 1430 regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1353 j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, 1431
1354 regR, SQLITE_INT_TO_PTR(regIdx), 1432 /* Generate code to handle collisions */
1355 P4_INT32); 1433 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1356 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); 1434 if( isUpdate || onError==OE_Replace ){
1435 if( HasRowid(pTab) ){
1436 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1437 /* Conflict only if the rowid of the existing index entry
1438 ** is different from old-rowid */
1439 if( isUpdate ){
1440 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1441 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1442 VdbeCoverage(v);
1443 }
1444 }else{
1445 int x;
1446 /* Extract the PRIMARY KEY from the end of the index entry and
1447 ** store it in registers regR..regR+nPk-1 */
1448 if( pIdx!=pPk ){
1449 for(i=0; i<pPk->nKeyCol; i++){
1450 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1451 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1452 VdbeComment((v, "%s.%s", pTab->zName,
1453 pTab->aCol[pPk->aiColumn[i]].zName));
1454 }
1455 }
1456 if( isUpdate ){
1457 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1458 ** table, only conflict if the new PRIMARY KEY values are actually
1459 ** different from the old.
1460 **
1461 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1462 ** of the matched index row are different from the original PRIMARY
1463 ** KEY values of this row before the update. */
1464 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1465 int op = OP_Ne;
1466 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
1467
1468 for(i=0; i<pPk->nKeyCol; i++){
1469 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1470 x = pPk->aiColumn[i];
1471 if( i==(pPk->nKeyCol-1) ){
1472 addrJump = addrUniqueOk;
1473 op = OP_Eq;
1474 }
1475 sqlite3VdbeAddOp4(v, op,
1476 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1477 );
1478 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1479 VdbeCoverageIf(v, op==OP_Eq);
1480 VdbeCoverageIf(v, op==OP_Ne);
1481 }
1482 }
1483 }
1484 }
1357 1485
1358 /* Generate code that executes if the new index entry is not unique */ 1486 /* Generate code that executes if the new index entry is not unique */
1359 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1487 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1360 || onError==OE_Ignore || onError==OE_Replace ); 1488 || onError==OE_Ignore || onError==OE_Replace );
1361 switch( onError ){ 1489 switch( onError ){
1362 case OE_Rollback: 1490 case OE_Rollback:
1363 case OE_Abort: 1491 case OE_Abort:
1364 case OE_Fail: { 1492 case OE_Fail: {
1365 int j; 1493 sqlite3UniqueConstraint(pParse, onError, pIdx);
1366 StrAccum errMsg;
1367 const char *zSep;
1368 char *zErr;
1369
1370 sqlite3StrAccumInit(&errMsg, 0, 0, 200);
1371 errMsg.db = pParse->db;
1372 zSep = pIdx->nColumn>1 ? "columns " : "column ";
1373 for(j=0; j<pIdx->nColumn; j++){
1374 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
1375 sqlite3StrAccumAppend(&errMsg, zSep, -1);
1376 zSep = ", ";
1377 sqlite3StrAccumAppend(&errMsg, zCol, -1);
1378 }
1379 sqlite3StrAccumAppend(&errMsg,
1380 pIdx->nColumn>1 ? " are not unique" : " is not unique", -1);
1381 zErr = sqlite3StrAccumFinish(&errMsg);
1382 sqlite3HaltConstraint(pParse, onError, zErr, 0);
1383 sqlite3DbFree(errMsg.db, zErr);
1384 break; 1494 break;
1385 } 1495 }
1386 case OE_Ignore: { 1496 case OE_Ignore: {
1387 assert( seenReplace==0 );
1388 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1497 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1389 break; 1498 break;
1390 } 1499 }
1391 default: { 1500 default: {
1392 Trigger *pTrigger = 0; 1501 Trigger *pTrigger = 0;
1393 assert( onError==OE_Replace ); 1502 assert( onError==OE_Replace );
1394 sqlite3MultiWrite(pParse); 1503 sqlite3MultiWrite(pParse);
1395 if( pParse->db->flags&SQLITE_RecTriggers ){ 1504 if( db->flags&SQLITE_RecTriggers ){
1396 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1505 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1397 } 1506 }
1398 sqlite3GenerateRowDelete( 1507 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1399 pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace 1508 regR, nPkField, 0, OE_Replace, pIdx==pPk);
1400 );
1401 seenReplace = 1; 1509 seenReplace = 1;
1402 break; 1510 break;
1403 } 1511 }
1404 } 1512 }
1405 sqlite3VdbeJumpHere(v, j3); 1513 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1406 sqlite3ReleaseTempReg(pParse, regR); 1514 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1515 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1516 }
1517 if( ipkTop ){
1518 sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1);
1519 sqlite3VdbeJumpHere(v, ipkBottom);
1407 } 1520 }
1408 1521
1409 if( pbMayReplace ){ 1522 *pbMayReplace = seenReplace;
1410 *pbMayReplace = seenReplace; 1523 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1411 }
1412 } 1524 }
1413 1525
1414 /* 1526 /*
1415 ** This routine generates code to finish the INSERT or UPDATE operation 1527 ** This routine generates code to finish the INSERT or UPDATE operation
1416 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1528 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1417 ** A consecutive range of registers starting at regRowid contains the 1529 ** A consecutive range of registers starting at regNewData contains the
1418 ** rowid and the content to be inserted. 1530 ** rowid and the content to be inserted.
