OLD | NEW |
1 /* | 1 /* |
2 ** 2001 September 15 | 2 ** 2001 September 15 |
3 ** | 3 ** |
4 ** The author disclaims copyright to this source code. In place of | 4 ** The author disclaims copyright to this source code. In place of |
5 ** a legal notice, here is a blessing: | 5 ** a legal notice, here is a blessing: |
6 ** | 6 ** |
7 ** May you do good and not evil. | 7 ** May you do good and not evil. |
8 ** May you find forgiveness for yourself and forgive others. | 8 ** May you find forgiveness for yourself and forgive others. |
9 ** May you share freely, never taking more than you give. | 9 ** May you share freely, never taking more than you give. |
10 ** | 10 ** |
(...skipping 96 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
107 int p1 = p->iDb; | 107 int p1 = p->iDb; |
108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, | 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, |
109 p->zName, P4_STATIC); | 109 p->zName, P4_STATIC); |
110 } | 110 } |
111 } | 111 } |
112 #else | 112 #else |
113 #define codeTableLocks(x) | 113 #define codeTableLocks(x) |
114 #endif | 114 #endif |
115 | 115 |
116 /* | 116 /* |
| 117 ** Return TRUE if the given yDbMask object is empty - if it contains no |
| 118 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() |
| 119 ** macros when SQLITE_MAX_ATTACHED is greater than 30. |
| 120 */ |
| 121 #if SQLITE_MAX_ATTACHED>30 |
| 122 int sqlite3DbMaskAllZero(yDbMask m){ |
| 123 int i; |
| 124 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; |
| 125 return 1; |
| 126 } |
| 127 #endif |
| 128 |
| 129 /* |
117 ** This routine is called after a single SQL statement has been | 130 ** This routine is called after a single SQL statement has been |
118 ** parsed and a VDBE program to execute that statement has been | 131 ** parsed and a VDBE program to execute that statement has been |
119 ** prepared. This routine puts the finishing touches on the | 132 ** prepared. This routine puts the finishing touches on the |
120 ** VDBE program and resets the pParse structure for the next | 133 ** VDBE program and resets the pParse structure for the next |
121 ** parse. | 134 ** parse. |
122 ** | 135 ** |
123 ** Note that if an error occurred, it might be the case that | 136 ** Note that if an error occurred, it might be the case that |
124 ** no VDBE code was generated. | 137 ** no VDBE code was generated. |
125 */ | 138 */ |
126 void sqlite3FinishCoding(Parse *pParse){ | 139 void sqlite3FinishCoding(Parse *pParse){ |
127 sqlite3 *db; | 140 sqlite3 *db; |
128 Vdbe *v; | 141 Vdbe *v; |
129 | 142 |
| 143 assert( pParse->pToplevel==0 ); |
130 db = pParse->db; | 144 db = pParse->db; |
131 if( db->mallocFailed ) return; | 145 if( db->mallocFailed ) return; |
132 if( pParse->nested ) return; | 146 if( pParse->nested ) return; |
133 if( pParse->nErr ) return; | 147 if( pParse->nErr ) return; |
134 | 148 |
135 /* Begin by generating some termination code at the end of the | 149 /* Begin by generating some termination code at the end of the |
136 ** vdbe program | 150 ** vdbe program |
137 */ | 151 */ |
138 v = sqlite3GetVdbe(pParse); | 152 v = sqlite3GetVdbe(pParse); |
139 assert( !pParse->isMultiWrite | 153 assert( !pParse->isMultiWrite |
140 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); | 154 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); |
141 if( v ){ | 155 if( v ){ |
| 156 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} |
142 sqlite3VdbeAddOp0(v, OP_Halt); | 157 sqlite3VdbeAddOp0(v, OP_Halt); |
143 | 158 |
| 159 #if SQLITE_USER_AUTHENTICATION |
| 160 if( pParse->nTableLock>0 && db->init.busy==0 ){ |
| 161 sqlite3UserAuthInit(db); |
| 162 if( db->auth.authLevel<UAUTH_User ){ |
| 163 pParse->rc = SQLITE_AUTH_USER; |
| 164 sqlite3ErrorMsg(pParse, "user not authenticated"); |
| 165 return; |
| 166 } |
| 167 } |
| 168 #endif |
| 169 |
144 /* The cookie mask contains one bit for each database file open. | 170 /* The cookie mask contains one bit for each database file open. |
145 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are | 171 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are |
146 ** set for each database that is used. Generate code to start a | 172 ** set for each database that is used. Generate code to start a |
147 ** transaction on each used database and to verify the schema cookie | 173 ** transaction on each used database and to verify the schema cookie |
148 ** on each used database. | 174 ** on each used database. |
149 */ | 175 */ |
150 if( pParse->cookieGoto>0 ){ | 176 if( db->mallocFailed==0 |
151 yDbMask mask; | 177 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) |
152 int iDb; | 178 ){ |
153 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); | 179 int iDb, i; |
154 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ | 180 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); |
155 if( (mask & pParse->cookieMask)==0 ) continue; | 181 sqlite3VdbeJumpHere(v, 0); |
| 182 for(iDb=0; iDb<db->nDb; iDb++){ |
| 183 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; |
156 sqlite3VdbeUsesBtree(v, iDb); | 184 sqlite3VdbeUsesBtree(v, iDb); |
157 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); | 185 sqlite3VdbeAddOp4Int(v, |
158 if( db->init.busy==0 ){ | 186 OP_Transaction, /* Opcode */ |
159 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | 187 iDb, /* P1 */ |
160 sqlite3VdbeAddOp3(v, OP_VerifyCookie, | 188 DbMaskTest(pParse->writeMask,iDb), /* P2 */ |
161 iDb, pParse->cookieValue[iDb], | 189 pParse->cookieValue[iDb], /* P3 */ |
162 db->aDb[iDb].pSchema->iGeneration); | 190 db->aDb[iDb].pSchema->iGeneration /* P4 */ |
163 } | 191 ); |
| 192 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); |
164 } | 193 } |
165 #ifndef SQLITE_OMIT_VIRTUALTABLE | 194 #ifndef SQLITE_OMIT_VIRTUALTABLE |
166 { | 195 for(i=0; i<pParse->nVtabLock; i++){ |
167 int i; | 196 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); |
168 for(i=0; i<pParse->nVtabLock; i++){ | 197 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); |
169 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); | |
170 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); | |
171 } | |
172 pParse->nVtabLock = 0; | |
173 } | 198 } |
| 199 pParse->nVtabLock = 0; |
174 #endif | 200 #endif |
175 | 201 |
176 /* Once all the cookies have been verified and transactions opened, | 202 /* Once all the cookies have been verified and transactions opened, |
177 ** obtain the required table-locks. This is a no-op unless the | 203 ** obtain the required table-locks. This is a no-op unless the |
178 ** shared-cache feature is enabled. | 204 ** shared-cache feature is enabled. |
179 */ | 205 */ |
180 codeTableLocks(pParse); | 206 codeTableLocks(pParse); |
181 | 207 |
182 /* Initialize any AUTOINCREMENT data structures required. | 208 /* Initialize any AUTOINCREMENT data structures required. |
183 */ | 209 */ |
184 sqlite3AutoincrementBegin(pParse); | 210 sqlite3AutoincrementBegin(pParse); |
185 | 211 |
| 212 /* Code constant expressions that where factored out of inner loops */ |
| 213 if( pParse->pConstExpr ){ |
| 214 ExprList *pEL = pParse->pConstExpr; |
| 215 pParse->okConstFactor = 0; |
| 216 for(i=0; i<pEL->nExpr; i++){ |
| 217 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); |
| 218 } |
| 219 } |
| 220 |
186 /* Finally, jump back to the beginning of the executable code. */ | 221 /* Finally, jump back to the beginning of the executable code. */ |
187 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); | 222 sqlite3VdbeAddOp2(v, OP_Goto, 0, 1); |
188 } | 223 } |
189 } | 224 } |
190 | 225 |
191 | 226 |
192 /* Get the VDBE program ready for execution | 227 /* Get the VDBE program ready for execution |
193 */ | 228 */ |
194 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ | 229 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ |
195 #ifdef SQLITE_DEBUG | |
196 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; | |
197 sqlite3VdbeTrace(v, trace); | |
198 #endif | |
199 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ | 230 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ |
200 /* A minimum of one cursor is required if autoincrement is used | 231 /* A minimum of one cursor is required if autoincrement is used |
201 * See ticket [a696379c1f08866] */ | 232 * See ticket [a696379c1f08866] */ |
202 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; | 233 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; |
203 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem, | 234 sqlite3VdbeMakeReady(v, pParse); |
204 pParse->nTab, pParse->nMaxArg, pParse->explain, | |
205 pParse->isMultiWrite && pParse->mayAbort); | |
206 pParse->rc = SQLITE_DONE; | 235 pParse->rc = SQLITE_DONE; |
207 pParse->colNamesSet = 0; | 236 pParse->colNamesSet = 0; |
208 }else{ | 237 }else{ |
209 pParse->rc = SQLITE_ERROR; | 238 pParse->rc = SQLITE_ERROR; |
210 } | 239 } |
211 pParse->nTab = 0; | 240 pParse->nTab = 0; |
212 pParse->nMem = 0; | 241 pParse->nMem = 0; |
213 pParse->nSet = 0; | 242 pParse->nSet = 0; |
214 pParse->nVar = 0; | 243 pParse->nVar = 0; |
215 pParse->cookieMask = 0; | 244 DbMaskZero(pParse->cookieMask); |
216 pParse->cookieGoto = 0; | |
217 } | 245 } |
218 | 246 |
219 /* | 247 /* |
220 ** Run the parser and code generator recursively in order to generate | 248 ** Run the parser and code generator recursively in order to generate |
221 ** code for the SQL statement given onto the end of the pParse context | 249 ** code for the SQL statement given onto the end of the pParse context |
222 ** currently under construction. When the parser is run recursively | 250 ** currently under construction. When the parser is run recursively |
223 ** this way, the final OP_Halt is not appended and other initialization | 251 ** this way, the final OP_Halt is not appended and other initialization |
224 ** and finalization steps are omitted because those are handling by the | 252 ** and finalization steps are omitted because those are handling by the |
225 ** outermost parser. | 253 ** outermost parser. |
226 ** | 254 ** |
(...skipping 20 matching lines...) Expand all Loading... |
247 pParse->nested++; | 275 pParse->nested++; |
248 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); | 276 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); |
249 memset(&pParse->nVar, 0, SAVE_SZ); | 277 memset(&pParse->nVar, 0, SAVE_SZ); |
250 sqlite3RunParser(pParse, zSql, &zErrMsg); | 278 sqlite3RunParser(pParse, zSql, &zErrMsg); |
251 sqlite3DbFree(db, zErrMsg); | 279 sqlite3DbFree(db, zErrMsg); |
252 sqlite3DbFree(db, zSql); | 280 sqlite3DbFree(db, zSql); |
253 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); | 281 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); |
254 pParse->nested--; | 282 pParse->nested--; |
255 } | 283 } |
256 | 284 |
| 285 #if SQLITE_USER_AUTHENTICATION |
| 286 /* |
| 287 ** Return TRUE if zTable is the name of the system table that stores the |
| 288 ** list of users and their access credentials. |
| 289 */ |
| 290 int sqlite3UserAuthTable(const char *zTable){ |
| 291 return sqlite3_stricmp(zTable, "sqlite_user")==0; |
| 292 } |
| 293 #endif |
| 294 |
257 /* | 295 /* |
258 ** Locate the in-memory structure that describes a particular database | 296 ** Locate the in-memory structure that describes a particular database |
259 ** table given the name of that table and (optionally) the name of the | 297 ** table given the name of that table and (optionally) the name of the |
260 ** database containing the table. Return NULL if not found. | 298 ** database containing the table. Return NULL if not found. |
261 ** | 299 ** |
262 ** If zDatabase is 0, all databases are searched for the table and the | 300 ** If zDatabase is 0, all databases are searched for the table and the |
263 ** first matching table is returned. (No checking for duplicate table | 301 ** first matching table is returned. (No checking for duplicate table |
264 ** names is done.) The search order is TEMP first, then MAIN, then any | 302 ** names is done.) The search order is TEMP first, then MAIN, then any |
265 ** auxiliary databases added using the ATTACH command. | 303 ** auxiliary databases added using the ATTACH command. |
266 ** | 304 ** |
267 ** See also sqlite3LocateTable(). | 305 ** See also sqlite3LocateTable(). |
268 */ | 306 */ |
269 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ | 307 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ |
270 Table *p = 0; | 308 Table *p = 0; |
271 int i; | 309 int i; |
272 int nName; | |
273 assert( zName!=0 ); | 310 assert( zName!=0 ); |
274 nName = sqlite3Strlen30(zName); | |
275 /* All mutexes are required for schema access. Make sure we hold them. */ | 311 /* All mutexes are required for schema access. Make sure we hold them. */ |
276 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); | 312 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); |
| 313 #if SQLITE_USER_AUTHENTICATION |
| 314 /* Only the admin user is allowed to know that the sqlite_user table |
| 315 ** exists */ |
| 316 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ |
| 317 return 0; |
| 318 } |
| 319 #endif |
277 for(i=OMIT_TEMPDB; i<db->nDb; i++){ | 320 for(i=OMIT_TEMPDB; i<db->nDb; i++){ |
278 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ | 321 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ |
279 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; | 322 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; |
280 assert( sqlite3SchemaMutexHeld(db, j, 0) ); | 323 assert( sqlite3SchemaMutexHeld(db, j, 0) ); |
281 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); | 324 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); |
282 if( p ) break; | 325 if( p ) break; |
283 } | 326 } |
284 return p; | 327 return p; |
285 } | 328 } |
286 | 329 |
287 /* | 330 /* |
288 ** Locate the in-memory structure that describes a particular database | 331 ** Locate the in-memory structure that describes a particular database |
289 ** table given the name of that table and (optionally) the name of the | 332 ** table given the name of that table and (optionally) the name of the |
290 ** database containing the table. Return NULL if not found. Also leave an | 333 ** database containing the table. Return NULL if not found. Also leave an |
291 ** error message in pParse->zErrMsg. | 334 ** error message in pParse->zErrMsg. |
(...skipping 19 matching lines...) Expand all Loading... |
311 p = sqlite3FindTable(pParse->db, zName, zDbase); | 354 p = sqlite3FindTable(pParse->db, zName, zDbase); |
312 if( p==0 ){ | 355 if( p==0 ){ |
313 const char *zMsg = isView ? "no such view" : "no such table"; | 356 const char *zMsg = isView ? "no such view" : "no such table"; |
314 if( zDbase ){ | 357 if( zDbase ){ |
315 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); | 358 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); |
316 }else{ | 359 }else{ |
317 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); | 360 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); |
318 } | 361 } |
319 pParse->checkSchema = 1; | 362 pParse->checkSchema = 1; |
320 } | 363 } |
| 364 #if SQLITE_USER_AUTHENICATION |
| 365 else if( pParse->db->auth.authLevel<UAUTH_User ){ |
| 366 sqlite3ErrorMsg(pParse, "user not authenticated"); |
| 367 p = 0; |
| 368 } |
| 369 #endif |
321 return p; | 370 return p; |
322 } | 371 } |
323 | 372 |
324 /* | 373 /* |
| 374 ** Locate the table identified by *p. |
| 375 ** |
| 376 ** This is a wrapper around sqlite3LocateTable(). The difference between |
| 377 ** sqlite3LocateTable() and this function is that this function restricts |
| 378 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be |
| 379 ** non-NULL if it is part of a view or trigger program definition. See |
| 380 ** sqlite3FixSrcList() for details. |
| 381 */ |
| 382 Table *sqlite3LocateTableItem( |
| 383 Parse *pParse, |
| 384 int isView, |
| 385 struct SrcList_item *p |
| 386 ){ |
| 387 const char *zDb; |
| 388 assert( p->pSchema==0 || p->zDatabase==0 ); |
| 389 if( p->pSchema ){ |
| 390 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); |
| 391 zDb = pParse->db->aDb[iDb].zName; |
| 392 }else{ |
| 393 zDb = p->zDatabase; |
| 394 } |
| 395 return sqlite3LocateTable(pParse, isView, p->zName, zDb); |
| 396 } |
