Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(7)

Side by Side Diff: third_party/sqlite/sqlite-src-3080704/src/expr.c

Issue 883353008: [sql] Import reference version of SQLite 3.8.7.4. (Closed) Base URL: http://chromium.googlesource.com/chromium/src.git@master
Patch Set: Hold back encoding change which is messing up patch. Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 ** 2001 September 15 2 ** 2001 September 15
3 ** 3 **
4 ** The author disclaims copyright to this source code. In place of 4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing: 5 ** a legal notice, here is a blessing:
6 ** 6 **
7 ** May you do good and not evil. 7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others. 8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give. 9 ** May you share freely, never taking more than you give.
10 ** 10 **
11 ************************************************************************* 11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and 12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite. 13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */ 14 */
15 #include "sqliteInt.h" 15 #include "sqliteInt.h"
16 16
17 /* 17 /*
18 ** Return the 'affinity' of the expression pExpr if any. 18 ** Return the 'affinity' of the expression pExpr if any.
19 ** 19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the 21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression. 23 ** indicating no affinity for the expression.
24 ** 24 **
25 ** i.e. the WHERE clause expresssions in the following statements all 25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity: 26 ** have an affinity:
27 ** 27 **
28 ** CREATE TABLE t1(a); 28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a; 29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b; 30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1); 31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */ 32 */
33 char sqlite3ExprAffinity(Expr *pExpr){ 33 char sqlite3ExprAffinity(Expr *pExpr){
34 int op = pExpr->op; 34 int op;
35 pExpr = sqlite3ExprSkipCollate(pExpr);
36 if( pExpr->flags & EP_Generic ) return 0;
37 op = pExpr->op;
35 if( op==TK_SELECT ){ 38 if( op==TK_SELECT ){
36 assert( pExpr->flags&EP_xIsSelect ); 39 assert( pExpr->flags&EP_xIsSelect );
37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
38 } 41 }
39 #ifndef SQLITE_OMIT_CAST 42 #ifndef SQLITE_OMIT_CAST
40 if( op==TK_CAST ){ 43 if( op==TK_CAST ){
41 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 44 assert( !ExprHasProperty(pExpr, EP_IntValue) );
42 return sqlite3AffinityType(pExpr->u.zToken); 45 return sqlite3AffinityType(pExpr->u.zToken, 0);
43 } 46 }
44 #endif 47 #endif
45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
46 && pExpr->pTab!=0 49 && pExpr->pTab!=0
47 ){ 50 ){
48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
49 ** a TK_COLUMN but was previously evaluated and cached in a register */ 52 ** a TK_COLUMN but was previously evaluated and cached in a register */
50 int j = pExpr->iColumn; 53 int j = pExpr->iColumn;
51 if( j<0 ) return SQLITE_AFF_INTEGER; 54 if( j<0 ) return SQLITE_AFF_INTEGER;
52 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 55 assert( pExpr->pTab && j<pExpr->pTab->nCol );
53 return pExpr->pTab->aCol[j].affinity; 56 return pExpr->pTab->aCol[j].affinity;
54 } 57 }
55 return pExpr->affinity; 58 return pExpr->affinity;
56 } 59 }
57 60
58 /* 61 /*
59 ** Set the explicit collating sequence for an expression to the 62 ** Set the collating sequence for expression pExpr to be the collating
60 ** collating sequence supplied in the second argument. 63 ** sequence named by pToken. Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
61 */ 68 */
62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){ 69 Expr *sqlite3ExprAddCollateToken(
63 if( pExpr && pColl ){ 70 Parse *pParse, /* Parsing context */
64 pExpr->pColl = pColl; 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
65 pExpr->flags |= EP_ExpCollate; 72 const Token *pCollName /* Name of collating sequence */
73 ){
74 if( pCollName->n>0 ){
75 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
76 if( pNew ){
77 pNew->pLeft = pExpr;
78 pNew->flags |= EP_Collate|EP_Skip;
79 pExpr = pNew;
80 }
66 } 81 }
67 return pExpr; 82 return pExpr;
68 } 83 }
84 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
85 Token s;
86 assert( zC!=0 );
87 s.z = zC;
88 s.n = sqlite3Strlen30(s.z);
89 return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
90 }
91
92 /*
93 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
94 ** or likelihood() function at the root of an expression.
95 */
96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
97 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
98 if( ExprHasProperty(pExpr, EP_Unlikely) ){
99 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
100 assert( pExpr->x.pList->nExpr>0 );
101 assert( pExpr->op==TK_FUNCTION );
102 pExpr = pExpr->x.pList->a[0].pExpr;
103 }else{
104 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
105 pExpr = pExpr->pLeft;
106 }
107 }
108 return pExpr;
109 }
69 110
70 /* 111 /*
71 ** Set the collating sequence for expression pExpr to be the collating 112 ** Return the collation sequence for the expression pExpr. If
72 ** sequence named by pToken. Return a pointer to the revised expression. 113 ** there is no defined collating sequence, return NULL.
73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 114 **
74 ** flag. An explicit collating sequence will override implicit 115 ** The collating sequence might be determined by a COLLATE operator
75 ** collating sequences. 116 ** or by the presence of a column with a defined collating sequence.
76 */ 117 ** COLLATE operators take first precedence. Left operands take
77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 118 ** precedence over right operands.
78 char *zColl = 0; /* Dequoted name of collation sequence */
79 CollSeq *pColl;
80 sqlite3 *db = pParse->db;
81 zColl = sqlite3NameFromToken(db, pCollName);
82 pColl = sqlite3LocateCollSeq(pParse, zColl);
83 sqlite3ExprSetColl(pExpr, pColl);
84 sqlite3DbFree(db, zColl);
85 return pExpr;
86 }
87
88 /*
89 ** Return the default collation sequence for the expression pExpr. If
90 ** there is no default collation type, return 0.
91 */ 119 */
92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
121 sqlite3 *db = pParse->db;
93 CollSeq *pColl = 0; 122 CollSeq *pColl = 0;
94 Expr *p = pExpr; 123 Expr *p = pExpr;
95 while( p ){ 124 while( p ){
96 int op; 125 int op = p->op;
97 pColl = p->pColl; 126 if( p->flags & EP_Generic ) break;
98 if( pColl ) break; 127 if( op==TK_CAST || op==TK_UPLUS ){
99 op = p->op; 128 p = p->pLeft;
100 if( p->pTab!=0 && ( 129 continue;
101 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER 130 }
102 )){ 131 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
132 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
133 break;
134 }
135 if( p->pTab!=0
136 && (op==TK_AGG_COLUMN || op==TK_COLUMN
137 || op==TK_REGISTER || op==TK_TRIGGER)
138 ){
103 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 139 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
104 ** a TK_COLUMN but was previously evaluated and cached in a register */ 140 ** a TK_COLUMN but was previously evaluated and cached in a register */
105 const char *zColl;
106 int j = p->iColumn; 141 int j = p->iColumn;
107 if( j>=0 ){ 142 if( j>=0 ){
108 sqlite3 *db = pParse->db; 143 const char *zColl = p->pTab->aCol[j].zColl;
109 zColl = p->pTab->aCol[j].zColl;
110 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 144 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
111 pExpr->pColl = pColl;
112 } 145 }
113 break; 146 break;
114 } 147 }
115 if( op!=TK_CAST && op!=TK_UPLUS ){ 148 if( p->flags & EP_Collate ){
149 if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
150 p = p->pLeft;
151 }else{
152 p = p->pRight;
153 }
154 }else{
116 break; 155 break;
117 } 156 }
118 p = p->pLeft;
119 } 157 }
120 if( sqlite3CheckCollSeq(pParse, pColl) ){ 158 if( sqlite3CheckCollSeq(pParse, pColl) ){
121 pColl = 0; 159 pColl = 0;
122 } 160 }
123 return pColl; 161 return pColl;
124 } 162 }
125 163
126 /* 164 /*
127 ** pExpr is an operand of a comparison operator. aff2 is the 165 ** pExpr is an operand of a comparison operator. aff2 is the
128 ** type affinity of the other operand. This routine returns the 166 ** type affinity of the other operand. This routine returns the
(...skipping 83 matching lines...) Expand 10 before | Expand all | Expand 10 after
212 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 250 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
213 ** it is not considered. 251 ** it is not considered.
214 */ 252 */
215 CollSeq *sqlite3BinaryCompareCollSeq( 253 CollSeq *sqlite3BinaryCompareCollSeq(
216 Parse *pParse, 254 Parse *pParse,
217 Expr *pLeft, 255 Expr *pLeft,
218 Expr *pRight 256 Expr *pRight
219 ){ 257 ){
220 CollSeq *pColl; 258 CollSeq *pColl;
221 assert( pLeft ); 259 assert( pLeft );
222 if( pLeft->flags & EP_ExpCollate ){ 260 if( pLeft->flags & EP_Collate ){
223 assert( pLeft->pColl ); 261 pColl = sqlite3ExprCollSeq(pParse, pLeft);
224 pColl = pLeft->pColl; 262 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
225 }else if( pRight && pRight->flags & EP_ExpCollate ){ 263 pColl = sqlite3ExprCollSeq(pParse, pRight);
226 assert( pRight->pColl );
227 pColl = pRight->pColl;
228 }else{ 264 }else{
229 pColl = sqlite3ExprCollSeq(pParse, pLeft); 265 pColl = sqlite3ExprCollSeq(pParse, pLeft);
230 if( !pColl ){ 266 if( !pColl ){
231 pColl = sqlite3ExprCollSeq(pParse, pRight); 267 pColl = sqlite3ExprCollSeq(pParse, pRight);
232 } 268 }
233 } 269 }
234 return pColl; 270 return pColl;
235 } 271 }
236 272
237 /* 273 /*
(...skipping 158 matching lines...) Expand 10 before | Expand all | Expand 10 after
396 if( pNew ){ 432 if( pNew ){
397 pNew->op = (u8)op; 433 pNew->op = (u8)op;
398 pNew->iAgg = -1; 434 pNew->iAgg = -1;
399 if( pToken ){ 435 if( pToken ){
400 if( nExtra==0 ){ 436 if( nExtra==0 ){
401 pNew->flags |= EP_IntValue; 437 pNew->flags |= EP_IntValue;
402 pNew->u.iValue = iValue; 438 pNew->u.iValue = iValue;
403 }else{ 439 }else{
404 int c; 440 int c;
405 pNew->u.zToken = (char*)&pNew[1]; 441 pNew->u.zToken = (char*)&pNew[1];
406 memcpy(pNew->u.zToken, pToken->z, pToken->n); 442 assert( pToken->z!=0 || pToken->n==0 );
443 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
407 pNew->u.zToken[pToken->n] = 0; 444 pNew->u.zToken[pToken->n] = 0;
408 if( dequote && nExtra>=3 445 if( dequote && nExtra>=3
409 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 446 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
410 sqlite3Dequote(pNew->u.zToken); 447 sqlite3Dequote(pNew->u.zToken);
411 if( c=='"' ) pNew->flags |= EP_DblQuoted; 448 if( c=='"' ) pNew->flags |= EP_DblQuoted;
412 } 449 }
413 } 450 }
414 } 451 }
415 #if SQLITE_MAX_EXPR_DEPTH>0 452 #if SQLITE_MAX_EXPR_DEPTH>0
416 pNew->nHeight = 1; 453 pNew->nHeight = 1;
(...skipping 29 matching lines...) Expand all
446 Expr *pLeft, 483 Expr *pLeft,
447 Expr *pRight 484 Expr *pRight
448 ){ 485 ){
449 if( pRoot==0 ){ 486 if( pRoot==0 ){
450 assert( db->mallocFailed ); 487 assert( db->mallocFailed );
451 sqlite3ExprDelete(db, pLeft); 488 sqlite3ExprDelete(db, pLeft);
452 sqlite3ExprDelete(db, pRight); 489 sqlite3ExprDelete(db, pRight);
453 }else{ 490 }else{
454 if( pRight ){ 491 if( pRight ){
455 pRoot->pRight = pRight; 492 pRoot->pRight = pRight;
456 if( pRight->flags & EP_ExpCollate ){ 493 pRoot->flags |= EP_Collate & pRight->flags;
457 pRoot->flags |= EP_ExpCollate;
458 pRoot->pColl = pRight->pColl;
459 }
460 } 494 }
461 if( pLeft ){ 495 if( pLeft ){
462 pRoot->pLeft = pLeft; 496 pRoot->pLeft = pLeft;
463 if( pLeft->flags & EP_ExpCollate ){ 497 pRoot->flags |= EP_Collate & pLeft->flags;
464 pRoot->flags |= EP_ExpCollate;
465 pRoot->pColl = pLeft->pColl;
466 }
467 } 498 }
468 exprSetHeight(pRoot); 499 exprSetHeight(pRoot);
469 } 500 }
470 } 501 }
471 502
472 /* 503 /*
473 ** Allocate a Expr node which joins as many as two subtrees. 504 ** Allocate an Expr node which joins as many as two subtrees.
474 ** 505 **
475 ** One or both of the subtrees can be NULL. Return a pointer to the new 506 ** One or both of the subtrees can be NULL. Return a pointer to the new
476 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 507 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
477 ** free the subtrees and return NULL. 508 ** free the subtrees and return NULL.
478 */ 509 */
479 Expr *sqlite3PExpr( 510 Expr *sqlite3PExpr(
480 Parse *pParse, /* Parsing context */ 511 Parse *pParse, /* Parsing context */
481 int op, /* Expression opcode */ 512 int op, /* Expression opcode */
482 Expr *pLeft, /* Left operand */ 513 Expr *pLeft, /* Left operand */
483 Expr *pRight, /* Right operand */ 514 Expr *pRight, /* Right operand */
484 const Token *pToken /* Argument token */ 515 const Token *pToken /* Argument token */
485 ){ 516 ){
486 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 517 Expr *p;
487 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 518 if( op==TK_AND && pLeft && pRight ){
519 /* Take advantage of short-circuit false optimization for AND */
520 p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
521 }else{
522 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
523 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
524 }
488 if( p ) { 525 if( p ) {
489 sqlite3ExprCheckHeight(pParse, p->nHeight); 526 sqlite3ExprCheckHeight(pParse, p->nHeight);
490 } 527 }
491 return p; 528 return p;
492 } 529 }
493 530
494 /* 531 /*
532 ** If the expression is always either TRUE or FALSE (respectively),
533 ** then return 1. If one cannot determine the truth value of the
534 ** expression at compile-time return 0.
535 **
536 ** This is an optimization. If is OK to return 0 here even if
537 ** the expression really is always false or false (a false negative).
538 ** But it is a bug to return 1 if the expression might have different
539 ** boolean values in different circumstances (a false positive.)
540 **
541 ** Note that if the expression is part of conditional for a
542 ** LEFT JOIN, then we cannot determine at compile-time whether or not
543 ** is it true or false, so always return 0.
544 */
545 static int exprAlwaysTrue(Expr *p){
546 int v = 0;
547 if( ExprHasProperty(p, EP_FromJoin) ) return 0;
548 if( !sqlite3ExprIsInteger(p, &v) ) return 0;
549 return v!=0;
550 }
551 static int exprAlwaysFalse(Expr *p){
552 int v = 0;
553 if( ExprHasProperty(p, EP_FromJoin) ) return 0;
554 if( !sqlite3ExprIsInteger(p, &v) ) return 0;
555 return v==0;
556 }
557
558 /*
495 ** Join two expressions using an AND operator. If either expression is 559 ** Join two expressions using an AND operator. If either expression is
496 ** NULL, then just return the other expression. 560 ** NULL, then just return the other expression.
561 **
562 ** If one side or the other of the AND is known to be false, then instead
563 ** of returning an AND expression, just return a constant expression with
564 ** a value of false.
497 */ 565 */
498 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 566 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
499 if( pLeft==0 ){ 567 if( pLeft==0 ){
500 return pRight; 568 return pRight;
501 }else if( pRight==0 ){ 569 }else if( pRight==0 ){
502 return pLeft; 570 return pLeft;
571 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
572 sqlite3ExprDelete(db, pLeft);
573 sqlite3ExprDelete(db, pRight);
574 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
503 }else{ 575 }else{
504 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 576 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
505 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 577 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
506 return pNew; 578 return pNew;
507 } 579 }
508 } 580 }
509 581
510 /* 582 /*
511 ** Construct a new expression node for a function with multiple 583 ** Construct a new expression node for a function with multiple
512 ** arguments. 584 ** arguments.
(...skipping 19 matching lines...) Expand all
532 ** 604 **
533 ** Wildcards consisting of a single "?" are assigned the next sequential 605 ** Wildcards consisting of a single "?" are assigned the next sequential
534 ** variable number. 606 ** variable number.
535 ** 607 **
536 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 608 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
537 ** sure "nnn" is not too be to avoid a denial of service attack when 609 ** sure "nnn" is not too be to avoid a denial of service attack when
538 ** the SQL statement comes from an external source. 610 ** the SQL statement comes from an external source.
539 ** 611 **
540 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 612 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
541 ** as the previous instance of the same wildcard. Or if this is the first 613 ** as the previous instance of the same wildcard. Or if this is the first
542 ** instance of the wildcard, the next sequenial variable number is 614 ** instance of the wildcard, the next sequential variable number is
543 ** assigned. 615 ** assigned.
544 */ 616 */
545 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 617 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
546 sqlite3 *db = pParse->db; 618 sqlite3 *db = pParse->db;
547 const char *z; 619 const char *z;
548 620
549 if( pExpr==0 ) return; 621 if( pExpr==0 ) return;
550 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 622 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
551 z = pExpr->u.zToken; 623 z = pExpr->u.zToken;
552 assert( z!=0 ); 624 assert( z!=0 );
553 assert( z[0]!=0 ); 625 assert( z[0]!=0 );
554 if( z[1]==0 ){ 626 if( z[1]==0 ){
555 /* Wildcard of the form "?". Assign the next variable number */ 627 /* Wildcard of the form "?". Assign the next variable number */
556 assert( z[0]=='?' ); 628 assert( z[0]=='?' );
557 pExpr->iColumn = (ynVar)(++pParse->nVar); 629 pExpr->iColumn = (ynVar)(++pParse->nVar);
558 }else if( z[0]=='?' ){ 630 }else{
559 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 631 ynVar x = 0;
560 ** use it as the variable number */ 632 u32 n = sqlite3Strlen30(z);
561 i64 i; 633 if( z[0]=='?' ){
562 int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8); 634 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
563 pExpr->iColumn = (ynVar)i; 635 ** use it as the variable number */
564 testcase( i==0 ); 636 i64 i;
565 testcase( i==1 ); 637 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
566 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 638 pExpr->iColumn = x = (ynVar)i;
567 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 639 testcase( i==0 );
568 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 640 testcase( i==1 );
569 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 641 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
570 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 642 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
643 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
644 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
645 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
646 x = 0;
647 }
648 if( i>pParse->nVar ){
649 pParse->nVar = (int)i;
650 }
651 }else{
652 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
653 ** number as the prior appearance of the same name, or if the name
654 ** has never appeared before, reuse the same variable number
655 */
656 ynVar i;
657 for(i=0; i<pParse->nzVar; i++){
658 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
659 pExpr->iColumn = x = (ynVar)i+1;
660 break;
661 }
662 }
663 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
571 } 664 }
572 if( i>pParse->nVar ){ 665 if( x>0 ){
573 pParse->nVar = (int)i; 666 if( x>pParse->nzVar ){
574 } 667 char **a;
575 }else{ 668 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
576 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 669 if( a==0 ) return; /* Error reported through db->mallocFailed */
577 ** number as the prior appearance of the same name, or if the name 670 pParse->azVar = a;
578 ** has never appeared before, reuse the same variable number 671 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
579 */ 672 pParse->nzVar = x;
580 int i;
581 u32 n;
582 n = sqlite3Strlen30(z);
583 for(i=0; i<pParse->nVarExpr; i++){
584 Expr *pE = pParse->apVarExpr[i];
585 assert( pE!=0 );
586 if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){
587 pExpr->iColumn = pE->iColumn;
588 break;
589 } 673 }
590 } 674 if( z[0]!='?' || pParse->azVar[x-1]==0 ){
591 if( i>=pParse->nVarExpr ){ 675 sqlite3DbFree(db, pParse->azVar[x-1]);
592 pExpr->iColumn = (ynVar)(++pParse->nVar); 676 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
593 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
594 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
595 pParse->apVarExpr =
596 sqlite3DbReallocOrFree(
597 db,
598 pParse->apVarExpr,
599 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
600 );
601 }
602 if( !db->mallocFailed ){
603 assert( pParse->apVarExpr!=0 );
604 pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
605 } 677 }
606 } 678 }
607 } 679 }
608 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 680 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
609 sqlite3ErrorMsg(pParse, "too many SQL variables"); 681 sqlite3ErrorMsg(pParse, "too many SQL variables");
610 } 682 }
611 } 683 }
612 684
613 /* 685 /*
614 ** Recursively delete an expression tree. 686 ** Recursively delete an expression tree.
615 */ 687 */
616 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 688 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
617 if( p==0 ) return; 689 if( p==0 ) return;
618 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 690 /* Sanity check: Assert that the IntValue is non-negative if it exists */
619 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 691 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
620 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 692 if( !ExprHasProperty(p, EP_TokenOnly) ){
693 /* The Expr.x union is never used at the same time as Expr.pRight */
694 assert( p->x.pList==0 || p->pRight==0 );
621 sqlite3ExprDelete(db, p->pLeft); 695 sqlite3ExprDelete(db, p->pLeft);
622 sqlite3ExprDelete(db, p->pRight); 696 sqlite3ExprDelete(db, p->pRight);
623 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 697 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
624 sqlite3DbFree(db, p->u.zToken);
625 }
626 if( ExprHasProperty(p, EP_xIsSelect) ){ 698 if( ExprHasProperty(p, EP_xIsSelect) ){
627 sqlite3SelectDelete(db, p->x.pSelect); 699 sqlite3SelectDelete(db, p->x.pSelect);
628 }else{ 700 }else{
629 sqlite3ExprListDelete(db, p->x.pList); 701 sqlite3ExprListDelete(db, p->x.pList);
630 } 702 }
631 } 703 }
632 if( !ExprHasProperty(p, EP_Static) ){ 704 if( !ExprHasProperty(p, EP_Static) ){
633 sqlite3DbFree(db, p); 705 sqlite3DbFree(db, p);
634 } 706 }
635 } 707 }
(...skipping 31 matching lines...) Expand 10 before | Expand all | Expand 10 after
667 ** 739 **
668 ** The size of the structure can be found by masking the return value 740 ** The size of the structure can be found by masking the return value
669 ** of this routine with 0xfff. The flags can be found by masking the 741 ** of this routine with 0xfff. The flags can be found by masking the
670 ** return value with EP_Reduced|EP_TokenOnly. 742 ** return value with EP_Reduced|EP_TokenOnly.
671 ** 743 **
672 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 744 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
673 ** (unreduced) Expr objects as they or originally constructed by the parser. 745 ** (unreduced) Expr objects as they or originally constructed by the parser.
674 ** During expression analysis, extra information is computed and moved into 746 ** During expression analysis, extra information is computed and moved into
675 ** later parts of teh Expr object and that extra information might get chopped 747 ** later parts of teh Expr object and that extra information might get chopped
676 ** off if the expression is reduced. Note also that it does not work to 748 ** off if the expression is reduced. Note also that it does not work to
677 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 749 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
678 ** to reduce a pristine expression tree from the parser. The implementation 750 ** to reduce a pristine expression tree from the parser. The implementation
679 ** of dupedExprStructSize() contain multiple assert() statements that attempt 751 ** of dupedExprStructSize() contain multiple assert() statements that attempt
680 ** to enforce this constraint. 752 ** to enforce this constraint.
681 */ 753 */
682 static int dupedExprStructSize(Expr *p, int flags){ 754 static int dupedExprStructSize(Expr *p, int flags){
683 int nSize; 755 int nSize;
684 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 756 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
757 assert( EXPR_FULLSIZE<=0xfff );
758 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
685 if( 0==(flags&EXPRDUP_REDUCE) ){ 759 if( 0==(flags&EXPRDUP_REDUCE) ){
686 nSize = EXPR_FULLSIZE; 760 nSize = EXPR_FULLSIZE;
687 }else{ 761 }else{
688 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 762 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
689 assert( !ExprHasProperty(p, EP_FromJoin) ); 763 assert( !ExprHasProperty(p, EP_FromJoin) );
690 assert( (p->flags2 & EP2_MallocedToken)==0 ); 764 assert( !ExprHasProperty(p, EP_MemToken) );
691 assert( (p->flags2 & EP2_Irreducible)==0 ); 765 assert( !ExprHasProperty(p, EP_NoReduce) );
692 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 766 if( p->pLeft || p->x.pList ){
693 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 767 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
694 }else{ 768 }else{
769 assert( p->pRight==0 );
695 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 770 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
696 } 771 }
697 } 772 }
698 return nSize; 773 return nSize;
699 } 774 }
700 775
701 /* 776 /*
702 ** This function returns the space in bytes required to store the copy 777 ** This function returns the space in bytes required to store the copy
703 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 778 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
704 ** string is defined.) 779 ** string is defined.)