1419 ** 1531 **
1420 ** The arguments to this routine should be the same as the first six 1532 ** The arguments to this routine should be the same as the first six
1421 ** arguments to sqlite3GenerateConstraintChecks. 1533 ** arguments to sqlite3GenerateConstraintChecks.
1422 */ 1534 */
1423 void sqlite3CompleteInsertion( 1535 void sqlite3CompleteInsertion(
1424 Parse *pParse, /* The parser context */ 1536 Parse *pParse, /* The parser context */
1425 Table *pTab, /* the table into which we are inserting */ 1537 Table *pTab, /* the table into which we are inserting */
1426 int baseCur, /* Index of a read/write cursor pointing at pTab */ 1538 int iDataCur, /* Cursor of the canonical data source */
1427 int regRowid, /* Range of content */ 1539 int iIdxCur, /* First index cursor */
1540 int regNewData, /* Range of content */
1428 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1541 int *aRegIdx, /* Register used by each index. 0 for unused indices */
1429 int isUpdate, /* True for UPDATE, False for INSERT */ 1542 int isUpdate, /* True for UPDATE, False for INSERT */
1430 int appendBias, /* True if this is likely to be an append */ 1543 int appendBias, /* True if this is likely to be an append */
1431 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1544 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1432 ){ 1545 ){
1433 int i; 1546 Vdbe *v; /* Prepared statements under construction */
1434 Vdbe *v; 1547 Index *pIdx; /* An index being inserted or updated */
1435 int nIdx; 1548 u8 pik_flags; /* flag values passed to the btree insert */
1436 Index *pIdx; 1549 int regData; /* Content registers (after the rowid) */
1437 u8 pik_flags; 1550 int regRec; /* Register holding assembled record for the table */
1438 int regData; 1551 int i; /* Loop counter */
1439 int regRec; 1552 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
1440 1553
1441 v = sqlite3GetVdbe(pParse); 1554 v = sqlite3GetVdbe(pParse);
1442 assert( v!=0 ); 1555 assert( v!=0 );
1443 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1556 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1444 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} 1557 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1445 for(i=nIdx-1; i>=0; i--){
1446 if( aRegIdx[i]==0 ) continue; 1558 if( aRegIdx[i]==0 ) continue;
1447 sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); 1559 bAffinityDone = 1;
1448 if( useSeekResult ){ 1560 if( pIdx->pPartIdxWhere ){
1449 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1561 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1562 VdbeCoverage(v);
1450 } 1563 }
1564 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
1565 pik_flags = 0;
1566 if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
1567 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1568 assert( pParse->nested==0 );
1569 pik_flags |= OPFLAG_NCHANGE;
1570 }
1571 if( pik_flags ) sqlite3VdbeChangeP5(v, pik_flags);
1451 } 1572 }
1452 regData = regRowid + 1; 1573 if( !HasRowid(pTab) ) return;
1574 regData = regNewData + 1;
1453 regRec = sqlite3GetTempReg(pParse); 1575 regRec = sqlite3GetTempReg(pParse);
1454 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1576 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1455 sqlite3TableAffinityStr(v, pTab); 1577 if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0);
1456 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); 1578 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1457 if( pParse->nested ){ 1579 if( pParse->nested ){
1458 pik_flags = 0; 1580 pik_flags = 0;
1459 }else{ 1581 }else{
1460 pik_flags = OPFLAG_NCHANGE; 1582 pik_flags = OPFLAG_NCHANGE;
1461 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); 1583 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1462 } 1584 }
1463 if( appendBias ){ 1585 if( appendBias ){
1464 pik_flags |= OPFLAG_APPEND; 1586 pik_flags |= OPFLAG_APPEND;
1465 } 1587 }
1466 if( useSeekResult ){ 1588 if( useSeekResult ){
1467 pik_flags |= OPFLAG_USESEEKRESULT; 1589 pik_flags |= OPFLAG_USESEEKRESULT;
1468 } 1590 }
1469 sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); 1591 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
1470 if( !pParse->nested ){ 1592 if( !pParse->nested ){
1471 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); 1593 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
1472 } 1594 }
1473 sqlite3VdbeChangeP5(v, pik_flags); 1595 sqlite3VdbeChangeP5(v, pik_flags);
1474 } 1596 }
1475 1597
1476 /* 1598 /*
1477 ** Generate code that will open cursors for a table and for all 1599 ** Allocate cursors for the pTab table and all its indices and generate
1478 ** indices of that table. The "baseCur" parameter is the cursor number used 1600 ** code to open and initialized those cursors.