| 397 |
| 398 /* |
325 ** Locate the in-memory structure that describes | 399 ** Locate the in-memory structure that describes |
326 ** a particular index given the name of that index | 400 ** a particular index given the name of that index |
327 ** and the name of the database that contains the index. | 401 ** and the name of the database that contains the index. |
328 ** Return NULL if not found. | 402 ** Return NULL if not found. |
329 ** | 403 ** |
330 ** If zDatabase is 0, all databases are searched for the | 404 ** If zDatabase is 0, all databases are searched for the |
331 ** table and the first matching index is returned. (No checking | 405 ** table and the first matching index is returned. (No checking |
332 ** for duplicate index names is done.) The search order is | 406 ** for duplicate index names is done.) The search order is |
333 ** TEMP first, then MAIN, then any auxiliary databases added | 407 ** TEMP first, then MAIN, then any auxiliary databases added |
334 ** using the ATTACH command. | 408 ** using the ATTACH command. |
335 */ | 409 */ |
336 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ | 410 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ |
337 Index *p = 0; | 411 Index *p = 0; |
338 int i; | 412 int i; |
339 int nName = sqlite3Strlen30(zName); | |
340 /* All mutexes are required for schema access. Make sure we hold them. */ | 413 /* All mutexes are required for schema access. Make sure we hold them. */ |
341 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); | 414 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); |
342 for(i=OMIT_TEMPDB; i<db->nDb; i++){ | 415 for(i=OMIT_TEMPDB; i<db->nDb; i++){ |
343 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ | 416 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ |
344 Schema *pSchema = db->aDb[j].pSchema; | 417 Schema *pSchema = db->aDb[j].pSchema; |
345 assert( pSchema ); | 418 assert( pSchema ); |
346 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; | 419 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; |
347 assert( sqlite3SchemaMutexHeld(db, j, 0) ); | 420 assert( sqlite3SchemaMutexHeld(db, j, 0) ); |
348 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); | 421 p = sqlite3HashFind(&pSchema->idxHash, zName); |
349 if( p ) break; | 422 if( p ) break; |
350 } | 423 } |
351 return p; | 424 return p; |
352 } | 425 } |
353 | 426 |
354 /* | 427 /* |
355 ** Reclaim the memory used by an index | 428 ** Reclaim the memory used by an index |
356 */ | 429 */ |
357 static void freeIndex(sqlite3 *db, Index *p){ | 430 static void freeIndex(sqlite3 *db, Index *p){ |
358 #ifndef SQLITE_OMIT_ANALYZE | 431 #ifndef SQLITE_OMIT_ANALYZE |
359 sqlite3DeleteIndexSamples(db, p); | 432 sqlite3DeleteIndexSamples(db, p); |
360 #endif | 433 #endif |
| 434 if( db==0 || db->pnBytesFreed==0 ) sqlite3KeyInfoUnref(p->pKeyInfo); |
| 435 sqlite3ExprDelete(db, p->pPartIdxWhere); |
361 sqlite3DbFree(db, p->zColAff); | 436 sqlite3DbFree(db, p->zColAff); |
| 437 if( p->isResized ) sqlite3DbFree(db, p->azColl); |
| 438 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 439 sqlite3_free(p->aiRowEst); |
| 440 #endif |
362 sqlite3DbFree(db, p); | 441 sqlite3DbFree(db, p); |
363 } | 442 } |
364 | 443 |
365 /* | 444 /* |
366 ** For the index called zIdxName which is found in the database iDb, | 445 ** For the index called zIdxName which is found in the database iDb, |
367 ** unlike that index from its Table then remove the index from | 446 ** unlike that index from its Table then remove the index from |
368 ** the index hash table and free all memory structures associated | 447 ** the index hash table and free all memory structures associated |
369 ** with the index. | 448 ** with the index. |
370 */ | 449 */ |
371 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ | 450 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ |
372 Index *pIndex; | 451 Index *pIndex; |
373 int len; | |
374 Hash *pHash; | 452 Hash *pHash; |
375 | 453 |
376 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | 454 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
377 pHash = &db->aDb[iDb].pSchema->idxHash; | 455 pHash = &db->aDb[iDb].pSchema->idxHash; |
378 len = sqlite3Strlen30(zIdxName); | 456 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); |
379 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); | |
380 if( ALWAYS(pIndex) ){ | 457 if( ALWAYS(pIndex) ){ |
381 if( pIndex->pTable->pIndex==pIndex ){ | 458 if( pIndex->pTable->pIndex==pIndex ){ |
382 pIndex->pTable->pIndex = pIndex->pNext; | 459 pIndex->pTable->pIndex = pIndex->pNext; |
383 }else{ | 460 }else{ |
384 Index *p; | 461 Index *p; |
385 /* Justification of ALWAYS(); The index must be on the list of | 462 /* Justification of ALWAYS(); The index must be on the list of |
386 ** indices. */ | 463 ** indices. */ |
387 p = pIndex->pTable->pIndex; | 464 p = pIndex->pTable->pIndex; |
388 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } | 465 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } |
389 if( ALWAYS(p && p->pNext==pIndex) ){ | 466 if( ALWAYS(p && p->pNext==pIndex) ){ |
390 p->pNext = pIndex->pNext; | 467 p->pNext = pIndex->pNext; |
391 } | 468 } |
392 } | 469 } |
393 freeIndex(db, pIndex); | 470 freeIndex(db, pIndex); |
394 } | 471 } |
395 db->flags |= SQLITE_InternChanges; | 472 db->flags |= SQLITE_InternChanges; |
396 } | 473 } |
397 | 474 |
398 /* | 475 /* |
399 ** Erase all schema information from the in-memory hash tables of | 476 ** Look through the list of open database files in db->aDb[] and if |
400 ** a single database. This routine is called to reclaim memory | 477 ** any have been closed, remove them from the list. Reallocate the |
401 ** before the database closes. It is also called during a rollback | 478 ** db->aDb[] structure to a smaller size, if possible. |
402 ** if there were schema changes during the transaction or if a | |
403 ** schema-cookie mismatch occurs. | |
404 ** | 479 ** |
405 ** If iDb<0 then reset the internal schema tables for all database | 480 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) |
406 ** files. If iDb>=0 then reset the internal schema for only the | 481 ** are never candidates for being collapsed. |
407 ** single file indicated. | |
408 */ | 482 */ |
409 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ | 483 void sqlite3CollapseDatabaseArray(sqlite3 *db){ |
410 int i, j; | 484 int i, j; |
411 assert( iDb<db->nDb ); | |
412 | |
413 if( iDb>=0 ){ | |
414 /* Case 1: Reset the single schema identified by iDb */ | |
415 Db *pDb = &db->aDb[iDb]; | |
416 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | |
417 assert( pDb->pSchema!=0 ); | |
418 sqlite3SchemaClear(pDb->pSchema); | |
419 | |
420 /* If any database other than TEMP is reset, then also reset TEMP | |
421 ** since TEMP might be holding triggers that reference tables in the | |
422 ** other database. | |
423 */ | |
424 if( iDb!=1 ){ | |
425 pDb = &db->aDb[1]; | |
426 assert( pDb->pSchema!=0 ); | |
427 sqlite3SchemaClear(pDb->pSchema); | |
428 } | |
429 return; | |
430 } | |
431 /* Case 2 (from here to the end): Reset all schemas for all attached | |
432 ** databases. */ | |
433 assert( iDb<0 ); | |
434 sqlite3BtreeEnterAll(db); | |
435 for(i=0; i<db->nDb; i++){ | |
436 Db *pDb = &db->aDb[i]; | |
437 if( pDb->pSchema ){ | |
438 sqlite3SchemaClear(pDb->pSchema); | |
439 } | |
440 } | |
441 db->flags &= ~SQLITE_InternChanges; | |
442 sqlite3VtabUnlockList(db); | |
443 sqlite3BtreeLeaveAll(db); | |
444 | |
445 /* If one or more of the auxiliary database files has been closed, | |
446 ** then remove them from the auxiliary database list. We take the | |
447 ** opportunity to do this here since we have just deleted all of the | |
448 ** schema hash tables and therefore do not have to make any changes | |
449 ** to any of those tables. | |
450 */ | |
451 for(i=j=2; i<db->nDb; i++){ | 485 for(i=j=2; i<db->nDb; i++){ |
452 struct Db *pDb = &db->aDb[i]; | 486 struct Db *pDb = &db->aDb[i]; |
453 if( pDb->pBt==0 ){ | 487 if( pDb->pBt==0 ){ |
454 sqlite3DbFree(db, pDb->zName); | 488 sqlite3DbFree(db, pDb->zName); |
455 pDb->zName = 0; | 489 pDb->zName = 0; |
456 continue; | 490 continue; |
457 } | 491 } |
458 if( j<i ){ | 492 if( j<i ){ |
459 db->aDb[j] = db->aDb[i]; | 493 db->aDb[j] = db->aDb[i]; |
460 } | 494 } |
461 j++; | 495 j++; |
462 } | 496 } |
463 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); | 497 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); |
464 db->nDb = j; | 498 db->nDb = j; |
465 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ | 499 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ |
466 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); | 500 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); |
467 sqlite3DbFree(db, db->aDb); | 501 sqlite3DbFree(db, db->aDb); |
468 db->aDb = db->aDbStatic; | 502 db->aDb = db->aDbStatic; |
469 } | 503 } |
470 } | 504 } |
471 | 505 |
472 /* | 506 /* |
| 507 ** Reset the schema for the database at index iDb. Also reset the |
| 508 ** TEMP schema. |
| 509 */ |
| 510 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ |
| 511 Db *pDb; |
| 512 assert( iDb<db->nDb ); |
| 513 |
| 514 /* Case 1: Reset the single schema identified by iDb */ |
| 515 pDb = &db->aDb[iDb]; |
| 516 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 517 assert( pDb->pSchema!=0 ); |
| 518 sqlite3SchemaClear(pDb->pSchema); |
| 519 |
| 520 /* If any database other than TEMP is reset, then also reset TEMP |
| 521 ** since TEMP might be holding triggers that reference tables in the |
| 522 ** other database. |
| 523 */ |
| 524 if( iDb!=1 ){ |
| 525 pDb = &db->aDb[1]; |
| 526 assert( pDb->pSchema!=0 ); |
| 527 sqlite3SchemaClear(pDb->pSchema); |
| 528 } |
| 529 return; |
| 530 } |
| 531 |
| 532 /* |
| 533 ** Erase all schema information from all attached databases (including |
| 534 ** "main" and "temp") for a single database connection. |
| 535 */ |
| 536 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ |
| 537 int i; |
| 538 sqlite3BtreeEnterAll(db); |
| 539 for(i=0; i<db->nDb; i++){ |
| 540 Db *pDb = &db->aDb[i]; |
| 541 if( pDb->pSchema ){ |
| 542 sqlite3SchemaClear(pDb->pSchema); |
| 543 } |
| 544 } |
| 545 db->flags &= ~SQLITE_InternChanges; |
| 546 sqlite3VtabUnlockList(db); |
| 547 sqlite3BtreeLeaveAll(db); |
| 548 sqlite3CollapseDatabaseArray(db); |
| 549 } |
| 550 |
| 551 /* |
473 ** This routine is called when a commit occurs. | 552 ** This routine is called when a commit occurs. |
474 */ | 553 */ |
475 void sqlite3CommitInternalChanges(sqlite3 *db){ | 554 void sqlite3CommitInternalChanges(sqlite3 *db){ |
476 db->flags &= ~SQLITE_InternChanges; | 555 db->flags &= ~SQLITE_InternChanges; |
477 } | 556 } |
478 | 557 |
479 /* | 558 /* |
480 ** Delete memory allocated for the column names of a table or view (the | 559 ** Delete memory allocated for the column names of a table or view (the |
481 ** Table.aCol[] array). | 560 ** Table.aCol[] array). |
482 */ | 561 */ |
(...skipping 14 matching lines...) Expand all Loading... |
497 } | 576 } |
498 | 577 |
499 /* | 578 /* |
500 ** Remove the memory data structures associated with the given | 579 ** Remove the memory data structures associated with the given |
501 ** Table. No changes are made to disk by this routine. | 580 ** Table. No changes are made to disk by this routine. |
502 ** | 581 ** |
503 ** This routine just deletes the data structure. It does not unlink | 582 ** This routine just deletes the data structure. It does not unlink |
504 ** the table data structure from the hash table. But it does destroy | 583 ** the table data structure from the hash table. But it does destroy |
505 ** memory structures of the indices and foreign keys associated with | 584 ** memory structures of the indices and foreign keys associated with |
506 ** the table. | 585 ** the table. |
| 586 ** |
| 587 ** The db parameter is optional. It is needed if the Table object |
| 588 ** contains lookaside memory. (Table objects in the schema do not use |
| 589 ** lookaside memory, but some ephemeral Table objects do.) Or the |
| 590 ** db parameter can be used with db->pnBytesFreed to measure the memory |
| 591 ** used by the Table object. |
507 */ | 592 */ |
508 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ | 593 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ |
509 Index *pIndex, *pNext; | 594 Index *pIndex, *pNext; |
| 595 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ |
510 | 596 |
511 assert( !pTable || pTable->nRef>0 ); | 597 assert( !pTable || pTable->nRef>0 ); |
512 | 598 |
513 /* Do not delete the table until the reference count reaches zero. */ | 599 /* Do not delete the table until the reference count reaches zero. */ |
514 if( !pTable ) return; | 600 if( !pTable ) return; |
515 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; | 601 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; |
516 | 602 |
| 603 /* Record the number of outstanding lookaside allocations in schema Tables |
| 604 ** prior to doing any free() operations. Since schema Tables do not use |
| 605 ** lookaside, this number should not change. */ |
| 606 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? |
| 607 db->lookaside.nOut : 0 ); |
| 608 |
517 /* Delete all indices associated with this table. */ | 609 /* Delete all indices associated with this table. */ |
518 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ | 610 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ |
519 pNext = pIndex->pNext; | 611 pNext = pIndex->pNext; |
520 assert( pIndex->pSchema==pTable->pSchema ); | 612 assert( pIndex->pSchema==pTable->pSchema ); |
521 if( !db || db->pnBytesFreed==0 ){ | 613 if( !db || db->pnBytesFreed==0 ){ |
522 char *zName = pIndex->zName; | 614 char *zName = pIndex->zName; |
523 TESTONLY ( Index *pOld = ) sqlite3HashInsert( | 615 TESTONLY ( Index *pOld = ) sqlite3HashInsert( |
524 » &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 | 616 &pIndex->pSchema->idxHash, zName, 0 |
525 ); | 617 ); |
526 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); | 618 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); |
527 assert( pOld==pIndex || pOld==0 ); | 619 assert( pOld==pIndex || pOld==0 ); |
528 } | 620 } |
529 freeIndex(db, pIndex); | 621 freeIndex(db, pIndex); |
530 } | 622 } |
531 | 623 |
532 /* Delete any foreign keys attached to this table. */ | 624 /* Delete any foreign keys attached to this table. */ |
533 sqlite3FkDelete(db, pTable); | 625 sqlite3FkDelete(db, pTable); |
534 | 626 |
535 /* Delete the Table structure itself. | 627 /* Delete the Table structure itself. |
536 */ | 628 */ |
537 sqliteDeleteColumnNames(db, pTable); | 629 sqliteDeleteColumnNames(db, pTable); |
538 sqlite3DbFree(db, pTable->zName); | 630 sqlite3DbFree(db, pTable->zName); |
539 sqlite3DbFree(db, pTable->zColAff); | 631 sqlite3DbFree(db, pTable->zColAff); |
540 sqlite3SelectDelete(db, pTable->pSelect); | 632 sqlite3SelectDelete(db, pTable->pSelect); |
541 #ifndef SQLITE_OMIT_CHECK | 633 #ifndef SQLITE_OMIT_CHECK |
542 sqlite3ExprDelete(db, pTable->pCheck); | 634 sqlite3ExprListDelete(db, pTable->pCheck); |
543 #endif | 635 #endif |
544 #ifndef SQLITE_OMIT_VIRTUALTABLE | 636 #ifndef SQLITE_OMIT_VIRTUALTABLE |
545 sqlite3VtabClear(db, pTable); | 637 sqlite3VtabClear(db, pTable); |
546 #endif | 638 #endif |
547 sqlite3DbFree(db, pTable); | 639 sqlite3DbFree(db, pTable); |
| 640 |
| 641 /* Verify that no lookaside memory was used by schema tables */ |
| 642 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); |
548 } | 643 } |
549 | 644 |
550 /* | 645 /* |
551 ** Unlink the given table from the hash tables and the delete the | 646 ** Unlink the given table from the hash tables and the delete the |
552 ** table structure with all its indices and foreign keys. | 647 ** table structure with all its indices and foreign keys. |
553 */ | 648 */ |
554 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ | 649 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ |
555 Table *p; | 650 Table *p; |
556 Db *pDb; | 651 Db *pDb; |
557 | 652 |
558 assert( db!=0 ); | 653 assert( db!=0 ); |
559 assert( iDb>=0 && iDb<db->nDb ); | 654 assert( iDb>=0 && iDb<db->nDb ); |
560 assert( zTabName ); | 655 assert( zTabName ); |