(...skipping 28 matching lines...) Expand all
733 } 808 }
734 } 809 }
735 return nByte; 810 return nByte;
736 } 811 }
737 812
738 /* 813 /*
739 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 814 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
740 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 815 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
741 ** to store the copy of expression p, the copies of p->u.zToken 816 ** to store the copy of expression p, the copies of p->u.zToken
742 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 817 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
743 ** if any. Before returning, *pzBuffer is set to the first byte passed the 818 ** if any. Before returning, *pzBuffer is set to the first byte past the
744 ** portion of the buffer copied into by this function. 819 ** portion of the buffer copied into by this function.
745 */ 820 */
746 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 821 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
747 Expr *pNew = 0; /* Value to return */ 822 Expr *pNew = 0; /* Value to return */
748 if( p ){ 823 if( p ){
749 const int isReduced = (flags&EXPRDUP_REDUCE); 824 const int isReduced = (flags&EXPRDUP_REDUCE);
750 u8 *zAlloc; 825 u8 *zAlloc;
751 u32 staticFlag = 0; 826 u32 staticFlag = 0;
752 827
753 assert( pzBuffer==0 || isReduced ); 828 assert( pzBuffer==0 || isReduced );
(...skipping 24 matching lines...) Expand all
778 if( isReduced ){ 853 if( isReduced ){
779 assert( ExprHasProperty(p, EP_Reduced)==0 ); 854 assert( ExprHasProperty(p, EP_Reduced)==0 );
780 memcpy(zAlloc, p, nNewSize); 855 memcpy(zAlloc, p, nNewSize);
781 }else{ 856 }else{
782 int nSize = exprStructSize(p); 857 int nSize = exprStructSize(p);
783 memcpy(zAlloc, p, nSize); 858 memcpy(zAlloc, p, nSize);
784 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 859 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
785 } 860 }
786 861
787 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 862 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
788 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 863 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
789 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 864 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
790 pNew->flags |= staticFlag; 865 pNew->flags |= staticFlag;
791 866
792 /* Copy the p->u.zToken string, if any. */ 867 /* Copy the p->u.zToken string, if any. */
793 if( nToken ){ 868 if( nToken ){
794 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 869 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
795 memcpy(zToken, p->u.zToken, nToken); 870 memcpy(zToken, p->u.zToken, nToken);
796 } 871 }
797 872
798 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 873 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
799 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 874 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
800 if( ExprHasProperty(p, EP_xIsSelect) ){ 875 if( ExprHasProperty(p, EP_xIsSelect) ){
801 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 876 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
802 }else{ 877 }else{
803 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 878 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
804 } 879 }
805 } 880 }
806 881
807 /* Fill in pNew->pLeft and pNew->pRight. */ 882 /* Fill in pNew->pLeft and pNew->pRight. */
808 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 883 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
809 zAlloc += dupedExprNodeSize(p, flags); 884 zAlloc += dupedExprNodeSize(p, flags);
810 if( ExprHasProperty(pNew, EP_Reduced) ){ 885 if( ExprHasProperty(pNew, EP_Reduced) ){
811 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 886 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
812 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 887 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
813 } 888 }
814 if( pzBuffer ){ 889 if( pzBuffer ){
815 *pzBuffer = zAlloc; 890 *pzBuffer = zAlloc;
816 } 891 }
817 }else{ 892 }else{
818 pNew->flags2 = 0; 893 if( !ExprHasProperty(p, EP_TokenOnly) ){
819 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
820 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 894 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
821 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 895 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
822 } 896 }
823 } 897 }
824 898
825 } 899 }
826 } 900 }
827 return pNew; 901 return pNew;
828 } 902 }
829 903
830 /* 904 /*
905 ** Create and return a deep copy of the object passed as the second
906 ** argument. If an OOM condition is encountered, NULL is returned
907 ** and the db->mallocFailed flag set.
908 */
909 #ifndef SQLITE_OMIT_CTE
910 static With *withDup(sqlite3 *db, With *p){
911 With *pRet = 0;
912 if( p ){
913 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
914 pRet = sqlite3DbMallocZero(db, nByte);
915 if( pRet ){
916 int i;
917 pRet->nCte = p->nCte;
918 for(i=0; i<p->nCte; i++){
919 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
920 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
921 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
922 }
923 }
924 }
925 return pRet;
926 }
927 #else
928 # define withDup(x,y) 0
929 #endif
930
931 /*
831 ** The following group of routines make deep copies of expressions, 932 ** The following group of routines make deep copies of expressions,
832 ** expression lists, ID lists, and select statements. The copies can 933 ** expression lists, ID lists, and select statements. The copies can
833 ** be deleted (by being passed to their respective ...Delete() routines) 934 ** be deleted (by being passed to their respective ...Delete() routines)
834 ** without effecting the originals. 935 ** without effecting the originals.
835 ** 936 **
836 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 937 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
837 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 938 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
838 ** by subsequent calls to sqlite*ListAppend() routines. 939 ** by subsequent calls to sqlite*ListAppend() routines.
839 ** 940 **
840 ** Any tables that the SrcList might point to are not duplicated. 941 ** Any tables that the SrcList might point to are not duplicated.
841 ** 942 **
842 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 943 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
843 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 944 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
844 ** truncated version of the usual Expr structure that will be stored as 945 ** truncated version of the usual Expr structure that will be stored as
845 ** part of the in-memory representation of the database schema. 946 ** part of the in-memory representation of the database schema.
846 */ 947 */
847 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 948 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
848 return exprDup(db, p, flags, 0); 949 return exprDup(db, p, flags, 0);
849 } 950 }
850 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 951 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
851 ExprList *pNew; 952 ExprList *pNew;
852 struct ExprList_item *pItem, *pOldItem; 953 struct ExprList_item *pItem, *pOldItem;
853 int i; 954 int i;
854 if( p==0 ) return 0; 955 if( p==0 ) return 0;
855 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 956 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
856 if( pNew==0 ) return 0; 957 if( pNew==0 ) return 0;
857 pNew->iECursor = 0; 958 pNew->nExpr = i = p->nExpr;
858 pNew->nExpr = pNew->nAlloc = p->nExpr; 959 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
859 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 960 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) );
860 if( pItem==0 ){ 961 if( pItem==0 ){
861 sqlite3DbFree(db, pNew); 962 sqlite3DbFree(db, pNew);
862 return 0; 963 return 0;
863 } 964 }
864 pOldItem = p->a; 965 pOldItem = p->a;
865 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 966 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
866 Expr *pOldExpr = pOldItem->pExpr; 967 Expr *pOldExpr = pOldItem->pExpr;
867 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 968 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
868 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 969 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
869 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 970 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
870 pItem->sortOrder = pOldItem->sortOrder; 971 pItem->sortOrder = pOldItem->sortOrder;
871 pItem->done = 0; 972 pItem->done = 0;
872 pItem->iCol = pOldItem->iCol; 973 pItem->bSpanIsTab = pOldItem->bSpanIsTab;
873 pItem->iAlias = pOldItem->iAlias; 974 pItem->u = pOldItem->u;
874 } 975 }
875 return pNew; 976 return pNew;
876 } 977 }
877 978
878 /* 979 /*
879 ** If cursors, triggers, views and subqueries are all omitted from 980 ** If cursors, triggers, views and subqueries are all omitted from
880 ** the build, then none of the following routines, except for 981 ** the build, then none of the following routines, except for
881 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 982 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
882 ** called with a NULL argument. 983 ** called with a NULL argument.
883 */ 984 */
884 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 985 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
885 || !defined(SQLITE_OMIT_SUBQUERY) 986 || !defined(SQLITE_OMIT_SUBQUERY)
886 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 987 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
887 SrcList *pNew; 988 SrcList *pNew;
888 int i; 989 int i;
889 int nByte; 990 int nByte;
890 if( p==0 ) return 0; 991 if( p==0 ) return 0;
891 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 992 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
892 pNew = sqlite3DbMallocRaw(db, nByte ); 993 pNew = sqlite3DbMallocRaw(db, nByte );
893 if( pNew==0 ) return 0; 994 if( pNew==0 ) return 0;
894 pNew->nSrc = pNew->nAlloc = p->nSrc; 995 pNew->nSrc = pNew->nAlloc = p->nSrc;
895 for(i=0; i<p->nSrc; i++){ 996 for(i=0; i<p->nSrc; i++){
896 struct SrcList_item *pNewItem = &pNew->a[i]; 997 struct SrcList_item *pNewItem = &pNew->a[i];
897 struct SrcList_item *pOldItem = &p->a[i]; 998 struct SrcList_item *pOldItem = &p->a[i];
898 Table *pTab; 999 Table *pTab;
1000 pNewItem->pSchema = pOldItem->pSchema;
899 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1001 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
900 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1002 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
901 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1003 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
902 pNewItem->jointype = pOldItem->jointype; 1004 pNewItem->jointype = pOldItem->jointype;
903 pNewItem->iCursor = pOldItem->iCursor; 1005 pNewItem->iCursor = pOldItem->iCursor;
904 pNewItem->isPopulated = pOldItem->isPopulated; 1006 pNewItem->addrFillSub = pOldItem->addrFillSub;
1007 pNewItem->regReturn = pOldItem->regReturn;
1008 pNewItem->isCorrelated = pOldItem->isCorrelated;
1009 pNewItem->viaCoroutine = pOldItem->viaCoroutine;
1010 pNewItem->isRecursive = pOldItem->isRecursive;
905 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 1011 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
906 pNewItem->notIndexed = pOldItem->notIndexed; 1012 pNewItem->notIndexed = pOldItem->notIndexed;
907 pNewItem->pIndex = pOldItem->pIndex; 1013 pNewItem->pIndex = pOldItem->pIndex;
908 pTab = pNewItem->pTab = pOldItem->pTab; 1014 pTab = pNewItem->pTab = pOldItem->pTab;
909 if( pTab ){ 1015 if( pTab ){
910 pTab->nRef++; 1016 pTab->nRef++;
911 } 1017 }
912 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1018 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
913 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1019 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
914 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1020 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
915 pNewItem->colUsed = pOldItem->colUsed; 1021 pNewItem->colUsed = pOldItem->colUsed;
916 } 1022 }
917 return pNew; 1023 return pNew;
918 } 1024 }
919 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1025 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
920 IdList *pNew; 1026 IdList *pNew;
921 int i; 1027 int i;
922 if( p==0 ) return 0; 1028 if( p==0 ) return 0;
923 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1029 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
924 if( pNew==0 ) return 0; 1030 if( pNew==0 ) return 0;
925 pNew->nId = pNew->nAlloc = p->nId; 1031 pNew->nId = p->nId;
926 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1032 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
927 if( pNew->a==0 ){ 1033 if( pNew->a==0 ){
928 sqlite3DbFree(db, pNew); 1034 sqlite3DbFree(db, pNew);
929 return 0; 1035 return 0;
930 } 1036 }
1037 /* Note that because the size of the allocation for p->a[] is not
1038 ** necessarily a power of two, sqlite3IdListAppend() may not be called
1039 ** on the duplicate created by this function. */
931 for(i=0; i<p->nId; i++){ 1040 for(i=0; i<p->nId; i++){
932 struct IdList_item *pNewItem = &pNew->a[i]; 1041 struct IdList_item *pNewItem = &pNew->a[i];
933 struct IdList_item *pOldItem = &p->a[i]; 1042 struct IdList_item *pOldItem = &p->a[i];
934 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1043 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
935 pNewItem->idx = pOldItem->idx; 1044 pNewItem->idx = pOldItem->idx;
936 } 1045 }
937 return pNew; 1046 return pNew;
938 } 1047 }
939 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1048 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
940 Select *pNew; 1049 Select *pNew, *pPrior;
941 if( p==0 ) return 0; 1050 if( p==0 ) return 0;
942 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1051 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
943 if( pNew==0 ) return 0; 1052 if( pNew==0 ) return 0;
944 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1053 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
945 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1054 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
946 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1055 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
947 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1056 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
948 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1057 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
949 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1058 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
950 pNew->op = p->op; 1059 pNew->op = p->op;
951 pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1060 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1061 if( pPrior ) pPrior->pNext = pNew;
1062 pNew->pNext = 0;
952 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1063 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
953 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1064 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
954 pNew->iLimit = 0; 1065 pNew->iLimit = 0;
955 pNew->iOffset = 0; 1066 pNew->iOffset = 0;
956 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1067 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
957 pNew->pRightmost = 0;
958 pNew->addrOpenEphm[0] = -1; 1068 pNew->addrOpenEphm[0] = -1;
959 pNew->addrOpenEphm[1] = -1; 1069 pNew->addrOpenEphm[1] = -1;
960 pNew->addrOpenEphm[2] = -1; 1070 pNew->nSelectRow = p->nSelectRow;
1071 pNew->pWith = withDup(db, p->pWith);
1072 sqlite3SelectSetName(pNew, p->zSelName);
961 return pNew; 1073 return pNew;
962 } 1074 }
963 #else 1075 #else
964 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1076 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
965 assert( p==0 ); 1077 assert( p==0 );
966 return 0; 1078 return 0;
967 } 1079 }
968 #endif 1080 #endif
969 1081
970 1082
971 /* 1083 /*
972 ** Add a new element to the end of an expression list. If pList is 1084 ** Add a new element to the end of an expression list. If pList is
973 ** initially NULL, then create a new expression list. 1085 ** initially NULL, then create a new expression list.
974 ** 1086 **
975 ** If a memory allocation error occurs, the entire list is freed and 1087 ** If a memory allocation error occurs, the entire list is freed and
976 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1088 ** NULL is returned. If non-NULL is returned, then it is guaranteed
977 ** that the new entry was successfully appended. 1089 ** that the new entry was successfully appended.
978 */ 1090 */
979 ExprList *sqlite3ExprListAppend( 1091 ExprList *sqlite3ExprListAppend(
980 Parse *pParse, /* Parsing context */ 1092 Parse *pParse, /* Parsing context */
981 ExprList *pList, /* List to which to append. Might be NULL */ 1093 ExprList *pList, /* List to which to append. Might be NULL */
982 Expr *pExpr /* Expression to be appended. Might be NULL */ 1094 Expr *pExpr /* Expression to be appended. Might be NULL */
983 ){ 1095 ){
984 sqlite3 *db = pParse->db; 1096 sqlite3 *db = pParse->db;
985 if( pList==0 ){ 1097 if( pList==0 ){
986 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1098 pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
987 if( pList==0 ){ 1099 if( pList==0 ){
988 goto no_mem; 1100 goto no_mem;
989 } 1101 }
990 assert( pList->nAlloc==0 ); 1102 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
991 } 1103 if( pList->a==0 ) goto no_mem;
992 if( pList->nAlloc<=pList->nExpr ){ 1104 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
993 struct ExprList_item *a; 1105 struct ExprList_item *a;
994 int n = pList->nAlloc*2 + 4; 1106 assert( pList->nExpr>0 );
995 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 1107 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
996 if( a==0 ){ 1108 if( a==0 ){
997 goto no_mem; 1109 goto no_mem;
998 } 1110 }
999 pList->a = a; 1111 pList->a = a;
1000 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
1001 } 1112 }
1002 assert( pList->a!=0 ); 1113 assert( pList->a!=0 );
1003 if( 1 ){ 1114 if( 1 ){
1004 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1115 struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1005 memset(pItem, 0, sizeof(*pItem)); 1116 memset(pItem, 0, sizeof(*pItem));
1006 pItem->pExpr = pExpr; 1117 pItem->pExpr = pExpr;
1007 } 1118 }
1008 return pList; 1119 return pList;
1009 1120
1010 no_mem: 1121 no_mem:
(...skipping 70 matching lines...) Expand 10 before | Expand all | Expand 10 after
1081 } 1192 }
1082 } 1193 }
1083 1194
1084 /* 1195 /*
1085 ** Delete an entire expression list. 1196 ** Delete an entire expression list.
1086 */ 1197 */
1087 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1198 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1088 int i; 1199 int i;
1089 struct ExprList_item *pItem; 1200 struct ExprList_item *pItem;
1090 if( pList==0 ) return; 1201 if( pList==0 ) return;
1091 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 1202 assert( pList->a!=0 || pList->nExpr==0 );
1092 assert( pList->nExpr<=pList->nAlloc );
1093 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1203 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1094 sqlite3ExprDelete(db, pItem->pExpr); 1204 sqlite3ExprDelete(db, pItem->pExpr);
1095 sqlite3DbFree(db, pItem->zName); 1205 sqlite3DbFree(db, pItem->zName);
1096 sqlite3DbFree(db, pItem->zSpan); 1206 sqlite3DbFree(db, pItem->zSpan);
1097 } 1207 }
1098 sqlite3DbFree(db, pList->a); 1208 sqlite3DbFree(db, pList->a);
1099 sqlite3DbFree(db, pList); 1209 sqlite3DbFree(db, pList);
1100 } 1210 }
1101 1211
1102 /* 1212 /*
1103 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1213 ** These routines are Walker callbacks. Walker.u.pi is a pointer
1104 ** to an integer. These routines are checking an expression to see 1214 ** to an integer. These routines are checking an expression to see
1105 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1215 ** if it is a constant. Set *Walker.u.i to 0 if the expression is
1106 ** not constant. 1216 ** not constant.
1107 ** 1217 **
1108 ** These callback routines are used to implement the following: 1218 ** These callback routines are used to implement the following:
1109 ** 1219 **
1110 ** sqlite3ExprIsConstant() 1220 ** sqlite3ExprIsConstant() pWalker->u.i==1
1111 ** sqlite3ExprIsConstantNotJoin() 1221 ** sqlite3ExprIsConstantNotJoin() pWalker->u.i==2
1112 ** sqlite3ExprIsConstantOrFunction() 1222 ** sqlite3ExprIsConstantOrFunction() pWalker->u.i==3 or 4
1113 ** 1223 **
1224 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1225 ** in a CREATE TABLE statement. The Walker.u.i value is 4 when parsing
1226 ** an existing schema and 3 when processing a new statement. A bound
1227 ** parameter raises an error for new statements, but is silently converted
1228 ** to NULL for existing schemas. This allows sqlite_master tables that
1229 ** contain a bound parameter because they were generated by older versions
1230 ** of SQLite to be parsed by newer versions of SQLite without raising a
1231 ** malformed schema error.
1114 */ 1232 */
1115 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1233 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1116 1234
1117 /* If pWalker->u.i is 3 then any term of the expression that comes from 1235 /* If pWalker->u.i is 2 then any term of the expression that comes from
1118 ** the ON or USING clauses of a join disqualifies the expression 1236 ** the ON or USING clauses of a join disqualifies the expression
1119 ** from being considered constant. */ 1237 ** from being considered constant. */
1120 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1238 if( pWalker->u.i==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1121 pWalker->u.i = 0; 1239 pWalker->u.i = 0;
1122 return WRC_Abort; 1240 return WRC_Abort;
1123 } 1241 }
1124 1242
1125 switch( pExpr->op ){ 1243 switch( pExpr->op ){
1126 /* Consider functions to be constant if all their arguments are constant 1244 /* Consider functions to be constant if all their arguments are constant
1127 ** and pWalker->u.i==2 */ 1245 ** and either pWalker->u.i==3 or 4 or the function as the SQLITE_FUNC_CONST
1246 ** flag. */
1128 case TK_FUNCTION: 1247 case TK_FUNCTION:
1129 if( pWalker->u.i==2 ) return 0; 1248 if( pWalker->u.i>=3 || ExprHasProperty(pExpr,EP_Constant) ){
1249 return WRC_Continue;
1250 }
1130 /* Fall through */ 1251 /* Fall through */
1131 case TK_ID: 1252 case TK_ID:
1132 case TK_COLUMN: 1253 case TK_COLUMN:
1133 case TK_AGG_FUNCTION: 1254 case TK_AGG_FUNCTION:
1134 case TK_AGG_COLUMN: 1255 case TK_AGG_COLUMN:
1135 testcase( pExpr->op==TK_ID ); 1256 testcase( pExpr->op==TK_ID );
1136 testcase( pExpr->op==TK_COLUMN ); 1257 testcase( pExpr->op==TK_COLUMN );
1137 testcase( pExpr->op==TK_AGG_FUNCTION ); 1258 testcase( pExpr->op==TK_AGG_FUNCTION );
1138 testcase( pExpr->op==TK_AGG_COLUMN ); 1259 testcase( pExpr->op==TK_AGG_COLUMN );
1139 pWalker->u.i = 0; 1260 pWalker->u.i = 0;
1140 return WRC_Abort; 1261 return WRC_Abort;
1262 case TK_VARIABLE:
1263 if( pWalker->u.i==4 ){
1264 /* Silently convert bound parameters that appear inside of CREATE
1265 ** statements into a NULL when parsing the CREATE statement text out
1266 ** of the sqlite_master table */
1267 pExpr->op = TK_NULL;
1268 }else if( pWalker->u.i==3 ){
1269 /* A bound parameter in a CREATE statement that originates from
1270 ** sqlite3_prepare() causes an error */
1271 pWalker->u.i = 0;
1272 return WRC_Abort;
1273 }
1274 /* Fall through */
1141 default: 1275 default:
1142 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1276 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1143 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1277 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1144 return WRC_Continue; 1278 return WRC_Continue;
1145 } 1279 }
1146 } 1280 }
1147 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1281 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1148 UNUSED_PARAMETER(NotUsed); 1282 UNUSED_PARAMETER(NotUsed);
1149 pWalker->u.i = 0; 1283 pWalker->u.i = 0;
1150 return WRC_Abort; 1284 return WRC_Abort;
1151 } 1285 }
1152 static int exprIsConst(Expr *p, int initFlag){ 1286 static int exprIsConst(Expr *p, int initFlag){
1153 Walker w; 1287 Walker w;
1288 memset(&w, 0, sizeof(w));
1154 w.u.i = initFlag; 1289 w.u.i = initFlag;
1155 w.xExprCallback = exprNodeIsConstant; 1290 w.xExprCallback = exprNodeIsConstant;
1156 w.xSelectCallback = selectNodeIsConstant; 1291 w.xSelectCallback = selectNodeIsConstant;
1157 sqlite3WalkExpr(&w, p); 1292 sqlite3WalkExpr(&w, p);
1158 return w.u.i; 1293 return w.u.i;
1159 } 1294 }
1160 1295
1161 /* 1296 /*
1162 ** Walk an expression tree. Return 1 if the expression is constant 1297 ** Walk an expression tree. Return 1 if the expression is constant
1163 ** and 0 if it involves variables or function calls. 1298 ** and 0 if it involves variables or function calls.
1164 ** 1299 **
1165 ** For the purposes of this function, a double-quoted string (ex: "abc") 1300 ** For the purposes of this function, a double-quoted string (ex: "abc")
1166 ** is considered a variable but a single-quoted string (ex: 'abc') is 1301 ** is considered a variable but a single-quoted string (ex: 'abc') is
1167 ** a constant. 1302 ** a constant.
1168 */ 1303 */
1169 int sqlite3ExprIsConstant(Expr *p){ 1304 int sqlite3ExprIsConstant(Expr *p){
1170 return exprIsConst(p, 1); 1305 return exprIsConst(p, 1);
1171 } 1306 }
1172 1307
1173 /* 1308 /*
1174 ** Walk an expression tree. Return 1 if the expression is constant 1309 ** Walk an expression tree. Return 1 if the expression is constant
1175 ** that does no originate from the ON or USING clauses of a join. 1310 ** that does no originate from the ON or USING clauses of a join.
1176 ** Return 0 if it involves variables or function calls or terms from 1311 ** Return 0 if it involves variables or function calls or terms from
1177 ** an ON or USING clause. 1312 ** an ON or USING clause.
1178 */ 1313 */
1179 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1314 int sqlite3ExprIsConstantNotJoin(Expr *p){
1180 return exprIsConst(p, 3); 1315 return exprIsConst(p, 2);
1181 } 1316 }
1182 1317
1183 /* 1318 /*
1184 ** Walk an expression tree. Return 1 if the expression is constant 1319 ** Walk an expression tree. Return 1 if the expression is constant
1185 ** or a function call with constant arguments. Return and 0 if there 1320 ** or a function call with constant arguments. Return and 0 if there
1186 ** are any variables. 1321 ** are any variables.
1187 ** 1322 **
1188 ** For the purposes of this function, a double-quoted string (ex: "abc") 1323 ** For the purposes of this function, a double-quoted string (ex: "abc")
1189 ** is considered a variable but a single-quoted string (ex: 'abc') is 1324 ** is considered a variable but a single-quoted string (ex: 'abc') is
1190 ** a constant. 1325 ** a constant.