1479 ** for the table. Indices are opened on subsequent cursors.
1480 ** 1601 **
1481 ** Return the number of indices on the table. 1602 ** The cursor for the object that contains the complete data (normally
1603 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1604 ** ROWID table) is returned in *piDataCur. The first index cursor is
1605 ** returned in *piIdxCur. The number of indices is returned.
1606 **
1607 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1608 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1609 ** If iBase is negative, then allocate the next available cursor.
1610 **
1611 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1612 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1613 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1614 ** pTab->pIndex list.
1615 **
1616 ** If pTab is a virtual table, then this routine is a no-op and the
1617 ** *piDataCur and *piIdxCur values are left uninitialized.
1482 */ 1618 */
1483 int sqlite3OpenTableAndIndices( 1619 int sqlite3OpenTableAndIndices(
1484 Parse *pParse, /* Parsing context */ 1620 Parse *pParse, /* Parsing context */
1485 Table *pTab, /* Table to be opened */ 1621 Table *pTab, /* Table to be opened */
1486 int baseCur, /* Cursor number assigned to the table */ 1622 int op, /* OP_OpenRead or OP_OpenWrite */
1487 int op /* OP_OpenRead or OP_OpenWrite */ 1623 int iBase, /* Use this for the table cursor, if there is one */
1624 u8 *aToOpen, /* If not NULL: boolean for each table and index */
1625 int *piDataCur, /* Write the database source cursor number here */
1626 int *piIdxCur /* Write the first index cursor number here */
1488 ){ 1627 ){
1489 int i; 1628 int i;
1490 int iDb; 1629 int iDb;
1630 int iDataCur;
1491 Index *pIdx; 1631 Index *pIdx;
1492 Vdbe *v; 1632 Vdbe *v;
1493 1633
1494 if( IsVirtual(pTab) ) return 0; 1634 assert( op==OP_OpenRead || op==OP_OpenWrite );
1635 if( IsVirtual(pTab) ){
1636 /* This routine is a no-op for virtual tables. Leave the output
1637 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
1638 ** can detect if they are used by mistake in the caller. */
1639 return 0;
1640 }
1495 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1641 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1496 v = sqlite3GetVdbe(pParse); 1642 v = sqlite3GetVdbe(pParse);
1497 assert( v!=0 ); 1643 assert( v!=0 );
1498 sqlite3OpenTable(pParse, baseCur, iDb, pTab, op); 1644 if( iBase<0 ) iBase = pParse->nTab;
1499 for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1645 iDataCur = iBase++;
1500 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 1646 if( piDataCur ) *piDataCur = iDataCur;
1647 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
1648 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
1649 }else{
1650 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
1651 }
1652 if( piIdxCur ) *piIdxCur = iBase;
1653 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1654 int iIdxCur = iBase++;
1501 assert( pIdx->pSchema==pTab->pSchema ); 1655 assert( pIdx->pSchema==pTab->pSchema );
1502 sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb, 1656 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){
1503 (char*)pKey, P4_KEYINFO_HANDOFF); 1657 *piDataCur = iIdxCur;
1504 VdbeComment((v, "%s", pIdx->zName)); 1658 }
1659 if( aToOpen==0 || aToOpen[i+1] ){
1660 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
1661 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1662 VdbeComment((v, "%s", pIdx->zName));
1663 }
1505 } 1664 }
1506 if( pParse->nTab<baseCur+i ){ 1665 if( iBase>pParse->nTab ) pParse->nTab = iBase;
1507 pParse->nTab = baseCur+i; 1666 return i;
1508 }
1509 return i-1;
1510 } 1667 }
1511 1668
1512 1669
1513 #ifdef SQLITE_TEST 1670 #ifdef SQLITE_TEST
1514 /* 1671 /*
1515 ** The following global variable is incremented whenever the 1672 ** The following global variable is incremented whenever the
1516 ** transfer optimization is used. This is used for testing 1673 ** transfer optimization is used. This is used for testing
1517 ** purposes only - to make sure the transfer optimization really 1674 ** purposes only - to make sure the transfer optimization really
1518 ** is happening when it is suppose to. 1675 ** is happening when it is supposed to.