561 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | 656 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
562 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ | 657 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ |
563 pDb = &db->aDb[iDb]; | 658 pDb = &db->aDb[iDb]; |
564 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, | 659 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); |
565 sqlite3Strlen30(zTabName),0); | |
566 sqlite3DeleteTable(db, p); | 660 sqlite3DeleteTable(db, p); |
567 db->flags |= SQLITE_InternChanges; | 661 db->flags |= SQLITE_InternChanges; |
568 } | 662 } |
569 | 663 |
570 /* | 664 /* |
571 ** Given a token, return a string that consists of the text of that | 665 ** Given a token, return a string that consists of the text of that |
572 ** token. Space to hold the returned string | 666 ** token. Space to hold the returned string |
573 ** is obtained from sqliteMalloc() and must be freed by the calling | 667 ** is obtained from sqliteMalloc() and must be freed by the calling |
574 ** function. | 668 ** function. |
575 ** | 669 ** |
(...skipping 15 matching lines...) Expand all Loading... |
591 return zName; | 685 return zName; |
592 } | 686 } |
593 | 687 |
594 /* | 688 /* |
595 ** Open the sqlite_master table stored in database number iDb for | 689 ** Open the sqlite_master table stored in database number iDb for |
596 ** writing. The table is opened using cursor 0. | 690 ** writing. The table is opened using cursor 0. |
597 */ | 691 */ |
598 void sqlite3OpenMasterTable(Parse *p, int iDb){ | 692 void sqlite3OpenMasterTable(Parse *p, int iDb){ |
599 Vdbe *v = sqlite3GetVdbe(p); | 693 Vdbe *v = sqlite3GetVdbe(p); |
600 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); | 694 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); |
601 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); | 695 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); |
602 sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */ | |
603 if( p->nTab==0 ){ | 696 if( p->nTab==0 ){ |
604 p->nTab = 1; | 697 p->nTab = 1; |
605 } | 698 } |
606 } | 699 } |
607 | 700 |
608 /* | 701 /* |
609 ** Parameter zName points to a nul-terminated buffer containing the name | 702 ** Parameter zName points to a nul-terminated buffer containing the name |
610 ** of a database ("main", "temp" or the name of an attached db). This | 703 ** of a database ("main", "temp" or the name of an attached db). This |
611 ** function returns the index of the named database in db->aDb[], or | 704 ** function returns the index of the named database in db->aDb[], or |
612 ** -1 if the named db cannot be found. | 705 ** -1 if the named db cannot be found. |
(...skipping 85 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
698 if( !pParse->db->init.busy && pParse->nested==0 | 791 if( !pParse->db->init.busy && pParse->nested==0 |
699 && (pParse->db->flags & SQLITE_WriteSchema)==0 | 792 && (pParse->db->flags & SQLITE_WriteSchema)==0 |
700 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ | 793 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ |
701 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); | 794 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); |
702 return SQLITE_ERROR; | 795 return SQLITE_ERROR; |
703 } | 796 } |
704 return SQLITE_OK; | 797 return SQLITE_OK; |
705 } | 798 } |
706 | 799 |
707 /* | 800 /* |
| 801 ** Return the PRIMARY KEY index of a table |
| 802 */ |
| 803 Index *sqlite3PrimaryKeyIndex(Table *pTab){ |
| 804 Index *p; |
| 805 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} |
| 806 return p; |
| 807 } |
| 808 |
| 809 /* |
| 810 ** Return the column of index pIdx that corresponds to table |
| 811 ** column iCol. Return -1 if not found. |
| 812 */ |
| 813 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ |
| 814 int i; |
| 815 for(i=0; i<pIdx->nColumn; i++){ |
| 816 if( iCol==pIdx->aiColumn[i] ) return i; |
| 817 } |
| 818 return -1; |
| 819 } |
| 820 |
| 821 /* |
708 ** Begin constructing a new table representation in memory. This is | 822 ** Begin constructing a new table representation in memory. This is |
709 ** the first of several action routines that get called in response | 823 ** the first of several action routines that get called in response |
710 ** to a CREATE TABLE statement. In particular, this routine is called | 824 ** to a CREATE TABLE statement. In particular, this routine is called |
711 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp | 825 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp |
712 ** flag is true if the table should be stored in the auxiliary database | 826 ** flag is true if the table should be stored in the auxiliary database |
713 ** file instead of in the main database file. This is normally the case | 827 ** file instead of in the main database file. This is normally the case |
714 ** when the "TEMP" or "TEMPORARY" keyword occurs in between | 828 ** when the "TEMP" or "TEMPORARY" keyword occurs in between |
715 ** CREATE and TABLE. | 829 ** CREATE and TABLE. |
716 ** | 830 ** |
717 ** The new table record is initialized and put in pParse->pNewTable. | 831 ** The new table record is initialized and put in pParse->pNewTable. |
(...skipping 111 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
829 if( pTable==0 ){ | 943 if( pTable==0 ){ |
830 db->mallocFailed = 1; | 944 db->mallocFailed = 1; |
831 pParse->rc = SQLITE_NOMEM; | 945 pParse->rc = SQLITE_NOMEM; |
832 pParse->nErr++; | 946 pParse->nErr++; |
833 goto begin_table_error; | 947 goto begin_table_error; |
834 } | 948 } |
835 pTable->zName = zName; | 949 pTable->zName = zName; |
836 pTable->iPKey = -1; | 950 pTable->iPKey = -1; |
837 pTable->pSchema = db->aDb[iDb].pSchema; | 951 pTable->pSchema = db->aDb[iDb].pSchema; |
838 pTable->nRef = 1; | 952 pTable->nRef = 1; |
839 pTable->nRowEst = 1000000; | 953 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
840 assert( pParse->pNewTable==0 ); | 954 assert( pParse->pNewTable==0 ); |
841 pParse->pNewTable = pTable; | 955 pParse->pNewTable = pTable; |
842 | 956 |
843 /* If this is the magic sqlite_sequence table used by autoincrement, | 957 /* If this is the magic sqlite_sequence table used by autoincrement, |
844 ** then record a pointer to this table in the main database structure | 958 ** then record a pointer to this table in the main database structure |
845 ** so that INSERT can find the table easily. | 959 ** so that INSERT can find the table easily. |
846 */ | 960 */ |
847 #ifndef SQLITE_OMIT_AUTOINCREMENT | 961 #ifndef SQLITE_OMIT_AUTOINCREMENT |
848 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ | 962 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ |
849 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | 963 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
(...skipping 22 matching lines...) Expand all Loading... |
872 #endif | 986 #endif |
873 | 987 |
874 /* If the file format and encoding in the database have not been set, | 988 /* If the file format and encoding in the database have not been set, |
875 ** set them now. | 989 ** set them now. |
876 */ | 990 */ |
877 reg1 = pParse->regRowid = ++pParse->nMem; | 991 reg1 = pParse->regRowid = ++pParse->nMem; |
878 reg2 = pParse->regRoot = ++pParse->nMem; | 992 reg2 = pParse->regRoot = ++pParse->nMem; |
879 reg3 = ++pParse->nMem; | 993 reg3 = ++pParse->nMem; |
880 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); | 994 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); |
881 sqlite3VdbeUsesBtree(v, iDb); | 995 sqlite3VdbeUsesBtree(v, iDb); |
882 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); | 996 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); |
883 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? | 997 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? |
884 1 : SQLITE_MAX_FILE_FORMAT; | 998 1 : SQLITE_MAX_FILE_FORMAT; |
885 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); | 999 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); |
886 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); | 1000 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); |
887 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); | 1001 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); |
888 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); | 1002 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); |
889 sqlite3VdbeJumpHere(v, j1); | 1003 sqlite3VdbeJumpHere(v, j1); |
890 | 1004 |
891 /* This just creates a place-holder record in the sqlite_master table. | 1005 /* This just creates a place-holder record in the sqlite_master table. |
892 ** The record created does not contain anything yet. It will be replaced | 1006 ** The record created does not contain anything yet. It will be replaced |
893 ** by the real entry in code generated at sqlite3EndTable(). | 1007 ** by the real entry in code generated at sqlite3EndTable(). |
894 ** | 1008 ** |
895 ** The rowid for the new entry is left in register pParse->regRowid. | 1009 ** The rowid for the new entry is left in register pParse->regRowid. |
896 ** The root page number of the new table is left in reg pParse->regRoot. | 1010 ** The root page number of the new table is left in reg pParse->regRoot. |
897 ** The rowid and root page number values are needed by the code that | 1011 ** The rowid and root page number values are needed by the code that |
898 ** sqlite3EndTable will generate. | 1012 ** sqlite3EndTable will generate. |
899 */ | 1013 */ |
900 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) | 1014 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) |
901 if( isView || isVirtual ){ | 1015 if( isView || isVirtual ){ |
902 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); | 1016 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); |
903 }else | 1017 }else |
904 #endif | 1018 #endif |
905 { | 1019 { |
906 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); | 1020 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); |
907 } | 1021 } |
908 sqlite3OpenMasterTable(pParse, iDb); | 1022 sqlite3OpenMasterTable(pParse, iDb); |
909 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); | 1023 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); |
910 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); | 1024 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); |
911 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); | 1025 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); |
912 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); | 1026 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
913 sqlite3VdbeAddOp0(v, OP_Close); | 1027 sqlite3VdbeAddOp0(v, OP_Close); |
914 } | 1028 } |
915 | 1029 |
916 /* Normal (non-error) return. */ | 1030 /* Normal (non-error) return. */ |
(...skipping 59 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
976 } | 1090 } |
977 pCol = &p->aCol[p->nCol]; | 1091 pCol = &p->aCol[p->nCol]; |
978 memset(pCol, 0, sizeof(p->aCol[0])); | 1092 memset(pCol, 0, sizeof(p->aCol[0])); |
979 pCol->zName = z; | 1093 pCol->zName = z; |
980 | 1094 |
981 /* If there is no type specified, columns have the default affinity | 1095 /* If there is no type specified, columns have the default affinity |
982 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will | 1096 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will |
983 ** be called next to set pCol->affinity correctly. | 1097 ** be called next to set pCol->affinity correctly. |
984 */ | 1098 */ |
985 pCol->affinity = SQLITE_AFF_NONE; | 1099 pCol->affinity = SQLITE_AFF_NONE; |
| 1100 pCol->szEst = 1; |
986 p->nCol++; | 1101 p->nCol++; |
987 } | 1102 } |
988 | 1103 |
989 /* | 1104 /* |
990 ** This routine is called by the parser while in the middle of | 1105 ** This routine is called by the parser while in the middle of |
991 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has | 1106 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has |
992 ** been seen on a column. This routine sets the notNull flag on | 1107 ** been seen on a column. This routine sets the notNull flag on |
993 ** the column currently under construction. | 1108 ** the column currently under construction. |
994 */ | 1109 */ |
995 void sqlite3AddNotNull(Parse *pParse, int onError){ | 1110 void sqlite3AddNotNull(Parse *pParse, int onError){ |
(...skipping 21 matching lines...) Expand all Loading... |
1017 ** 'CLOB' | SQLITE_AFF_TEXT | 1132 ** 'CLOB' | SQLITE_AFF_TEXT |
1018 ** 'TEXT' | SQLITE_AFF_TEXT | 1133 ** 'TEXT' | SQLITE_AFF_TEXT |
1019 ** 'BLOB' | SQLITE_AFF_NONE | 1134 ** 'BLOB' | SQLITE_AFF_NONE |
1020 ** 'REAL' | SQLITE_AFF_REAL | 1135 ** 'REAL' | SQLITE_AFF_REAL |
1021 ** 'FLOA' | SQLITE_AFF_REAL | 1136 ** 'FLOA' | SQLITE_AFF_REAL |
1022 ** 'DOUB' | SQLITE_AFF_REAL | 1137 ** 'DOUB' | SQLITE_AFF_REAL |
1023 ** | 1138 ** |
1024 ** If none of the substrings in the above table are found, | 1139 ** If none of the substrings in the above table are found, |
1025 ** SQLITE_AFF_NUMERIC is returned. | 1140 ** SQLITE_AFF_NUMERIC is returned. |
1026 */ | 1141 */ |
1027 char sqlite3AffinityType(const char *zIn){ | 1142 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ |
1028 u32 h = 0; | 1143 u32 h = 0; |
1029 char aff = SQLITE_AFF_NUMERIC; | 1144 char aff = SQLITE_AFF_NUMERIC; |
| 1145 const char *zChar = 0; |
1030 | 1146 |
1031 if( zIn ) while( zIn[0] ){ | 1147 if( zIn==0 ) return aff; |
| 1148 while( zIn[0] ){ |
1032 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; | 1149 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; |
1033 zIn++; | 1150 zIn++; |
1034 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ | 1151 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ |
1035 aff = SQLITE_AFF_TEXT; | 1152 aff = SQLITE_AFF_TEXT; |
| 1153 zChar = zIn; |
1036 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ | 1154 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ |
1037 aff = SQLITE_AFF_TEXT; | 1155 aff = SQLITE_AFF_TEXT; |
1038 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ | 1156 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ |
1039 aff = SQLITE_AFF_TEXT; | 1157 aff = SQLITE_AFF_TEXT; |
1040 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ | 1158 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ |
1041 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ | 1159 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ |
1042 aff = SQLITE_AFF_NONE; | 1160 aff = SQLITE_AFF_NONE; |
| 1161 if( zIn[0]=='(' ) zChar = zIn; |
1043 #ifndef SQLITE_OMIT_FLOATING_POINT | 1162 #ifndef SQLITE_OMIT_FLOATING_POINT |
1044 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ | 1163 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ |
1045 && aff==SQLITE_AFF_NUMERIC ){ | 1164 && aff==SQLITE_AFF_NUMERIC ){ |
1046 aff = SQLITE_AFF_REAL; | 1165 aff = SQLITE_AFF_REAL; |
1047 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ | 1166 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ |
1048 && aff==SQLITE_AFF_NUMERIC ){ | 1167 && aff==SQLITE_AFF_NUMERIC ){ |
1049 aff = SQLITE_AFF_REAL; | 1168 aff = SQLITE_AFF_REAL; |
1050 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ | 1169 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ |
1051 && aff==SQLITE_AFF_NUMERIC ){ | 1170 && aff==SQLITE_AFF_NUMERIC ){ |
1052 aff = SQLITE_AFF_REAL; | 1171 aff = SQLITE_AFF_REAL; |
1053 #endif | 1172 #endif |
1054 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ | 1173 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ |
1055 aff = SQLITE_AFF_INTEGER; | 1174 aff = SQLITE_AFF_INTEGER; |
1056 break; | 1175 break; |
1057 } | 1176 } |
1058 } | 1177 } |
1059 | 1178 |
| 1179 /* If pszEst is not NULL, store an estimate of the field size. The |
| 1180 ** estimate is scaled so that the size of an integer is 1. */ |
| 1181 if( pszEst ){ |
| 1182 *pszEst = 1; /* default size is approx 4 bytes */ |
| 1183 if( aff<SQLITE_AFF_NUMERIC ){ |
| 1184 if( zChar ){ |
| 1185 while( zChar[0] ){ |
| 1186 if( sqlite3Isdigit(zChar[0]) ){ |
| 1187 int v = 0; |
| 1188 sqlite3GetInt32(zChar, &v); |
| 1189 v = v/4 + 1; |
| 1190 if( v>255 ) v = 255; |
| 1191 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ |
| 1192 break; |
| 1193 } |
| 1194 zChar++; |
| 1195 } |
| 1196 }else{ |
| 1197 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ |
| 1198 } |
| 1199 } |
| 1200 } |
1060 return aff; | 1201 return aff; |
1061 } | 1202 } |
1062 | 1203 |
1063 /* | 1204 /* |
1064 ** This routine is called by the parser while in the middle of | 1205 ** This routine is called by the parser while in the middle of |
1065 ** parsing a CREATE TABLE statement. The pFirst token is the first | 1206 ** parsing a CREATE TABLE statement. The pFirst token is the first |
1066 ** token in the sequence of tokens that describe the type of the | 1207 ** token in the sequence of tokens that describe the type of the |
1067 ** column currently under construction. pLast is the last token | 1208 ** column currently under construction. pLast is the last token |
1068 ** in the sequence. Use this information to construct a string | 1209 ** in the sequence. Use this information to construct a string |
1069 ** that contains the typename of the column and store that string | 1210 ** that contains the typename of the column and store that string |
1070 ** in zType. | 1211 ** in zType. |
1071 */ | 1212 */ |
1072 void sqlite3AddColumnType(Parse *pParse, Token *pType){ | 1213 void sqlite3AddColumnType(Parse *pParse, Token *pType){ |
1073 Table *p; | 1214 Table *p; |
1074 Column *pCol; | 1215 Column *pCol; |
1075 | 1216 |
1076 p = pParse->pNewTable; | 1217 p = pParse->pNewTable; |
1077 if( p==0 || NEVER(p->nCol<1) ) return; | 1218 if( p==0 || NEVER(p->nCol<1) ) return; |
1078 pCol = &p->aCol[p->nCol-1]; | 1219 pCol = &p->aCol[p->nCol-1]; |
1079 assert( pCol->zType==0 ); | 1220 assert( pCol->zType==0 ); |
1080 pCol->zType = sqlite3NameFromToken(pParse->db, pType); | 1221 pCol->zType = sqlite3NameFromToken(pParse->db, pType); |
1081 pCol->affinity = sqlite3AffinityType(pCol->zType); | 1222 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); |
1082 } | 1223 } |
1083 | 1224 |
1084 /* | 1225 /* |
1085 ** The expression is the default value for the most recently added column | 1226 ** The expression is the default value for the most recently added column |
1086 ** of the table currently under construction. | 1227 ** of the table currently under construction. |
1087 ** | 1228 ** |
1088 ** Default value expressions must be constant. Raise an exception if this | 1229 ** Default value expressions must be constant. Raise an exception if this |
1089 ** is not the case. | 1230 ** is not the case. |
1090 ** | 1231 ** |
1091 ** This routine is called by the parser while in the middle of | 1232 ** This routine is called by the parser while in the middle of |
1092 ** parsing a CREATE TABLE statement. | 1233 ** parsing a CREATE TABLE statement. |
1093 */ | 1234 */ |
1094 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ | 1235 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ |
1095 Table *p; | 1236 Table *p; |
1096 Column *pCol; | 1237 Column *pCol; |
1097 sqlite3 *db = pParse->db; | 1238 sqlite3 *db = pParse->db; |
1098 p = pParse->pNewTable; | 1239 p = pParse->pNewTable; |
1099 if( p!=0 ){ | 1240 if( p!=0 ){ |
1100 pCol = &(p->aCol[p->nCol-1]); | 1241 pCol = &(p->aCol[p->nCol-1]); |
1101 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ | 1242 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ |
1102 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", | 1243 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", |
1103 pCol->zName); | 1244 pCol->zName); |
1104 }else{ | 1245 }else{ |
1105 /* A copy of pExpr is used instead of the original, as pExpr contains | 1246 /* A copy of pExpr is used instead of the original, as pExpr contains |
1106 ** tokens that point to volatile memory. The 'span' of the expression | 1247 ** tokens that point to volatile memory. The 'span' of the expression |
1107 ** is required by pragma table_info. | 1248 ** is required by pragma table_info. |
1108 */ | 1249 */ |
1109 sqlite3ExprDelete(db, pCol->pDflt); | 1250 sqlite3ExprDelete(db, pCol->pDflt); |
1110 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); | 1251 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); |
1111 sqlite3DbFree(db, pCol->zDflt); | 1252 sqlite3DbFree(db, pCol->zDflt); |
(...skipping 25 matching lines...) Expand all Loading... |
1137 void sqlite3AddPrimaryKey( | 1278 void sqlite3AddPrimaryKey( |
1138 Parse *pParse, /* Parsing context */ | 1279 Parse *pParse, /* Parsing context */ |
1139 ExprList *pList, /* List of field names to be indexed */ | 1280 ExprList *pList, /* List of field names to be indexed */ |
1140 int onError, /* What to do with a uniqueness conflict */ | 1281 int onError, /* What to do with a uniqueness conflict */ |
1141 int autoInc, /* True if the AUTOINCREMENT keyword is present */ | 1282 int autoInc, /* True if the AUTOINCREMENT keyword is present */ |
1142 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ | 1283 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ |
1143 ){ | 1284 ){ |
1144 Table *pTab = pParse->pNewTable; | 1285 Table *pTab = pParse->pNewTable; |
1145 char *zType = 0; | 1286 char *zType = 0; |
1146 int iCol = -1, i; | 1287 int iCol = -1, i; |
| 1288 int nTerm; |
1147 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; | 1289 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; |
1148 if( pTab->tabFlags & TF_HasPrimaryKey ){ | 1290 if( pTab->tabFlags & TF_HasPrimaryKey ){ |
1149 sqlite3ErrorMsg(pParse, | 1291 sqlite3ErrorMsg(pParse, |
1150 "table \"%s\" has more than one primary key", pTab->zName); | 1292 "table \"%s\" has more than one primary key", pTab->zName); |
1151 goto primary_key_exit; | 1293 goto primary_key_exit; |
1152 } | 1294 } |
1153 pTab->tabFlags |= TF_HasPrimaryKey; | 1295 pTab->tabFlags |= TF_HasPrimaryKey; |
1154 if( pList==0 ){ | 1296 if( pList==0 ){ |
1155 iCol = pTab->nCol - 1; | 1297 iCol = pTab->nCol - 1; |
1156 pTab->aCol[iCol].isPrimKey = 1; | 1298 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; |
| 1299 zType = pTab->aCol[iCol].zType; |
| 1300 nTerm = 1; |
1157 }else{ | 1301 }else{ |
1158 for(i=0; i<pList->nExpr; i++){ | 1302 nTerm = pList->nExpr; |
| 1303 for(i=0; i<nTerm; i++){ |
1159 for(iCol=0; iCol<pTab->nCol; iCol++){ | 1304 for(iCol=0; iCol<pTab->nCol; iCol++){ |
1160 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ | 1305 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ |
| 1306 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; |
| 1307 zType = pTab->aCol[iCol].zType; |
1161 break; | 1308 break; |
1162 } | 1309 } |
1163 } | 1310 } |
1164 if( iCol<pTab->nCol ){ | |
1165 pTab->aCol[iCol].isPrimKey = 1; | |
1166 } | |
1167 } | 1311 } |
1168 if( pList->nExpr>1 ) iCol = -1; | |
1169 } | 1312 } |
1170 if( iCol>=0 && iCol<pTab->nCol ){ | 1313 if( nTerm==1 |
1171 zType = pTab->aCol[iCol].zType; | 1314 && zType && sqlite3StrICmp(zType, "INTEGER")==0 |
1172 } | 1315 && sortOrder==SQLITE_SO_ASC |
1173 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 | 1316 ){ |
1174 && sortOrder==SQLITE_SO_ASC ){ | |
1175 pTab->iPKey = iCol; | 1317 pTab->iPKey = iCol; |
1176 pTab->keyConf = (u8)onError; | 1318 pTab->keyConf = (u8)onError; |
1177 assert( autoInc==0 || autoInc==1 ); | 1319 assert( autoInc==0 || autoInc==1 ); |
1178 pTab->tabFlags |= autoInc*TF_Autoincrement; | 1320 pTab->tabFlags |= autoInc*TF_Autoincrement; |
| 1321 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; |
1179 }else if( autoInc ){ | 1322 }else if( autoInc ){ |
1180 #ifndef SQLITE_OMIT_AUTOINCREMENT | 1323 #ifndef SQLITE_OMIT_AUTOINCREMENT |
1181 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " | 1324 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " |
1182 "INTEGER PRIMARY KEY"); | 1325 "INTEGER PRIMARY KEY"); |
1183 #endif | 1326 #endif |
1184 }else{ | 1327 }else{ |
| 1328 Vdbe *v = pParse->pVdbe; |
1185 Index *p; | 1329 Index *p; |
1186 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); | 1330 if( v ) pParse->addrSkipPK = sqlite3VdbeAddOp0(v, OP_Noop); |
| 1331 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, |
| 1332 0, sortOrder, 0); |
1187 if( p ){ | 1333 if( p ){ |
1188 p->autoIndex = 2; | 1334 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; |
| 1335 if( v ) sqlite3VdbeJumpHere(v, pParse->addrSkipPK); |
1189 } | 1336 } |
1190 pList = 0; | 1337 pList = 0; |
1191 } | 1338 } |
1192 | 1339 |
1193 primary_key_exit: | 1340 primary_key_exit: |
1194 sqlite3ExprListDelete(pParse->db, pList); | 1341 sqlite3ExprListDelete(pParse->db, pList); |
1195 return; | 1342 return; |
1196 } | 1343 } |
1197 | 1344 |
1198 /* | 1345 /* |
1199 ** Add a new CHECK constraint to the table currently under construction. | 1346 ** Add a new CHECK constraint to the table currently under construction. |
1200 */ | 1347 */ |
1201 void sqlite3AddCheckConstraint( | 1348 void sqlite3AddCheckConstraint( |
1202 Parse *pParse, /* Parsing context */ | 1349 Parse *pParse, /* Parsing context */ |
1203 Expr *pCheckExpr /* The check expression */ | 1350 Expr *pCheckExpr /* The check expression */ |
1204 ){ | 1351 ){ |
1205 sqlite3 *db = pParse->db; | |
1206 #ifndef SQLITE_OMIT_CHECK | 1352 #ifndef SQLITE_OMIT_CHECK |
1207 Table *pTab = pParse->pNewTable; | 1353 Table *pTab = pParse->pNewTable; |
1208 if( pTab && !IN_DECLARE_VTAB ){ | 1354 sqlite3 *db = pParse->db; |
1209 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr); | 1355 if( pTab && !IN_DECLARE_VTAB |
| 1356 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) |
| 1357 ){ |
| 1358 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); |
| 1359 if( pParse->constraintName.n ){ |
| 1360 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); |
| 1361 } |
1210 }else | 1362 }else |
1211 #endif | 1363 #endif |
1212 { | 1364 { |
1213 sqlite3ExprDelete(db, pCheckExpr); | 1365 sqlite3ExprDelete(pParse->db, pCheckExpr); |
1214 } | 1366 } |
1215 } | 1367 } |
1216 | 1368 |
1217 /* | 1369 /* |
1218 ** Set the collation function of the most recently parsed table column | 1370 ** Set the collation function of the most recently parsed table column |
1219 ** to the CollSeq given. | 1371 ** to the CollSeq given. |
1220 */ | 1372 */ |
1221 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ | 1373 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ |
1222 Table *p; | 1374 Table *p; |
1223 int i; | 1375 int i; |
1224 char *zColl; /* Dequoted name of collation sequence */ | 1376 char *zColl; /* Dequoted name of collation sequence */ |
1225 sqlite3 *db; | 1377 sqlite3 *db; |
1226 | 1378 |
1227 if( (p = pParse->pNewTable)==0 ) return; | 1379 if( (p = pParse->pNewTable)==0 ) return; |
1228 i = p->nCol-1; | 1380 i = p->nCol-1; |
1229 db = pParse->db; | 1381 db = pParse->db; |
1230 zColl = sqlite3NameFromToken(db, pToken); | 1382 zColl = sqlite3NameFromToken(db, pToken); |
1231 if( !zColl ) return; | 1383 if( !zColl ) return; |
1232 | 1384 |
1233 if( sqlite3LocateCollSeq(pParse, zColl) ){ | 1385 if( sqlite3LocateCollSeq(pParse, zColl) ){ |
1234 Index *pIdx; | 1386 Index *pIdx; |
| 1387 sqlite3DbFree(db, p->aCol[i].zColl); |
1235 p->aCol[i].zColl = zColl; | 1388 p->aCol[i].zColl = zColl; |
1236 | 1389 |
1237 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", | 1390 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", |
1238 ** then an index may have been created on this column before the | 1391 ** then an index may have been created on this column before the |
1239 ** collation type was added. Correct this if it is the case. | 1392 ** collation type was added. Correct this if it is the case. |
1240 */ | 1393 */ |
1241 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ | 1394 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ |
1242 assert( pIdx->nColumn==1 ); | 1395 assert( pIdx->nKeyCol==1 ); |
1243 if( pIdx->aiColumn[0]==i ){ | 1396 if( pIdx->aiColumn[0]==i ){ |
1244 pIdx->azColl[0] = p->aCol[i].zColl; | 1397 pIdx->azColl[0] = p->aCol[i].zColl; |
1245 } | 1398 } |
1246 } | 1399 } |
1247 }else{ | 1400 }else{ |
1248 sqlite3DbFree(db, zColl); | 1401 sqlite3DbFree(db, zColl); |
1249 } | 1402 } |
1250 } | 1403 } |
1251 | 1404 |
1252 /* | 1405 /* |
(...skipping 17 matching lines...) Expand all Loading... |
1270 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() | 1423 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() |
1271 */ | 1424 */ |
1272 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ | 1425 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ |
1273 sqlite3 *db = pParse->db; | 1426 sqlite3 *db = pParse->db; |
1274 u8 enc = ENC(db); | 1427 u8 enc = ENC(db); |
1275 u8 initbusy = db->init.busy; | 1428 u8 initbusy = db->init.busy; |
1276 CollSeq *pColl; | 1429 CollSeq *pColl; |
1277 | 1430 |
1278 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); | 1431 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); |
1279 if( !initbusy && (!pColl || !pColl->xCmp) ){ | 1432 if( !initbusy && (!pColl || !pColl->xCmp) ){ |
1280 pColl = sqlite3GetCollSeq(db, enc, pColl, zName); | 1433 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); |
1281 if( !pColl ){ | |
1282 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); | |
1283 } | |
1284 } | 1434 } |
1285 | 1435 |
1286 return pColl; | 1436 return pColl; |
1287 } | 1437 } |
1288 | 1438 |
1289 | 1439 |
1290 /* | 1440 /* |
1291 ** Generate code that will increment the schema cookie. | 1441 ** Generate code that will increment the schema cookie. |
1292 ** | 1442 ** |
1293 ** The schema cookie is used to determine when the schema for the | 1443 ** The schema cookie is used to determine when the schema for the |
(...skipping 49 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1343 ** it is quoted using double-quotes. | 1493 ** it is quoted using double-quotes. |
1344 */ | 1494 */ |
1345 static void identPut(char *z, int *pIdx, char *zSignedIdent){ | 1495 static void identPut(char *z, int *pIdx, char *zSignedIdent){ |
1346 unsigned char *zIdent = (unsigned char*)zSignedIdent; | 1496 unsigned char *zIdent = (unsigned char*)zSignedIdent; |
1347 int i, j, needQuote; | 1497 int i, j, needQuote; |
1348 i = *pIdx; | 1498 i = *pIdx; |
1349 | 1499 |
1350 for(j=0; zIdent[j]; j++){ | 1500 for(j=0; zIdent[j]; j++){ |
1351 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; | 1501 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; |
1352 } | 1502 } |
1353 needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID; | 1503 needQuote = sqlite3Isdigit(zIdent[0]) |
1354 if( !needQuote ){ | 1504 || sqlite3KeywordCode(zIdent, j)!=TK_ID |
1355 needQuote = zIdent[j]; | 1505 || zIdent[j]!=0 |
1356 } | 1506 || j==0; |
1357 | 1507 |
1358 if( needQuote ) z[i++] = '"'; | 1508 if( needQuote ) z[i++] = '"'; |
1359 for(j=0; zIdent[j]; j++){ | 1509 for(j=0; zIdent[j]; j++){ |
1360 z[i++] = zIdent[j]; | 1510 z[i++] = zIdent[j]; |
1361 if( zIdent[j]=='"' ) z[i++] = '"'; | 1511 if( zIdent[j]=='"' ) z[i++] = '"'; |
1362 } | 1512 } |
1363 if( needQuote ) z[i++] = '"'; | 1513 if( needQuote ) z[i++] = '"'; |
1364 z[i] = 0; | 1514 z[i] = 0; |
1365 *pIdx = i; | 1515 *pIdx = i; |
1366 } | 1516 } |
(...skipping 27 matching lines...) Expand all Loading... |
1394 if( zStmt==0 ){ | 1544 if( zStmt==0 ){ |
1395 db->mallocFailed = 1; | 1545 db->mallocFailed = 1; |
1396 return 0; | 1546 return 0; |
1397 } | 1547 } |
1398 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); | 1548 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); |
1399 k = sqlite3Strlen30(zStmt); | 1549 k = sqlite3Strlen30(zStmt); |
1400 identPut(zStmt, &k, p->zName); | 1550 identPut(zStmt, &k, p->zName); |
1401 zStmt[k++] = '('; | 1551 zStmt[k++] = '('; |
1402 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ | 1552 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ |
1403 static const char * const azType[] = { | 1553 static const char * const azType[] = { |
| 1554 /* SQLITE_AFF_NONE */ "", |
1404 /* SQLITE_AFF_TEXT */ " TEXT", | 1555 /* SQLITE_AFF_TEXT */ " TEXT", |
1405 /* SQLITE_AFF_NONE */ "", | |
1406 /* SQLITE_AFF_NUMERIC */ " NUM", | 1556 /* SQLITE_AFF_NUMERIC */ " NUM", |
1407 /* SQLITE_AFF_INTEGER */ " INT", | 1557 /* SQLITE_AFF_INTEGER */ " INT", |
1408 /* SQLITE_AFF_REAL */ " REAL" | 1558 /* SQLITE_AFF_REAL */ " REAL" |
1409 }; | 1559 }; |
1410 int len; | 1560 int len; |
1411 const char *zType; | 1561 const char *zType; |
1412 | 1562 |
1413 sqlite3_snprintf(n-k, &zStmt[k], zSep); | 1563 sqlite3_snprintf(n-k, &zStmt[k], zSep); |
1414 k += sqlite3Strlen30(&zStmt[k]); | 1564 k += sqlite3Strlen30(&zStmt[k]); |