1191 */ 1326 */
1192 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1327 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1193 return exprIsConst(p, 2); 1328 assert( isInit==0 || isInit==1 );
1329 return exprIsConst(p, 3+isInit);
1194 } 1330 }
1195 1331
1196 /* 1332 /*
1197 ** If the expression p codes a constant integer that is small enough 1333 ** If the expression p codes a constant integer that is small enough
1198 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1334 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1199 ** in *pValue. If the expression is not an integer or if it is too big 1335 ** in *pValue. If the expression is not an integer or if it is too big
1200 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1336 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1201 */ 1337 */
1202 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1338 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1203 int rc = 0; 1339 int rc = 0;
1204 1340
1205 /* If an expression is an integer literal that fits in a signed 32-bit 1341 /* If an expression is an integer literal that fits in a signed 32-bit
1206 ** integer, then the EP_IntValue flag will have already been set */ 1342 ** integer, then the EP_IntValue flag will have already been set */
1207 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1343 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1208 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1344 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1209 1345
1210 if( p->flags & EP_IntValue ){ 1346 if( p->flags & EP_IntValue ){
1211 *pValue = p->u.iValue; 1347 *pValue = p->u.iValue;
1212 return 1; 1348 return 1;
1213 } 1349 }
1214 switch( p->op ){ 1350 switch( p->op ){
1215 case TK_UPLUS: { 1351 case TK_UPLUS: {
1216 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1352 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1217 break; 1353 break;
1218 } 1354 }
1219 case TK_UMINUS: { 1355 case TK_UMINUS: {
1220 int v; 1356 int v;
1221 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1357 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1358 assert( v!=(-2147483647-1) );
1222 *pValue = -v; 1359 *pValue = -v;
1223 rc = 1; 1360 rc = 1;
1224 } 1361 }
1225 break; 1362 break;
1226 } 1363 }
1227 default: break; 1364 default: break;
1228 } 1365 }
1229 return rc; 1366 return rc;
1230 } 1367 }
1231 1368
(...skipping 15 matching lines...) Expand all
1247 u8 op; 1384 u8 op;
1248 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1385 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1249 op = p->op; 1386 op = p->op;
1250 if( op==TK_REGISTER ) op = p->op2; 1387 if( op==TK_REGISTER ) op = p->op2;
1251 switch( op ){ 1388 switch( op ){
1252 case TK_INTEGER: 1389 case TK_INTEGER:
1253 case TK_STRING: 1390 case TK_STRING:
1254 case TK_FLOAT: 1391 case TK_FLOAT:
1255 case TK_BLOB: 1392 case TK_BLOB:
1256 return 0; 1393 return 0;
1394 case TK_COLUMN:
1395 assert( p->pTab!=0 );
1396 return ExprHasProperty(p, EP_CanBeNull) ||
1397 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1257 default: 1398 default:
1258 return 1; 1399 return 1;
1259 } 1400 }
1260 } 1401 }
1261 1402
1262 /* 1403 /*
1263 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1264 ** to location iDest if the value in iReg is NULL. The value in iReg
1265 ** was computed by pExpr. If we can look at pExpr at compile-time and
1266 ** determine that it can never generate a NULL, then the OP_IsNull operation
1267 ** can be omitted.
1268 */
1269 void sqlite3ExprCodeIsNullJump(
1270 Vdbe *v, /* The VDBE under construction */
1271 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */
1272 int iReg, /* Test the value in this register for NULL */
1273 int iDest /* Jump here if the value is null */
1274 ){
1275 if( sqlite3ExprCanBeNull(pExpr) ){
1276 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1277 }
1278 }
1279
1280 /*
1281 ** Return TRUE if the given expression is a constant which would be 1404 ** Return TRUE if the given expression is a constant which would be
1282 ** unchanged by OP_Affinity with the affinity given in the second 1405 ** unchanged by OP_Affinity with the affinity given in the second
1283 ** argument. 1406 ** argument.
1284 ** 1407 **
1285 ** This routine is used to determine if the OP_Affinity operation 1408 ** This routine is used to determine if the OP_Affinity operation
1286 ** can be omitted. When in doubt return FALSE. A false negative 1409 ** can be omitted. When in doubt return FALSE. A false negative
1287 ** is harmless. A false positive, however, can result in the wrong 1410 ** is harmless. A false positive, however, can result in the wrong
1288 ** answer. 1411 ** answer.
1289 */ 1412 */
1290 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1413 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
(...skipping 73 matching lines...) Expand 10 before | Expand all | Expand 10 after
1364 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1487 assert( pTab->pSelect==0 ); /* FROM clause is not a view */
1365 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1488 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
1366 pEList = p->pEList; 1489 pEList = p->pEList;
1367 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1490 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
1368 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1491 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1369 return 1; 1492 return 1;
1370 } 1493 }
1371 #endif /* SQLITE_OMIT_SUBQUERY */ 1494 #endif /* SQLITE_OMIT_SUBQUERY */
1372 1495
1373 /* 1496 /*
1497 ** Code an OP_Once instruction and allocate space for its flag. Return the
1498 ** address of the new instruction.
1499 */
1500 int sqlite3CodeOnce(Parse *pParse){
1501 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
1502 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1503 }
1504
1505 /*
1506 ** Generate code that checks the left-most column of index table iCur to see if
1507 ** it contains any NULL entries. Cause the register at regHasNull to be set
1508 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
1509 ** to be set to NULL if iCur contains one or more NULL values.
1510 */
1511 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1512 int j1;
1513 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1514 j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1515 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1516 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1517 VdbeComment((v, "first_entry_in(%d)", iCur));
1518 sqlite3VdbeJumpHere(v, j1);
1519 }
1520
1521
1522 #ifndef SQLITE_OMIT_SUBQUERY
1523 /*
1524 ** The argument is an IN operator with a list (not a subquery) on the
1525 ** right-hand side. Return TRUE if that list is constant.
1526 */
1527 static int sqlite3InRhsIsConstant(Expr *pIn){
1528 Expr *pLHS;
1529 int res;
1530 assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1531 pLHS = pIn->pLeft;
1532 pIn->pLeft = 0;
1533 res = sqlite3ExprIsConstant(pIn);
1534 pIn->pLeft = pLHS;
1535 return res;
1536 }
1537 #endif
1538
1539 /*
1374 ** This function is used by the implementation of the IN (...) operator. 1540 ** This function is used by the implementation of the IN (...) operator.
1375 ** It's job is to find or create a b-tree structure that may be used 1541 ** The pX parameter is the expression on the RHS of the IN operator, which
1376 ** either to test for membership of the (...) set or to iterate through 1542 ** might be either a list of expressions or a subquery.
1377 ** its members, skipping duplicates.
1378 ** 1543 **
1379 ** The index of the cursor opened on the b-tree (database table, database index 1544 ** The job of this routine is to find or create a b-tree object that can
1380 ** or ephermal table) is stored in pX->iTable before this function returns. 1545 ** be used either to test for membership in the RHS set or to iterate through
1546 ** all members of the RHS set, skipping duplicates.
1547 **
1548 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1549 ** and pX->iTable is set to the index of that cursor.
1550 **
1381 ** The returned value of this function indicates the b-tree type, as follows: 1551 ** The returned value of this function indicates the b-tree type, as follows:
1382 ** 1552 **
1383 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1553 ** IN_INDEX_ROWID - The cursor was opened on a database table.
1384 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1554 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
1385 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1555 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1386 ** populated epheremal table. 1556 ** IN_INDEX_EPH - The cursor was opened on a specially created and
1557 ** populated epheremal table.
1558 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
1559 ** implemented as a sequence of comparisons.
1387 ** 1560 **
1388 ** An existing b-tree may only be used if the SELECT is of the simple 1561 ** An existing b-tree might be used if the RHS expression pX is a simple
1389 ** form: 1562 ** subquery such as:
1390 ** 1563 **
1391 ** SELECT <column> FROM <table> 1564 ** SELECT <column> FROM <table>
1392 ** 1565 **
1393 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1566 ** If the RHS of the IN operator is a list or a more complex subquery, then
1394 ** through the set members, skipping any duplicates. In this case an 1567 ** an ephemeral table might need to be generated from the RHS and then
1395 ** epheremal table must be used unless the selected <column> is guaranteed 1568 ** pX->iTable made to point to the ephemeral table instead of an
1569 ** existing table.
1570 **
1571 ** The inFlags parameter must contain exactly one of the bits
1572 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains
1573 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1574 ** fast membership test. When the IN_INDEX_LOOP bit is set, the
1575 ** IN index will be used to loop over all values of the RHS of the
1576 ** IN operator.
1577 **
1578 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1579 ** through the set members) then the b-tree must not contain duplicates.
1580 ** An epheremal table must be used unless the selected <column> is guaranteed
1396 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1581 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1397 ** has a UNIQUE constraint or UNIQUE index. 1582 ** has a UNIQUE constraint or UNIQUE index.
1398 ** 1583 **
1399 ** If the prNotFound parameter is not 0, then the b-tree will be used 1584 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1400 ** for fast set membership tests. In this case an epheremal table must 1585 ** for fast set membership tests) then an epheremal table must
1401 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1586 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1402 ** be found with <column> as its left-most column. 1587 ** be found with <column> as its left-most column.
1403 ** 1588 **
1589 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1590 ** if the RHS of the IN operator is a list (not a subquery) then this
1591 ** routine might decide that creating an ephemeral b-tree for membership
1592 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
1593 ** calling routine should implement the IN operator using a sequence
1594 ** of Eq or Ne comparison operations.
1595 **
1404 ** When the b-tree is being used for membership tests, the calling function 1596 ** When the b-tree is being used for membership tests, the calling function
1405 ** needs to know whether or not the structure contains an SQL NULL 1597 ** might need to know whether or not the RHS side of the IN operator
1406 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1598 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
1407 ** If there is any chance that the (...) might contain a NULL value at 1599 ** if there is any chance that the (...) might contain a NULL value at
1408 ** runtime, then a register is allocated and the register number written 1600 ** runtime, then a register is allocated and the register number written
1409 ** to *prNotFound. If there is no chance that the (...) contains a 1601 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1410 ** NULL value, then *prNotFound is left unchanged. 1602 ** NULL value, then *prRhsHasNull is left unchanged.
1411 ** 1603 **
1412 ** If a register is allocated and its location stored in *prNotFound, then 1604 ** If a register is allocated and its location stored in *prRhsHasNull, then
1413 ** its initial value is NULL. If the (...) does not remain constant 1605 ** the value in that register will be NULL if the b-tree contains one or more
1414 ** for the duration of the query (i.e. the SELECT within the (...) 1606 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1415 ** is a correlated subquery) then the value of the allocated register is 1607 ** NULL values.
1416 ** reset to NULL each time the subquery is rerun. This allows the
1417 ** caller to use vdbe code equivalent to the following:
1418 **
1419 ** if( register==NULL ){
1420 ** has_null = <test if data structure contains null>
1421 ** register = 1
1422 ** }
1423 **
1424 ** in order to avoid running the <test if data structure contains null>
1425 ** test more often than is necessary.
1426 */ 1608 */
1427 #ifndef SQLITE_OMIT_SUBQUERY 1609 #ifndef SQLITE_OMIT_SUBQUERY
1428 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1610 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1429 Select *p; /* SELECT to the right of IN operator */ 1611 Select *p; /* SELECT to the right of IN operator */
1430 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1612 int eType = 0; /* Type of RHS table. IN_INDEX_* */
1431 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1613 int iTab = pParse->nTab++; /* Cursor of the RHS table */
1432 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1614 int mustBeUnique; /* True if RHS must be unique */
1615 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
1433 1616
1434 assert( pX->op==TK_IN ); 1617 assert( pX->op==TK_IN );
1618 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1435 1619
1436 /* Check to see if an existing table or index can be used to 1620 /* Check to see if an existing table or index can be used to
1437 ** satisfy the query. This is preferable to generating a new 1621 ** satisfy the query. This is preferable to generating a new
1438 ** ephemeral table. 1622 ** ephemeral table.
1439 */ 1623 */
1440 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1624 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1441 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1625 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1442 sqlite3 *db = pParse->db; /* Database connection */ 1626 sqlite3 *db = pParse->db; /* Database connection */
1443 Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */ 1627 Table *pTab; /* Table <table>. */
1444 int iCol = pExpr->iColumn; /* Index of column <column> */ 1628 Expr *pExpr; /* Expression <column> */
1445 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1629 i16 iCol; /* Index of column <column> */
1446 Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */ 1630 i16 iDb; /* Database idx for pTab */
1447 int iDb; /* Database idx for pTab */ 1631
1632 assert( p ); /* Because of isCandidateForInOpt(p) */
1633 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
1634 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1635 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
1636 pTab = p->pSrc->a[0].pTab;
1637 pExpr = p->pEList->a[0].pExpr;
1638 iCol = (i16)pExpr->iColumn;
1448 1639
1449 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1640 /* Code an OP_Transaction and OP_TableLock for <table>. */
1450 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1641 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1451 sqlite3CodeVerifySchema(pParse, iDb); 1642 sqlite3CodeVerifySchema(pParse, iDb);
1452 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1643 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1453 1644
1454 /* This function is only called from two places. In both cases the vdbe 1645 /* This function is only called from two places. In both cases the vdbe
1455 ** has already been allocated. So assume sqlite3GetVdbe() is always 1646 ** has already been allocated. So assume sqlite3GetVdbe() is always
1456 ** successful here. 1647 ** successful here.
1457 */ 1648 */
1458 assert(v); 1649 assert(v);
1459 if( iCol<0 ){ 1650 if( iCol<0 ){
1460 int iMem = ++pParse->nMem; 1651 int iAddr = sqlite3CodeOnce(pParse);
1461 int iAddr; 1652 VdbeCoverage(v);
1462
1463 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1464 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1465 1653
1466 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1654 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1467 eType = IN_INDEX_ROWID; 1655 eType = IN_INDEX_ROWID;
1468 1656
1469 sqlite3VdbeJumpHere(v, iAddr); 1657 sqlite3VdbeJumpHere(v, iAddr);
1470 }else{ 1658 }else{
1471 Index *pIdx; /* Iterator variable */ 1659 Index *pIdx; /* Iterator variable */
1472 1660
1473 /* The collation sequence used by the comparison. If an index is to 1661 /* The collation sequence used by the comparison. If an index is to
1474 ** be used in place of a temp-table, it must be ordered according 1662 ** be used in place of a temp-table, it must be ordered according
1475 ** to this collation sequence. */ 1663 ** to this collation sequence. */
1476 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1664 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1477 1665
1478 /* Check that the affinity that will be used to perform the 1666 /* Check that the affinity that will be used to perform the
1479 ** comparison is the same as the affinity of the column. If 1667 ** comparison is the same as the affinity of the column. If
1480 ** it is not, it is not possible to use any index. 1668 ** it is not, it is not possible to use any index.
1481 */ 1669 */
1482 char aff = comparisonAffinity(pX); 1670 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1483 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1484 1671
1485 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1672 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1486 if( (pIdx->aiColumn[0]==iCol) 1673 if( (pIdx->aiColumn[0]==iCol)
1487 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1674 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1488 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1675 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1489 ){ 1676 ){
1490 int iMem = ++pParse->nMem; 1677 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1491 int iAddr; 1678 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1492 char *pKey; 1679 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1493
1494 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1495 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1496 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1497
1498 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1499 pKey,P4_KEYINFO_HANDOFF);
1500 VdbeComment((v, "%s", pIdx->zName)); 1680 VdbeComment((v, "%s", pIdx->zName));
1501 eType = IN_INDEX_INDEX; 1681 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1682 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1502 1683
1684 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1685 *prRhsHasNull = ++pParse->nMem;
1686 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1687 }
1503 sqlite3VdbeJumpHere(v, iAddr); 1688 sqlite3VdbeJumpHere(v, iAddr);
1504 if( prNotFound && !pTab->aCol[iCol].notNull ){
1505 *prNotFound = ++pParse->nMem;
1506 }
1507 } 1689 }
1508 } 1690 }
1509 } 1691 }
1510 } 1692 }
1511 1693
1694 /* If no preexisting index is available for the IN clause
1695 ** and IN_INDEX_NOOP is an allowed reply
1696 ** and the RHS of the IN operator is a list, not a subquery
1697 ** and the RHS is not contant or has two or fewer terms,
1698 ** then it is not worth creating an ephemeral table to evaluate
1699 ** the IN operator so return IN_INDEX_NOOP.
1700 */
1701 if( eType==0
1702 && (inFlags & IN_INDEX_NOOP_OK)
1703 && !ExprHasProperty(pX, EP_xIsSelect)
1704 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1705 ){
1706 eType = IN_INDEX_NOOP;
1707 }
1708
1709
1512 if( eType==0 ){ 1710 if( eType==0 ){
1513 /* Could not found an existing table or index to use as the RHS b-tree. 1711 /* Could not find an existing table or index to use as the RHS b-tree.
1514 ** We will have to generate an ephemeral table to do the job. 1712 ** We will have to generate an ephemeral table to do the job.
1515 */ 1713 */
1516 double savedNQueryLoop = pParse->nQueryLoop; 1714 u32 savedNQueryLoop = pParse->nQueryLoop;
1517 int rMayHaveNull = 0; 1715 int rMayHaveNull = 0;
1518 eType = IN_INDEX_EPH; 1716 eType = IN_INDEX_EPH;
1519 if( prNotFound ){ 1717 if( inFlags & IN_INDEX_LOOP ){
1520 *prNotFound = rMayHaveNull = ++pParse->nMem; 1718 pParse->nQueryLoop = 0;
1521 }else{ 1719 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1522 testcase( pParse->nQueryLoop>(double)1 );
1523 pParse->nQueryLoop = (double)1;
1524 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1525 eType = IN_INDEX_ROWID; 1720 eType = IN_INDEX_ROWID;
1526 } 1721 }
1722 }else if( prRhsHasNull ){
1723 *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1527 } 1724 }
1528 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1725 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1529 pParse->nQueryLoop = savedNQueryLoop; 1726 pParse->nQueryLoop = savedNQueryLoop;
1530 }else{ 1727 }else{
1531 pX->iTable = iTab; 1728 pX->iTable = iTab;
1532 } 1729 }
1533 return eType; 1730 return eType;
1534 } 1731 }
1535 #endif 1732 #endif
1536 1733
(...skipping 10 matching lines...) Expand all
1547 ** operator or subquery. 1744 ** operator or subquery.
1548 ** 1745 **
1549 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1746 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1550 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1747 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1551 ** to some integer key column of a table B-Tree. In this case, use an 1748 ** to some integer key column of a table B-Tree. In this case, use an
1552 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1749 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1553 ** (slower) variable length keys B-Tree. 1750 ** (slower) variable length keys B-Tree.
1554 ** 1751 **
1555 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1752 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1556 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1753 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1557 ** Furthermore, the IN is in a WHERE clause and that we really want 1754 ** All this routine does is initialize the register given by rMayHaveNull
1558 ** to iterate over the RHS of the IN operator in order to quickly locate 1755 ** to NULL. Calling routines will take care of changing this register
1559 ** all corresponding LHS elements. All this routine does is initialize 1756 ** value to non-NULL if the RHS is NULL-free.
1560 ** the register given by rMayHaveNull to NULL. Calling routines will take
1561 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1562 **
1563 ** If rMayHaveNull is zero, that means that the subquery is being used
1564 ** for membership testing only. There is no need to initialize any
1565 ** registers to indicate the presense or absence of NULLs on the RHS.
1566 ** 1757 **
1567 ** For a SELECT or EXISTS operator, return the register that holds the 1758 ** For a SELECT or EXISTS operator, return the register that holds the
1568 ** result. For IN operators or if an error occurs, the return value is 0. 1759 ** result. For IN operators or if an error occurs, the return value is 0.
1569 */ 1760 */
1570 #ifndef SQLITE_OMIT_SUBQUERY 1761 #ifndef SQLITE_OMIT_SUBQUERY
1571 int sqlite3CodeSubselect( 1762 int sqlite3CodeSubselect(
1572 Parse *pParse, /* Parsing context */ 1763 Parse *pParse, /* Parsing context */
1573 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1764 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
1574 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1765 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */
1575 int isRowid /* If true, LHS of IN operator is a rowid */ 1766 int isRowid /* If true, LHS of IN operator is a rowid */
1576 ){ 1767 ){
1577 int testAddr = 0; /* One-time test address */ 1768 int jmpIfDynamic = -1; /* One-time test address */
1578 int rReg = 0; /* Register storing resulting */ 1769 int rReg = 0; /* Register storing resulting */
1579 Vdbe *v = sqlite3GetVdbe(pParse); 1770 Vdbe *v = sqlite3GetVdbe(pParse);
1580 if( NEVER(v==0) ) return 0; 1771 if( NEVER(v==0) ) return 0;
1581 sqlite3ExprCachePush(pParse); 1772 sqlite3ExprCachePush(pParse);
1582 1773
1583 /* This code must be run in its entirety every time it is encountered 1774 /* This code must be run in its entirety every time it is encountered
1584 ** if any of the following is true: 1775 ** if any of the following is true:
1585 ** 1776 **
1586 ** * The right-hand side is a correlated subquery 1777 ** * The right-hand side is a correlated subquery
1587 ** * The right-hand side is an expression list containing variables 1778 ** * The right-hand side is an expression list containing variables
1588 ** * We are inside a trigger 1779 ** * We are inside a trigger
1589 ** 1780 **
1590 ** If all of the above are false, then we can run this code just once 1781 ** If all of the above are false, then we can run this code just once
1591 ** save the results, and reuse the same result on subsequent invocations. 1782 ** save the results, and reuse the same result on subsequent invocations.
1592 */ 1783 */
1593 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){ 1784 if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1594 int mem = ++pParse->nMem; 1785 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1595 sqlite3VdbeAddOp1(v, OP_If, mem);
1596 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1597 assert( testAddr>0 || pParse->db->mallocFailed );
1598 } 1786 }
1599 1787
1600 #ifndef SQLITE_OMIT_EXPLAIN 1788 #ifndef SQLITE_OMIT_EXPLAIN
1601 if( pParse->explain==2 ){ 1789 if( pParse->explain==2 ){
1602 char *zMsg = sqlite3MPrintf( 1790 char *zMsg = sqlite3MPrintf(
1603 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr?"":"CORRELATED ", 1791 pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED " ,
1604 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1792 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1605 ); 1793 );
1606 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1794 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1607 } 1795 }
1608 #endif 1796 #endif
1609 1797
1610 switch( pExpr->op ){ 1798 switch( pExpr->op ){
1611 case TK_IN: { 1799 case TK_IN: {
1612 char affinity; /* Affinity of the LHS of the IN */ 1800 char affinity; /* Affinity of the LHS of the IN */
1613 KeyInfo keyInfo; /* Keyinfo for the generated table */
1614 int addr; /* Address of OP_OpenEphemeral instruction */ 1801 int addr; /* Address of OP_OpenEphemeral instruction */
1615 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1802 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1616 1803 KeyInfo *pKeyInfo = 0; /* Key information */
1617 if( rMayHaveNull ){
1618 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1619 }
1620 1804
1621 affinity = sqlite3ExprAffinity(pLeft); 1805 affinity = sqlite3ExprAffinity(pLeft);
1622 1806
1623 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1807 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1624 ** expression it is handled the same way. An ephemeral table is 1808 ** expression it is handled the same way. An ephemeral table is
1625 ** filled with single-field index keys representing the results 1809 ** filled with single-field index keys representing the results
1626 ** from the SELECT or the <exprlist>. 1810 ** from the SELECT or the <exprlist>.
1627 ** 1811 **
1628 ** If the 'x' expression is a column value, or the SELECT... 1812 ** If the 'x' expression is a column value, or the SELECT...
1629 ** statement returns a column value, then the affinity of that 1813 ** statement returns a column value, then the affinity of that
1630 ** column is used to build the index keys. If both 'x' and the 1814 ** column is used to build the index keys. If both 'x' and the
1631 ** SELECT... statement are columns, then numeric affinity is used 1815 ** SELECT... statement are columns, then numeric affinity is used
1632 ** if either column has NUMERIC or INTEGER affinity. If neither 1816 ** if either column has NUMERIC or INTEGER affinity. If neither
1633 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1817 ** 'x' nor the SELECT... statement are columns, then numeric affinity
1634 ** is used. 1818 ** is used.
1635 */ 1819 */
1636 pExpr->iTable = pParse->nTab++; 1820 pExpr->iTable = pParse->nTab++;
1637 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1821 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1638 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1822 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1639 memset(&keyInfo, 0, sizeof(keyInfo));
1640 keyInfo.nField = 1;
1641 1823
1642 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1824 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1643 /* Case 1: expr IN (SELECT ...) 1825 /* Case 1: expr IN (SELECT ...)
1644 ** 1826 **
1645 ** Generate code to write the results of the select into the temporary 1827 ** Generate code to write the results of the select into the temporary
1646 ** table allocated and opened above. 1828 ** table allocated and opened above.
1647 */ 1829 */
1830 Select *pSelect = pExpr->x.pSelect;
1648 SelectDest dest; 1831 SelectDest dest;
1649 ExprList *pEList; 1832 ExprList *pEList;
1650 1833
1651 assert( !isRowid ); 1834 assert( !isRowid );
1652 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1835 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1653 dest.affinity = (u8)affinity; 1836 dest.affSdst = (u8)affinity;
1654 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1837 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1655 pExpr->x.pSelect->iLimit = 0; 1838 pSelect->iLimit = 0;
1656 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1839 testcase( pSelect->selFlags & SF_Distinct );
1840 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1841 if( sqlite3Select(pParse, pSelect, &dest) ){
1842 sqlite3KeyInfoUnref(pKeyInfo);
1657 return 0; 1843 return 0;
1658 } 1844 }
1659 pEList = pExpr->x.pSelect->pEList; 1845 pEList = pSelect->pEList;
1660 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1846 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1661 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1847 assert( pEList!=0 );
1662 pEList->a[0].pExpr); 1848 assert( pEList->nExpr>0 );
1663 } 1849 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1850 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1851 pEList->a[0].pExpr);
1664 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1852 }else if( ALWAYS(pExpr->x.pList!=0) ){
1665 /* Case 2: expr IN (exprlist) 1853 /* Case 2: expr IN (exprlist)
1666 ** 1854 **
1667 ** For each expression, build an index key from the evaluation and 1855 ** For each expression, build an index key from the evaluation and
1668 ** store it in the temporary table. If <expr> is a column, then use 1856 ** store it in the temporary table. If <expr> is a column, then use
1669 ** that columns affinity when building index keys. If <expr> is not 1857 ** that columns affinity when building index keys. If <expr> is not
1670 ** a column, use numeric affinity. 1858 ** a column, use numeric affinity.