1519 */ 1676 */
1520 int sqlite3_xferopt_count; 1677 int sqlite3_xferopt_count;
1521 #endif /* SQLITE_TEST */ 1678 #endif /* SQLITE_TEST */
1522 1679
1523 1680
1524 #ifndef SQLITE_OMIT_XFER_OPT 1681 #ifndef SQLITE_OMIT_XFER_OPT
1525 /* 1682 /*
1526 ** Check to collation names to see if they are compatible. 1683 ** Check to collation names to see if they are compatible.
1527 */ 1684 */
1528 static int xferCompatibleCollation(const char *z1, const char *z2){ 1685 static int xferCompatibleCollation(const char *z1, const char *z2){
1529 if( z1==0 ){ 1686 if( z1==0 ){
1530 return z2==0; 1687 return z2==0;
1531 } 1688 }
1532 if( z2==0 ){ 1689 if( z2==0 ){
1533 return 0; 1690 return 0;
1534 } 1691 }
1535 return sqlite3StrICmp(z1, z2)==0; 1692 return sqlite3StrICmp(z1, z2)==0;
1536 } 1693 }
1537 1694
1538 1695
1539 /* 1696 /*
1540 ** Check to see if index pSrc is compatible as a source of data 1697 ** Check to see if index pSrc is compatible as a source of data
1541 ** for index pDest in an insert transfer optimization. The rules 1698 ** for index pDest in an insert transfer optimization. The rules
1542 ** for a compatible index: 1699 ** for a compatible index:
1543 ** 1700 **
1544 ** * The index is over the same set of columns 1701 ** * The index is over the same set of columns
1545 ** * The same DESC and ASC markings occurs on all columns 1702 ** * The same DESC and ASC markings occurs on all columns
1546 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1703 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
1547 ** * The same collating sequence on each column 1704 ** * The same collating sequence on each column
1705 ** * The index has the exact same WHERE clause
1548 */ 1706 */
1549 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1707 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1550 int i; 1708 int i;
1551 assert( pDest && pSrc ); 1709 assert( pDest && pSrc );
1552 assert( pDest->pTable!=pSrc->pTable ); 1710 assert( pDest->pTable!=pSrc->pTable );
1553 if( pDest->nColumn!=pSrc->nColumn ){ 1711 if( pDest->nKeyCol!=pSrc->nKeyCol ){
1554 return 0; /* Different number of columns */ 1712 return 0; /* Different number of columns */
1555 } 1713 }
1556 if( pDest->onError!=pSrc->onError ){ 1714 if( pDest->onError!=pSrc->onError ){
1557 return 0; /* Different conflict resolution strategies */ 1715 return 0; /* Different conflict resolution strategies */
1558 } 1716 }
1559 for(i=0; i<pSrc->nColumn; i++){ 1717 for(i=0; i<pSrc->nKeyCol; i++){
1560 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1718 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1561 return 0; /* Different columns indexed */ 1719 return 0; /* Different columns indexed */
1562 } 1720 }
1563 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1721 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1564 return 0; /* Different sort orders */ 1722 return 0; /* Different sort orders */
1565 } 1723 }
1566 if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ 1724 if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
1567 return 0; /* Different collating sequences */ 1725 return 0; /* Different collating sequences */
1568 } 1726 }
1569 } 1727 }
1728 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
1729 return 0; /* Different WHERE clauses */
1730 }
1570 1731
1571 /* If no test above fails then the indices must be compatible */ 1732 /* If no test above fails then the indices must be compatible */
1572 return 1; 1733 return 1;
1573 } 1734 }
1574 1735
1575 /* 1736 /*
1576 ** Attempt the transfer optimization on INSERTs of the form 1737 ** Attempt the transfer optimization on INSERTs of the form
1577 ** 1738 **
1578 ** INSERT INTO tab1 SELECT * FROM tab2; 1739 ** INSERT INTO tab1 SELECT * FROM tab2;
1579 ** 1740 **
1580 ** This optimization is only attempted if 1741 ** The xfer optimization transfers raw records from tab2 over to tab1.
1742 ** Columns are not decoded and reassembled, which greatly improves
1743 ** performance. Raw index records are transferred in the same way.