1415 zSep = zSep2; | 1565 zSep = zSep2; |
1416 identPut(zStmt, &k, pCol->zName); | 1566 identPut(zStmt, &k, pCol->zName); |
1417 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); | 1567 assert( pCol->affinity-SQLITE_AFF_NONE >= 0 ); |
1418 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); | 1568 assert( pCol->affinity-SQLITE_AFF_NONE < ArraySize(azType) ); |
| 1569 testcase( pCol->affinity==SQLITE_AFF_NONE ); |
1419 testcase( pCol->affinity==SQLITE_AFF_TEXT ); | 1570 testcase( pCol->affinity==SQLITE_AFF_TEXT ); |
1420 testcase( pCol->affinity==SQLITE_AFF_NONE ); | |
1421 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); | 1571 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); |
1422 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); | 1572 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); |
1423 testcase( pCol->affinity==SQLITE_AFF_REAL ); | 1573 testcase( pCol->affinity==SQLITE_AFF_REAL ); |
1424 | 1574 |
1425 zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; | 1575 zType = azType[pCol->affinity - SQLITE_AFF_NONE]; |
1426 len = sqlite3Strlen30(zType); | 1576 len = sqlite3Strlen30(zType); |
1427 assert( pCol->affinity==SQLITE_AFF_NONE | 1577 assert( pCol->affinity==SQLITE_AFF_NONE |
1428 || pCol->affinity==sqlite3AffinityType(zType) ); | 1578 || pCol->affinity==sqlite3AffinityType(zType, 0) ); |
1429 memcpy(&zStmt[k], zType, len); | 1579 memcpy(&zStmt[k], zType, len); |
1430 k += len; | 1580 k += len; |
1431 assert( k<=n ); | 1581 assert( k<=n ); |
1432 } | 1582 } |
1433 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); | 1583 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); |
1434 return zStmt; | 1584 return zStmt; |
1435 } | 1585 } |
1436 | 1586 |
1437 /* | 1587 /* |
| 1588 ** Resize an Index object to hold N columns total. Return SQLITE_OK |
| 1589 ** on success and SQLITE_NOMEM on an OOM error. |
| 1590 */ |
| 1591 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ |
| 1592 char *zExtra; |
| 1593 int nByte; |
| 1594 if( pIdx->nColumn>=N ) return SQLITE_OK; |
| 1595 assert( pIdx->isResized==0 ); |
| 1596 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; |
| 1597 zExtra = sqlite3DbMallocZero(db, nByte); |
| 1598 if( zExtra==0 ) return SQLITE_NOMEM; |
| 1599 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); |
| 1600 pIdx->azColl = (char**)zExtra; |
| 1601 zExtra += sizeof(char*)*N; |
| 1602 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); |
| 1603 pIdx->aiColumn = (i16*)zExtra; |
| 1604 zExtra += sizeof(i16)*N; |
| 1605 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); |
| 1606 pIdx->aSortOrder = (u8*)zExtra; |
| 1607 pIdx->nColumn = N; |
| 1608 pIdx->isResized = 1; |
| 1609 return SQLITE_OK; |
| 1610 } |
| 1611 |
| 1612 /* |
| 1613 ** Estimate the total row width for a table. |
| 1614 */ |
| 1615 static void estimateTableWidth(Table *pTab){ |
| 1616 unsigned wTable = 0; |
| 1617 const Column *pTabCol; |
| 1618 int i; |
| 1619 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ |
| 1620 wTable += pTabCol->szEst; |
| 1621 } |
| 1622 if( pTab->iPKey<0 ) wTable++; |
| 1623 pTab->szTabRow = sqlite3LogEst(wTable*4); |
| 1624 } |
| 1625 |
| 1626 /* |
| 1627 ** Estimate the average size of a row for an index. |
| 1628 */ |
| 1629 static void estimateIndexWidth(Index *pIdx){ |
| 1630 unsigned wIndex = 0; |
| 1631 int i; |
| 1632 const Column *aCol = pIdx->pTable->aCol; |
| 1633 for(i=0; i<pIdx->nColumn; i++){ |
| 1634 i16 x = pIdx->aiColumn[i]; |
| 1635 assert( x<pIdx->pTable->nCol ); |
| 1636 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; |
| 1637 } |
| 1638 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); |
| 1639 } |
| 1640 |
| 1641 /* Return true if value x is found any of the first nCol entries of aiCol[] |
| 1642 */ |
| 1643 static int hasColumn(const i16 *aiCol, int nCol, int x){ |
| 1644 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; |
| 1645 return 0; |
| 1646 } |
| 1647 |
| 1648 /* |
| 1649 ** This routine runs at the end of parsing a CREATE TABLE statement that |
| 1650 ** has a WITHOUT ROWID clause. The job of this routine is to convert both |
| 1651 ** internal schema data structures and the generated VDBE code so that they |
| 1652 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. |
| 1653 ** Changes include: |
| 1654 ** |
| 1655 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is |
| 1656 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical |
| 1657 ** data storage is a covering index btree. |
| 1658 ** (2) Bypass the creation of the sqlite_master table entry |
| 1659 ** for the PRIMARY KEY as the primary key index is now |
| 1660 ** identified by the sqlite_master table entry of the table itself. |
| 1661 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the |
| 1662 ** schema to the rootpage from the main table. |
| 1663 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. |
| 1664 ** (5) Add all table columns to the PRIMARY KEY Index object |
| 1665 ** so that the PRIMARY KEY is a covering index. The surplus |
| 1666 ** columns are part of KeyInfo.nXField and are not used for |
| 1667 ** sorting or lookup or uniqueness checks. |
| 1668 ** (6) Replace the rowid tail on all automatically generated UNIQUE |
| 1669 ** indices with the PRIMARY KEY columns. |
| 1670 */ |
| 1671 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ |
| 1672 Index *pIdx; |
| 1673 Index *pPk; |
| 1674 int nPk; |
| 1675 int i, j; |
| 1676 sqlite3 *db = pParse->db; |
| 1677 Vdbe *v = pParse->pVdbe; |
| 1678 |
| 1679 /* Convert the OP_CreateTable opcode that would normally create the |
| 1680 ** root-page for the table into an OP_CreateIndex opcode. The index |
| 1681 ** created will become the PRIMARY KEY index. |
| 1682 */ |
| 1683 if( pParse->addrCrTab ){ |
| 1684 assert( v ); |
| 1685 sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex; |
| 1686 } |
| 1687 |
| 1688 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master |
| 1689 ** table entry. |
| 1690 */ |
| 1691 if( pParse->addrSkipPK ){ |
| 1692 assert( v ); |
| 1693 sqlite3VdbeGetOp(v, pParse->addrSkipPK)->opcode = OP_Goto; |
| 1694 } |
| 1695 |
| 1696 /* Locate the PRIMARY KEY index. Or, if this table was originally |
| 1697 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. |
| 1698 */ |
| 1699 if( pTab->iPKey>=0 ){ |
| 1700 ExprList *pList; |
| 1701 pList = sqlite3ExprListAppend(pParse, 0, 0); |
| 1702 if( pList==0 ) return; |
| 1703 pList->a[0].zName = sqlite3DbStrDup(pParse->db, |
| 1704 pTab->aCol[pTab->iPKey].zName); |
| 1705 pList->a[0].sortOrder = pParse->iPkSortOrder; |
| 1706 assert( pParse->pNewTable==pTab ); |
| 1707 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); |
| 1708 if( pPk==0 ) return; |
| 1709 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; |
| 1710 pTab->iPKey = -1; |
| 1711 }else{ |
| 1712 pPk = sqlite3PrimaryKeyIndex(pTab); |
| 1713 } |
| 1714 pPk->isCovering = 1; |
| 1715 assert( pPk!=0 ); |
| 1716 nPk = pPk->nKeyCol; |
| 1717 |
| 1718 /* Make sure every column of the PRIMARY KEY is NOT NULL */ |
| 1719 for(i=0; i<nPk; i++){ |
| 1720 pTab->aCol[pPk->aiColumn[i]].notNull = 1; |
| 1721 } |
| 1722 pPk->uniqNotNull = 1; |
| 1723 |
| 1724 /* The root page of the PRIMARY KEY is the table root page */ |
| 1725 pPk->tnum = pTab->tnum; |
| 1726 |
| 1727 /* Update the in-memory representation of all UNIQUE indices by converting |
| 1728 ** the final rowid column into one or more columns of the PRIMARY KEY. |
| 1729 */ |
| 1730 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 1731 int n; |
| 1732 if( IsPrimaryKeyIndex(pIdx) ) continue; |
| 1733 for(i=n=0; i<nPk; i++){ |
| 1734 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; |
| 1735 } |
| 1736 if( n==0 ){ |
| 1737 /* This index is a superset of the primary key */ |
| 1738 pIdx->nColumn = pIdx->nKeyCol; |
| 1739 continue; |
| 1740 } |
| 1741 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; |
| 1742 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ |
| 1743 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ |
| 1744 pIdx->aiColumn[j] = pPk->aiColumn[i]; |
| 1745 pIdx->azColl[j] = pPk->azColl[i]; |
| 1746 j++; |
| 1747 } |
| 1748 } |
| 1749 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); |
| 1750 assert( pIdx->nColumn>=j ); |
| 1751 } |
| 1752 |
| 1753 /* Add all table columns to the PRIMARY KEY index |
| 1754 */ |
| 1755 if( nPk<pTab->nCol ){ |
| 1756 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; |
| 1757 for(i=0, j=nPk; i<pTab->nCol; i++){ |
| 1758 if( !hasColumn(pPk->aiColumn, j, i) ){ |
| 1759 assert( j<pPk->nColumn ); |
| 1760 pPk->aiColumn[j] = i; |
| 1761 pPk->azColl[j] = "BINARY"; |
| 1762 j++; |
| 1763 } |
| 1764 } |
| 1765 assert( pPk->nColumn==j ); |
| 1766 assert( pTab->nCol==j ); |
| 1767 }else{ |
| 1768 pPk->nColumn = pTab->nCol; |
| 1769 } |
| 1770 } |
| 1771 |
| 1772 /* |
1438 ** This routine is called to report the final ")" that terminates | 1773 ** This routine is called to report the final ")" that terminates |
1439 ** a CREATE TABLE statement. | 1774 ** a CREATE TABLE statement. |
1440 ** | 1775 ** |
1441 ** The table structure that other action routines have been building | 1776 ** The table structure that other action routines have been building |
1442 ** is added to the internal hash tables, assuming no errors have | 1777 ** is added to the internal hash tables, assuming no errors have |
1443 ** occurred. | 1778 ** occurred. |
1444 ** | 1779 ** |
1445 ** An entry for the table is made in the master table on disk, unless | 1780 ** An entry for the table is made in the master table on disk, unless |
1446 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 | 1781 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 |
1447 ** it means we are reading the sqlite_master table because we just | 1782 ** it means we are reading the sqlite_master table because we just |
1448 ** connected to the database or because the sqlite_master table has | 1783 ** connected to the database or because the sqlite_master table has |
1449 ** recently changed, so the entry for this table already exists in | 1784 ** recently changed, so the entry for this table already exists in |
1450 ** the sqlite_master table. We do not want to create it again. | 1785 ** the sqlite_master table. We do not want to create it again. |
1451 ** | 1786 ** |
1452 ** If the pSelect argument is not NULL, it means that this routine | 1787 ** If the pSelect argument is not NULL, it means that this routine |
1453 ** was called to create a table generated from a | 1788 ** was called to create a table generated from a |
1454 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of | 1789 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of |
1455 ** the new table will match the result set of the SELECT. | 1790 ** the new table will match the result set of the SELECT. |
1456 */ | 1791 */ |
1457 void sqlite3EndTable( | 1792 void sqlite3EndTable( |
1458 Parse *pParse, /* Parse context */ | 1793 Parse *pParse, /* Parse context */ |
1459 Token *pCons, /* The ',' token after the last column defn. */ | 1794 Token *pCons, /* The ',' token after the last column defn. */ |
1460 Token *pEnd, /* The final ')' token in the CREATE TABLE */ | 1795 Token *pEnd, /* The ')' before options in the CREATE TABLE */ |
| 1796 u8 tabOpts, /* Extra table options. Usually 0. */ |
1461 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ | 1797 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ |
1462 ){ | 1798 ){ |
1463 Table *p; | 1799 Table *p; /* The new table */ |
1464 sqlite3 *db = pParse->db; | 1800 sqlite3 *db = pParse->db; /* The database connection */ |
1465 int iDb; | 1801 int iDb; /* Database in which the table lives */ |
| 1802 Index *pIdx; /* An implied index of the table */ |
1466 | 1803 |
1467 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ | 1804 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ |
1468 return; | 1805 return; |
1469 } | 1806 } |
1470 p = pParse->pNewTable; | 1807 p = pParse->pNewTable; |
1471 if( p==0 ) return; | 1808 if( p==0 ) return; |
1472 | 1809 |
1473 assert( !db->init.busy || !pSelect ); | 1810 assert( !db->init.busy || !pSelect ); |
1474 | 1811 |
1475 iDb = sqlite3SchemaToIndex(db, p->pSchema); | |
1476 | |
1477 #ifndef SQLITE_OMIT_CHECK | |
1478 /* Resolve names in all CHECK constraint expressions. | |
1479 */ | |
1480 if( p->pCheck ){ | |
1481 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ | |
1482 NameContext sNC; /* Name context for pParse->pNewTable */ | |
1483 | |
1484 memset(&sNC, 0, sizeof(sNC)); | |
1485 memset(&sSrc, 0, sizeof(sSrc)); | |
1486 sSrc.nSrc = 1; | |
1487 sSrc.a[0].zName = p->zName; | |
1488 sSrc.a[0].pTab = p; | |
1489 sSrc.a[0].iCursor = -1; | |
1490 sNC.pParse = pParse; | |
1491 sNC.pSrcList = &sSrc; | |
1492 sNC.isCheck = 1; | |
1493 if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){ | |
1494 return; | |
1495 } | |
1496 } | |
1497 #endif /* !defined(SQLITE_OMIT_CHECK) */ | |
1498 | |
1499 /* If the db->init.busy is 1 it means we are reading the SQL off the | 1812 /* If the db->init.busy is 1 it means we are reading the SQL off the |
1500 ** "sqlite_master" or "sqlite_temp_master" table on the disk. | 1813 ** "sqlite_master" or "sqlite_temp_master" table on the disk. |
1501 ** So do not write to the disk again. Extract the root page number | 1814 ** So do not write to the disk again. Extract the root page number |
1502 ** for the table from the db->init.newTnum field. (The page number | 1815 ** for the table from the db->init.newTnum field. (The page number |
1503 ** should have been put there by the sqliteOpenCb routine.) | 1816 ** should have been put there by the sqliteOpenCb routine.) |
1504 */ | 1817 */ |
1505 if( db->init.busy ){ | 1818 if( db->init.busy ){ |
1506 p->tnum = db->init.newTnum; | 1819 p->tnum = db->init.newTnum; |
1507 } | 1820 } |
1508 | 1821 |
| 1822 /* Special processing for WITHOUT ROWID Tables */ |
| 1823 if( tabOpts & TF_WithoutRowid ){ |
| 1824 if( (p->tabFlags & TF_Autoincrement) ){ |
| 1825 sqlite3ErrorMsg(pParse, |
| 1826 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); |
| 1827 return; |
| 1828 } |
| 1829 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ |
| 1830 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); |
| 1831 }else{ |
| 1832 p->tabFlags |= TF_WithoutRowid; |
| 1833 convertToWithoutRowidTable(pParse, p); |
| 1834 } |
| 1835 } |
| 1836 |
| 1837 iDb = sqlite3SchemaToIndex(db, p->pSchema); |
| 1838 |
| 1839 #ifndef SQLITE_OMIT_CHECK |
| 1840 /* Resolve names in all CHECK constraint expressions. |
| 1841 */ |
| 1842 if( p->pCheck ){ |
| 1843 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); |
| 1844 } |
| 1845 #endif /* !defined(SQLITE_OMIT_CHECK) */ |
| 1846 |
| 1847 /* Estimate the average row size for the table and for all implied indices */ |
| 1848 estimateTableWidth(p); |
| 1849 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 1850 estimateIndexWidth(pIdx); |
| 1851 } |
| 1852 |
1509 /* If not initializing, then create a record for the new table | 1853 /* If not initializing, then create a record for the new table |
1510 ** in the SQLITE_MASTER table of the database. | 1854 ** in the SQLITE_MASTER table of the database. |
1511 ** | 1855 ** |
1512 ** If this is a TEMPORARY table, write the entry into the auxiliary | 1856 ** If this is a TEMPORARY table, write the entry into the auxiliary |
1513 ** file instead of into the main database file. | 1857 ** file instead of into the main database file. |
1514 */ | 1858 */ |
1515 if( !db->init.busy ){ | 1859 if( !db->init.busy ){ |
1516 int n; | 1860 int n; |
1517 Vdbe *v; | 1861 Vdbe *v; |
1518 char *zType; /* "view" or "table" */ | 1862 char *zType; /* "view" or "table" */ |
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1551 ** as a schema-lock must have already been obtained to create it. Since | 1895 ** as a schema-lock must have already been obtained to create it. Since |
1552 ** a schema-lock excludes all other database users, the write-lock would | 1896 ** a schema-lock excludes all other database users, the write-lock would |
1553 ** be redundant. | 1897 ** be redundant. |
1554 */ | 1898 */ |
1555 if( pSelect ){ | 1899 if( pSelect ){ |
1556 SelectDest dest; | 1900 SelectDest dest; |
1557 Table *pSelTab; | 1901 Table *pSelTab; |