1671 */ 1859 */
1672 int i; 1860 int i;
1673 ExprList *pList = pExpr->x.pList; 1861 ExprList *pList = pExpr->x.pList;
1674 struct ExprList_item *pItem; 1862 struct ExprList_item *pItem;
1675 int r1, r2, r3; 1863 int r1, r2, r3;
1676 1864
1677 if( !affinity ){ 1865 if( !affinity ){
1678 affinity = SQLITE_AFF_NONE; 1866 affinity = SQLITE_AFF_NONE;
1679 } 1867 }
1680 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1868 if( pKeyInfo ){
1869 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1870 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1871 }
1681 1872
1682 /* Loop through each expression in <exprlist>. */ 1873 /* Loop through each expression in <exprlist>. */
1683 r1 = sqlite3GetTempReg(pParse); 1874 r1 = sqlite3GetTempReg(pParse);
1684 r2 = sqlite3GetTempReg(pParse); 1875 r2 = sqlite3GetTempReg(pParse);
1685 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1876 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1686 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1877 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1687 Expr *pE2 = pItem->pExpr; 1878 Expr *pE2 = pItem->pExpr;
1688 int iValToIns; 1879 int iValToIns;
1689 1880
1690 /* If the expression is not constant then we will need to 1881 /* If the expression is not constant then we will need to
1691 ** disable the test that was generated above that makes sure 1882 ** disable the test that was generated above that makes sure
1692 ** this code only executes once. Because for a non-constant 1883 ** this code only executes once. Because for a non-constant
1693 ** expression we need to rerun this code each time. 1884 ** expression we need to rerun this code each time.
1694 */ 1885 */
1695 if( testAddr && !sqlite3ExprIsConstant(pE2) ){ 1886 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1696 sqlite3VdbeChangeToNoop(v, testAddr-1, 2); 1887 sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1697 testAddr = 0; 1888 jmpIfDynamic = -1;
1698 } 1889 }
1699 1890
1700 /* Evaluate the expression and insert it into the temp table */ 1891 /* Evaluate the expression and insert it into the temp table */
1701 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1892 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1702 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1893 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1703 }else{ 1894 }else{
1704 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1895 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1705 if( isRowid ){ 1896 if( isRowid ){
1706 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1897 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1707 sqlite3VdbeCurrentAddr(v)+2); 1898 sqlite3VdbeCurrentAddr(v)+2);
1899 VdbeCoverage(v);
1708 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1900 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1709 }else{ 1901 }else{
1710 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1902 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1711 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1903 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1712 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1904 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1713 } 1905 }
1714 } 1906 }
1715 } 1907 }
1716 sqlite3ReleaseTempReg(pParse, r1); 1908 sqlite3ReleaseTempReg(pParse, r1);
1717 sqlite3ReleaseTempReg(pParse, r2); 1909 sqlite3ReleaseTempReg(pParse, r2);
1718 } 1910 }
1719 if( !isRowid ){ 1911 if( pKeyInfo ){
1720 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1912 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
1721 } 1913 }
1722 break; 1914 break;
1723 } 1915 }
1724 1916
1725 case TK_EXISTS: 1917 case TK_EXISTS:
1726 case TK_SELECT: 1918 case TK_SELECT:
1727 default: { 1919 default: {
1728 /* If this has to be a scalar SELECT. Generate code to put the 1920 /* If this has to be a scalar SELECT. Generate code to put the
1729 ** value of this select in a memory cell and record the number 1921 ** value of this select in a memory cell and record the number
1730 ** of the memory cell in iColumn. If this is an EXISTS, write 1922 ** of the memory cell in iColumn. If this is an EXISTS, write
1731 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1923 ** an integer 0 (not exists) or 1 (exists) into a memory cell
1732 ** and record that memory cell in iColumn. 1924 ** and record that memory cell in iColumn.
1733 */ 1925 */
1734 Select *pSel; /* SELECT statement to encode */ 1926 Select *pSel; /* SELECT statement to encode */
1735 SelectDest dest; /* How to deal with SELECt result */ 1927 SelectDest dest; /* How to deal with SELECt result */
1736 1928
1737 testcase( pExpr->op==TK_EXISTS ); 1929 testcase( pExpr->op==TK_EXISTS );
1738 testcase( pExpr->op==TK_SELECT ); 1930 testcase( pExpr->op==TK_SELECT );
1739 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1931 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1740 1932
1741 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1933 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1742 pSel = pExpr->x.pSelect; 1934 pSel = pExpr->x.pSelect;
1743 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1935 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1744 if( pExpr->op==TK_SELECT ){ 1936 if( pExpr->op==TK_SELECT ){
1745 dest.eDest = SRT_Mem; 1937 dest.eDest = SRT_Mem;
1746 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1938 dest.iSdst = dest.iSDParm;
1939 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
1747 VdbeComment((v, "Init subquery result")); 1940 VdbeComment((v, "Init subquery result"));
1748 }else{ 1941 }else{
1749 dest.eDest = SRT_Exists; 1942 dest.eDest = SRT_Exists;
1750 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1943 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
1751 VdbeComment((v, "Init EXISTS result")); 1944 VdbeComment((v, "Init EXISTS result"));
1752 } 1945 }
1753 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1946 sqlite3ExprDelete(pParse->db, pSel->pLimit);
1754 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1947 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1755 &sqlite3IntTokens[1]); 1948 &sqlite3IntTokens[1]);
1756 pSel->iLimit = 0; 1949 pSel->iLimit = 0;
1757 if( sqlite3Select(pParse, pSel, &dest) ){ 1950 if( sqlite3Select(pParse, pSel, &dest) ){
1758 return 0; 1951 return 0;
1759 } 1952 }
1760 rReg = dest.iParm; 1953 rReg = dest.iSDParm;
1761 ExprSetIrreducible(pExpr); 1954 ExprSetVVAProperty(pExpr, EP_NoReduce);
1762 break; 1955 break;
1763 } 1956 }
1764 } 1957 }
1765 1958
1766 if( testAddr ){ 1959 if( rHasNullFlag ){
1767 sqlite3VdbeJumpHere(v, testAddr-1); 1960 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
1768 } 1961 }
1769 sqlite3ExprCachePop(pParse, 1); 1962
1963 if( jmpIfDynamic>=0 ){
1964 sqlite3VdbeJumpHere(v, jmpIfDynamic);
1965 }
1966 sqlite3ExprCachePop(pParse);
1770 1967
1771 return rReg; 1968 return rReg;
1772 } 1969 }
1773 #endif /* SQLITE_OMIT_SUBQUERY */ 1970 #endif /* SQLITE_OMIT_SUBQUERY */
1774 1971
1775 #ifndef SQLITE_OMIT_SUBQUERY 1972 #ifndef SQLITE_OMIT_SUBQUERY
1776 /* 1973 /*
1777 ** Generate code for an IN expression. 1974 ** Generate code for an IN expression.
1778 ** 1975 **
1779 ** x IN (SELECT ...) 1976 ** x IN (SELECT ...)
1780 ** x IN (value, value, ...) 1977 ** x IN (value, value, ...)
1781 ** 1978 **
1782 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1979 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS)
1783 ** is an array of zero or more values. The expression is true if the LHS is 1980 ** is an array of zero or more values. The expression is true if the LHS is
1784 ** contained within the RHS. The value of the expression is unknown (NULL) 1981 ** contained within the RHS. The value of the expression is unknown (NULL)
1785 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1982 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1786 ** RHS contains one or more NULL values. 1983 ** RHS contains one or more NULL values.
1787 ** 1984 **
1788 ** This routine generates code will jump to destIfFalse if the LHS is not 1985 ** This routine generates code that jumps to destIfFalse if the LHS is not
1789 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1986 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
1790 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1987 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
1791 ** within the RHS then fall through. 1988 ** within the RHS then fall through.
1792 */ 1989 */
1793 static void sqlite3ExprCodeIN( 1990 static void sqlite3ExprCodeIN(
1794 Parse *pParse, /* Parsing and code generating context */ 1991 Parse *pParse, /* Parsing and code generating context */
1795 Expr *pExpr, /* The IN expression */ 1992 Expr *pExpr, /* The IN expression */
1796 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1993 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
1797 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1994 int destIfNull /* Jump here if the results are unknown due to NULLs */
1798 ){ 1995 ){
1799 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1996 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
1800 char affinity; /* Comparison affinity to use */ 1997 char affinity; /* Comparison affinity to use */
1801 int eType; /* Type of the RHS */ 1998 int eType; /* Type of the RHS */
1802 int r1; /* Temporary use register */ 1999 int r1; /* Temporary use register */
1803 Vdbe *v; /* Statement under construction */ 2000 Vdbe *v; /* Statement under construction */
1804 2001
1805 /* Compute the RHS. After this step, the table with cursor 2002 /* Compute the RHS. After this step, the table with cursor
1806 ** pExpr->iTable will contains the values that make up the RHS. 2003 ** pExpr->iTable will contains the values that make up the RHS.
1807 */ 2004 */
1808 v = pParse->pVdbe; 2005 v = pParse->pVdbe;
1809 assert( v!=0 ); /* OOM detected prior to this routine */ 2006 assert( v!=0 ); /* OOM detected prior to this routine */
1810 VdbeNoopComment((v, "begin IN expr")); 2007 VdbeNoopComment((v, "begin IN expr"));
1811 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 2008 eType = sqlite3FindInIndex(pParse, pExpr,
2009 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2010 destIfFalse==destIfNull ? 0 : &rRhsHasNull);
1812 2011
1813 /* Figure out the affinity to use to create a key from the results 2012 /* Figure out the affinity to use to create a key from the results
1814 ** of the expression. affinityStr stores a static string suitable for 2013 ** of the expression. affinityStr stores a static string suitable for
1815 ** P4 of OP_MakeRecord. 2014 ** P4 of OP_MakeRecord.
1816 */ 2015 */
1817 affinity = comparisonAffinity(pExpr); 2016 affinity = comparisonAffinity(pExpr);
1818 2017
1819 /* Code the LHS, the <expr> from "<expr> IN (...)". 2018 /* Code the LHS, the <expr> from "<expr> IN (...)".
1820 */ 2019 */
1821 sqlite3ExprCachePush(pParse); 2020 sqlite3ExprCachePush(pParse);
1822 r1 = sqlite3GetTempReg(pParse); 2021 r1 = sqlite3GetTempReg(pParse);
1823 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2022 sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1824 2023
1825 /* If the LHS is NULL, then the result is either false or NULL depending 2024 /* If sqlite3FindInIndex() did not find or create an index that is
1826 ** on whether the RHS is empty or not, respectively. 2025 ** suitable for evaluating the IN operator, then evaluate using a
2026 ** sequence of comparisons.
1827 */ 2027 */
1828 if( destIfNull==destIfFalse ){ 2028 if( eType==IN_INDEX_NOOP ){
1829 /* Shortcut for the common case where the false and NULL outcomes are 2029 ExprList *pList = pExpr->x.pList;
1830 ** the same. */ 2030 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1831 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 2031 int labelOk = sqlite3VdbeMakeLabel(v);
2032 int r2, regToFree;
2033 int regCkNull = 0;
2034 int ii;
2035 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2036 if( destIfNull!=destIfFalse ){
2037 regCkNull = sqlite3GetTempReg(pParse);
2038 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2039 }
2040 for(ii=0; ii<pList->nExpr; ii++){
2041 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2042 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2043 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2044 }
2045 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2046 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2047 (void*)pColl, P4_COLLSEQ);
2048 VdbeCoverageIf(v, ii<pList->nExpr-1);
2049 VdbeCoverageIf(v, ii==pList->nExpr-1);
2050 sqlite3VdbeChangeP5(v, affinity);
2051 }else{
2052 assert( destIfNull==destIfFalse );
2053 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2054 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2055 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2056 }
2057 sqlite3ReleaseTempReg(pParse, regToFree);
2058 }
2059 if( regCkNull ){
2060 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2061 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2062 }
2063 sqlite3VdbeResolveLabel(v, labelOk);
2064 sqlite3ReleaseTempReg(pParse, regCkNull);
1832 }else{ 2065 }else{
1833 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 2066
1834 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2067 /* If the LHS is NULL, then the result is either false or NULL depending
1835 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 2068 ** on whether the RHS is empty or not, respectively.
1836 sqlite3VdbeJumpHere(v, addr1);
1837 }
1838
1839 if( eType==IN_INDEX_ROWID ){
1840 /* In this case, the RHS is the ROWID of table b-tree
1841 */ 2069 */
1842 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 2070 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
1843 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2071 if( destIfNull==destIfFalse ){
1844 }else{ 2072 /* Shortcut for the common case where the false and NULL outcomes are
1845 /* In this case, the RHS is an index b-tree. 2073 ** the same. */
1846 */ 2074 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
1847 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2075 }else{
1848 2076 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
1849 /* If the set membership test fails, then the result of the 2077 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1850 ** "x IN (...)" expression must be either 0 or NULL. If the set 2078 VdbeCoverage(v);
1851 ** contains no NULL values, then the result is 0. If the set 2079 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1852 ** contains one or more NULL values, then the result of the 2080 sqlite3VdbeJumpHere(v, addr1);
1853 ** expression is also NULL. 2081 }
1854 */ 2082 }
1855 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 2083
1856 /* This branch runs if it is known at compile time that the RHS 2084 if( eType==IN_INDEX_ROWID ){
1857 ** cannot contain NULL values. This happens as the result 2085 /* In this case, the RHS is the ROWID of table b-tree
1858 ** of a "NOT NULL" constraint in the database schema.
1859 **
1860 ** Also run this branch if NULL is equivalent to FALSE
1861 ** for this particular IN operator.
1862 */ 2086 */
1863 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2087 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
1864 2088 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2089 VdbeCoverage(v);
1865 }else{ 2090 }else{
1866 /* In this branch, the RHS of the IN might contain a NULL and 2091 /* In this case, the RHS is an index b-tree.
1867 ** the presence of a NULL on the RHS makes a difference in the
1868 ** outcome.
1869 */ 2092 */
1870 int j1, j2, j3; 2093 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1871 2094
1872 /* First check to see if the LHS is contained in the RHS. If so, 2095 /* If the set membership test fails, then the result of the
1873 ** then the presence of NULLs in the RHS does not matter, so jump 2096 ** "x IN (...)" expression must be either 0 or NULL. If the set
1874 ** over all of the code that follows. 2097 ** contains no NULL values, then the result is 0. If the set
2098 ** contains one or more NULL values, then the result of the
2099 ** expression is also NULL.
1875 */ 2100 */
1876 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2101 assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
1877 2102 if( rRhsHasNull==0 ){
1878 /* Here we begin generating code that runs if the LHS is not 2103 /* This branch runs if it is known at compile time that the RHS
1879 ** contained within the RHS. Generate additional code that 2104 ** cannot contain NULL values. This happens as the result
1880 ** tests the RHS for NULLs. If the RHS contains a NULL then 2105 ** of a "NOT NULL" constraint in the database schema.
1881 ** jump to destIfNull. If there are no NULLs in the RHS then 2106 **
1882 ** jump to destIfFalse. 2107 ** Also run this branch if NULL is equivalent to FALSE
1883 */ 2108 ** for this particular IN operator.
1884 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 2109 */
1885 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 2110 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1886 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 2111 VdbeCoverage(v);
1887 sqlite3VdbeJumpHere(v, j3); 2112 }else{
1888 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 2113 /* In this branch, the RHS of the IN might contain a NULL and
1889 sqlite3VdbeJumpHere(v, j2); 2114 ** the presence of a NULL on the RHS makes a difference in the
1890 2115 ** outcome.
1891 /* Jump to the appropriate target depending on whether or not 2116 */
1892 ** the RHS contains a NULL 2117 int j1;
1893 */ 2118
1894 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 2119 /* First check to see if the LHS is contained in the RHS. If so,
1895 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2120 ** then the answer is TRUE the presence of NULLs in the RHS does
1896 2121 ** not matter. If the LHS is not contained in the RHS, then the
1897 /* The OP_Found at the top of this branch jumps here when true, 2122 ** answer is NULL if the RHS contains NULLs and the answer is
1898 ** causing the overall IN expression evaluation to fall through. 2123 ** FALSE if the RHS is NULL-free.
1899 */ 2124 */
1900 sqlite3VdbeJumpHere(v, j1); 2125 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2126 VdbeCoverage(v);
2127 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2128 VdbeCoverage(v);
2129 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2130 sqlite3VdbeJumpHere(v, j1);
2131 }
1901 } 2132 }
1902 } 2133 }
1903 sqlite3ReleaseTempReg(pParse, r1); 2134 sqlite3ReleaseTempReg(pParse, r1);
1904 sqlite3ExprCachePop(pParse, 1); 2135 sqlite3ExprCachePop(pParse);
1905 VdbeComment((v, "end IN expr")); 2136 VdbeComment((v, "end IN expr"));
1906 } 2137 }
1907 #endif /* SQLITE_OMIT_SUBQUERY */ 2138 #endif /* SQLITE_OMIT_SUBQUERY */
1908 2139
1909 /* 2140 /*
1910 ** Duplicate an 8-byte value 2141 ** Duplicate an 8-byte value
1911 */ 2142 */
1912 static char *dup8bytes(Vdbe *v, const char *in){ 2143 static char *dup8bytes(Vdbe *v, const char *in){
1913 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 2144 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1914 if( out ){ 2145 if( out ){
(...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after
1951 if( pExpr->flags & EP_IntValue ){ 2182 if( pExpr->flags & EP_IntValue ){
1952 int i = pExpr->u.iValue; 2183 int i = pExpr->u.iValue;
1953 assert( i>=0 ); 2184 assert( i>=0 );
1954 if( negFlag ) i = -i; 2185 if( negFlag ) i = -i;
1955 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2186 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1956 }else{ 2187 }else{
1957 int c; 2188 int c;
1958 i64 value; 2189 i64 value;
1959 const char *z = pExpr->u.zToken; 2190 const char *z = pExpr->u.zToken;
1960 assert( z!=0 ); 2191 assert( z!=0 );
1961 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2192 c = sqlite3DecOrHexToI64(z, &value);
1962 if( c==0 || (c==2 && negFlag) ){ 2193 if( c==0 || (c==2 && negFlag) ){
1963 char *zV; 2194 char *zV;
1964 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2195 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
1965 zV = dup8bytes(v, (char*)&value); 2196 zV = dup8bytes(v, (char*)&value);
1966 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2197 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1967 }else{ 2198 }else{
1968 #ifdef SQLITE_OMIT_FLOATING_POINT 2199 #ifdef SQLITE_OMIT_FLOATING_POINT
1969 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2200 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
1970 #else 2201 #else
1971 codeReal(v, z, negFlag, iMem); 2202 #ifndef SQLITE_OMIT_HEX_INTEGER
2203 if( sqlite3_strnicmp(z,"0x",2)==0 ){
2204 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2205 }else
2206 #endif
2207 {
2208 codeReal(v, z, negFlag, iMem);
2209 }
1972 #endif 2210 #endif
1973 } 2211 }
1974 } 2212 }
1975 } 2213 }
1976 2214
1977 /* 2215 /*
1978 ** Clear a cache entry. 2216 ** Clear a cache entry.
1979 */ 2217 */
1980 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2218 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
1981 if( p->tempReg ){ 2219 if( p->tempReg ){
(...skipping 15 matching lines...) Expand all
1997 int idxLru; 2235 int idxLru;
1998 struct yColCache *p; 2236 struct yColCache *p;
1999 2237
2000 assert( iReg>0 ); /* Register numbers are always positive */ 2238 assert( iReg>0 ); /* Register numbers are always positive */
2001 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2239 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
2002 2240
2003 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2241 /* The SQLITE_ColumnCache flag disables the column cache. This is used
2004 ** for testing only - to verify that SQLite always gets the same answer 2242 ** for testing only - to verify that SQLite always gets the same answer
2005 ** with and without the column cache. 2243 ** with and without the column cache.
2006 */ 2244 */
2007 if( pParse->db->flags & SQLITE_ColumnCache ) return; 2245 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2008 2246
2009 /* First replace any existing entry. 2247 /* First replace any existing entry.
2010 ** 2248 **
2011 ** Actually, the way the column cache is currently used, we are guaranteed 2249 ** Actually, the way the column cache is currently used, we are guaranteed
2012 ** that the object will never already be in cache. Verify this guarantee. 2250 ** that the object will never already be in cache. Verify this guarantee.
2013 */ 2251 */
2014 #ifndef NDEBUG 2252 #ifndef NDEBUG
2015 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2253 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2016 #if 0 /* This code wold remove the entry from the cache if it existed */
2017 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
2018 cacheEntryClear(pParse, p);
2019 p->iLevel = pParse->iCacheLevel;
2020 p->iReg = iReg;
2021 p->lru = pParse->iCacheCnt++;
2022 return;
2023 }
2024 #endif
2025 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2254 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2026 } 2255 }
2027 #endif 2256 #endif
2028 2257
2029 /* Find an empty slot and replace it */ 2258 /* Find an empty slot and replace it */
2030 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2259 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2031 if( p->iReg==0 ){ 2260 if( p->iReg==0 ){
2032 p->iLevel = pParse->iCacheLevel; 2261 p->iLevel = pParse->iCacheLevel;
2033 p->iTable = iTab; 2262 p->iTable = iTab;
2034 p->iColumn = iCol; 2263 p->iColumn = iCol;
(...skipping 42 matching lines...) Expand 10 before | Expand all | Expand 10 after
2077 } 2306 }
2078 } 2307 }
2079 2308
2080 /* 2309 /*
2081 ** Remember the current column cache context. Any new entries added 2310 ** Remember the current column cache context. Any new entries added
2082 ** added to the column cache after this call are removed when the 2311 ** added to the column cache after this call are removed when the
2083 ** corresponding pop occurs. 2312 ** corresponding pop occurs.
2084 */ 2313 */
2085 void sqlite3ExprCachePush(Parse *pParse){ 2314 void sqlite3ExprCachePush(Parse *pParse){
2086 pParse->iCacheLevel++; 2315 pParse->iCacheLevel++;
2316 #ifdef SQLITE_DEBUG
2317 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2318 printf("PUSH to %d\n", pParse->iCacheLevel);
2319 }
2320 #endif
2087 } 2321 }
2088 2322
2089 /* 2323 /*
2090 ** Remove from the column cache any entries that were added since the 2324 ** Remove from the column cache any entries that were added since the
2091 ** the previous N Push operations. In other words, restore the cache 2325 ** the previous sqlite3ExprCachePush operation. In other words, restore
2092 ** to the state it was in N Pushes ago. 2326 ** the cache to the state it was in prior the most recent Push.
2093 */ 2327 */
2094 void sqlite3ExprCachePop(Parse *pParse, int N){ 2328 void sqlite3ExprCachePop(Parse *pParse){
2095 int i; 2329 int i;
2096 struct yColCache *p; 2330 struct yColCache *p;
2097 assert( N>0 ); 2331 assert( pParse->iCacheLevel>=1 );
2098 assert( pParse->iCacheLevel>=N ); 2332 pParse->iCacheLevel--;
2099 pParse->iCacheLevel -= N; 2333 #ifdef SQLITE_DEBUG
2334 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2335 printf("POP to %d\n", pParse->iCacheLevel);
2336 }
2337 #endif
2100 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2338 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2101 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2339 if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2102 cacheEntryClear(pParse, p); 2340 cacheEntryClear(pParse, p);
2103 p->iReg = 0; 2341 p->iReg = 0;
2104 } 2342 }
2105 } 2343 }
2106 } 2344 }
2107 2345
2108 /* 2346 /*
2109 ** When a cached column is reused, make sure that its register is 2347 ** When a cached column is reused, make sure that its register is
(...skipping 10 matching lines...) Expand all
2120 } 2358 }
2121 } 2359 }
2122 } 2360 }
2123 2361
2124 /* 2362 /*
2125 ** Generate code to extract the value of the iCol-th column of a table. 2363 ** Generate code to extract the value of the iCol-th column of a table.
2126 */ 2364 */
2127 void sqlite3ExprCodeGetColumnOfTable( 2365 void sqlite3ExprCodeGetColumnOfTable(
2128 Vdbe *v, /* The VDBE under construction */ 2366 Vdbe *v, /* The VDBE under construction */
2129 Table *pTab, /* The table containing the value */ 2367 Table *pTab, /* The table containing the value */
2130 int iTabCur, /* The cursor for this table */ 2368 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
2131 int iCol, /* Index of the column to extract */ 2369 int iCol, /* Index of the column to extract */
2132 int regOut /* Extract the valud into this register */ 2370 int regOut /* Extract the value into this register */
2133 ){ 2371 ){
2134 if( iCol<0 || iCol==pTab->iPKey ){ 2372 if( iCol<0 || iCol==pTab->iPKey ){
2135 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2373 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2136 }else{ 2374 }else{
2137 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2375 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2138 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); 2376 int x = iCol;
2377 if( !HasRowid(pTab) ){
2378 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2379 }
2380 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2139 } 2381 }
2140 if( iCol>=0 ){ 2382 if( iCol>=0 ){
2141 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2383 sqlite3ColumnDefault(v, pTab, iCol, regOut);
2142 } 2384 }
2143 } 2385 }
2144 2386
2145 /* 2387 /*
2146 ** Generate code that will extract the iColumn-th column from 2388 ** Generate code that will extract the iColumn-th column from
2147 ** table pTab and store the column value in a register. An effort 2389 ** table pTab and store the column value in a register. An effort
2148 ** is made to store the column value in register iReg, but this is 2390 ** is made to store the column value in register iReg, but this is
2149 ** not guaranteed. The location of the column value is returned. 2391 ** not guaranteed. The location of the column value is returned.