1581 ** 1744 **
1582 ** (1) tab1 and tab2 have identical schemas including all the 1745 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
1583 ** same indices and constraints 1746 ** There are lots of rules for determining compatibility - see comments
1747 ** embedded in the code for details.
1584 ** 1748 **
1585 ** (2) tab1 and tab2 are different tables 1749 ** This routine returns TRUE if the optimization is guaranteed to be used.
1750 ** Sometimes the xfer optimization will only work if the destination table
1751 ** is empty - a factor that can only be determined at run-time. In that
1752 ** case, this routine generates code for the xfer optimization but also
1753 ** does a test to see if the destination table is empty and jumps over the
1754 ** xfer optimization code if the test fails. In that case, this routine
1755 ** returns FALSE so that the caller will know to go ahead and generate
1756 ** an unoptimized transfer. This routine also returns FALSE if there
1757 ** is no chance that the xfer optimization can be applied.
1586 ** 1758 **
1587 ** (3) There must be no triggers on tab1 1759 ** This optimization is particularly useful at making VACUUM run faster.
1588 **
1589 ** (4) The result set of the SELECT statement is "*"
1590 **
1591 ** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
1592 ** or LIMIT clause.
1593 **
1594 ** (6) The SELECT statement is a simple (not a compound) select that
1595 ** contains only tab2 in its FROM clause
1596 **
1597 ** This method for implementing the INSERT transfers raw records from
1598 ** tab2 over to tab1. The columns are not decoded. Raw records from
1599 ** the indices of tab2 are transfered to tab1 as well. In so doing,
1600 ** the resulting tab1 has much less fragmentation.
1601 **
1602 ** This routine returns TRUE if the optimization is attempted. If any
1603 ** of the conditions above fail so that the optimization should not
1604 ** be attempted, then this routine returns FALSE.
1605 */ 1760 */
1606 static int xferOptimization( 1761 static int xferOptimization(
1607 Parse *pParse, /* Parser context */ 1762 Parse *pParse, /* Parser context */
1608 Table *pDest, /* The table we are inserting into */ 1763 Table *pDest, /* The table we are inserting into */
1609 Select *pSelect, /* A SELECT statement to use as the data source */ 1764 Select *pSelect, /* A SELECT statement to use as the data source */
1610 int onError, /* How to handle constraint errors */ 1765 int onError, /* How to handle constraint errors */
1611 int iDbDest /* The database of pDest */ 1766 int iDbDest /* The database of pDest */
1612 ){ 1767 ){
1613 ExprList *pEList; /* The result set of the SELECT */ 1768 ExprList *pEList; /* The result set of the SELECT */
1614 Table *pSrc; /* The table in the FROM clause of SELECT */ 1769 Table *pSrc; /* The table in the FROM clause of SELECT */
1615 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1770 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
1616 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1771 struct SrcList_item *pItem; /* An element of pSelect->pSrc */
1617 int i; /* Loop counter */ 1772 int i; /* Loop counter */
1618 int iDbSrc; /* The database of pSrc */ 1773 int iDbSrc; /* The database of pSrc */
1619 int iSrc, iDest; /* Cursors from source and destination */ 1774 int iSrc, iDest; /* Cursors from source and destination */
1620 int addr1, addr2; /* Loop addresses */ 1775 int addr1, addr2; /* Loop addresses */
1621 int emptyDestTest; /* Address of test for empty pDest */ 1776 int emptyDestTest = 0; /* Address of test for empty pDest */
1622 int emptySrcTest; /* Address of test for empty pSrc */ 1777 int emptySrcTest = 0; /* Address of test for empty pSrc */
1623 Vdbe *v; /* The VDBE we are building */ 1778 Vdbe *v; /* The VDBE we are building */
1624 KeyInfo *pKey; /* Key information for an index */
1625 int regAutoinc; /* Memory register used by AUTOINC */ 1779 int regAutoinc; /* Memory register used by AUTOINC */
1626 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1780 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
1627 int regData, regRowid; /* Registers holding data and rowid */ 1781 int regData, regRowid; /* Registers holding data and rowid */
1628 1782
1629 if( pSelect==0 ){ 1783 if( pSelect==0 ){
1630 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1784 return 0; /* Must be of the form INSERT INTO ... SELECT ... */
1631 } 1785 }
1786 if( pParse->pWith || pSelect->pWith ){
1787 /* Do not attempt to process this query if there are an WITH clauses
1788 ** attached to it. Proceeding may generate a false "no such table: xxx"
1789 ** error if pSelect reads from a CTE named "xxx". */