1558 | 1902 |
1559 assert(pParse->nTab==1); | 1903 assert(pParse->nTab==1); |
1560 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); | 1904 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); |
1561 sqlite3VdbeChangeP5(v, 1); | 1905 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); |
1562 pParse->nTab = 2; | 1906 pParse->nTab = 2; |
1563 sqlite3SelectDestInit(&dest, SRT_Table, 1); | 1907 sqlite3SelectDestInit(&dest, SRT_Table, 1); |
1564 sqlite3Select(pParse, pSelect, &dest); | 1908 sqlite3Select(pParse, pSelect, &dest); |
1565 sqlite3VdbeAddOp1(v, OP_Close, 1); | 1909 sqlite3VdbeAddOp1(v, OP_Close, 1); |
1566 if( pParse->nErr==0 ){ | 1910 if( pParse->nErr==0 ){ |
1567 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); | 1911 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); |
1568 if( pSelTab==0 ) return; | 1912 if( pSelTab==0 ) return; |
1569 assert( p->aCol==0 ); | 1913 assert( p->aCol==0 ); |
1570 p->nCol = pSelTab->nCol; | 1914 p->nCol = pSelTab->nCol; |
1571 p->aCol = pSelTab->aCol; | 1915 p->aCol = pSelTab->aCol; |
1572 pSelTab->nCol = 0; | 1916 pSelTab->nCol = 0; |
1573 pSelTab->aCol = 0; | 1917 pSelTab->aCol = 0; |
1574 sqlite3DeleteTable(db, pSelTab); | 1918 sqlite3DeleteTable(db, pSelTab); |
1575 } | 1919 } |
1576 } | 1920 } |
1577 | 1921 |
1578 /* Compute the complete text of the CREATE statement */ | 1922 /* Compute the complete text of the CREATE statement */ |
1579 if( pSelect ){ | 1923 if( pSelect ){ |
1580 zStmt = createTableStmt(db, p); | 1924 zStmt = createTableStmt(db, p); |
1581 }else{ | 1925 }else{ |
1582 n = (int)(pEnd->z - pParse->sNameToken.z) + 1; | 1926 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; |
| 1927 n = (int)(pEnd2->z - pParse->sNameToken.z); |
| 1928 if( pEnd2->z[0]!=';' ) n += pEnd2->n; |
1583 zStmt = sqlite3MPrintf(db, | 1929 zStmt = sqlite3MPrintf(db, |
1584 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z | 1930 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z |
1585 ); | 1931 ); |
1586 } | 1932 } |
1587 | 1933 |
1588 /* A slot for the record has already been allocated in the | 1934 /* A slot for the record has already been allocated in the |
1589 ** SQLITE_MASTER table. We just need to update that slot with all | 1935 ** SQLITE_MASTER table. We just need to update that slot with all |
1590 ** the information we've collected. | 1936 ** the information we've collected. |
1591 */ | 1937 */ |
1592 sqlite3NestedParse(pParse, | 1938 sqlite3NestedParse(pParse, |
(...skipping 21 matching lines...) Expand all Loading... |
1614 if( pDb->pSchema->pSeqTab==0 ){ | 1960 if( pDb->pSchema->pSeqTab==0 ){ |
1615 sqlite3NestedParse(pParse, | 1961 sqlite3NestedParse(pParse, |
1616 "CREATE TABLE %Q.sqlite_sequence(name,seq)", | 1962 "CREATE TABLE %Q.sqlite_sequence(name,seq)", |
1617 pDb->zName | 1963 pDb->zName |
1618 ); | 1964 ); |
1619 } | 1965 } |
1620 } | 1966 } |
1621 #endif | 1967 #endif |
1622 | 1968 |
1623 /* Reparse everything to update our internal data structures */ | 1969 /* Reparse everything to update our internal data structures */ |
1624 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, | 1970 sqlite3VdbeAddParseSchemaOp(v, iDb, |
1625 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); | 1971 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); |
1626 } | 1972 } |
1627 | 1973 |
1628 | 1974 |
1629 /* Add the table to the in-memory representation of the database. | 1975 /* Add the table to the in-memory representation of the database. |
1630 */ | 1976 */ |
1631 if( db->init.busy ){ | 1977 if( db->init.busy ){ |
1632 Table *pOld; | 1978 Table *pOld; |
1633 Schema *pSchema = p->pSchema; | 1979 Schema *pSchema = p->pSchema; |
1634 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | 1980 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
1635 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, | 1981 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); |
1636 sqlite3Strlen30(p->zName),p); | |
1637 if( pOld ){ | 1982 if( pOld ){ |
1638 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ | 1983 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ |
1639 db->mallocFailed = 1; | 1984 db->mallocFailed = 1; |
1640 return; | 1985 return; |
1641 } | 1986 } |
1642 pParse->pNewTable = 0; | 1987 pParse->pNewTable = 0; |
1643 db->nTable++; | |
1644 db->flags |= SQLITE_InternChanges; | 1988 db->flags |= SQLITE_InternChanges; |
1645 | 1989 |
1646 #ifndef SQLITE_OMIT_ALTERTABLE | 1990 #ifndef SQLITE_OMIT_ALTERTABLE |
1647 if( !p->pSelect ){ | 1991 if( !p->pSelect ){ |
1648 const char *zName = (const char *)pParse->sNameToken.z; | 1992 const char *zName = (const char *)pParse->sNameToken.z; |
1649 int nName; | 1993 int nName; |
1650 assert( !pSelect && pCons && pEnd ); | 1994 assert( !pSelect && pCons && pEnd ); |
1651 if( pCons->z==0 ){ | 1995 if( pCons->z==0 ){ |
1652 pCons = pEnd; | 1996 pCons = pEnd; |
1653 } | 1997 } |
(...skipping 15 matching lines...) Expand all Loading... |
1669 Token *pName2, /* The token that holds the name of the view */ | 2013 Token *pName2, /* The token that holds the name of the view */ |
1670 Select *pSelect, /* A SELECT statement that will become the new view */ | 2014 Select *pSelect, /* A SELECT statement that will become the new view */ |
1671 int isTemp, /* TRUE for a TEMPORARY view */ | 2015 int isTemp, /* TRUE for a TEMPORARY view */ |
1672 int noErr /* Suppress error messages if VIEW already exists */ | 2016 int noErr /* Suppress error messages if VIEW already exists */ |
1673 ){ | 2017 ){ |
1674 Table *p; | 2018 Table *p; |
1675 int n; | 2019 int n; |
1676 const char *z; | 2020 const char *z; |
1677 Token sEnd; | 2021 Token sEnd; |
1678 DbFixer sFix; | 2022 DbFixer sFix; |
1679 Token *pName; | 2023 Token *pName = 0; |
1680 int iDb; | 2024 int iDb; |
1681 sqlite3 *db = pParse->db; | 2025 sqlite3 *db = pParse->db; |
1682 | 2026 |
1683 if( pParse->nVar>0 ){ | 2027 if( pParse->nVar>0 ){ |
1684 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); | 2028 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); |
1685 sqlite3SelectDelete(db, pSelect); | 2029 sqlite3SelectDelete(db, pSelect); |
1686 return; | 2030 return; |
1687 } | 2031 } |
1688 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); | 2032 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); |
1689 p = pParse->pNewTable; | 2033 p = pParse->pNewTable; |
1690 if( p==0 || pParse->nErr ){ | 2034 if( p==0 || pParse->nErr ){ |
1691 sqlite3SelectDelete(db, pSelect); | 2035 sqlite3SelectDelete(db, pSelect); |
1692 return; | 2036 return; |
1693 } | 2037 } |
1694 sqlite3TwoPartName(pParse, pName1, pName2, &pName); | 2038 sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
1695 iDb = sqlite3SchemaToIndex(db, p->pSchema); | 2039 iDb = sqlite3SchemaToIndex(db, p->pSchema); |
1696 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) | 2040 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); |
1697 && sqlite3FixSelect(&sFix, pSelect) | 2041 if( sqlite3FixSelect(&sFix, pSelect) ){ |
1698 ){ | |
1699 sqlite3SelectDelete(db, pSelect); | 2042 sqlite3SelectDelete(db, pSelect); |
1700 return; | 2043 return; |
1701 } | 2044 } |
1702 | 2045 |
1703 /* Make a copy of the entire SELECT statement that defines the view. | 2046 /* Make a copy of the entire SELECT statement that defines the view. |
1704 ** This will force all the Expr.token.z values to be dynamically | 2047 ** This will force all the Expr.token.z values to be dynamically |
1705 ** allocated rather than point to the input string - which means that | 2048 ** allocated rather than point to the input string - which means that |
1706 ** they will persist after the current sqlite3_exec() call returns. | 2049 ** they will persist after the current sqlite3_exec() call returns. |
1707 */ | 2050 */ |
1708 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); | 2051 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); |
(...skipping 13 matching lines...) Expand all Loading... |
1722 sEnd.z += sEnd.n; | 2065 sEnd.z += sEnd.n; |
1723 } | 2066 } |
1724 sEnd.n = 0; | 2067 sEnd.n = 0; |
1725 n = (int)(sEnd.z - pBegin->z); | 2068 n = (int)(sEnd.z - pBegin->z); |
1726 z = pBegin->z; | 2069 z = pBegin->z; |
1727 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } | 2070 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } |
1728 sEnd.z = &z[n-1]; | 2071 sEnd.z = &z[n-1]; |
1729 sEnd.n = 1; | 2072 sEnd.n = 1; |
1730 | 2073 |
1731 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ | 2074 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ |
1732 sqlite3EndTable(pParse, 0, &sEnd, 0); | 2075 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); |
1733 return; | 2076 return; |
1734 } | 2077 } |
1735 #endif /* SQLITE_OMIT_VIEW */ | 2078 #endif /* SQLITE_OMIT_VIEW */ |
1736 | 2079 |
1737 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) | 2080 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) |
1738 /* | 2081 /* |
1739 ** The Table structure pTable is really a VIEW. Fill in the names of | 2082 ** The Table structure pTable is really a VIEW. Fill in the names of |
1740 ** the columns of the view in the pTable structure. Return the number | 2083 ** the columns of the view in the pTable structure. Return the number |
1741 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. | 2084 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. |
1742 */ | 2085 */ |
1743 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ | 2086 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ |
1744 Table *pSelTab; /* A fake table from which we get the result set */ | 2087 Table *pSelTab; /* A fake table from which we get the result set */ |
1745 Select *pSel; /* Copy of the SELECT that implements the view */ | 2088 Select *pSel; /* Copy of the SELECT that implements the view */ |
1746 int nErr = 0; /* Number of errors encountered */ | 2089 int nErr = 0; /* Number of errors encountered */ |
1747 int n; /* Temporarily holds the number of cursors assigned */ | 2090 int n; /* Temporarily holds the number of cursors assigned */ |
1748 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ | 2091 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ |
1749 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); | 2092 sqlite3_xauth xAuth; /* Saved xAuth pointer */ |
1750 | 2093 |
1751 assert( pTable ); | 2094 assert( pTable ); |
1752 | 2095 |
1753 #ifndef SQLITE_OMIT_VIRTUALTABLE | 2096 #ifndef SQLITE_OMIT_VIRTUALTABLE |
1754 if( sqlite3VtabCallConnect(pParse, pTable) ){ | 2097 if( sqlite3VtabCallConnect(pParse, pTable) ){ |
1755 return SQLITE_ERROR; | 2098 return SQLITE_ERROR; |
1756 } | 2099 } |
1757 if( IsVirtual(pTable) ) return 0; | 2100 if( IsVirtual(pTable) ) return 0; |
1758 #endif | 2101 #endif |
1759 | 2102 |
(...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1810 db->lookaside.bEnabled = enableLookaside; | 2153 db->lookaside.bEnabled = enableLookaside; |
1811 pParse->nTab = n; | 2154 pParse->nTab = n; |
1812 if( pSelTab ){ | 2155 if( pSelTab ){ |
1813 assert( pTable->aCol==0 ); | 2156 assert( pTable->aCol==0 ); |
1814 pTable->nCol = pSelTab->nCol; | 2157 pTable->nCol = pSelTab->nCol; |
1815 pTable->aCol = pSelTab->aCol; | 2158 pTable->aCol = pSelTab->aCol; |
1816 pSelTab->nCol = 0; | 2159 pSelTab->nCol = 0; |
1817 pSelTab->aCol = 0; | 2160 pSelTab->aCol = 0; |
1818 sqlite3DeleteTable(db, pSelTab); | 2161 sqlite3DeleteTable(db, pSelTab); |
1819 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); | 2162 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); |
1820 pTable->pSchema->flags |= DB_UnresetViews; | 2163 pTable->pSchema->schemaFlags |= DB_UnresetViews; |
1821 }else{ | 2164 }else{ |
1822 pTable->nCol = 0; | 2165 pTable->nCol = 0; |
1823 nErr++; | 2166 nErr++; |
1824 } | 2167 } |
1825 sqlite3SelectDelete(db, pSel); | 2168 sqlite3SelectDelete(db, pSel); |
1826 } else { | 2169 } else { |
1827 nErr++; | 2170 nErr++; |
1828 } | 2171 } |
1829 #endif /* SQLITE_OMIT_VIEW */ | 2172 #endif /* SQLITE_OMIT_VIEW */ |
1830 return nErr; | 2173 return nErr; |
(...skipping 137 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1968 int iIdx = pIdx->tnum; | 2311 int iIdx = pIdx->tnum; |
1969 assert( pIdx->pSchema==pTab->pSchema ); | 2312 assert( pIdx->pSchema==pTab->pSchema ); |
1970 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ | 2313 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ |
1971 iLargest = iIdx; | 2314 iLargest = iIdx; |
1972 } | 2315 } |
1973 } | 2316 } |
1974 if( iLargest==0 ){ | 2317 if( iLargest==0 ){ |
1975 return; | 2318 return; |
1976 }else{ | 2319 }else{ |
1977 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); | 2320 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| 2321 assert( iDb>=0 && iDb<pParse->db->nDb ); |
1978 destroyRootPage(pParse, iLargest, iDb); | 2322 destroyRootPage(pParse, iLargest, iDb); |
1979 iDestroyed = iLargest; | 2323 iDestroyed = iLargest; |
1980 } | 2324 } |
1981 } | 2325 } |
1982 #endif | 2326 #endif |
1983 } | 2327 } |
1984 | 2328 |
1985 /* | 2329 /* |
| 2330 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) |
| 2331 ** after a DROP INDEX or DROP TABLE command. |
| 2332 */ |
| 2333 static void sqlite3ClearStatTables( |
| 2334 Parse *pParse, /* The parsing context */ |
| 2335 int iDb, /* The database number */ |
| 2336 const char *zType, /* "idx" or "tbl" */ |
| 2337 const char *zName /* Name of index or table */ |
| 2338 ){ |
| 2339 int i; |
| 2340 const char *zDbName = pParse->db->aDb[iDb].zName; |
| 2341 for(i=1; i<=4; i++){ |
| 2342 char zTab[24]; |
| 2343 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); |
| 2344 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ |
| 2345 sqlite3NestedParse(pParse, |
| 2346 "DELETE FROM %Q.%s WHERE %s=%Q", |
| 2347 zDbName, zTab, zType, zName |
| 2348 ); |
| 2349 } |
| 2350 } |
| 2351 } |
| 2352 |
| 2353 /* |
| 2354 ** Generate code to drop a table. |
| 2355 */ |
| 2356 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ |
| 2357 Vdbe *v; |
| 2358 sqlite3 *db = pParse->db; |
| 2359 Trigger *pTrigger; |
| 2360 Db *pDb = &db->aDb[iDb]; |
| 2361 |
| 2362 v = sqlite3GetVdbe(pParse); |
| 2363 assert( v!=0 ); |
| 2364 sqlite3BeginWriteOperation(pParse, 1, iDb); |
| 2365 |
| 2366 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2367 if( IsVirtual(pTab) ){ |
| 2368 sqlite3VdbeAddOp0(v, OP_VBegin); |
| 2369 } |
| 2370 #endif |
| 2371 |
| 2372 /* Drop all triggers associated with the table being dropped. Code |
| 2373 ** is generated to remove entries from sqlite_master and/or |
| 2374 ** sqlite_temp_master if required. |
| 2375 */ |
| 2376 pTrigger = sqlite3TriggerList(pParse, pTab); |
| 2377 while( pTrigger ){ |
| 2378 assert( pTrigger->pSchema==pTab->pSchema || |
| 2379 pTrigger->pSchema==db->aDb[1].pSchema ); |
| 2380 sqlite3DropTriggerPtr(pParse, pTrigger); |
| 2381 pTrigger = pTrigger->pNext; |
| 2382 } |
| 2383 |
| 2384 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 2385 /* Remove any entries of the sqlite_sequence table associated with |
| 2386 ** the table being dropped. This is done before the table is dropped |
| 2387 ** at the btree level, in case the sqlite_sequence table needs to |
| 2388 ** move as a result of the drop (can happen in auto-vacuum mode). |
| 2389 */ |
| 2390 if( pTab->tabFlags & TF_Autoincrement ){ |
| 2391 sqlite3NestedParse(pParse, |
| 2392 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", |
| 2393 pDb->zName, pTab->zName |
| 2394 ); |
| 2395 } |
| 2396 #endif |
| 2397 |
| 2398 /* Drop all SQLITE_MASTER table and index entries that refer to the |
| 2399 ** table. The program name loops through the master table and deletes |
| 2400 ** every row that refers to a table of the same name as the one being |
| 2401 ** dropped. Triggers are handled separately because a trigger can be |
| 2402 ** created in the temp database that refers to a table in another |
| 2403 ** database. |
| 2404 */ |
| 2405 sqlite3NestedParse(pParse, |
| 2406 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", |
| 2407 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); |
| 2408 if( !isView && !IsVirtual(pTab) ){ |
| 2409 destroyTable(pParse, pTab); |
| 2410 } |
| 2411 |
| 2412 /* Remove the table entry from SQLite's internal schema and modify |
| 2413 ** the schema cookie. |
| 2414 */ |