2150 ** 2392 **
2151 ** There must be an open cursor to pTab in iTable when this routine 2393 ** There must be an open cursor to pTab in iTable when this routine
2152 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2394 ** is called. If iColumn<0 then code is generated that extracts the rowid.
2153 */ 2395 */
2154 int sqlite3ExprCodeGetColumn( 2396 int sqlite3ExprCodeGetColumn(
2155 Parse *pParse, /* Parsing and code generating context */ 2397 Parse *pParse, /* Parsing and code generating context */
2156 Table *pTab, /* Description of the table we are reading from */ 2398 Table *pTab, /* Description of the table we are reading from */
2157 int iColumn, /* Index of the table column */ 2399 int iColumn, /* Index of the table column */
2158 int iTable, /* The cursor pointing to the table */ 2400 int iTable, /* The cursor pointing to the table */
2159 int iReg /* Store results here */ 2401 int iReg, /* Store results here */
2402 u8 p5 /* P5 value for OP_Column */
2160 ){ 2403 ){
2161 Vdbe *v = pParse->pVdbe; 2404 Vdbe *v = pParse->pVdbe;
2162 int i; 2405 int i;
2163 struct yColCache *p; 2406 struct yColCache *p;
2164 2407
2165 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2408 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2166 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2409 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2167 p->lru = pParse->iCacheCnt++; 2410 p->lru = pParse->iCacheCnt++;
2168 sqlite3ExprCachePinRegister(pParse, p->iReg); 2411 sqlite3ExprCachePinRegister(pParse, p->iReg);
2169 return p->iReg; 2412 return p->iReg;
2170 } 2413 }
2171 } 2414 }
2172 assert( v!=0 ); 2415 assert( v!=0 );
2173 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2416 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2174 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2417 if( p5 ){
2418 sqlite3VdbeChangeP5(v, p5);
2419 }else{
2420 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2421 }
2175 return iReg; 2422 return iReg;
2176 } 2423 }
2177 2424
2178 /* 2425 /*
2179 ** Clear all column cache entries. 2426 ** Clear all column cache entries.
2180 */ 2427 */
2181 void sqlite3ExprCacheClear(Parse *pParse){ 2428 void sqlite3ExprCacheClear(Parse *pParse){
2182 int i; 2429 int i;
2183 struct yColCache *p; 2430 struct yColCache *p;
2184 2431
2432 #if SQLITE_DEBUG
2433 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2434 printf("CLEAR\n");
2435 }
2436 #endif
2185 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2437 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2186 if( p->iReg ){ 2438 if( p->iReg ){
2187 cacheEntryClear(pParse, p); 2439 cacheEntryClear(pParse, p);
2188 p->iReg = 0; 2440 p->iReg = 0;
2189 } 2441 }
2190 } 2442 }
2191 } 2443 }
2192 2444
2193 /* 2445 /*
2194 ** Record the fact that an affinity change has occurred on iCount 2446 ** Record the fact that an affinity change has occurred on iCount
2195 ** registers starting with iStart. 2447 ** registers starting with iStart.
2196 */ 2448 */
2197 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2449 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2198 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2450 sqlite3ExprCacheRemove(pParse, iStart, iCount);
2199 } 2451 }
2200 2452
2201 /* 2453 /*
2202 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2454 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2203 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2455 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2204 */ 2456 */
2205 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2457 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2206 int i; 2458 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2207 struct yColCache *p;
2208 if( NEVER(iFrom==iTo) ) return;
2209 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2459 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2210 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2460 sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2211 int x = p->iReg;
2212 if( x>=iFrom && x<iFrom+nReg ){
2213 p->iReg += iTo-iFrom;
2214 }
2215 }
2216 }
2217
2218 /*
2219 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
2220 ** over to iTo..iTo+nReg-1.
2221 */
2222 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
2223 int i;
2224 if( NEVER(iFrom==iTo) ) return;
2225 for(i=0; i<nReg; i++){
2226 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
2227 }
2228 } 2461 }
2229 2462
2230 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2463 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2231 /* 2464 /*
2232 ** Return true if any register in the range iFrom..iTo (inclusive) 2465 ** Return true if any register in the range iFrom..iTo (inclusive)
2233 ** is used as part of the column cache. 2466 ** is used as part of the column cache.
2234 ** 2467 **
2235 ** This routine is used within assert() and testcase() macros only 2468 ** This routine is used within assert() and testcase() macros only
2236 ** and does not appear in a normal build. 2469 ** and does not appear in a normal build.
2237 */ 2470 */
2238 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2471 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2239 int i; 2472 int i;
2240 struct yColCache *p; 2473 struct yColCache *p;
2241 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2474 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2242 int r = p->iReg; 2475 int r = p->iReg;
2243 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2476 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
2244 } 2477 }
2245 return 0; 2478 return 0;
2246 } 2479 }
2247 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2480 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2248 2481
2249 /* 2482 /*
2483 ** Convert an expression node to a TK_REGISTER
2484 */
2485 static void exprToRegister(Expr *p, int iReg){
2486 p->op2 = p->op;
2487 p->op = TK_REGISTER;
2488 p->iTable = iReg;
2489 ExprClearProperty(p, EP_Skip);
2490 }
2491
2492 /*
2250 ** Generate code into the current Vdbe to evaluate the given 2493 ** Generate code into the current Vdbe to evaluate the given
2251 ** expression. Attempt to store the results in register "target". 2494 ** expression. Attempt to store the results in register "target".
2252 ** Return the register where results are stored. 2495 ** Return the register where results are stored.
2253 ** 2496 **
2254 ** With this routine, there is no guarantee that results will 2497 ** With this routine, there is no guarantee that results will
2255 ** be stored in target. The result might be stored in some other 2498 ** be stored in target. The result might be stored in some other
2256 ** register if it is convenient to do so. The calling function 2499 ** register if it is convenient to do so. The calling function
2257 ** must check the return code and move the results to the desired 2500 ** must check the return code and move the results to the desired
2258 ** register. 2501 ** register.
2259 */ 2502 */
2260 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2503 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2261 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2504 Vdbe *v = pParse->pVdbe; /* The VM under construction */
2262 int op; /* The opcode being coded */ 2505 int op; /* The opcode being coded */
2263 int inReg = target; /* Results stored in register inReg */ 2506 int inReg = target; /* Results stored in register inReg */
2264 int regFree1 = 0; /* If non-zero free this temporary register */ 2507 int regFree1 = 0; /* If non-zero free this temporary register */
2265 int regFree2 = 0; /* If non-zero free this temporary register */ 2508 int regFree2 = 0; /* If non-zero free this temporary register */
2266 int r1, r2, r3, r4; /* Various register numbers */ 2509 int r1, r2, r3, r4; /* Various register numbers */
2267 sqlite3 *db = pParse->db; /* The database connection */ 2510 sqlite3 *db = pParse->db; /* The database connection */
2511 Expr tempX; /* Temporary expression node */
2268 2512
2269 assert( target>0 && target<=pParse->nMem ); 2513 assert( target>0 && target<=pParse->nMem );
2270 if( v==0 ){ 2514 if( v==0 ){
2271 assert( pParse->db->mallocFailed ); 2515 assert( pParse->db->mallocFailed );
2272 return 0; 2516 return 0;
2273 } 2517 }
2274 2518
2275 if( pExpr==0 ){ 2519 if( pExpr==0 ){
2276 op = TK_NULL; 2520 op = TK_NULL;
2277 }else{ 2521 }else{
2278 op = pExpr->op; 2522 op = pExpr->op;
2279 } 2523 }
2280 switch( op ){ 2524 switch( op ){
2281 case TK_AGG_COLUMN: { 2525 case TK_AGG_COLUMN: {
2282 AggInfo *pAggInfo = pExpr->pAggInfo; 2526 AggInfo *pAggInfo = pExpr->pAggInfo;
2283 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2527 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2284 if( !pAggInfo->directMode ){ 2528 if( !pAggInfo->directMode ){
2285 assert( pCol->iMem>0 ); 2529 assert( pCol->iMem>0 );
2286 inReg = pCol->iMem; 2530 inReg = pCol->iMem;
2287 break; 2531 break;
2288 }else if( pAggInfo->useSortingIdx ){ 2532 }else if( pAggInfo->useSortingIdx ){
2289 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, 2533 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2290 pCol->iSorterColumn, target); 2534 pCol->iSorterColumn, target);
2291 break; 2535 break;
2292 } 2536 }
2293 /* Otherwise, fall thru into the TK_COLUMN case */ 2537 /* Otherwise, fall thru into the TK_COLUMN case */
2294 } 2538 }
2295 case TK_COLUMN: { 2539 case TK_COLUMN: {
2296 if( pExpr->iTable<0 ){ 2540 int iTab = pExpr->iTable;
2297 /* This only happens when coding check constraints */ 2541 if( iTab<0 ){
2298 assert( pParse->ckBase>0 ); 2542 if( pParse->ckBase>0 ){
2299 inReg = pExpr->iColumn + pParse->ckBase; 2543 /* Generating CHECK constraints or inserting into partial index */
2300 }else{ 2544 inReg = pExpr->iColumn + pParse->ckBase;
2301 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2545 break;
2302 pExpr->iColumn, pExpr->iTable, target); 2546 }else{
2547 /* Deleting from a partial index */
2548 iTab = pParse->iPartIdxTab;
2549 }
2303 } 2550 }
2551 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2552 pExpr->iColumn, iTab, target,
2553 pExpr->op2);
2304 break; 2554 break;
2305 } 2555 }
2306 case TK_INTEGER: { 2556 case TK_INTEGER: {
2307 codeInteger(pParse, pExpr, 0, target); 2557 codeInteger(pParse, pExpr, 0, target);
2308 break; 2558 break;
2309 } 2559 }
2310 #ifndef SQLITE_OMIT_FLOATING_POINT 2560 #ifndef SQLITE_OMIT_FLOATING_POINT
2311 case TK_FLOAT: { 2561 case TK_FLOAT: {
2312 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2562 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2313 codeReal(v, pExpr->u.zToken, 0, target); 2563 codeReal(v, pExpr->u.zToken, 0, target);
(...skipping 24 matching lines...) Expand all
2338 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2588 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2339 break; 2589 break;
2340 } 2590 }
2341 #endif 2591 #endif
2342 case TK_VARIABLE: { 2592 case TK_VARIABLE: {
2343 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2593 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2344 assert( pExpr->u.zToken!=0 ); 2594 assert( pExpr->u.zToken!=0 );
2345 assert( pExpr->u.zToken[0]!=0 ); 2595 assert( pExpr->u.zToken[0]!=0 );
2346 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2596 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2347 if( pExpr->u.zToken[1]!=0 ){ 2597 if( pExpr->u.zToken[1]!=0 ){
2348 sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, P4_TRANSIENT); 2598 assert( pExpr->u.zToken[0]=='?'
2599 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2600 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2349 } 2601 }
2350 break; 2602 break;
2351 } 2603 }
2352 case TK_REGISTER: { 2604 case TK_REGISTER: {
2353 inReg = pExpr->iTable; 2605 inReg = pExpr->iTable;
2354 break; 2606 break;
2355 } 2607 }
2356 case TK_AS: { 2608 case TK_AS: {
2357 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2609 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2358 break; 2610 break;
2359 } 2611 }
2360 #ifndef SQLITE_OMIT_CAST 2612 #ifndef SQLITE_OMIT_CAST
2361 case TK_CAST: { 2613 case TK_CAST: {
2362 /* Expressions of the form: CAST(pLeft AS token) */ 2614 /* Expressions of the form: CAST(pLeft AS token) */
2363 int aff, to_op;
2364 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2615 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2365 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2366 aff = sqlite3AffinityType(pExpr->u.zToken);
2367 to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2368 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
2369 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
2370 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2371 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
2372 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
2373 testcase( to_op==OP_ToText );
2374 testcase( to_op==OP_ToBlob );
2375 testcase( to_op==OP_ToNumeric );
2376 testcase( to_op==OP_ToInt );
2377 testcase( to_op==OP_ToReal );
2378 if( inReg!=target ){ 2616 if( inReg!=target ){
2379 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2617 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2380 inReg = target; 2618 inReg = target;
2381 } 2619 }
2382 sqlite3VdbeAddOp1(v, to_op, inReg); 2620 sqlite3VdbeAddOp2(v, OP_Cast, target,
2621 sqlite3AffinityType(pExpr->u.zToken, 0));
2383 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2622 testcase( usedAsColumnCache(pParse, inReg, inReg) );
2384 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2623 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2385 break; 2624 break;
2386 } 2625 }
2387 #endif /* SQLITE_OMIT_CAST */ 2626 #endif /* SQLITE_OMIT_CAST */
2388 case TK_LT: 2627 case TK_LT:
2389 case TK_LE: 2628 case TK_LE:
2390 case TK_GT: 2629 case TK_GT:
2391 case TK_GE: 2630 case TK_GE:
2392 case TK_NE: 2631 case TK_NE:
2393 case TK_EQ: { 2632 case TK_EQ: {
2394 assert( TK_LT==OP_Lt );
2395 assert( TK_LE==OP_Le );
2396 assert( TK_GT==OP_Gt );
2397 assert( TK_GE==OP_Ge );
2398 assert( TK_EQ==OP_Eq );
2399 assert( TK_NE==OP_Ne );
2400 testcase( op==TK_LT );
2401 testcase( op==TK_LE );
2402 testcase( op==TK_GT );
2403 testcase( op==TK_GE );
2404 testcase( op==TK_EQ );
2405 testcase( op==TK_NE );
2406 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1); 2633 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2407 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2); 2634 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2408 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2635 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2409 r1, r2, inReg, SQLITE_STOREP2); 2636 r1, r2, inReg, SQLITE_STOREP2);
2637 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2638 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2639 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2640 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2641 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2642 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2410 testcase( regFree1==0 ); 2643 testcase( regFree1==0 );
2411 testcase( regFree2==0 ); 2644 testcase( regFree2==0 );
2412 break; 2645 break;
2413 } 2646 }
2414 case TK_IS: 2647 case TK_IS:
2415 case TK_ISNOT: { 2648 case TK_ISNOT: {
2416 testcase( op==TK_IS ); 2649 testcase( op==TK_IS );
2417 testcase( op==TK_ISNOT ); 2650 testcase( op==TK_ISNOT );
2418 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1); 2651 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2419 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2); 2652 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2420 op = (op==TK_IS) ? TK_EQ : TK_NE; 2653 op = (op==TK_IS) ? TK_EQ : TK_NE;
2421 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2654 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2422 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2655 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2656 VdbeCoverageIf(v, op==TK_EQ);
2657 VdbeCoverageIf(v, op==TK_NE);
2423 testcase( regFree1==0 ); 2658 testcase( regFree1==0 );
2424 testcase( regFree2==0 ); 2659 testcase( regFree2==0 );
2425 break; 2660 break;
2426 } 2661 }
2427 case TK_AND: 2662 case TK_AND:
2428 case TK_OR: 2663 case TK_OR:
2429 case TK_PLUS: 2664 case TK_PLUS:
2430 case TK_STAR: 2665 case TK_STAR:
2431 case TK_MINUS: 2666 case TK_MINUS:
2432 case TK_REM: 2667 case TK_REM:
2433 case TK_BITAND: 2668 case TK_BITAND:
2434 case TK_BITOR: 2669 case TK_BITOR:
2435 case TK_SLASH: 2670 case TK_SLASH:
2436 case TK_LSHIFT: 2671 case TK_LSHIFT:
2437 case TK_RSHIFT: 2672 case TK_RSHIFT:
2438 case TK_CONCAT: { 2673 case TK_CONCAT: {
2439 assert( TK_AND==OP_And ); 2674 assert( TK_AND==OP_And ); testcase( op==TK_AND );
2440 assert( TK_OR==OP_Or ); 2675 assert( TK_OR==OP_Or ); testcase( op==TK_OR );
2441 assert( TK_PLUS==OP_Add ); 2676 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
2442 assert( TK_MINUS==OP_Subtract ); 2677 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
2443 assert( TK_REM==OP_Remainder ); 2678 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
2444 assert( TK_BITAND==OP_BitAnd ); 2679 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
2445 assert( TK_BITOR==OP_BitOr ); 2680 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
2446 assert( TK_SLASH==OP_Divide ); 2681 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
2447 assert( TK_LSHIFT==OP_ShiftLeft ); 2682 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
2448 assert( TK_RSHIFT==OP_ShiftRight ); 2683 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
2449 assert( TK_CONCAT==OP_Concat ); 2684 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
2450 testcase( op==TK_AND );
2451 testcase( op==TK_OR );
2452 testcase( op==TK_PLUS );
2453 testcase( op==TK_MINUS );
2454 testcase( op==TK_REM );
2455 testcase( op==TK_BITAND );
2456 testcase( op==TK_BITOR );
2457 testcase( op==TK_SLASH );
2458 testcase( op==TK_LSHIFT );
2459 testcase( op==TK_RSHIFT );
2460 testcase( op==TK_CONCAT );
2461 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1); 2685 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2462 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2); 2686 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2463 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2687 sqlite3VdbeAddOp3(v, op, r2, r1, target);
2464 testcase( regFree1==0 ); 2688 testcase( regFree1==0 );
2465 testcase( regFree2==0 ); 2689 testcase( regFree2==0 );
2466 break; 2690 break;
2467 } 2691 }
2468 case TK_UMINUS: { 2692 case TK_UMINUS: {
2469 Expr *pLeft = pExpr->pLeft; 2693 Expr *pLeft = pExpr->pLeft;
2470 assert( pLeft ); 2694 assert( pLeft );
2471 if( pLeft->op==TK_INTEGER ){ 2695 if( pLeft->op==TK_INTEGER ){
2472 codeInteger(pParse, pLeft, 1, target); 2696 codeInteger(pParse, pLeft, 1, target);
2473 #ifndef SQLITE_OMIT_FLOATING_POINT 2697 #ifndef SQLITE_OMIT_FLOATING_POINT
2474 }else if( pLeft->op==TK_FLOAT ){ 2698 }else if( pLeft->op==TK_FLOAT ){
2475 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2699 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2476 codeReal(v, pLeft->u.zToken, 1, target); 2700 codeReal(v, pLeft->u.zToken, 1, target);
2477 #endif 2701 #endif
2478 }else{ 2702 }else{
2479 regFree1 = r1 = sqlite3GetTempReg(pParse); 2703 tempX.op = TK_INTEGER;
2480 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2704 tempX.flags = EP_IntValue|EP_TokenOnly;
2705 tempX.u.iValue = 0;
2706 r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2481 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2); 2707 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2482 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2708 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2483 testcase( regFree2==0 ); 2709 testcase( regFree2==0 );
2484 } 2710 }
2485 inReg = target; 2711 inReg = target;
2486 break; 2712 break;
2487 } 2713 }
2488 case TK_BITNOT: 2714 case TK_BITNOT:
2489 case TK_NOT: { 2715 case TK_NOT: {
2490 assert( TK_BITNOT==OP_BitNot ); 2716 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
2491 assert( TK_NOT==OP_Not ); 2717 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
2492 testcase( op==TK_BITNOT );
2493 testcase( op==TK_NOT );
2494 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1); 2718 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2495 testcase( regFree1==0 ); 2719 testcase( regFree1==0 );
2496 inReg = target; 2720 inReg = target;
2497 sqlite3VdbeAddOp2(v, op, r1, inReg); 2721 sqlite3VdbeAddOp2(v, op, r1, inReg);
2498 break; 2722 break;
2499 } 2723 }
2500 case TK_ISNULL: 2724 case TK_ISNULL:
2501 case TK_NOTNULL: { 2725 case TK_NOTNULL: {
2502 int addr; 2726 int addr;
2503 assert( TK_ISNULL==OP_IsNull ); 2727 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
2504 assert( TK_NOTNULL==OP_NotNull ); 2728 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2505 testcase( op==TK_ISNULL );
2506 testcase( op==TK_NOTNULL );
2507 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2729 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2508 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1); 2730 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2509 testcase( regFree1==0 ); 2731 testcase( regFree1==0 );
2510 addr = sqlite3VdbeAddOp1(v, op, r1); 2732 addr = sqlite3VdbeAddOp1(v, op, r1);
2511 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2733 VdbeCoverageIf(v, op==TK_ISNULL);
2734 VdbeCoverageIf(v, op==TK_NOTNULL);
2735 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2512 sqlite3VdbeJumpHere(v, addr); 2736 sqlite3VdbeJumpHere(v, addr);
2513 break; 2737 break;
2514 } 2738 }
2515 case TK_AGG_FUNCTION: { 2739 case TK_AGG_FUNCTION: {
2516 AggInfo *pInfo = pExpr->pAggInfo; 2740 AggInfo *pInfo = pExpr->pAggInfo;
2517 if( pInfo==0 ){ 2741 if( pInfo==0 ){
2518 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2742 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2519 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2743 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2520 }else{ 2744 }else{
2521 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2745 inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2522 } 2746 }
2523 break; 2747 break;
2524 } 2748 }
2525 case TK_CONST_FUNC:
2526 case TK_FUNCTION: { 2749 case TK_FUNCTION: {
2527 ExprList *pFarg; /* List of function arguments */ 2750 ExprList *pFarg; /* List of function arguments */
2528 int nFarg; /* Number of function arguments */ 2751 int nFarg; /* Number of function arguments */
2529 FuncDef *pDef; /* The function definition object */ 2752 FuncDef *pDef; /* The function definition object */
2530 int nId; /* Length of the function name in bytes */ 2753 int nId; /* Length of the function name in bytes */
2531 const char *zId; /* The function name */ 2754 const char *zId; /* The function name */
2532 int constMask = 0; /* Mask of function arguments that are constant */ 2755 u32 constMask = 0; /* Mask of function arguments that are constant */
2533 int i; /* Loop counter */ 2756 int i; /* Loop counter */
2534 u8 enc = ENC(db); /* The text encoding used by this database */ 2757 u8 enc = ENC(db); /* The text encoding used by this database */
2535 CollSeq *pColl = 0; /* A collating sequence */ 2758 CollSeq *pColl = 0; /* A collating sequence */
2536 2759
2537 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2760 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2538 testcase( op==TK_CONST_FUNC ); 2761 if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2539 testcase( op==TK_FUNCTION );
2540 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2541 pFarg = 0; 2762 pFarg = 0;
2542 }else{ 2763 }else{
2543 pFarg = pExpr->x.pList; 2764 pFarg = pExpr->x.pList;
2544 } 2765 }
2545 nFarg = pFarg ? pFarg->nExpr : 0; 2766 nFarg = pFarg ? pFarg->nExpr : 0;
2546 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2767 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2547 zId = pExpr->u.zToken; 2768 zId = pExpr->u.zToken;
2548 nId = sqlite3Strlen30(zId); 2769 nId = sqlite3Strlen30(zId);
2549 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2770 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2550 if( pDef==0 ){ 2771 if( pDef==0 || pDef->xFunc==0 ){
2551 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2772 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2552 break; 2773 break;
2553 } 2774 }
2554 2775
2555 /* Attempt a direct implementation of the built-in COALESCE() and 2776 /* Attempt a direct implementation of the built-in COALESCE() and
2556 ** IFNULL() functions. This avoids unnecessary evalation of 2777 ** IFNULL() functions. This avoids unnecessary evaluation of
2557 ** arguments past the first non-NULL argument. 2778 ** arguments past the first non-NULL argument.
2558 */ 2779 */
2559 if( pDef->flags & SQLITE_FUNC_COALESCE ){ 2780 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2560 int endCoalesce = sqlite3VdbeMakeLabel(v); 2781 int endCoalesce = sqlite3VdbeMakeLabel(v);
2561 assert( nFarg>=2 ); 2782 assert( nFarg>=2 );
2562 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2783 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2563 for(i=1; i<nFarg; i++){ 2784 for(i=1; i<nFarg; i++){
2564 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2785 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2786 VdbeCoverage(v);
2565 sqlite3ExprCacheRemove(pParse, target, 1); 2787 sqlite3ExprCacheRemove(pParse, target, 1);
2566 sqlite3ExprCachePush(pParse); 2788 sqlite3ExprCachePush(pParse);
2567 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2789 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2568 sqlite3ExprCachePop(pParse, 1); 2790 sqlite3ExprCachePop(pParse);
2569 } 2791 }
2570 sqlite3VdbeResolveLabel(v, endCoalesce); 2792 sqlite3VdbeResolveLabel(v, endCoalesce);
2571 break; 2793 break;
2572 } 2794 }
2573 2795
2796 /* The UNLIKELY() function is a no-op. The result is the value
2797 ** of the first argument.
2798 */
2799 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2800 assert( nFarg>=1 );
2801 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2802 break;
2803 }
2574 2804
2805 for(i=0; i<nFarg; i++){
2806 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2807 testcase( i==31 );
2808 constMask |= MASKBIT32(i);
2809 }
2810 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2811 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2812 }
2813 }
2575 if( pFarg ){ 2814 if( pFarg ){
2576 r1 = sqlite3GetTempRange(pParse, nFarg); 2815 if( constMask ){
2816 r1 = pParse->nMem+1;
2817 pParse->nMem += nFarg;
2818 }else{
2819 r1 = sqlite3GetTempRange(pParse, nFarg);
2820 }
2821
2822 /* For length() and typeof() functions with a column argument,
2823 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2824 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2825 ** loading.