1790 return 0;
1791 }
1632 if( sqlite3TriggerList(pParse, pDest) ){ 1792 if( sqlite3TriggerList(pParse, pDest) ){
1633 return 0; /* tab1 must not have triggers */ 1793 return 0; /* tab1 must not have triggers */
1634 } 1794 }
1635 #ifndef SQLITE_OMIT_VIRTUALTABLE 1795 #ifndef SQLITE_OMIT_VIRTUALTABLE
1636 if( pDest->tabFlags & TF_Virtual ){ 1796 if( pDest->tabFlags & TF_Virtual ){
1637 return 0; /* tab1 must not be a virtual table */ 1797 return 0; /* tab1 must not be a virtual table */
1638 } 1798 }
1639 #endif 1799 #endif
1640 if( onError==OE_Default ){ 1800 if( onError==OE_Default ){
1641 onError = OE_Abort; 1801 if( pDest->iPKey>=0 ) onError = pDest->keyConf;
1642 } 1802 if( onError==OE_Default ) onError = OE_Abort;
1643 if( onError!=OE_Abort && onError!=OE_Rollback ){
1644 return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
1645 } 1803 }
1646 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 1804 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
1647 if( pSelect->pSrc->nSrc!=1 ){ 1805 if( pSelect->pSrc->nSrc!=1 ){
1648 return 0; /* FROM clause must have exactly one term */ 1806 return 0; /* FROM clause must have exactly one term */
1649 } 1807 }
1650 if( pSelect->pSrc->a[0].pSelect ){ 1808 if( pSelect->pSrc->a[0].pSelect ){
1651 return 0; /* FROM clause cannot contain a subquery */ 1809 return 0; /* FROM clause cannot contain a subquery */
1652 } 1810 }
1653 if( pSelect->pWhere ){ 1811 if( pSelect->pWhere ){
1654 return 0; /* SELECT may not have a WHERE clause */ 1812 return 0; /* SELECT may not have a WHERE clause */
(...skipping 24 matching lines...) Expand all
1679 assert( pEList->a[0].pExpr ); 1837 assert( pEList->a[0].pExpr );
1680 if( pEList->a[0].pExpr->op!=TK_ALL ){ 1838 if( pEList->a[0].pExpr->op!=TK_ALL ){
1681 return 0; /* The result set must be the special operator "*" */ 1839 return 0; /* The result set must be the special operator "*" */
1682 } 1840 }
1683 1841
1684 /* At this point we have established that the statement is of the 1842 /* At this point we have established that the statement is of the
1685 ** correct syntactic form to participate in this optimization. Now 1843 ** correct syntactic form to participate in this optimization. Now
1686 ** we have to check the semantics. 1844 ** we have to check the semantics.
1687 */ 1845 */
1688 pItem = pSelect->pSrc->a; 1846 pItem = pSelect->pSrc->a;
1689 pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); 1847 pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
1690 if( pSrc==0 ){ 1848 if( pSrc==0 ){
1691 return 0; /* FROM clause does not contain a real table */ 1849 return 0; /* FROM clause does not contain a real table */
1692 } 1850 }
1693 if( pSrc==pDest ){ 1851 if( pSrc==pDest ){
1694 return 0; /* tab1 and tab2 may not be the same table */ 1852 return 0; /* tab1 and tab2 may not be the same table */
1695 } 1853 }
1854 if( HasRowid(pDest)!=HasRowid(pSrc) ){
1855 return 0; /* source and destination must both be WITHOUT ROWID or not */
1856 }
1696 #ifndef SQLITE_OMIT_VIRTUALTABLE 1857 #ifndef SQLITE_OMIT_VIRTUALTABLE
1697 if( pSrc->tabFlags & TF_Virtual ){ 1858 if( pSrc->tabFlags & TF_Virtual ){
1698 return 0; /* tab2 must not be a virtual table */ 1859 return 0; /* tab2 must not be a virtual table */
1699 } 1860 }
1700 #endif 1861 #endif
1701 if( pSrc->pSelect ){ 1862 if( pSrc->pSelect ){
1702 return 0; /* tab2 may not be a view */ 1863 return 0; /* tab2 may not be a view */
1703 } 1864 }
1704 if( pDest->nCol!=pSrc->nCol ){ 1865 if( pDest->nCol!=pSrc->nCol ){
1705 return 0; /* Number of columns must be the same in tab1 and tab2 */ 1866 return 0; /* Number of columns must be the same in tab1 and tab2 */
1706 } 1867 }
1707 if( pDest->iPKey!=pSrc->iPKey ){ 1868 if( pDest->iPKey!=pSrc->iPKey ){
1708 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 1869 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
1709 } 1870 }
1710 for(i=0; i<pDest->nCol; i++){ 1871 for(i=0; i<pDest->nCol; i++){
1711 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ 1872 Column *pDestCol = &pDest->aCol[i];
1873 Column *pSrcCol = &pSrc->aCol[i];
1874 if( pDestCol->affinity!=pSrcCol->affinity ){
1712 return 0; /* Affinity must be the same on all columns */ 1875 return 0; /* Affinity must be the same on all columns */
1713 } 1876 }
1714 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ 1877 if( !xferCompatibleCollation(pDestCol->zColl, pSrcCol->zColl) ){
1715 return 0; /* Collating sequence must be the same on all columns */ 1878 return 0; /* Collating sequence must be the same on all columns */
1716 } 1879 }
1717 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ 1880 if( pDestCol->notNull && !pSrcCol->notNull ){