| 2415 if( IsVirtual(pTab) ){ |
| 2416 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); |
| 2417 } |
| 2418 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); |
| 2419 sqlite3ChangeCookie(pParse, iDb); |
| 2420 sqliteViewResetAll(db, iDb); |
| 2421 } |
| 2422 |
| 2423 /* |
1986 ** This routine is called to do the work of a DROP TABLE statement. | 2424 ** This routine is called to do the work of a DROP TABLE statement. |
1987 ** pName is the name of the table to be dropped. | 2425 ** pName is the name of the table to be dropped. |
1988 */ | 2426 */ |
1989 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ | 2427 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ |
1990 Table *pTab; | 2428 Table *pTab; |
1991 Vdbe *v; | 2429 Vdbe *v; |
1992 sqlite3 *db = pParse->db; | 2430 sqlite3 *db = pParse->db; |
1993 int iDb; | 2431 int iDb; |
1994 | 2432 |
1995 if( db->mallocFailed ){ | 2433 if( db->mallocFailed ){ |
1996 goto exit_drop_table; | 2434 goto exit_drop_table; |
1997 } | 2435 } |
1998 assert( pParse->nErr==0 ); | 2436 assert( pParse->nErr==0 ); |
1999 assert( pName->nSrc==1 ); | 2437 assert( pName->nSrc==1 ); |
2000 if( noErr ) db->suppressErr++; | 2438 if( noErr ) db->suppressErr++; |
2001 pTab = sqlite3LocateTable(pParse, isView, | 2439 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); |
2002 pName->a[0].zName, pName->a[0].zDatabase); | |
2003 if( noErr ) db->suppressErr--; | 2440 if( noErr ) db->suppressErr--; |
2004 | 2441 |
2005 if( pTab==0 ){ | 2442 if( pTab==0 ){ |
2006 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); | 2443 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); |
2007 goto exit_drop_table; | 2444 goto exit_drop_table; |
2008 } | 2445 } |
2009 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | 2446 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
2010 assert( iDb>=0 && iDb<db->nDb ); | 2447 assert( iDb>=0 && iDb<db->nDb ); |
2011 | 2448 |
2012 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure | 2449 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure |
(...skipping 30 matching lines...) Expand all Loading... |
2043 } | 2480 } |
2044 } | 2481 } |
2045 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ | 2482 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ |
2046 goto exit_drop_table; | 2483 goto exit_drop_table; |
2047 } | 2484 } |
2048 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ | 2485 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ |
2049 goto exit_drop_table; | 2486 goto exit_drop_table; |
2050 } | 2487 } |
2051 } | 2488 } |
2052 #endif | 2489 #endif |
2053 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ | 2490 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 |
| 2491 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ |
2054 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); | 2492 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); |
2055 goto exit_drop_table; | 2493 goto exit_drop_table; |
2056 } | 2494 } |
2057 | 2495 |
2058 #ifndef SQLITE_OMIT_VIEW | 2496 #ifndef SQLITE_OMIT_VIEW |
2059 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used | 2497 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used |
2060 ** on a table. | 2498 ** on a table. |
2061 */ | 2499 */ |
2062 if( isView && pTab->pSelect==0 ){ | 2500 if( isView && pTab->pSelect==0 ){ |
2063 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); | 2501 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); |
2064 goto exit_drop_table; | 2502 goto exit_drop_table; |
2065 } | 2503 } |
2066 if( !isView && pTab->pSelect ){ | 2504 if( !isView && pTab->pSelect ){ |
2067 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); | 2505 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); |
2068 goto exit_drop_table; | 2506 goto exit_drop_table; |
2069 } | 2507 } |
2070 #endif | 2508 #endif |
2071 | 2509 |
2072 /* Generate code to remove the table from the master table | 2510 /* Generate code to remove the table from the master table |
2073 ** on disk. | 2511 ** on disk. |
2074 */ | 2512 */ |
2075 v = sqlite3GetVdbe(pParse); | 2513 v = sqlite3GetVdbe(pParse); |
2076 if( v ){ | 2514 if( v ){ |
2077 Trigger *pTrigger; | |
2078 Db *pDb = &db->aDb[iDb]; | |
2079 sqlite3BeginWriteOperation(pParse, 1, iDb); | 2515 sqlite3BeginWriteOperation(pParse, 1, iDb); |
2080 | 2516 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); |
2081 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
2082 if( IsVirtual(pTab) ){ | |
2083 sqlite3VdbeAddOp0(v, OP_VBegin); | |
2084 } | |
2085 #endif | |
2086 sqlite3FkDropTable(pParse, pName, pTab); | 2517 sqlite3FkDropTable(pParse, pName, pTab); |
2087 | 2518 sqlite3CodeDropTable(pParse, pTab, iDb, isView); |
2088 /* Drop all triggers associated with the table being dropped. Code | |
2089 ** is generated to remove entries from sqlite_master and/or | |
2090 ** sqlite_temp_master if required. | |
2091 */ | |
2092 pTrigger = sqlite3TriggerList(pParse, pTab); | |
2093 while( pTrigger ){ | |
2094 assert( pTrigger->pSchema==pTab->pSchema || | |
2095 pTrigger->pSchema==db->aDb[1].pSchema ); | |
2096 sqlite3DropTriggerPtr(pParse, pTrigger); | |
2097 pTrigger = pTrigger->pNext; | |
2098 } | |
2099 | |
2100 #ifndef SQLITE_OMIT_AUTOINCREMENT | |
2101 /* Remove any entries of the sqlite_sequence table associated with | |
2102 ** the table being dropped. This is done before the table is dropped | |
2103 ** at the btree level, in case the sqlite_sequence table needs to | |
2104 ** move as a result of the drop (can happen in auto-vacuum mode). | |
2105 */ | |
2106 if( pTab->tabFlags & TF_Autoincrement ){ | |
2107 sqlite3NestedParse(pParse, | |
2108 "DELETE FROM %s.sqlite_sequence WHERE name=%Q", | |
2109 pDb->zName, pTab->zName | |
2110 ); | |
2111 } | |
2112 #endif | |
2113 | |
2114 /* Drop all SQLITE_MASTER table and index entries that refer to the | |
2115 ** table. The program name loops through the master table and deletes | |
2116 ** every row that refers to a table of the same name as the one being | |
2117 ** dropped. Triggers are handled seperately because a trigger can be | |
2118 ** created in the temp database that refers to a table in another | |
2119 ** database. | |
2120 */ | |
2121 sqlite3NestedParse(pParse, | |
2122 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", | |
2123 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); | |
2124 | |
2125 /* Drop any statistics from the sqlite_stat1 table, if it exists */ | |
2126 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ | |
2127 sqlite3NestedParse(pParse, | |
2128 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName | |
2129 ); | |
2130 } | |
2131 | |
2132 if( !isView && !IsVirtual(pTab) ){ | |
2133 destroyTable(pParse, pTab); | |
2134 } | |
2135 | |
2136 /* Remove the table entry from SQLite's internal schema and modify | |
2137 ** the schema cookie. | |
2138 */ | |
2139 if( IsVirtual(pTab) ){ | |
2140 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); | |
2141 } | |
2142 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); | |
2143 sqlite3ChangeCookie(pParse, iDb); | |
2144 } | 2519 } |
2145 sqliteViewResetAll(db, iDb); | |
2146 | 2520 |
2147 exit_drop_table: | 2521 exit_drop_table: |
2148 sqlite3SrcListDelete(db, pName); | 2522 sqlite3SrcListDelete(db, pName); |
2149 } | 2523 } |
2150 | 2524 |
2151 /* | 2525 /* |
2152 ** This routine is called to create a new foreign key on the table | 2526 ** This routine is called to create a new foreign key on the table |
2153 ** currently under construction. pFromCol determines which columns | 2527 ** currently under construction. pFromCol determines which columns |
2154 ** in the current table point to the foreign key. If pFromCol==0 then | 2528 ** in the current table point to the foreign key. If pFromCol==0 then |
2155 ** connect the key to the last column inserted. pTo is the name of | 2529 ** connect the key to the last column inserted. pTo is the name of |
2156 ** the table referred to. pToCol is a list of tables in the other | 2530 ** the table referred to (a.k.a the "parent" table). pToCol is a list |
2157 ** pTo table that the foreign key points to. flags contains all | 2531 ** of tables in the parent pTo table. flags contains all |
2158 ** information about the conflict resolution algorithms specified | 2532 ** information about the conflict resolution algorithms specified |
2159 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. | 2533 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. |
2160 ** | 2534 ** |
2161 ** An FKey structure is created and added to the table currently | 2535 ** An FKey structure is created and added to the table currently |
2162 ** under construction in the pParse->pNewTable field. | 2536 ** under construction in the pParse->pNewTable field. |
2163 ** | 2537 ** |
2164 ** The foreign key is set for IMMEDIATE processing. A subsequent call | 2538 ** The foreign key is set for IMMEDIATE processing. A subsequent call |
2165 ** to sqlite3DeferForeignKey() might change this to DEFERRED. | 2539 ** to sqlite3DeferForeignKey() might change this to DEFERRED. |
2166 */ | 2540 */ |
2167 void sqlite3CreateForeignKey( | 2541 void sqlite3CreateForeignKey( |
(...skipping 79 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2247 z[n] = 0; | 2621 z[n] = 0; |
2248 z += n+1; | 2622 z += n+1; |
2249 } | 2623 } |
2250 } | 2624 } |
2251 pFKey->isDeferred = 0; | 2625 pFKey->isDeferred = 0; |
2252 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ | 2626 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ |
2253 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ | 2627 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ |
2254 | 2628 |
2255 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); | 2629 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); |
2256 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, | 2630 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, |
2257 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey | 2631 pFKey->zTo, (void *)pFKey |
2258 ); | 2632 ); |
2259 if( pNextTo==pFKey ){ | 2633 if( pNextTo==pFKey ){ |
2260 db->mallocFailed = 1; | 2634 db->mallocFailed = 1; |
2261 goto fk_end; | 2635 goto fk_end; |
2262 } | 2636 } |
2263 if( pNextTo ){ | 2637 if( pNextTo ){ |
2264 assert( pNextTo->pPrevTo==0 ); | 2638 assert( pNextTo->pPrevTo==0 ); |
2265 pFKey->pNextTo = pNextTo; | 2639 pFKey->pNextTo = pNextTo; |
2266 pNextTo->pPrevTo = pFKey; | 2640 pNextTo->pPrevTo = pFKey; |
2267 } | 2641 } |
(...skipping 35 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2303 ** if memRootPage is not negative, it means that the index is newly | 2677 ** if memRootPage is not negative, it means that the index is newly |
2304 ** created. The register specified by memRootPage contains the | 2678 ** created. The register specified by memRootPage contains the |
2305 ** root page number of the index. If memRootPage is negative, then | 2679 ** root page number of the index. If memRootPage is negative, then |
2306 ** the index already exists and must be cleared before being refilled and | 2680 ** the index already exists and must be cleared before being refilled and |
2307 ** the root page number of the index is taken from pIndex->tnum. | 2681 ** the root page number of the index is taken from pIndex->tnum. |
2308 */ | 2682 */ |
2309 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ | 2683 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ |
2310 Table *pTab = pIndex->pTable; /* The table that is indexed */ | 2684 Table *pTab = pIndex->pTable; /* The table that is indexed */ |
2311 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ | 2685 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ |
2312 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ | 2686 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ |
| 2687 int iSorter; /* Cursor opened by OpenSorter (if in use) */ |
2313 int addr1; /* Address of top of loop */ | 2688 int addr1; /* Address of top of loop */ |
| 2689 int addr2; /* Address to jump to for next iteration */ |
2314 int tnum; /* Root page of index */ | 2690 int tnum; /* Root page of index */ |
| 2691 int iPartIdxLabel; /* Jump to this label to skip a row */ |
2315 Vdbe *v; /* Generate code into this virtual machine */ | 2692 Vdbe *v; /* Generate code into this virtual machine */ |
2316 KeyInfo *pKey; /* KeyInfo for index */ | 2693 KeyInfo *pKey; /* KeyInfo for index */ |
2317 int regIdxKey; /* Registers containing the index key */ | 2694 int regRecord; /* Register holding assembled index record */ |
2318 int regRecord; /* Register holding assemblied index record */ | |
2319 sqlite3 *db = pParse->db; /* The database connection */ | 2695 sqlite3 *db = pParse->db; /* The database connection */ |
2320 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); | 2696 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); |
2321 | 2697 |
2322 #ifndef SQLITE_OMIT_AUTHORIZATION | 2698 #ifndef SQLITE_OMIT_AUTHORIZATION |
2323 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, | 2699 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, |
2324 db->aDb[iDb].zName ) ){ | 2700 db->aDb[iDb].zName ) ){ |
2325 return; | 2701 return; |
2326 } | 2702 } |
2327 #endif | 2703 #endif |
2328 | 2704 |
2329 /* Require a write-lock on the table to perform this operation */ | 2705 /* Require a write-lock on the table to perform this operation */ |
2330 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); | 2706 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); |
2331 | 2707 |
2332 v = sqlite3GetVdbe(pParse); | 2708 v = sqlite3GetVdbe(pParse); |
2333 if( v==0 ) return; | 2709 if( v==0 ) return; |
2334 if( memRootPage>=0 ){ | 2710 if( memRootPage>=0 ){ |
2335 tnum = memRootPage; | 2711 tnum = memRootPage; |
2336 }else{ | 2712 }else{ |
2337 tnum = pIndex->tnum; | 2713 tnum = pIndex->tnum; |
2338 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); | |
2339 } | 2714 } |
2340 pKey = sqlite3IndexKeyinfo(pParse, pIndex); | 2715 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); |
| 2716 |
| 2717 /* Open the sorter cursor if we are to use one. */ |
| 2718 iSorter = pParse->nTab++; |
| 2719 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) |
| 2720 sqlite3KeyInfoRef(pKey), P4_KEYINFO); |
| 2721 |
| 2722 /* Open the table. Loop through all rows of the table, inserting index |
| 2723 ** records into the sorter. */ |
| 2724 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
| 2725 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); |
| 2726 regRecord = sqlite3GetTempReg(pParse); |
| 2727 |
| 2728 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); |
| 2729 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); |
| 2730 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); |
| 2731 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); |
| 2732 sqlite3VdbeJumpHere(v, addr1); |
| 2733 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); |
2341 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, | 2734 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, |
2342 (char *)pKey, P4_KEYINFO_HANDOFF); | 2735 (char *)pKey, P4_KEYINFO); |
2343 if( memRootPage>=0 ){ | 2736 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); |
2344 sqlite3VdbeChangeP5(v, 1); | 2737 |
| 2738 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); |
| 2739 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); |
| 2740 if( IsUniqueIndex(pIndex) && pKey!=0 ){ |
| 2741 int j2 = sqlite3VdbeCurrentAddr(v) + 3; |
| 2742 sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); |
| 2743 addr2 = sqlite3VdbeCurrentAddr(v); |
| 2744 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, |
| 2745 pIndex->nKeyCol); VdbeCoverage(v); |
| 2746 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); |
| 2747 }else{ |
| 2748 addr2 = sqlite3VdbeCurrentAddr(v); |
2345 } | 2749 } |
2346 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); | 2750 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); |
2347 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); | 2751 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); |
2348 regRecord = sqlite3GetTempReg(pParse); | |
2349 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); | |
2350 if( pIndex->onError!=OE_None ){ | |
2351 const int regRowid = regIdxKey + pIndex->nColumn; | |