2826 */
2827 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2828 u8 exprOp;
2829 assert( nFarg==1 );
2830 assert( pFarg->a[0].pExpr!=0 );
2831 exprOp = pFarg->a[0].pExpr->op;
2832 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2833 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2834 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2835 testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2836 pFarg->a[0].pExpr->op2 =
2837 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2838 }
2839 }
2840
2577 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2841 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
2578 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2842 sqlite3ExprCodeExprList(pParse, pFarg, r1,
2579 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2843 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2844 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */
2580 }else{ 2845 }else{
2581 r1 = 0; 2846 r1 = 0;
2582 } 2847 }
2583 #ifndef SQLITE_OMIT_VIRTUALTABLE 2848 #ifndef SQLITE_OMIT_VIRTUALTABLE
2584 /* Possibly overload the function if the first argument is 2849 /* Possibly overload the function if the first argument is
2585 ** a virtual table column. 2850 ** a virtual table column.
2586 ** 2851 **
2587 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2852 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2588 ** second argument, not the first, as the argument to test to 2853 ** second argument, not the first, as the argument to test to
2589 ** see if it is a column in a virtual table. This is done because 2854 ** see if it is a column in a virtual table. This is done because
2590 ** the left operand of infix functions (the operand we want to 2855 ** the left operand of infix functions (the operand we want to
2591 ** control overloading) ends up as the second argument to the 2856 ** control overloading) ends up as the second argument to the
2592 ** function. The expression "A glob B" is equivalent to 2857 ** function. The expression "A glob B" is equivalent to
2593 ** "glob(B,A). We want to use the A in "A glob B" to test 2858 ** "glob(B,A). We want to use the A in "A glob B" to test
2594 ** for function overloading. But we use the B term in "glob(B,A)". 2859 ** for function overloading. But we use the B term in "glob(B,A)".
2595 */ 2860 */
2596 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2861 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2597 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2862 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2598 }else if( nFarg>0 ){ 2863 }else if( nFarg>0 ){
2599 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2864 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2600 } 2865 }
2601 #endif 2866 #endif
2602 for(i=0; i<nFarg; i++){ 2867 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2603 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2604 constMask |= (1<<i);
2605 }
2606 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2607 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2608 }
2609 }
2610 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2611 if( !pColl ) pColl = db->pDfltColl; 2868 if( !pColl ) pColl = db->pDfltColl;
2612 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2869 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2613 } 2870 }
2614 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2871 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2615 (char*)pDef, P4_FUNCDEF); 2872 (char*)pDef, P4_FUNCDEF);
2616 sqlite3VdbeChangeP5(v, (u8)nFarg); 2873 sqlite3VdbeChangeP5(v, (u8)nFarg);
2617 if( nFarg ){ 2874 if( nFarg && constMask==0 ){
2618 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2875 sqlite3ReleaseTempRange(pParse, r1, nFarg);
2619 } 2876 }
2620 break; 2877 break;
2621 } 2878 }
2622 #ifndef SQLITE_OMIT_SUBQUERY 2879 #ifndef SQLITE_OMIT_SUBQUERY
2623 case TK_EXISTS: 2880 case TK_EXISTS:
2624 case TK_SELECT: { 2881 case TK_SELECT: {
2625 testcase( op==TK_EXISTS ); 2882 testcase( op==TK_EXISTS );
2626 testcase( op==TK_SELECT ); 2883 testcase( op==TK_SELECT );
2627 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2884 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
(...skipping 29 matching lines...) Expand all
2657 struct ExprList_item *pLItem = pExpr->x.pList->a; 2914 struct ExprList_item *pLItem = pExpr->x.pList->a;
2658 Expr *pRight = pLItem->pExpr; 2915 Expr *pRight = pLItem->pExpr;
2659 2916
2660 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1); 2917 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2661 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2); 2918 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2662 testcase( regFree1==0 ); 2919 testcase( regFree1==0 );
2663 testcase( regFree2==0 ); 2920 testcase( regFree2==0 );
2664 r3 = sqlite3GetTempReg(pParse); 2921 r3 = sqlite3GetTempReg(pParse);
2665 r4 = sqlite3GetTempReg(pParse); 2922 r4 = sqlite3GetTempReg(pParse);
2666 codeCompare(pParse, pLeft, pRight, OP_Ge, 2923 codeCompare(pParse, pLeft, pRight, OP_Ge,
2667 r1, r2, r3, SQLITE_STOREP2); 2924 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v);
2668 pLItem++; 2925 pLItem++;
2669 pRight = pLItem->pExpr; 2926 pRight = pLItem->pExpr;
2670 sqlite3ReleaseTempReg(pParse, regFree2); 2927 sqlite3ReleaseTempReg(pParse, regFree2);
2671 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2); 2928 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2672 testcase( regFree2==0 ); 2929 testcase( regFree2==0 );
2673 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2930 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2931 VdbeCoverage(v);
2674 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2932 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2675 sqlite3ReleaseTempReg(pParse, r3); 2933 sqlite3ReleaseTempReg(pParse, r3);
2676 sqlite3ReleaseTempReg(pParse, r4); 2934 sqlite3ReleaseTempReg(pParse, r4);
2677 break; 2935 break;
2678 } 2936 }
2937 case TK_COLLATE:
2679 case TK_UPLUS: { 2938 case TK_UPLUS: {
2680 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2939 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2681 break; 2940 break;
2682 } 2941 }
2683 2942
2684 case TK_TRIGGER: { 2943 case TK_TRIGGER: {
2685 /* If the opcode is TK_TRIGGER, then the expression is a reference 2944 /* If the opcode is TK_TRIGGER, then the expression is a reference
2686 ** to a column in the new.* or old.* pseudo-tables available to 2945 ** to a column in the new.* or old.* pseudo-tables available to
2687 ** trigger programs. In this case Expr.iTable is set to 1 for the 2946 ** trigger programs. In this case Expr.iTable is set to 1 for the
2688 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2947 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
(...skipping 51 matching lines...) Expand 10 before | Expand all | Expand 10 after
2740 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2999 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2741 ** 3000 **
2742 ** Form B: 3001 ** Form B:
2743 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3002 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2744 ** 3003 **
2745 ** Form A is can be transformed into the equivalent form B as follows: 3004 ** Form A is can be transformed into the equivalent form B as follows:
2746 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3005 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2747 ** WHEN x=eN THEN rN ELSE y END 3006 ** WHEN x=eN THEN rN ELSE y END
2748 ** 3007 **
2749 ** X (if it exists) is in pExpr->pLeft. 3008 ** X (if it exists) is in pExpr->pLeft.
2750 ** Y is in pExpr->pRight. The Y is also optional. If there is no 3009 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
2751 ** ELSE clause and no other term matches, then the result of the 3010 ** odd. The Y is also optional. If the number of elements in x.pList
2752 ** exprssion is NULL. 3011 ** is even, then Y is omitted and the "otherwise" result is NULL.
2753 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3012 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2754 ** 3013 **
2755 ** The result of the expression is the Ri for the first matching Ei, 3014 ** The result of the expression is the Ri for the first matching Ei,
2756 ** or if there is no matching Ei, the ELSE term Y, or if there is 3015 ** or if there is no matching Ei, the ELSE term Y, or if there is
2757 ** no ELSE term, NULL. 3016 ** no ELSE term, NULL.
2758 */ 3017 */
2759 default: assert( op==TK_CASE ); { 3018 default: assert( op==TK_CASE ); {
2760 int endLabel; /* GOTO label for end of CASE stmt */ 3019 int endLabel; /* GOTO label for end of CASE stmt */
2761 int nextCase; /* GOTO label for next WHEN clause */ 3020 int nextCase; /* GOTO label for next WHEN clause */
2762 int nExpr; /* 2x number of WHEN terms */ 3021 int nExpr; /* 2x number of WHEN terms */
2763 int i; /* Loop counter */ 3022 int i; /* Loop counter */
2764 ExprList *pEList; /* List of WHEN terms */ 3023 ExprList *pEList; /* List of WHEN terms */
2765 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3024 struct ExprList_item *aListelem; /* Array of WHEN terms */
2766 Expr opCompare; /* The X==Ei expression */ 3025 Expr opCompare; /* The X==Ei expression */
2767 Expr cacheX; /* Cached expression X */
2768 Expr *pX; /* The X expression */ 3026 Expr *pX; /* The X expression */
2769 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3027 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
2770 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3028 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2771 3029
2772 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3030 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2773 assert((pExpr->x.pList->nExpr % 2) == 0);
2774 assert(pExpr->x.pList->nExpr > 0); 3031 assert(pExpr->x.pList->nExpr > 0);
2775 pEList = pExpr->x.pList; 3032 pEList = pExpr->x.pList;
2776 aListelem = pEList->a; 3033 aListelem = pEList->a;
2777 nExpr = pEList->nExpr; 3034 nExpr = pEList->nExpr;
2778 endLabel = sqlite3VdbeMakeLabel(v); 3035 endLabel = sqlite3VdbeMakeLabel(v);
2779 if( (pX = pExpr->pLeft)!=0 ){ 3036 if( (pX = pExpr->pLeft)!=0 ){
2780 cacheX = *pX; 3037 tempX = *pX;
2781 testcase( pX->op==TK_COLUMN ); 3038 testcase( pX->op==TK_COLUMN );
2782 testcase( pX->op==TK_REGISTER ); 3039 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
2783 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2784 testcase( regFree1==0 ); 3040 testcase( regFree1==0 );
2785 cacheX.op = TK_REGISTER;
2786 opCompare.op = TK_EQ; 3041 opCompare.op = TK_EQ;
2787 opCompare.pLeft = &cacheX; 3042 opCompare.pLeft = &tempX;
2788 pTest = &opCompare; 3043 pTest = &opCompare;
2789 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3044 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2790 ** The value in regFree1 might get SCopy-ed into the file result. 3045 ** The value in regFree1 might get SCopy-ed into the file result.
2791 ** So make sure that the regFree1 register is not reused for other 3046 ** So make sure that the regFree1 register is not reused for other
2792 ** purposes and possibly overwritten. */ 3047 ** purposes and possibly overwritten. */
2793 regFree1 = 0; 3048 regFree1 = 0;
2794 } 3049 }
2795 for(i=0; i<nExpr; i=i+2){ 3050 for(i=0; i<nExpr-1; i=i+2){
2796 sqlite3ExprCachePush(pParse); 3051 sqlite3ExprCachePush(pParse);
2797 if( pX ){ 3052 if( pX ){
2798 assert( pTest!=0 ); 3053 assert( pTest!=0 );
2799 opCompare.pRight = aListelem[i].pExpr; 3054 opCompare.pRight = aListelem[i].pExpr;
2800 }else{ 3055 }else{
2801 pTest = aListelem[i].pExpr; 3056 pTest = aListelem[i].pExpr;
2802 } 3057 }
2803 nextCase = sqlite3VdbeMakeLabel(v); 3058 nextCase = sqlite3VdbeMakeLabel(v);
2804 testcase( pTest->op==TK_COLUMN ); 3059 testcase( pTest->op==TK_COLUMN );
2805 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3060 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2806 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3061 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2807 testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2808 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3062 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2809 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 3063 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2810 sqlite3ExprCachePop(pParse, 1); 3064 sqlite3ExprCachePop(pParse);
2811 sqlite3VdbeResolveLabel(v, nextCase); 3065 sqlite3VdbeResolveLabel(v, nextCase);
2812 } 3066 }
2813 if( pExpr->pRight ){ 3067 if( (nExpr&1)!=0 ){
2814 sqlite3ExprCachePush(pParse); 3068 sqlite3ExprCachePush(pParse);
2815 sqlite3ExprCode(pParse, pExpr->pRight, target); 3069 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
2816 sqlite3ExprCachePop(pParse, 1); 3070 sqlite3ExprCachePop(pParse);
2817 }else{ 3071 }else{
2818 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3072 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2819 } 3073 }
2820 assert( db->mallocFailed || pParse->nErr>0 3074 assert( db->mallocFailed || pParse->nErr>0
2821 || pParse->iCacheLevel==iCacheLevel ); 3075 || pParse->iCacheLevel==iCacheLevel );
2822 sqlite3VdbeResolveLabel(v, endLabel); 3076 sqlite3VdbeResolveLabel(v, endLabel);
2823 break; 3077 break;
2824 } 3078 }
2825 #ifndef SQLITE_OMIT_TRIGGER 3079 #ifndef SQLITE_OMIT_TRIGGER
2826 case TK_RAISE: { 3080 case TK_RAISE: {
2827 assert( pExpr->affinity==OE_Rollback 3081 assert( pExpr->affinity==OE_Rollback
2828 || pExpr->affinity==OE_Abort 3082 || pExpr->affinity==OE_Abort
2829 || pExpr->affinity==OE_Fail 3083 || pExpr->affinity==OE_Fail
2830 || pExpr->affinity==OE_Ignore 3084 || pExpr->affinity==OE_Ignore
2831 ); 3085 );
2832 if( !pParse->pTriggerTab ){ 3086 if( !pParse->pTriggerTab ){
2833 sqlite3ErrorMsg(pParse, 3087 sqlite3ErrorMsg(pParse,
2834 "RAISE() may only be used within a trigger-program"); 3088 "RAISE() may only be used within a trigger-program");
2835 return 0; 3089 return 0;
2836 } 3090 }
2837 if( pExpr->affinity==OE_Abort ){ 3091 if( pExpr->affinity==OE_Abort ){
2838 sqlite3MayAbort(pParse); 3092 sqlite3MayAbort(pParse);
2839 } 3093 }
2840 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3094 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2841 if( pExpr->affinity==OE_Ignore ){ 3095 if( pExpr->affinity==OE_Ignore ){
2842 sqlite3VdbeAddOp4( 3096 sqlite3VdbeAddOp4(
2843 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3097 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3098 VdbeCoverage(v);
2844 }else{ 3099 }else{
2845 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0); 3100 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3101 pExpr->affinity, pExpr->u.zToken, 0, 0);
2846 } 3102 }
2847 3103
2848 break; 3104 break;
2849 } 3105 }
2850 #endif 3106 #endif
2851 } 3107 }
2852 sqlite3ReleaseTempReg(pParse, regFree1); 3108 sqlite3ReleaseTempReg(pParse, regFree1);
2853 sqlite3ReleaseTempReg(pParse, regFree2); 3109 sqlite3ReleaseTempReg(pParse, regFree2);
2854 return inReg; 3110 return inReg;
2855 } 3111 }
2856 3112
2857 /* 3113 /*
3114 ** Factor out the code of the given expression to initialization time.
3115 */
3116 void sqlite3ExprCodeAtInit(
3117 Parse *pParse, /* Parsing context */
3118 Expr *pExpr, /* The expression to code when the VDBE initializes */
3119 int regDest, /* Store the value in this register */
3120 u8 reusable /* True if this expression is reusable */
3121 ){
3122 ExprList *p;
3123 assert( ConstFactorOk(pParse) );
3124 p = pParse->pConstExpr;
3125 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3126 p = sqlite3ExprListAppend(pParse, p, pExpr);
3127 if( p ){
3128 struct ExprList_item *pItem = &p->a[p->nExpr-1];
3129 pItem->u.iConstExprReg = regDest;
3130 pItem->reusable = reusable;
3131 }
3132 pParse->pConstExpr = p;
3133 }
3134
3135 /*
2858 ** Generate code to evaluate an expression and store the results 3136 ** Generate code to evaluate an expression and store the results
2859 ** into a register. Return the register number where the results 3137 ** into a register. Return the register number where the results
2860 ** are stored. 3138 ** are stored.
2861 ** 3139 **
2862 ** If the register is a temporary register that can be deallocated, 3140 ** If the register is a temporary register that can be deallocated,
2863 ** then write its number into *pReg. If the result register is not 3141 ** then write its number into *pReg. If the result register is not
2864 ** a temporary, then set *pReg to zero. 3142 ** a temporary, then set *pReg to zero.
3143 **
3144 ** If pExpr is a constant, then this routine might generate this
3145 ** code to fill the register in the initialization section of the
3146 ** VDBE program, in order to factor it out of the evaluation loop.
2865 */ 3147 */
2866 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3148 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2867 int r1 = sqlite3GetTempReg(pParse); 3149 int r2;
2868 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3150 pExpr = sqlite3ExprSkipCollate(pExpr);
2869 if( r2==r1 ){ 3151 if( ConstFactorOk(pParse)
2870 *pReg = r1; 3152 && pExpr->op!=TK_REGISTER
3153 && sqlite3ExprIsConstantNotJoin(pExpr)
3154 ){
3155 ExprList *p = pParse->pConstExpr;
3156 int i;
3157 *pReg = 0;
3158 if( p ){
3159 struct ExprList_item *pItem;
3160 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3161 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3162 return pItem->u.iConstExprReg;
3163 }
3164 }
3165 }
3166 r2 = ++pParse->nMem;
3167 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
2871 }else{ 3168 }else{
2872 sqlite3ReleaseTempReg(pParse, r1); 3169 int r1 = sqlite3GetTempReg(pParse);
2873 *pReg = 0; 3170 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3171 if( r2==r1 ){
3172 *pReg = r1;
3173 }else{
3174 sqlite3ReleaseTempReg(pParse, r1);
3175 *pReg = 0;
3176 }
2874 } 3177 }
2875 return r2; 3178 return r2;
2876 } 3179 }
2877 3180
2878 /* 3181 /*
2879 ** Generate code that will evaluate expression pExpr and store the 3182 ** Generate code that will evaluate expression pExpr and store the
2880 ** results in register target. The results are guaranteed to appear 3183 ** results in register target. The results are guaranteed to appear
2881 ** in register target. 3184 ** in register target.
2882 */ 3185 */
2883 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3186 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2884 int inReg; 3187 int inReg;
2885 3188
2886 assert( target>0 && target<=pParse->nMem ); 3189 assert( target>0 && target<=pParse->nMem );
2887 if( pExpr && pExpr->op==TK_REGISTER ){ 3190 if( pExpr && pExpr->op==TK_REGISTER ){
2888 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3191 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
2889 }else{ 3192 }else{
2890 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3193 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2891 assert( pParse->pVdbe || pParse->db->mallocFailed ); 3194 assert( pParse->pVdbe || pParse->db->mallocFailed );
2892 if( inReg!=target && pParse->pVdbe ){ 3195 if( inReg!=target && pParse->pVdbe ){
2893 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3196 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2894 } 3197 }
2895 } 3198 }
2896 return target;
2897 } 3199 }
2898 3200
2899 /* 3201 /*
2900 ** Generate code that evalutes the given expression and puts the result 3202 ** Generate code that will evaluate expression pExpr and store the
3203 ** results in register target. The results are guaranteed to appear
3204 ** in register target. If the expression is constant, then this routine
3205 ** might choose to code the expression at initialization time.
3206 */
3207 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3208 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3209 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3210 }else{
3211 sqlite3ExprCode(pParse, pExpr, target);
3212 }
3213 }
3214
3215 /*
3216 ** Generate code that evaluates the given expression and puts the result
2901 ** in register target. 3217 ** in register target.
2902 ** 3218 **
2903 ** Also make a copy of the expression results into another "cache" register 3219 ** Also make a copy of the expression results into another "cache" register
2904 ** and modify the expression so that the next time it is evaluated, 3220 ** and modify the expression so that the next time it is evaluated,
2905 ** the result is a copy of the cache register. 3221 ** the result is a copy of the cache register.
2906 ** 3222 **
2907 ** This routine is used for expressions that are used multiple 3223 ** This routine is used for expressions that are used multiple
2908 ** times. They are evaluated once and the results of the expression 3224 ** times. They are evaluated once and the results of the expression
2909 ** are reused. 3225 ** are reused.
2910 */ 3226 */
2911 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3227 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2912 Vdbe *v = pParse->pVdbe; 3228 Vdbe *v = pParse->pVdbe;
2913 int inReg; 3229 int iMem;
2914 inReg = sqlite3ExprCode(pParse, pExpr, target); 3230
2915 assert( target>0 ); 3231 assert( target>0 );
2916 /* This routine is called for terms to INSERT or UPDATE. And the only 3232 assert( pExpr->op!=TK_REGISTER );
2917 ** other place where expressions can be converted into TK_REGISTER is 3233 sqlite3ExprCode(pParse, pExpr, target);
2918 ** in WHERE clause processing. So as currently implemented, there is 3234 iMem = ++pParse->nMem;
2919 ** no way for a TK_REGISTER to exist here. But it seems prudent to 3235 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
2920 ** keep the ALWAYS() in case the conditions above change with future 3236 exprToRegister(pExpr, iMem);
2921 ** modifications or enhancements. */
2922 if( ALWAYS(pExpr->op!=TK_REGISTER) ){
2923 int iMem;
2924 iMem = ++pParse->nMem;
2925 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2926 pExpr->iTable = iMem;
2927 pExpr->op2 = pExpr->op;
2928 pExpr->op = TK_REGISTER;
2929 }
2930 return inReg;
2931 } 3237 }
2932 3238
3239 #ifdef SQLITE_DEBUG
2933 /* 3240 /*
2934 ** Return TRUE if pExpr is an constant expression that is appropriate 3241 ** Generate a human-readable explanation of an expression tree.
2935 ** for factoring out of a loop. Appropriate expressions are:
2936 **
2937 ** * Any expression that evaluates to two or more opcodes.
2938 **
2939 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2940 ** or OP_Variable that does not need to be placed in a
2941 ** specific register.
2942 **
2943 ** There is no point in factoring out single-instruction constant
2944 ** expressions that need to be placed in a particular register.
2945 ** We could factor them out, but then we would end up adding an
2946 ** OP_SCopy instruction to move the value into the correct register
2947 ** later. We might as well just use the original instruction and
2948 ** avoid the OP_SCopy.