1718 return 0; /* tab2 must be NOT NULL if tab1 is */ 1881 return 0; /* tab2 must be NOT NULL if tab1 is */
1719 } 1882 }
1883 /* Default values for second and subsequent columns need to match. */
1884 if( i>0
1885 && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0)
1886 || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0))
1887 ){
1888 return 0; /* Default values must be the same for all columns */
1889 }
1720 } 1890 }
1721 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1891 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1722 if( pDestIdx->onError!=OE_None ){ 1892 if( IsUniqueIndex(pDestIdx) ){
1723 destHasUniqueIdx = 1; 1893 destHasUniqueIdx = 1;
1724 } 1894 }
1725 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1895 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1726 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1896 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1727 } 1897 }
1728 if( pSrcIdx==0 ){ 1898 if( pSrcIdx==0 ){
1729 return 0; /* pDestIdx has no corresponding index in pSrc */ 1899 return 0; /* pDestIdx has no corresponding index in pSrc */
1730 } 1900 }
1731 } 1901 }
1732 #ifndef SQLITE_OMIT_CHECK 1902 #ifndef SQLITE_OMIT_CHECK
1733 if( pDest->pCheck && sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ 1903 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
1734 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 1904 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
1735 } 1905 }
1736 #endif 1906 #endif
1907 #ifndef SQLITE_OMIT_FOREIGN_KEY
1908 /* Disallow the transfer optimization if the destination table constains
1909 ** any foreign key constraints. This is more restrictive than necessary.
1910 ** But the main beneficiary of the transfer optimization is the VACUUM
1911 ** command, and the VACUUM command disables foreign key constraints. So
1912 ** the extra complication to make this rule less restrictive is probably
1913 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
1914 */
1915 if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
1916 return 0;
1917 }
1918 #endif
1919 if( (pParse->db->flags & SQLITE_CountRows)!=0 ){
1920 return 0; /* xfer opt does not play well with PRAGMA count_changes */
1921 }
1737 1922
1738 /* If we get this far, it means either: 1923 /* If we get this far, it means that the xfer optimization is at
1739 ** 1924 ** least a possibility, though it might only work if the destination
1740 ** * We can always do the transfer if the table contains an 1925 ** table (tab1) is initially empty.
1741 ** an integer primary key
1742 **
1743 ** * We can conditionally do the transfer if the destination
1744 ** table is empty.
1745 */ 1926 */
1746 #ifdef SQLITE_TEST 1927 #ifdef SQLITE_TEST
1747 sqlite3_xferopt_count++; 1928 sqlite3_xferopt_count++;
1748 #endif 1929 #endif
1749 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); 1930 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1750 v = sqlite3GetVdbe(pParse); 1931 v = sqlite3GetVdbe(pParse);
1751 sqlite3CodeVerifySchema(pParse, iDbSrc); 1932 sqlite3CodeVerifySchema(pParse, iDbSrc);
1752 iSrc = pParse->nTab++; 1933 iSrc = pParse->nTab++;
1753 iDest = pParse->nTab++; 1934 iDest = pParse->nTab++;
1754 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 1935 regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
1936 regData = sqlite3GetTempReg(pParse);
1937 regRowid = sqlite3GetTempReg(pParse);
1755 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 1938 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1756 if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ 1939 assert( HasRowid(pDest) || destHasUniqueIdx );
1757 /* If tables do not have an INTEGER PRIMARY KEY and there 1940 if( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
1758 ** are indices to be copied and the destination is not empty, 1941 || destHasUniqueIdx /* (2) */
1759 ** we have to disallow the transfer optimization because the 1942 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
1760 ** the rowids might change which will mess up indexing. 1943 ){
1944 /* In some circumstances, we are able to run the xfer optimization
1945 ** only if the destination table is initially empty. This code makes
1946 ** that determination. Conditions under which the destination must
1947 ** be empty:
1761 ** 1948 **
1762 ** Or if the destination has a UNIQUE index and is not empty, 1949 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
1763 ** we also disallow the transfer optimization because we cannot 1950 ** (If the destination is not initially empty, the rowid fields
1764 ** insure that all entries in the union of DEST and SRC will be 1951 ** of index entries might need to change.)