2949 */ 3242 */
2950 static int isAppropriateForFactoring(Expr *p){ 3243 void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
2951 if( !sqlite3ExprIsConstantNotJoin(p) ){ 3244 const char *zBinOp = 0; /* Binary operator */
2952 return 0; /* Only constant expressions are appropriate for factoring */ 3245 const char *zUniOp = 0; /* Unary operator */
2953 } 3246 pView = sqlite3TreeViewPush(pView, moreToFollow);
2954 if( (p->flags & EP_FixedDest)==0 ){ 3247 if( pExpr==0 ){
2955 return 1; /* Any constant without a fixed destination is appropriate */ 3248 sqlite3TreeViewLine(pView, "nil");
2956 } 3249 sqlite3TreeViewPop(pView);
2957 while( p->op==TK_UPLUS ) p = p->pLeft; 3250 return;
2958 switch( p->op ){ 3251 }
3252 switch( pExpr->op ){
3253 case TK_AGG_COLUMN: {
3254 sqlite3TreeViewLine(pView, "AGG{%d:%d}",
3255 pExpr->iTable, pExpr->iColumn);
3256 break;
3257 }
3258 case TK_COLUMN: {
3259 if( pExpr->iTable<0 ){
3260 /* This only happens when coding check constraints */
3261 sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn);
3262 }else{
3263 sqlite3TreeViewLine(pView, "{%d:%d}",
3264 pExpr->iTable, pExpr->iColumn);
3265 }
3266 break;
3267 }
3268 case TK_INTEGER: {
3269 if( pExpr->flags & EP_IntValue ){
3270 sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue);
3271 }else{
3272 sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken);
3273 }
3274 break;
3275 }
3276 #ifndef SQLITE_OMIT_FLOATING_POINT
3277 case TK_FLOAT: {
3278 sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3279 break;
3280 }
3281 #endif
3282 case TK_STRING: {
3283 sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken);
3284 break;
3285 }
3286 case TK_NULL: {
3287 sqlite3TreeViewLine(pView,"NULL");
3288 break;
3289 }
2959 #ifndef SQLITE_OMIT_BLOB_LITERAL 3290 #ifndef SQLITE_OMIT_BLOB_LITERAL
2960 case TK_BLOB: 3291 case TK_BLOB: {
3292 sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3293 break;
3294 }
2961 #endif 3295 #endif
2962 case TK_VARIABLE: 3296 case TK_VARIABLE: {
2963 case TK_INTEGER: 3297 sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)",
2964 case TK_FLOAT: 3298 pExpr->u.zToken, pExpr->iColumn);
2965 case TK_NULL: 3299 break;
2966 case TK_STRING: { 3300 }
2967 testcase( p->op==TK_BLOB ); 3301 case TK_REGISTER: {
2968 testcase( p->op==TK_VARIABLE ); 3302 sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
2969 testcase( p->op==TK_INTEGER ); 3303 break;
2970 testcase( p->op==TK_FLOAT ); 3304 }
2971 testcase( p->op==TK_NULL ); 3305 case TK_AS: {
2972 testcase( p->op==TK_STRING ); 3306 sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken);
2973 /* Single-instruction constants with a fixed destination are 3307 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
2974 ** better done in-line. If we factor them, they will just end 3308 break;
2975 ** up generating an OP_SCopy to move the value to the destination 3309 }
2976 ** register. */ 3310 case TK_ID: {
2977 return 0; 3311 sqlite3TreeViewLine(pView,"ID %Q", pExpr->u.zToken);
2978 } 3312 break;
2979 case TK_UMINUS: { 3313 }
2980 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 3314 #ifndef SQLITE_OMIT_CAST
2981 return 0; 3315 case TK_CAST: {
2982 } 3316 /* Expressions of the form: CAST(pLeft AS token) */
2983 break; 3317 sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken);
2984 } 3318 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3319 break;
3320 }
3321 #endif /* SQLITE_OMIT_CAST */
3322 case TK_LT: zBinOp = "LT"; break;
3323 case TK_LE: zBinOp = "LE"; break;
3324 case TK_GT: zBinOp = "GT"; break;
3325 case TK_GE: zBinOp = "GE"; break;
3326 case TK_NE: zBinOp = "NE"; break;
3327 case TK_EQ: zBinOp = "EQ"; break;
3328 case TK_IS: zBinOp = "IS"; break;
3329 case TK_ISNOT: zBinOp = "ISNOT"; break;
3330 case TK_AND: zBinOp = "AND"; break;
3331 case TK_OR: zBinOp = "OR"; break;
3332 case TK_PLUS: zBinOp = "ADD"; break;
3333 case TK_STAR: zBinOp = "MUL"; break;
3334 case TK_MINUS: zBinOp = "SUB"; break;
3335 case TK_REM: zBinOp = "REM"; break;
3336 case TK_BITAND: zBinOp = "BITAND"; break;
3337 case TK_BITOR: zBinOp = "BITOR"; break;
3338 case TK_SLASH: zBinOp = "DIV"; break;
3339 case TK_LSHIFT: zBinOp = "LSHIFT"; break;
3340 case TK_RSHIFT: zBinOp = "RSHIFT"; break;
3341 case TK_CONCAT: zBinOp = "CONCAT"; break;
3342 case TK_DOT: zBinOp = "DOT"; break;
3343
3344 case TK_UMINUS: zUniOp = "UMINUS"; break;
3345 case TK_UPLUS: zUniOp = "UPLUS"; break;
3346 case TK_BITNOT: zUniOp = "BITNOT"; break;
3347 case TK_NOT: zUniOp = "NOT"; break;
3348 case TK_ISNULL: zUniOp = "ISNULL"; break;
3349 case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3350
3351 case TK_COLLATE: {
3352 sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken);
3353 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3354 break;
3355 }
3356
3357 case TK_AGG_FUNCTION:
3358 case TK_FUNCTION: {
3359 ExprList *pFarg; /* List of function arguments */
3360 if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3361 pFarg = 0;
3362 }else{
3363 pFarg = pExpr->x.pList;
3364 }
3365 if( pExpr->op==TK_AGG_FUNCTION ){
3366 sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q",
3367 pExpr->op2, pExpr->u.zToken);
3368 }else{
3369 sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken);
3370 }
3371 if( pFarg ){
3372 sqlite3TreeViewExprList(pView, pFarg, 0, 0);
3373 }
3374 break;
3375 }
3376 #ifndef SQLITE_OMIT_SUBQUERY
3377 case TK_EXISTS: {
3378 sqlite3TreeViewLine(pView, "EXISTS-expr");
3379 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3380 break;
3381 }
3382 case TK_SELECT: {
3383 sqlite3TreeViewLine(pView, "SELECT-expr");
3384 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3385 break;
3386 }
3387 case TK_IN: {
3388 sqlite3TreeViewLine(pView, "IN");
3389 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3390 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3391 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3392 }else{
3393 sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3394 }
3395 break;
3396 }
3397 #endif /* SQLITE_OMIT_SUBQUERY */
3398
3399 /*
3400 ** x BETWEEN y AND z
3401 **
3402 ** This is equivalent to
3403 **
3404 ** x>=y AND x<=z
3405 **
3406 ** X is stored in pExpr->pLeft.
3407 ** Y is stored in pExpr->pList->a[0].pExpr.
3408 ** Z is stored in pExpr->pList->a[1].pExpr.
3409 */
3410 case TK_BETWEEN: {
3411 Expr *pX = pExpr->pLeft;
3412 Expr *pY = pExpr->x.pList->a[0].pExpr;
3413 Expr *pZ = pExpr->x.pList->a[1].pExpr;
3414 sqlite3TreeViewLine(pView, "BETWEEN");
3415 sqlite3TreeViewExpr(pView, pX, 1);
3416 sqlite3TreeViewExpr(pView, pY, 1);
3417 sqlite3TreeViewExpr(pView, pZ, 0);
3418 break;
3419 }
3420 case TK_TRIGGER: {
3421 /* If the opcode is TK_TRIGGER, then the expression is a reference
3422 ** to a column in the new.* or old.* pseudo-tables available to
3423 ** trigger programs. In this case Expr.iTable is set to 1 for the
3424 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3425 ** is set to the column of the pseudo-table to read, or to -1 to
3426 ** read the rowid field.
3427 */
3428 sqlite3TreeViewLine(pView, "%s(%d)",
3429 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3430 break;
3431 }
3432 case TK_CASE: {
3433 sqlite3TreeViewLine(pView, "CASE");
3434 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3435 sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3436 break;
3437 }
3438 #ifndef SQLITE_OMIT_TRIGGER
3439 case TK_RAISE: {
3440 const char *zType = "unk";
3441 switch( pExpr->affinity ){
3442 case OE_Rollback: zType = "rollback"; break;
3443 case OE_Abort: zType = "abort"; break;
3444 case OE_Fail: zType = "fail"; break;
3445 case OE_Ignore: zType = "ignore"; break;
3446 }
3447 sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken);
3448 break;
3449 }
3450 #endif
2985 default: { 3451 default: {
2986 break; 3452 sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
2987 } 3453 break;
2988 } 3454 }
2989 return 1; 3455 }
3456 if( zBinOp ){
3457 sqlite3TreeViewLine(pView, "%s", zBinOp);
3458 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3459 sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
3460 }else if( zUniOp ){
3461 sqlite3TreeViewLine(pView, "%s", zUniOp);
3462 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3463 }
3464 sqlite3TreeViewPop(pView);
2990 } 3465 }
2991 3466 #endif /* SQLITE_DEBUG */
3467
3468 #ifdef SQLITE_DEBUG
2992 /* 3469 /*
2993 ** If pExpr is a constant expression that is appropriate for 3470 ** Generate a human-readable explanation of an expression list.
2994 ** factoring out of a loop, then evaluate the expression
2995 ** into a register and convert the expression into a TK_REGISTER
2996 ** expression.
2997 */ 3471 */
2998 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 3472 void sqlite3TreeViewExprList(
2999 Parse *pParse = pWalker->pParse; 3473 TreeView *pView,
3000 switch( pExpr->op ){ 3474 const ExprList *pList,
3001 case TK_IN: 3475 u8 moreToFollow,
3002 case TK_REGISTER: { 3476 const char *zLabel
3003 return WRC_Prune; 3477 ){
3004 } 3478 int i;
3005 case TK_FUNCTION: 3479 pView = sqlite3TreeViewPush(pView, moreToFollow);
3006 case TK_AGG_FUNCTION: 3480 if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
3007 case TK_CONST_FUNC: { 3481 if( pList==0 ){
3008 /* The arguments to a function have a fixed destination. 3482 sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
3009 ** Mark them this way to avoid generated unneeded OP_SCopy 3483 }else{
3010 ** instructions. 3484 sqlite3TreeViewLine(pView, "%s", zLabel);
3011 */ 3485 for(i=0; i<pList->nExpr; i++){
3012 ExprList *pList = pExpr->x.pList; 3486 sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
3013 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3487 #if 0
3014 if( pList ){ 3488 if( pList->a[i].zName ){
3015 int i = pList->nExpr; 3489 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3016 struct ExprList_item *pItem = pList->a; 3490 }
3017 for(; i>0; i--, pItem++){ 3491 if( pList->a[i].bSpanIsTab ){
3018 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 3492 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3019 } 3493 }
3020 } 3494 #endif
3021 break; 3495 }
3022 } 3496 }
3023 } 3497 sqlite3TreeViewPop(pView);
3024 if( isAppropriateForFactoring(pExpr) ){
3025 int r1 = ++pParse->nMem;
3026 int r2;
3027 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3028 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
3029 pExpr->op2 = pExpr->op;
3030 pExpr->op = TK_REGISTER;
3031 pExpr->iTable = r2;
3032 return WRC_Prune;
3033 }
3034 return WRC_Continue;
3035 } 3498 }
3036 3499 #endif /* SQLITE_DEBUG */
3037 /*
3038 ** Preevaluate constant subexpressions within pExpr and store the
3039 ** results in registers. Modify pExpr so that the constant subexpresions
3040 ** are TK_REGISTER opcodes that refer to the precomputed values.
3041 **
3042 ** This routine is a no-op if the jump to the cookie-check code has
3043 ** already occur. Since the cookie-check jump is generated prior to
3044 ** any other serious processing, this check ensures that there is no
3045 ** way to accidently bypass the constant initializations.
3046 **
3047 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization
3048 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
3049 ** interface. This allows test logic to verify that the same answer is
3050 ** obtained for queries regardless of whether or not constants are
3051 ** precomputed into registers or if they are inserted in-line.
3052 */
3053 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3054 Walker w;
3055 if( pParse->cookieGoto ) return;
3056 if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return;
3057 w.xExprCallback = evalConstExpr;
3058 w.xSelectCallback = 0;
3059 w.pParse = pParse;
3060 sqlite3WalkExpr(&w, pExpr);
3061 }
3062
3063 3500
3064 /* 3501 /*
3065 ** Generate code that pushes the value of every element of the given 3502 ** Generate code that pushes the value of every element of the given
3066 ** expression list into a sequence of registers beginning at target. 3503 ** expression list into a sequence of registers beginning at target.
3067 ** 3504 **
3068 ** Return the number of elements evaluated. 3505 ** Return the number of elements evaluated.
3506 **
3507 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3508 ** filled using OP_SCopy. OP_Copy must be used instead.
3509 **
3510 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3511 ** factored out into initialization code.
3069 */ 3512 */
3070 int sqlite3ExprCodeExprList( 3513 int sqlite3ExprCodeExprList(
3071 Parse *pParse, /* Parsing context */ 3514 Parse *pParse, /* Parsing context */
3072 ExprList *pList, /* The expression list to be coded */ 3515 ExprList *pList, /* The expression list to be coded */
3073 int target, /* Where to write results */ 3516 int target, /* Where to write results */
3074 int doHardCopy /* Make a hard copy of every element */ 3517 u8 flags /* SQLITE_ECEL_* flags */
3075 ){ 3518 ){
3076 struct ExprList_item *pItem; 3519 struct ExprList_item *pItem;
3077 int i, n; 3520 int i, n;
3521 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3078 assert( pList!=0 ); 3522 assert( pList!=0 );
3079 assert( target>0 ); 3523 assert( target>0 );
3080 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3524 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
3081 n = pList->nExpr; 3525 n = pList->nExpr;
3526 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3082 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3527 for(pItem=pList->a, i=0; i<n; i++, pItem++){
3083 Expr *pExpr = pItem->pExpr; 3528 Expr *pExpr = pItem->pExpr;
3084 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3529 if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3085 if( inReg!=target+i ){ 3530 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3086 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, 3531 }else{
3087 inReg, target+i); 3532 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3533 if( inReg!=target+i ){
3534 VdbeOp *pOp;
3535 Vdbe *v = pParse->pVdbe;
3536 if( copyOp==OP_Copy
3537 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3538 && pOp->p1+pOp->p3+1==inReg
3539 && pOp->p2+pOp->p3+1==target+i
3540 ){
3541 pOp->p3++;
3542 }else{
3543 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3544 }
3545 }
3088 } 3546 }
3089 } 3547 }
3090 return n; 3548 return n;
3091 } 3549 }
3092 3550
3093 /* 3551 /*
3094 ** Generate code for a BETWEEN operator. 3552 ** Generate code for a BETWEEN operator.
3095 ** 3553 **
3096 ** x BETWEEN y AND z 3554 ** x BETWEEN y AND z
3097 ** 3555 **
3098 ** The above is equivalent to 3556 ** The above is equivalent to
3099 ** 3557 **
3100 ** x>=y AND x<=z 3558 ** x>=y AND x<=z
3101 ** 3559 **
3102 ** Code it as such, taking care to do the common subexpression 3560 ** Code it as such, taking care to do the common subexpression
3103 ** elementation of x. 3561 ** elimination of x.
3104 */ 3562 */
3105 static void exprCodeBetween( 3563 static void exprCodeBetween(
3106 Parse *pParse, /* Parsing and code generating context */ 3564 Parse *pParse, /* Parsing and code generating context */
3107 Expr *pExpr, /* The BETWEEN expression */ 3565 Expr *pExpr, /* The BETWEEN expression */
3108 int dest, /* Jump here if the jump is taken */ 3566 int dest, /* Jump here if the jump is taken */
3109 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3567 int jumpIfTrue, /* Take the jump if the BETWEEN is true */
3110 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3568 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
3111 ){ 3569 ){
3112 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3570 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
3113 Expr compLeft; /* The x>=y term */ 3571 Expr compLeft; /* The x>=y term */
3114 Expr compRight; /* The x<=z term */ 3572 Expr compRight; /* The x<=z term */
3115 Expr exprX; /* The x subexpression */ 3573 Expr exprX; /* The x subexpression */
3116 int regFree1 = 0; /* Temporary use register */ 3574 int regFree1 = 0; /* Temporary use register */
3117 3575
3118 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3576 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3119 exprX = *pExpr->pLeft; 3577 exprX = *pExpr->pLeft;
3120 exprAnd.op = TK_AND; 3578 exprAnd.op = TK_AND;
3121 exprAnd.pLeft = &compLeft; 3579 exprAnd.pLeft = &compLeft;
3122 exprAnd.pRight = &compRight; 3580 exprAnd.pRight = &compRight;
3123 compLeft.op = TK_GE; 3581 compLeft.op = TK_GE;
3124 compLeft.pLeft = &exprX; 3582 compLeft.pLeft = &exprX;
3125 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3583 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3126 compRight.op = TK_LE; 3584 compRight.op = TK_LE;
3127 compRight.pLeft = &exprX; 3585 compRight.pLeft = &exprX;
3128 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3586 compRight.pRight = pExpr->x.pList->a[1].pExpr;
3129 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1); 3587 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3130 exprX.op = TK_REGISTER;
3131 if( jumpIfTrue ){ 3588 if( jumpIfTrue ){
3132 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3589 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3133 }else{ 3590 }else{
3134 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3591 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3135 } 3592 }
3136 sqlite3ReleaseTempReg(pParse, regFree1); 3593 sqlite3ReleaseTempReg(pParse, regFree1);
3137 3594
3138 /* Ensure adequate test coverage */ 3595 /* Ensure adequate test coverage */
3139 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3596 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3140 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3597 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
(...skipping 20 matching lines...) Expand all
3161 ** below verify that the numbers are aligned correctly. 3618 ** below verify that the numbers are aligned correctly.
3162 */ 3619 */
3163 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3620 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3164 Vdbe *v = pParse->pVdbe; 3621 Vdbe *v = pParse->pVdbe;
3165 int op = 0; 3622 int op = 0;
3166 int regFree1 = 0; 3623 int regFree1 = 0;
3167 int regFree2 = 0; 3624 int regFree2 = 0;
3168 int r1, r2; 3625 int r1, r2;
3169 3626
3170 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3627 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3171 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3628 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3172 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3629 if( NEVER(pExpr==0) ) return; /* No way this can happen */
3173 op = pExpr->op; 3630 op = pExpr->op;
3174 switch( op ){ 3631 switch( op ){
3175 case TK_AND: { 3632 case TK_AND: {
3176 int d2 = sqlite3VdbeMakeLabel(v); 3633 int d2 = sqlite3VdbeMakeLabel(v);
3177 testcase( jumpIfNull==0 ); 3634 testcase( jumpIfNull==0 );
3635 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3178 sqlite3ExprCachePush(pParse); 3636 sqlite3ExprCachePush(pParse);
3179 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3180 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3637 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3181 sqlite3VdbeResolveLabel(v, d2); 3638 sqlite3VdbeResolveLabel(v, d2);
3182 sqlite3ExprCachePop(pParse, 1); 3639 sqlite3ExprCachePop(pParse);
3183 break; 3640 break;
3184 } 3641 }
3185 case TK_OR: { 3642 case TK_OR: {
3186 testcase( jumpIfNull==0 ); 3643 testcase( jumpIfNull==0 );
3187 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3644 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3645 sqlite3ExprCachePush(pParse);
3188 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3646 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3647 sqlite3ExprCachePop(pParse);
3189 break; 3648 break;
3190 } 3649 }
3191 case TK_NOT: { 3650 case TK_NOT: {
3192 testcase( jumpIfNull==0 ); 3651 testcase( jumpIfNull==0 );
3193 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3652 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3194 break; 3653 break;
3195 } 3654 }
3196 case TK_LT: 3655 case TK_LT:
3197 case TK_LE: 3656 case TK_LE:
3198 case TK_GT: 3657 case TK_GT:
3199 case TK_GE: 3658 case TK_GE:
3200 case TK_NE: 3659 case TK_NE:
3201 case TK_EQ: { 3660 case TK_EQ: {
3202 assert( TK_LT==OP_Lt );
3203 assert( TK_LE==OP_Le );
3204 assert( TK_GT==OP_Gt );
3205 assert( TK_GE==OP_Ge );
3206 assert( TK_EQ==OP_Eq );
3207 assert( TK_NE==OP_Ne );
3208 testcase( op==TK_LT );
3209 testcase( op==TK_LE );
3210 testcase( op==TK_GT );
3211 testcase( op==TK_GE );
3212 testcase( op==TK_EQ );
3213 testcase( op==TK_NE );
3214 testcase( jumpIfNull==0 ); 3661 testcase( jumpIfNull==0 );
3215 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1); 3662 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3216 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2); 3663 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3217 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3664 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3218 r1, r2, dest, jumpIfNull); 3665 r1, r2, dest, jumpIfNull);
3666 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3667 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3668 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3669 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3670 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3671 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3219 testcase( regFree1==0 ); 3672 testcase( regFree1==0 );
3220 testcase( regFree2==0 ); 3673 testcase( regFree2==0 );
3221 break; 3674 break;
3222 } 3675 }
3223 case TK_IS: 3676 case TK_IS:
3224 case TK_ISNOT: { 3677 case TK_ISNOT: {
3225 testcase( op==TK_IS ); 3678 testcase( op==TK_IS );
3226 testcase( op==TK_ISNOT ); 3679 testcase( op==TK_ISNOT );
3227 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1); 3680 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3228 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2); 3681 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3229 op = (op==TK_IS) ? TK_EQ : TK_NE; 3682 op = (op==TK_IS) ? TK_EQ : TK_NE;
3230 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3683 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3231 r1, r2, dest, SQLITE_NULLEQ); 3684 r1, r2, dest, SQLITE_NULLEQ);
3685 VdbeCoverageIf(v, op==TK_EQ);
3686 VdbeCoverageIf(v, op==TK_NE);
3232 testcase( regFree1==0 ); 3687 testcase( regFree1==0 );
3233 testcase( regFree2==0 ); 3688 testcase( regFree2==0 );
3234 break; 3689 break;
3235 } 3690 }
3236 case TK_ISNULL: 3691 case TK_ISNULL:
3237 case TK_NOTNULL: { 3692 case TK_NOTNULL: {
3238 assert( TK_ISNULL==OP_IsNull ); 3693 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
3239 assert( TK_NOTNULL==OP_NotNull ); 3694 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3240 testcase( op==TK_ISNULL );
3241 testcase( op==TK_NOTNULL );
3242 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1); 3695 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3243 sqlite3VdbeAddOp2(v, op, r1, dest); 3696 sqlite3VdbeAddOp2(v, op, r1, dest);
3697 VdbeCoverageIf(v, op==TK_ISNULL);
3698 VdbeCoverageIf(v, op==TK_NOTNULL);
3244 testcase( regFree1==0 ); 3699 testcase( regFree1==0 );
3245 break; 3700 break;
3246 } 3701 }
3247 case TK_BETWEEN: { 3702 case TK_BETWEEN: {
3248 testcase( jumpIfNull==0 ); 3703 testcase( jumpIfNull==0 );
3249 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3704 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3250 break; 3705 break;
3251 } 3706 }
3252 #ifndef SQLITE_OMIT_SUBQUERY 3707 #ifndef SQLITE_OMIT_SUBQUERY
3253 case TK_IN: { 3708 case TK_IN: {
3254 int destIfFalse = sqlite3VdbeMakeLabel(v); 3709 int destIfFalse = sqlite3VdbeMakeLabel(v);
3255 int destIfNull = jumpIfNull ? dest : destIfFalse; 3710 int destIfNull = jumpIfNull ? dest : destIfFalse;
3256 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3711 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3257 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3712 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3258 sqlite3VdbeResolveLabel(v, destIfFalse); 3713 sqlite3VdbeResolveLabel(v, destIfFalse);
3259 break; 3714 break;
3260 } 3715 }
3261 #endif 3716 #endif
3262 default: { 3717 default: {
3263 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1); 3718 if( exprAlwaysTrue(pExpr) ){
3264 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3719 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3265 testcase( regFree1==0 ); 3720 }else if( exprAlwaysFalse(pExpr) ){
3266 testcase( jumpIfNull==0 ); 3721 /* No-op */
3722 }else{
3723 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3724 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3725 VdbeCoverage(v);
3726 testcase( regFree1==0 );
3727 testcase( jumpIfNull==0 );
3728 }
3267 break; 3729 break;
3268 } 3730 }
3269 } 3731 }
3270 sqlite3ReleaseTempReg(pParse, regFree1); 3732 sqlite3ReleaseTempReg(pParse, regFree1);
3271 sqlite3ReleaseTempReg(pParse, regFree2); 3733 sqlite3ReleaseTempReg(pParse, regFree2);
3272 } 3734 }
3273 3735
3274 /* 3736 /*
3275 ** Generate code for a boolean expression such that a jump is made 3737 ** Generate code for a boolean expression such that a jump is made
3276 ** to the label "dest" if the expression is false but execution 3738 ** to the label "dest" if the expression is false but execution
3277 ** continues straight thru if the expression is true. 3739 ** continues straight thru if the expression is true.
3278 ** 3740 **
3279 ** If the expression evaluates to NULL (neither true nor false) then 3741 ** If the expression evaluates to NULL (neither true nor false) then
3280 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3742 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3281 ** is 0. 3743 ** is 0.
3282 */ 3744 */
3283 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3745 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3284 Vdbe *v = pParse->pVdbe; 3746 Vdbe *v = pParse->pVdbe;
3285 int op = 0; 3747 int op = 0;
3286 int regFree1 = 0; 3748 int regFree1 = 0;
3287 int regFree2 = 0; 3749 int regFree2 = 0;
3288 int r1, r2; 3750 int r1, r2;
3289 3751
3290 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3752 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3291 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3753 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3292 if( pExpr==0 ) return; 3754 if( pExpr==0 ) return;
3293 3755
3294 /* The value of pExpr->op and op are related as follows: 3756 /* The value of pExpr->op and op are related as follows:
3295 ** 3757 **
3296 ** pExpr->op op 3758 ** pExpr->op op
3297 ** --------- ---------- 3759 ** --------- ----------
3298 ** TK_ISNULL OP_NotNull 3760 ** TK_ISNULL OP_NotNull
3299 ** TK_NOTNULL OP_IsNull 3761 ** TK_NOTNULL OP_IsNull
3300 ** TK_NE OP_Eq 3762 ** TK_NE OP_Eq
3301 ** TK_EQ OP_Ne 3763 ** TK_EQ OP_Ne
(...skipping 17 matching lines...) Expand all
3319 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3781 assert( pExpr->op!=TK_EQ || op==OP_Ne );
3320 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3782 assert( pExpr->op!=TK_LT || op==OP_Ge );
3321 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3783 assert( pExpr->op!=TK_LE || op==OP_Gt );
3322 assert( pExpr->op!=TK_GT || op==OP_Le ); 3784 assert( pExpr->op!=TK_GT || op==OP_Le );
3323 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3785 assert( pExpr->op!=TK_GE || op==OP_Lt );
3324 3786
3325 switch( pExpr->op ){ 3787 switch( pExpr->op ){
3326 case TK_AND: { 3788 case TK_AND: {
3327 testcase( jumpIfNull==0 ); 3789 testcase( jumpIfNull==0 );
3328 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3790 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3791 sqlite3ExprCachePush(pParse);
3329 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3792 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3793 sqlite3ExprCachePop(pParse);
3330 break; 3794 break;
3331 } 3795 }
3332 case TK_OR: { 3796 case TK_OR: {
3333 int d2 = sqlite3VdbeMakeLabel(v); 3797 int d2 = sqlite3VdbeMakeLabel(v);
3334 testcase( jumpIfNull==0 ); 3798 testcase( jumpIfNull==0 );
3799 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3335 sqlite3ExprCachePush(pParse); 3800 sqlite3ExprCachePush(pParse);
3336 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3337 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3801 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3338 sqlite3VdbeResolveLabel(v, d2); 3802 sqlite3VdbeResolveLabel(v, d2);
3339 sqlite3ExprCachePop(pParse, 1); 3803 sqlite3ExprCachePop(pParse);
3340 break; 3804 break;
3341 } 3805 }
3342 case TK_NOT: { 3806 case TK_NOT: {
3343 testcase( jumpIfNull==0 ); 3807 testcase( jumpIfNull==0 );
3344 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3808 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3345 break; 3809 break;
3346 } 3810 }
3347 case TK_LT: 3811 case TK_LT:
3348 case TK_LE: 3812 case TK_LE:
3349 case TK_GT: 3813 case TK_GT:
3350 case TK_GE: 3814 case TK_GE:
3351 case TK_NE: 3815 case TK_NE:
3352 case TK_EQ: { 3816 case TK_EQ: {
3353 testcase( op==TK_LT );
3354 testcase( op==TK_LE );
3355 testcase( op==TK_GT );
3356 testcase( op==TK_GE );
3357 testcase( op==TK_EQ );
3358 testcase( op==TK_NE );
3359 testcase( jumpIfNull==0 ); 3817 testcase( jumpIfNull==0 );
3360 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1); 3818 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3361 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2); 3819 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3362 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3820 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3363 r1, r2, dest, jumpIfNull); 3821 r1, r2, dest, jumpIfNull);
3822 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3823 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3824 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3825 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3826 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3827 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3364 testcase( regFree1==0 ); 3828 testcase( regFree1==0 );
3365 testcase( regFree2==0 ); 3829 testcase( regFree2==0 );
3366 break; 3830 break;
3367 } 3831 }
3368 case TK_IS: 3832 case TK_IS:
3369 case TK_ISNOT: { 3833 case TK_ISNOT: {
3370 testcase( pExpr->op==TK_IS ); 3834 testcase( pExpr->op==TK_IS );
3371 testcase( pExpr->op==TK_ISNOT ); 3835 testcase( pExpr->op==TK_ISNOT );
3372 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1); 3836 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3373 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2); 3837 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3374 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3838 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3375 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3839 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3376 r1, r2, dest, SQLITE_NULLEQ); 3840 r1, r2, dest, SQLITE_NULLEQ);
3841 VdbeCoverageIf(v, op==TK_EQ);
3842 VdbeCoverageIf(v, op==TK_NE);
3377 testcase( regFree1==0 ); 3843 testcase( regFree1==0 );
3378 testcase( regFree2==0 ); 3844 testcase( regFree2==0 );
3379 break; 3845 break;
3380 } 3846 }
3381 case TK_ISNULL: 3847 case TK_ISNULL:
3382 case TK_NOTNULL: { 3848 case TK_NOTNULL: {
3383 testcase( op==TK_ISNULL );
3384 testcase( op==TK_NOTNULL );
3385 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1); 3849 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3386 sqlite3VdbeAddOp2(v, op, r1, dest); 3850 sqlite3VdbeAddOp2(v, op, r1, dest);
3851 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
3852 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
3387 testcase( regFree1==0 ); 3853 testcase( regFree1==0 );
3388 break; 3854 break;
3389 } 3855 }
3390 case TK_BETWEEN: { 3856 case TK_BETWEEN: {
3391 testcase( jumpIfNull==0 ); 3857 testcase( jumpIfNull==0 );
3392 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3858 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3393 break; 3859 break;
3394 } 3860 }
3395 #ifndef SQLITE_OMIT_SUBQUERY 3861 #ifndef SQLITE_OMIT_SUBQUERY
3396 case TK_IN: { 3862 case TK_IN: {
3397 if( jumpIfNull ){ 3863 if( jumpIfNull ){
3398 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3864 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3399 }else{ 3865 }else{
3400 int destIfNull = sqlite3VdbeMakeLabel(v); 3866 int destIfNull = sqlite3VdbeMakeLabel(v);
3401 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3867 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3402 sqlite3VdbeResolveLabel(v, destIfNull); 3868 sqlite3VdbeResolveLabel(v, destIfNull);
3403 } 3869 }
3404 break; 3870 break;
3405 } 3871 }
3406 #endif 3872 #endif
3407 default: { 3873 default: {
3408 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1); 3874 if( exprAlwaysFalse(pExpr) ){
3409 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3875 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3410 testcase( regFree1==0 ); 3876 }else if( exprAlwaysTrue(pExpr) ){
3411 testcase( jumpIfNull==0 ); 3877 /* no-op */
3878 }else{
3879 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3880 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3881 VdbeCoverage(v);
3882 testcase( regFree1==0 );
3883 testcase( jumpIfNull==0 );
3884 }
3412 break; 3885 break;
3413 } 3886 }
3414 } 3887 }
3415 sqlite3ReleaseTempReg(pParse, regFree1); 3888 sqlite3ReleaseTempReg(pParse, regFree1);
3416 sqlite3ReleaseTempReg(pParse, regFree2); 3889 sqlite3ReleaseTempReg(pParse, regFree2);
3417 } 3890 }
3418 3891
3419 /* 3892 /*
3420 ** Do a deep comparison of two expression trees. Return 0 if the two 3893 ** Do a deep comparison of two expression trees. Return 0 if the two
3421 ** expressions are completely identical. Return 1 if they differ only 3894 ** expressions are completely identical. Return 1 if they differ only
3422 ** by a COLLATE operator at the top level. Return 2 if there are differences 3895 ** by a COLLATE operator at the top level. Return 2 if there are differences
3423 ** other than the top-level COLLATE operator. 3896 ** other than the top-level COLLATE operator.
3424 ** 3897 **
3898 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3899 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3900 **
3901 ** The pA side might be using TK_REGISTER. If that is the case and pB is
3902 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3903 **
3425 ** Sometimes this routine will return 2 even if the two expressions 3904 ** Sometimes this routine will return 2 even if the two expressions
3426 ** really are equivalent. If we cannot prove that the expressions are 3905 ** really are equivalent. If we cannot prove that the expressions are
3427 ** identical, we return 2 just to be safe. So if this routine 3906 ** identical, we return 2 just to be safe. So if this routine
3428 ** returns 2, then you do not really know for certain if the two 3907 ** returns 2, then you do not really know for certain if the two
3429 ** expressions are the same. But if you get a 0 or 1 return, then you 3908 ** expressions are the same. But if you get a 0 or 1 return, then you
3430 ** can be sure the expressions are the same. In the places where 3909 ** can be sure the expressions are the same. In the places where
3431 ** this routine is used, it does not hurt to get an extra 2 - that 3910 ** this routine is used, it does not hurt to get an extra 2 - that
3432 ** just might result in some slightly slower code. But returning 3911 ** just might result in some slightly slower code. But returning
3433 ** an incorrect 0 or 1 could lead to a malfunction. 3912 ** an incorrect 0 or 1 could lead to a malfunction.
3434 */ 3913 */
3435 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3914 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3436 if( pA==0||pB==0 ){ 3915 u32 combinedFlags;
3916 if( pA==0 || pB==0 ){
3437 return pB==pA ? 0 : 2; 3917 return pB==pA ? 0 : 2;
3438 } 3918 }
3439 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3919 combinedFlags = pA->flags | pB->flags;
3440 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3920 if( combinedFlags & EP_IntValue ){
3441 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3921 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3922 return 0;
3923 }
3442 return 2; 3924 return 2;
3443 } 3925 }
3444 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3926 if( pA->op!=pB->op ){
3445 if( pA->op!=pB->op ) return 2; 3927 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3446 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; 3928 return 1;
3447 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
3448 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
3449 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
3450 if( ExprHasProperty(pA, EP_IntValue) ){
3451 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3452 return 2;
3453 } 3929 }
3454 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){ 3930 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3455 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; 3931 return 1;
3456 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3932 }
3457 return 2; 3933 return 2;
3934 }
3935 if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
3936 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3937 return pA->op==TK_COLLATE ? 1 : 2;
3458 } 3938 }
3459 } 3939 }
3460 if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1; 3940 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3461 if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2; 3941 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3942 if( combinedFlags & EP_xIsSelect ) return 2;
3943 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3944 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3945 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3946 if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
3947 if( pA->iColumn!=pB->iColumn ) return 2;
3948 if( pA->iTable!=pB->iTable
3949 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3950 }
3951 }
3462 return 0; 3952 return 0;
3463 } 3953 }
3464 3954
3465 /* 3955 /*
3466 ** Compare two ExprList objects. Return 0 if they are identical and 3956 ** Compare two ExprList objects. Return 0 if they are identical and
3467 ** non-zero if they differ in any way. 3957 ** non-zero if they differ in any way.
3468 ** 3958 **
3959 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3960 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3961 **
3469 ** This routine might return non-zero for equivalent ExprLists. The 3962 ** This routine might return non-zero for equivalent ExprLists. The
3470 ** only consequence will be disabled optimizations. But this routine 3963 ** only consequence will be disabled optimizations. But this routine
3471 ** must never return 0 if the two ExprList objects are different, or 3964 ** must never return 0 if the two ExprList objects are different, or
3472 ** a malfunction will result. 3965 ** a malfunction will result.
3473 ** 3966 **
3474 ** Two NULL pointers are considered to be the same. But a NULL pointer 3967 ** Two NULL pointers are considered to be the same. But a NULL pointer
3475 ** always differs from a non-NULL pointer. 3968 ** always differs from a non-NULL pointer.
3476 */ 3969 */
3477 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ 3970 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3478 int i; 3971 int i;
3479 if( pA==0 && pB==0 ) return 0; 3972 if( pA==0 && pB==0 ) return 0;
3480 if( pA==0 || pB==0 ) return 1; 3973 if( pA==0 || pB==0 ) return 1;
3481 if( pA->nExpr!=pB->nExpr ) return 1; 3974 if( pA->nExpr!=pB->nExpr ) return 1;
3482 for(i=0; i<pA->nExpr; i++){ 3975 for(i=0; i<pA->nExpr; i++){
3483 Expr *pExprA = pA->a[i].pExpr; 3976 Expr *pExprA = pA->a[i].pExpr;
3484 Expr *pExprB = pB->a[i].pExpr; 3977 Expr *pExprB = pB->a[i].pExpr;
3485 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3978 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3486 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; 3979 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3487 } 3980 }
3488 return 0; 3981 return 0;
3489 } 3982 }
3490 3983
3491 /* 3984 /*
3985 ** Return true if we can prove the pE2 will always be true if pE1 is
3986 ** true. Return false if we cannot complete the proof or if pE2 might
3987 ** be false. Examples:
3988 **
3989 ** pE1: x==5 pE2: x==5 Result: true
3990 ** pE1: x>0 pE2: x==5 Result: false
3991 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
3992 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
3993 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
3994 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
3995 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
3996 **
3997 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3998 ** Expr.iTable<0 then assume a table number given by iTab.
3999 **
4000 ** When in doubt, return false. Returning true might give a performance
4001 ** improvement. Returning false might cause a performance reduction, but
4002 ** it will always give the correct answer and is hence always safe.
4003 */
4004 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
4005 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
4006 return 1;
4007 }
4008 if( pE2->op==TK_OR
4009 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
4010 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
4011 ){
4012 return 1;
4013 }
4014 if( pE2->op==TK_NOTNULL
4015 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
4016 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
4017 ){
4018 return 1;
4019 }
4020 return 0;
4021 }
4022
4023 /*
4024 ** An instance of the following structure is used by the tree walker
4025 ** to count references to table columns in the arguments of an
4026 ** aggregate function, in order to implement the
4027 ** sqlite3FunctionThisSrc() routine.
4028 */
4029 struct SrcCount {
4030 SrcList *pSrc; /* One particular FROM clause in a nested query */
4031 int nThis; /* Number of references to columns in pSrcList */
4032 int nOther; /* Number of references to columns in other FROM clauses */
4033 };
4034
4035 /*
4036 ** Count the number of references to columns.
4037 */
4038 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4039 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4040 ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4041 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If
4042 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4043 ** NEVER() will need to be removed. */
4044 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4045 int i;
4046 struct SrcCount *p = pWalker->u.pSrcCount;
4047 SrcList *pSrc = p->pSrc;
4048 for(i=0; i<pSrc->nSrc; i++){
4049 if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4050 }
4051 if( i<pSrc->nSrc ){
4052 p->nThis++;
4053 }else{
4054 p->nOther++;
4055 }
4056 }
4057 return WRC_Continue;
4058 }
4059
4060 /*
4061 ** Determine if any of the arguments to the pExpr Function reference
4062 ** pSrcList. Return true if they do. Also return true if the function
4063 ** has no arguments or has only constant arguments. Return false if pExpr
4064 ** references columns but not columns of tables found in pSrcList.
4065 */
4066 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4067 Walker w;
4068 struct SrcCount cnt;
4069 assert( pExpr->op==TK_AGG_FUNCTION );
4070 memset(&w, 0, sizeof(w));
4071 w.xExprCallback = exprSrcCount;
4072 w.u.pSrcCount = &cnt;
4073 cnt.pSrc = pSrcList;
4074 cnt.nThis = 0;
4075 cnt.nOther = 0;
4076 sqlite3WalkExprList(&w, pExpr->x.pList);
4077 return cnt.nThis>0 || cnt.nOther==0;
4078 }
4079
4080 /*
3492 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4081 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
3493 ** the new element. Return a negative number if malloc fails. 4082 ** the new element. Return a negative number if malloc fails.
3494 */ 4083 */
3495 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4084 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3496 int i; 4085 int i;
3497 pInfo->aCol = sqlite3ArrayAllocate( 4086 pInfo->aCol = sqlite3ArrayAllocate(
3498 db, 4087 db,
3499 pInfo->aCol, 4088 pInfo->aCol,
3500 sizeof(pInfo->aCol[0]), 4089 sizeof(pInfo->aCol[0]),
3501 3,
3502 &pInfo->nColumn, 4090 &pInfo->nColumn,
3503 &pInfo->nColumnAlloc,
3504 &i 4091 &i
3505 ); 4092 );
3506 return i; 4093 return i;
3507 } 4094 }
3508 4095
3509 /* 4096 /*
3510 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4097 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
3511 ** the new element. Return a negative number if malloc fails. 4098 ** the new element. Return a negative number if malloc fails.
3512 */ 4099 */
3513 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4100 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3514 int i; 4101 int i;
3515 pInfo->aFunc = sqlite3ArrayAllocate( 4102 pInfo->aFunc = sqlite3ArrayAllocate(
3516 db, 4103 db,
3517 pInfo->aFunc, 4104 pInfo->aFunc,
3518 sizeof(pInfo->aFunc[0]), 4105 sizeof(pInfo->aFunc[0]),
3519 3,
3520 &pInfo->nFunc, 4106 &pInfo->nFunc,
3521 &pInfo->nFuncAlloc,
3522 &i 4107 &i
3523 ); 4108 );
3524 return i; 4109 return i;
3525 } 4110 }
3526 4111
3527 /* 4112 /*
3528 ** This is the xExprCallback for a tree walker. It is used to 4113 ** This is the xExprCallback for a tree walker. It is used to
3529 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4114 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
3530 ** for additional information. 4115 ** for additional information.
3531 */ 4116 */
3532 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4117 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3533 int i; 4118 int i;
3534 NameContext *pNC = pWalker->u.pNC; 4119 NameContext *pNC = pWalker->u.pNC;
3535 Parse *pParse = pNC->pParse; 4120 Parse *pParse = pNC->pParse;
3536 SrcList *pSrcList = pNC->pSrcList; 4121 SrcList *pSrcList = pNC->pSrcList;
3537 AggInfo *pAggInfo = pNC->pAggInfo; 4122 AggInfo *pAggInfo = pNC->pAggInfo;
3538 4123
3539 switch( pExpr->op ){ 4124 switch( pExpr->op ){
3540 case TK_AGG_COLUMN: 4125 case TK_AGG_COLUMN:
3541 case TK_COLUMN: { 4126 case TK_COLUMN: {
3542 testcase( pExpr->op==TK_AGG_COLUMN ); 4127 testcase( pExpr->op==TK_AGG_COLUMN );
3543 testcase( pExpr->op==TK_COLUMN ); 4128 testcase( pExpr->op==TK_COLUMN );
3544 /* Check to see if the column is in one of the tables in the FROM 4129 /* Check to see if the column is in one of the tables in the FROM
3545 ** clause of the aggregate query */ 4130 ** clause of the aggregate query */
3546 if( ALWAYS(pSrcList!=0) ){ 4131 if( ALWAYS(pSrcList!=0) ){
3547 struct SrcList_item *pItem = pSrcList->a; 4132 struct SrcList_item *pItem = pSrcList->a;
3548 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4133 for(i=0; i<pSrcList->nSrc; i++, pItem++){
3549 struct AggInfo_col *pCol; 4134 struct AggInfo_col *pCol;
3550 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4135 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3551 if( pExpr->iTable==pItem->iCursor ){ 4136 if( pExpr->iTable==pItem->iCursor ){
3552 /* If we reach this point, it means that pExpr refers to a table 4137 /* If we reach this point, it means that pExpr refers to a table
3553 ** that is in the FROM clause of the aggregate query. 4138 ** that is in the FROM clause of the aggregate query.
3554 ** 4139 **
3555 ** Make an entry for the column in pAggInfo->aCol[] if there 4140 ** Make an entry for the column in pAggInfo->aCol[] if there
3556 ** is not an entry there already. 4141 ** is not an entry there already.
3557 */ 4142 */
3558 int k; 4143 int k;
3559 pCol = pAggInfo->aCol; 4144 pCol = pAggInfo->aCol;
3560 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4145 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
(...skipping 28 matching lines...) Expand all
3589 } 4174 }
3590 if( pCol->iSorterColumn<0 ){ 4175 if( pCol->iSorterColumn<0 ){
3591 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4176 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3592 } 4177 }
3593 } 4178 }
3594 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4179 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3595 ** because it was there before or because we just created it). 4180 ** because it was there before or because we just created it).
3596 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4181 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3597 ** pAggInfo->aCol[] entry. 4182 ** pAggInfo->aCol[] entry.
3598 */ 4183 */
3599 ExprSetIrreducible(pExpr); 4184 ExprSetVVAProperty(pExpr, EP_NoReduce);
3600 pExpr->pAggInfo = pAggInfo; 4185 pExpr->pAggInfo = pAggInfo;
3601 pExpr->op = TK_AGG_COLUMN; 4186 pExpr->op = TK_AGG_COLUMN;
3602 pExpr->iAgg = (i16)k; 4187 pExpr->iAgg = (i16)k;
3603 break; 4188 break;
3604 } /* endif pExpr->iTable==pItem->iCursor */ 4189 } /* endif pExpr->iTable==pItem->iCursor */
3605 } /* end loop over pSrcList */ 4190 } /* end loop over pSrcList */
3606 } 4191 }
3607 return WRC_Prune; 4192 return WRC_Prune;
3608 } 4193 }
3609 case TK_AGG_FUNCTION: { 4194 case TK_AGG_FUNCTION: {
3610 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 4195 if( (pNC->ncFlags & NC_InAggFunc)==0
3611 ** to be ignored */ 4196 && pWalker->walkerDepth==pExpr->op2
3612 if( pNC->nDepth==0 ){ 4197 ){
3613 /* Check to see if pExpr is a duplicate of another aggregate 4198 /* Check to see if pExpr is a duplicate of another aggregate
3614 ** function that is already in the pAggInfo structure 4199 ** function that is already in the pAggInfo structure
3615 */ 4200 */
3616 struct AggInfo_func *pItem = pAggInfo->aFunc; 4201 struct AggInfo_func *pItem = pAggInfo->aFunc;
3617 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4202 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3618 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ 4203 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
3619 break; 4204 break;
3620 } 4205 }
3621 } 4206 }
3622 if( i>=pAggInfo->nFunc ){ 4207 if( i>=pAggInfo->nFunc ){
3623 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4208 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
3624 */ 4209 */
3625 u8 enc = ENC(pParse->db); 4210 u8 enc = ENC(pParse->db);
3626 i = addAggInfoFunc(pParse->db, pAggInfo); 4211 i = addAggInfoFunc(pParse->db, pAggInfo);
3627 if( i>=0 ){ 4212 if( i>=0 ){
3628 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4213 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3629 pItem = &pAggInfo->aFunc[i]; 4214 pItem = &pAggInfo->aFunc[i];
3630 pItem->pExpr = pExpr; 4215 pItem->pExpr = pExpr;
3631 pItem->iMem = ++pParse->nMem; 4216 pItem->iMem = ++pParse->nMem;
3632 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4217 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3633 pItem->pFunc = sqlite3FindFunction(pParse->db, 4218 pItem->pFunc = sqlite3FindFunction(pParse->db,
3634 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4219 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
3635 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4220 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
3636 if( pExpr->flags & EP_Distinct ){ 4221 if( pExpr->flags & EP_Distinct ){
3637 pItem->iDistinct = pParse->nTab++; 4222 pItem->iDistinct = pParse->nTab++;
3638 }else{ 4223 }else{
3639 pItem->iDistinct = -1; 4224 pItem->iDistinct = -1;
3640 } 4225 }
3641 } 4226 }
3642 } 4227 }
3643 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4228 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3644 */ 4229 */
3645 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4230 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3646 ExprSetIrreducible(pExpr); 4231 ExprSetVVAProperty(pExpr, EP_NoReduce);
3647 pExpr->iAgg = (i16)i; 4232 pExpr->iAgg = (i16)i;
3648 pExpr->pAggInfo = pAggInfo; 4233 pExpr->pAggInfo = pAggInfo;
3649 return WRC_Prune; 4234 return WRC_Prune;
4235 }else{
4236 return WRC_Continue;
3650 } 4237 }
3651 } 4238 }
3652 } 4239 }
3653 return WRC_Continue; 4240 return WRC_Continue;
3654 } 4241 }
3655 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4242 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3656 NameContext *pNC = pWalker->u.pNC; 4243 UNUSED_PARAMETER(pWalker);
3657 if( pNC->nDepth==0 ){ 4244 UNUSED_PARAMETER(pSelect);
3658 pNC->nDepth++; 4245 return WRC_Continue;
3659 sqlite3WalkSelect(pWalker, pSelect);
3660 pNC->nDepth--;
3661 return WRC_Prune;
3662 }else{
3663 return WRC_Continue;
3664 }
3665 } 4246 }
3666 4247
3667 /* 4248 /*
3668 ** Analyze the given expression looking for aggregate functions and 4249 ** Analyze the pExpr expression looking for aggregate functions and
3669 ** for variables that need to be added to the pParse->aAgg[] array. 4250 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
3670 ** Make additional entries to the pParse->aAgg[] array as necessary. 4251 ** points to. Additional entries are made on the AggInfo object as
4252 ** necessary.
3671 ** 4253 **
3672 ** This routine should only be called after the expression has been 4254 ** This routine should only be called after the expression has been
3673 ** analyzed by sqlite3ResolveExprNames(). 4255 ** analyzed by sqlite3ResolveExprNames().
3674 */ 4256 */
3675 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4257 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3676 Walker w; 4258 Walker w;
4259 memset(&w, 0, sizeof(w));
3677 w.xExprCallback = analyzeAggregate; 4260 w.xExprCallback = analyzeAggregate;
3678 w.xSelectCallback = analyzeAggregatesInSelect; 4261 w.xSelectCallback = analyzeAggregatesInSelect;
3679 w.u.pNC = pNC; 4262 w.u.pNC = pNC;
3680 assert( pNC->pSrcList!=0 ); 4263 assert( pNC->pSrcList!=0 );
3681 sqlite3WalkExpr(&w, pExpr); 4264 sqlite3WalkExpr(&w, pExpr);
3682 } 4265 }
3683 4266
3684 /* 4267 /*
3685 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4268 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3686 ** expression list. Return the number of errors. 4269 ** expression list. Return the number of errors.
(...skipping 18 matching lines...) Expand all
3705 return ++pParse->nMem; 4288 return ++pParse->nMem;
3706 } 4289 }
3707 return pParse->aTempReg[--pParse->nTempReg]; 4290 return pParse->aTempReg[--pParse->nTempReg];
3708 } 4291 }
3709 4292
3710 /* 4293 /*
3711 ** Deallocate a register, making available for reuse for some other 4294 ** Deallocate a register, making available for reuse for some other
3712 ** purpose. 4295 ** purpose.
3713 ** 4296 **
3714 ** If a register is currently being used by the column cache, then 4297 ** If a register is currently being used by the column cache, then
3715 ** the dallocation is deferred until the column cache line that uses 4298 ** the deallocation is deferred until the column cache line that uses
3716 ** the register becomes stale. 4299 ** the register becomes stale.
3717 */ 4300 */
3718 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4301 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3719 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4302 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3720 int i; 4303 int i;
3721 struct yColCache *p; 4304 struct yColCache *p;
3722 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4305 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3723 if( p->iReg==iReg ){ 4306 if( p->iReg==iReg ){
3724 p->tempReg = 1; 4307 p->tempReg = 1;
3725 return; 4308 return;
(...skipping 20 matching lines...) Expand all
3746 } 4329 }
3747 return i; 4330 return i;
3748 } 4331 }
3749 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4332 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3750 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4333 sqlite3ExprCacheRemove(pParse, iReg, nReg);
3751 if( nReg>pParse->nRangeReg ){ 4334 if( nReg>pParse->nRangeReg ){
3752 pParse->nRangeReg = nReg; 4335 pParse->nRangeReg = nReg;
3753 pParse->iRangeReg = iReg; 4336 pParse->iRangeReg = iReg;
3754 } 4337 }
3755 } 4338 }
4339
4340 /*
4341 ** Mark all temporary registers as being unavailable for reuse.
4342 */
4343 void sqlite3ClearTempRegCache(Parse *pParse){
4344 pParse->nTempReg = 0;
4345 pParse->nRangeReg = 0;
4346 }
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3080704/src/delete.c ('k') | third_party/sqlite/sqlite-src-3080704/src/fault.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698