1765 ** unique. 1952 **
1953 ** (2) The destination has a unique index. (The xfer optimization
1954 ** is unable to test uniqueness.)
1955 **
1956 ** (3) onError is something other than OE_Abort and OE_Rollback.
1766 */ 1957 */
1767 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); 1958 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
1768 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); 1959 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
1769 sqlite3VdbeJumpHere(v, addr1); 1960 sqlite3VdbeJumpHere(v, addr1);
1961 }
1962 if( HasRowid(pSrc) ){
1963 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1964 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
1965 if( pDest->iPKey>=0 ){
1966 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1967 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
1968 VdbeCoverage(v);
1969 sqlite3RowidConstraint(pParse, onError, pDest);
1970 sqlite3VdbeJumpHere(v, addr2);
1971 autoIncStep(pParse, regAutoinc, regRowid);
1972 }else if( pDest->pIndex==0 ){
1973 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
1974 }else{
1975 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1976 assert( (pDest->tabFlags & TF_Autoincrement)==0 );
1977 }
1978 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
1979 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
1980 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
1981 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
1982 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
1983 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1984 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1770 }else{ 1985 }else{
1771 emptyDestTest = 0; 1986 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
1987 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
1772 } 1988 }
1773 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1774 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1775 regData = sqlite3GetTempReg(pParse);
1776 regRowid = sqlite3GetTempReg(pParse);
1777 if( pDest->iPKey>=0 ){
1778 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1779 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
1780 sqlite3HaltConstraint(
1781 pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
1782 sqlite3VdbeJumpHere(v, addr2);
1783 autoIncStep(pParse, regAutoinc, regRowid);
1784 }else if( pDest->pIndex==0 ){
1785 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
1786 }else{
1787 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1788 assert( (pDest->tabFlags & TF_Autoincrement)==0 );
1789 }
1790 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
1791 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
1792 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
1793 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
1794 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
1795 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1989 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1796 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 1990 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
1797 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1991 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1798 } 1992 }
1799 assert( pSrcIdx ); 1993 assert( pSrcIdx );
1994 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
1995 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
1996 VdbeComment((v, "%s", pSrcIdx->zName));
1997 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
1998 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
1999 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2000 VdbeComment((v, "%s", pDestIdx->zName));
2001 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2002 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
2003 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
2004 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2005 sqlite3VdbeJumpHere(v, addr1);
1800 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2006 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1801 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2007 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1802 pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
1803 sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
1804 (char*)pKey, P4_KEYINFO_HANDOFF);
1805 VdbeComment((v, "%s", pSrcIdx->zName));
1806 pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
1807 sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
1808 (char*)pKey, P4_KEYINFO_HANDOFF);
1809 VdbeComment((v, "%s", pDestIdx->zName));
1810 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1811 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
1812 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
1813 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
1814 sqlite3VdbeJumpHere(v, addr1);
1815 } 2008 }
1816 sqlite3VdbeJumpHere(v, emptySrcTest); 2009 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
1817 sqlite3ReleaseTempReg(pParse, regRowid); 2010 sqlite3ReleaseTempReg(pParse, regRowid);
1818 sqlite3ReleaseTempReg(pParse, regData); 2011 sqlite3ReleaseTempReg(pParse, regData);
1819 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1820 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1821 if( emptyDestTest ){ 2012 if( emptyDestTest ){
1822 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2013 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
1823 sqlite3VdbeJumpHere(v, emptyDestTest); 2014 sqlite3VdbeJumpHere(v, emptyDestTest);
1824 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2015 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1825 return 0; 2016 return 0;
1826 }else{ 2017 }else{
1827 return 1; 2018 return 1;
1828 } 2019 }
1829 } 2020 }
1830 #endif /* SQLITE_OMIT_XFER_OPT */ 2021 #endif /* SQLITE_OMIT_XFER_OPT */
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3080704/src/hwtime.h ('k') | third_party/sqlite/sqlite-src-3080704/src/journal.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698