2352 const int j2 = sqlite3VdbeCurrentAddr(v) + 2; | |
2353 void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey); | |
2354 | |
2355 /* The registers accessed by the OP_IsUnique opcode were allocated | |
2356 ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey() | |
2357 ** call above. Just before that function was freed they were released | |
2358 ** (made available to the compiler for reuse) using | |
2359 ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique | |
2360 ** opcode use the values stored within seems dangerous. However, since | |
2361 ** we can be sure that no other temp registers have been allocated | |
2362 ** since sqlite3ReleaseTempRange() was called, it is safe to do so. | |
2363 */ | |
2364 sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32); | |
2365 sqlite3HaltConstraint( | |
2366 pParse, OE_Abort, "indexed columns are not unique", P4_STATIC); | |
2367 } | |
2368 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); | |
2369 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); | 2752 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
2370 sqlite3ReleaseTempReg(pParse, regRecord); | 2753 sqlite3ReleaseTempReg(pParse, regRecord); |
2371 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); | 2754 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); |
2372 sqlite3VdbeJumpHere(v, addr1); | 2755 sqlite3VdbeJumpHere(v, addr1); |
| 2756 |
2373 sqlite3VdbeAddOp1(v, OP_Close, iTab); | 2757 sqlite3VdbeAddOp1(v, OP_Close, iTab); |
2374 sqlite3VdbeAddOp1(v, OP_Close, iIdx); | 2758 sqlite3VdbeAddOp1(v, OP_Close, iIdx); |
| 2759 sqlite3VdbeAddOp1(v, OP_Close, iSorter); |
2375 } | 2760 } |
2376 | 2761 |
2377 /* | 2762 /* |
| 2763 ** Allocate heap space to hold an Index object with nCol columns. |
| 2764 ** |
| 2765 ** Increase the allocation size to provide an extra nExtra bytes |
| 2766 ** of 8-byte aligned space after the Index object and return a |
| 2767 ** pointer to this extra space in *ppExtra. |
| 2768 */ |
| 2769 Index *sqlite3AllocateIndexObject( |
| 2770 sqlite3 *db, /* Database connection */ |
| 2771 i16 nCol, /* Total number of columns in the index */ |
| 2772 int nExtra, /* Number of bytes of extra space to alloc */ |
| 2773 char **ppExtra /* Pointer to the "extra" space */ |
| 2774 ){ |
| 2775 Index *p; /* Allocated index object */ |
| 2776 int nByte; /* Bytes of space for Index object + arrays */ |
| 2777 |
| 2778 nByte = ROUND8(sizeof(Index)) + /* Index structure */ |
| 2779 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ |
| 2780 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ |
| 2781 sizeof(i16)*nCol + /* Index.aiColumn */ |
| 2782 sizeof(u8)*nCol); /* Index.aSortOrder */ |
| 2783 p = sqlite3DbMallocZero(db, nByte + nExtra); |
| 2784 if( p ){ |
| 2785 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); |
| 2786 p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); |
| 2787 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); |
| 2788 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; |
| 2789 p->aSortOrder = (u8*)pExtra; |
| 2790 p->nColumn = nCol; |
| 2791 p->nKeyCol = nCol - 1; |
| 2792 *ppExtra = ((char*)p) + nByte; |
| 2793 } |
| 2794 return p; |
| 2795 } |
| 2796 |
| 2797 /* |
2378 ** Create a new index for an SQL table. pName1.pName2 is the name of the index | 2798 ** Create a new index for an SQL table. pName1.pName2 is the name of the index |
2379 ** and pTblList is the name of the table that is to be indexed. Both will | 2799 ** and pTblList is the name of the table that is to be indexed. Both will |
2380 ** be NULL for a primary key or an index that is created to satisfy a | 2800 ** be NULL for a primary key or an index that is created to satisfy a |
2381 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable | 2801 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable |
2382 ** as the table to be indexed. pParse->pNewTable is a table that is | 2802 ** as the table to be indexed. pParse->pNewTable is a table that is |
2383 ** currently being constructed by a CREATE TABLE statement. | 2803 ** currently being constructed by a CREATE TABLE statement. |
2384 ** | 2804 ** |
2385 ** pList is a list of columns to be indexed. pList will be NULL if this | 2805 ** pList is a list of columns to be indexed. pList will be NULL if this |
2386 ** is a primary key or unique-constraint on the most recent column added | 2806 ** is a primary key or unique-constraint on the most recent column added |
2387 ** to the table currently under construction. | 2807 ** to the table currently under construction. |
2388 ** | 2808 ** |
2389 ** If the index is created successfully, return a pointer to the new Index | 2809 ** If the index is created successfully, return a pointer to the new Index |
2390 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index | 2810 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index |
2391 ** as the tables primary key (Index.autoIndex==2). | 2811 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) |
2392 */ | 2812 */ |
2393 Index *sqlite3CreateIndex( | 2813 Index *sqlite3CreateIndex( |
2394 Parse *pParse, /* All information about this parse */ | 2814 Parse *pParse, /* All information about this parse */ |
2395 Token *pName1, /* First part of index name. May be NULL */ | 2815 Token *pName1, /* First part of index name. May be NULL */ |
2396 Token *pName2, /* Second part of index name. May be NULL */ | 2816 Token *pName2, /* Second part of index name. May be NULL */ |
2397 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ | 2817 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ |
2398 ExprList *pList, /* A list of columns to be indexed */ | 2818 ExprList *pList, /* A list of columns to be indexed */ |
2399 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ | 2819 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ |
2400 Token *pStart, /* The CREATE token that begins this statement */ | 2820 Token *pStart, /* The CREATE token that begins this statement */ |
2401 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ | 2821 Expr *pPIWhere, /* WHERE clause for partial indices */ |
2402 int sortOrder, /* Sort order of primary key when pList==NULL */ | 2822 int sortOrder, /* Sort order of primary key when pList==NULL */ |
2403 int ifNotExist /* Omit error if index already exists */ | 2823 int ifNotExist /* Omit error if index already exists */ |
2404 ){ | 2824 ){ |
2405 Index *pRet = 0; /* Pointer to return */ | 2825 Index *pRet = 0; /* Pointer to return */ |
2406 Table *pTab = 0; /* Table to be indexed */ | 2826 Table *pTab = 0; /* Table to be indexed */ |
2407 Index *pIndex = 0; /* The index to be created */ | 2827 Index *pIndex = 0; /* The index to be created */ |
2408 char *zName = 0; /* Name of the index */ | 2828 char *zName = 0; /* Name of the index */ |
2409 int nName; /* Number of characters in zName */ | 2829 int nName; /* Number of characters in zName */ |
2410 int i, j; | 2830 int i, j; |
2411 Token nullId; /* Fake token for an empty ID list */ | |
2412 DbFixer sFix; /* For assigning database names to pTable */ | 2831 DbFixer sFix; /* For assigning database names to pTable */ |
2413 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ | 2832 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ |
2414 sqlite3 *db = pParse->db; | 2833 sqlite3 *db = pParse->db; |
2415 Db *pDb; /* The specific table containing the indexed database */ | 2834 Db *pDb; /* The specific table containing the indexed database */ |
2416 int iDb; /* Index of the database that is being written */ | 2835 int iDb; /* Index of the database that is being written */ |
2417 Token *pName = 0; /* Unqualified name of the index to create */ | 2836 Token *pName = 0; /* Unqualified name of the index to create */ |
2418 struct ExprList_item *pListItem; /* For looping over pList */ | 2837 struct ExprList_item *pListItem; /* For looping over pList */ |
2419 int nCol; | 2838 const Column *pTabCol; /* A column in the table */ |
2420 int nExtra = 0; | 2839 int nExtra = 0; /* Space allocated for zExtra[] */ |
2421 char *zExtra; | 2840 int nExtraCol; /* Number of extra columns needed */ |
| 2841 char *zExtra = 0; /* Extra space after the Index object */ |
| 2842 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ |
2422 | 2843 |
2423 assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */ | |
2424 assert( pParse->nErr==0 ); /* Never called with prior errors */ | 2844 assert( pParse->nErr==0 ); /* Never called with prior errors */ |
2425 if( db->mallocFailed || IN_DECLARE_VTAB ){ | 2845 if( db->mallocFailed || IN_DECLARE_VTAB ){ |
2426 goto exit_create_index; | 2846 goto exit_create_index; |
2427 } | 2847 } |
2428 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ | 2848 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
2429 goto exit_create_index; | 2849 goto exit_create_index; |
2430 } | 2850 } |
2431 | 2851 |
2432 /* | 2852 /* |
2433 ** Find the table that is to be indexed. Return early if not found. | 2853 ** Find the table that is to be indexed. Return early if not found. |
2434 */ | 2854 */ |
2435 if( pTblName!=0 ){ | 2855 if( pTblName!=0 ){ |
2436 | 2856 |
2437 /* Use the two-part index name to determine the database | 2857 /* Use the two-part index name to determine the database |
2438 ** to search for the table. 'Fix' the table name to this db | 2858 ** to search for the table. 'Fix' the table name to this db |
2439 ** before looking up the table. | 2859 ** before looking up the table. |
2440 */ | 2860 */ |
2441 assert( pName1 && pName2 ); | 2861 assert( pName1 && pName2 ); |
2442 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); | 2862 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
2443 if( iDb<0 ) goto exit_create_index; | 2863 if( iDb<0 ) goto exit_create_index; |
| 2864 assert( pName && pName->z ); |
2444 | 2865 |
2445 #ifndef SQLITE_OMIT_TEMPDB | 2866 #ifndef SQLITE_OMIT_TEMPDB |
2446 /* If the index name was unqualified, check if the the table | 2867 /* If the index name was unqualified, check if the table |
2447 ** is a temp table. If so, set the database to 1. Do not do this | 2868 ** is a temp table. If so, set the database to 1. Do not do this |
2448 ** if initialising a database schema. | 2869 ** if initialising a database schema. |
2449 */ | 2870 */ |
2450 if( !db->init.busy ){ | 2871 if( !db->init.busy ){ |
2451 pTab = sqlite3SrcListLookup(pParse, pTblName); | 2872 pTab = sqlite3SrcListLookup(pParse, pTblName); |
2452 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ | 2873 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ |
2453 iDb = 1; | 2874 iDb = 1; |
2454 } | 2875 } |
2455 } | 2876 } |
2456 #endif | 2877 #endif |
2457 | 2878 |
2458 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && | 2879 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); |
2459 sqlite3FixSrcList(&sFix, pTblName) | 2880 if( sqlite3FixSrcList(&sFix, pTblName) ){ |
2460 ){ | |
2461 /* Because the parser constructs pTblName from a single identifier, | 2881 /* Because the parser constructs pTblName from a single identifier, |
2462 ** sqlite3FixSrcList can never fail. */ | 2882 ** sqlite3FixSrcList can never fail. */ |
2463 assert(0); | 2883 assert(0); |
2464 } | 2884 } |
2465 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, | 2885 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); |
2466 pTblName->a[0].zDatabase); | 2886 assert( db->mallocFailed==0 || pTab==0 ); |
2467 if( !pTab || db->mallocFailed ) goto exit_create_index; | 2887 if( pTab==0 ) goto exit_create_index; |
2468 assert( db->aDb[iDb].pSchema==pTab->pSchema ); | 2888 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ |
| 2889 sqlite3ErrorMsg(pParse, |
| 2890 "cannot create a TEMP index on non-TEMP table \"%s\"", |
| 2891 pTab->zName); |
| 2892 goto exit_create_index; |
| 2893 } |
| 2894 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); |
2469 }else{ | 2895 }else{ |
2470 assert( pName==0 ); | 2896 assert( pName==0 ); |
| 2897 assert( pStart==0 ); |
2471 pTab = pParse->pNewTable; | 2898 pTab = pParse->pNewTable; |
2472 if( !pTab ) goto exit_create_index; | 2899 if( !pTab ) goto exit_create_index; |
2473 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | 2900 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
2474 } | 2901 } |
2475 pDb = &db->aDb[iDb]; | 2902 pDb = &db->aDb[iDb]; |
2476 | 2903 |
2477 assert( pTab!=0 ); | 2904 assert( pTab!=0 ); |
2478 assert( pParse->nErr==0 ); | 2905 assert( pParse->nErr==0 ); |
2479 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 | 2906 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 |
| 2907 && db->init.busy==0 |
| 2908 #if SQLITE_USER_AUTHENTICATION |
| 2909 && sqlite3UserAuthTable(pTab->zName)==0 |
| 2910 #endif |
2480 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ | 2911 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ |
2481 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); | 2912 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); |
2482 goto exit_create_index; | 2913 goto exit_create_index; |
2483 } | 2914 } |
2484 #ifndef SQLITE_OMIT_VIEW | 2915 #ifndef SQLITE_OMIT_VIEW |
2485 if( pTab->pSelect ){ | 2916 if( pTab->pSelect ){ |
2486 sqlite3ErrorMsg(pParse, "views may not be indexed"); | 2917 sqlite3ErrorMsg(pParse, "views may not be indexed"); |
2487 goto exit_create_index; | 2918 goto exit_create_index; |
2488 } | 2919 } |
2489 #endif | 2920 #endif |
(...skipping 13 matching lines...) Expand all Loading... |
2503 ** one of the index names collides with the name of a temporary table or | 2934 ** one of the index names collides with the name of a temporary table or |
2504 ** index, then we will continue to process this index. | 2935 ** index, then we will continue to process this index. |
2505 ** | 2936 ** |
2506 ** If pName==0 it means that we are | 2937 ** If pName==0 it means that we are |
2507 ** dealing with a primary key or UNIQUE constraint. We have to invent our | 2938 ** dealing with a primary key or UNIQUE constraint. We have to invent our |
2508 ** own name. | 2939 ** own name. |
2509 */ | 2940 */ |
2510 if( pName ){ | 2941 if( pName ){ |
2511 zName = sqlite3NameFromToken(db, pName); | 2942 zName = sqlite3NameFromToken(db, pName); |
2512 if( zName==0 ) goto exit_create_index; | 2943 if( zName==0 ) goto exit_create_index; |
| 2944 assert( pName->z!=0 ); |
2513 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ | 2945 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ |
2514 goto exit_create_index; | 2946 goto exit_create_index; |
2515 } | 2947 } |
2516 if( !db->init.busy ){ | 2948 if( !db->init.busy ){ |
2517 if( sqlite3FindTable(db, zName, 0)!=0 ){ | 2949 if( sqlite3FindTable(db, zName, 0)!=0 ){ |
2518 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); | 2950 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); |
2519 goto exit_create_index; | 2951 goto exit_create_index; |
2520 } | 2952 } |
2521 } | 2953 } |
2522 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ | 2954 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ |
(...skipping 29 matching lines...) Expand all Loading... |
2552 goto exit_create_index; | 2984 goto exit_create_index; |
2553 } | 2985 } |
2554 } | 2986 } |
2555 #endif | 2987 #endif |
2556 | 2988 |
2557 /* If pList==0, it means this routine was called to make a primary | 2989 /* If pList==0, it means this routine was called to make a primary |
2558 ** key out of the last column added to the table under construction. | 2990 ** key out of the last column added to the table under construction. |
2559 ** So create a fake list to simulate this. | 2991 ** So create a fake list to simulate this. |
2560 */ | 2992 */ |
2561 if( pList==0 ){ | 2993 if( pList==0 ){ |
2562 nullId.z = pTab->aCol[pTab->nCol-1].zName; | |
2563 nullId.n = sqlite3Strlen30((char*)nullId.z); | |
2564 pList = sqlite3ExprListAppend(pParse, 0, 0); | 2994 pList = sqlite3ExprListAppend(pParse, 0, 0); |
2565 if( pList==0 ) goto exit_create_index; | 2995 if( pList==0 ) goto exit_create_index; |
2566 sqlite3ExprListSetName(pParse, pList, &nullId, 0); | 2996 pList->a[0].zName = sqlite3DbStrDup(pParse->db, |
| 2997 pTab->aCol[pTab->nCol-1].zName); |
2567 pList->a[0].sortOrder = (u8)sortOrder; | 2998 pList->a[0].sortOrder = (u8)sortOrder; |
2568 } | 2999 } |
2569 | 3000 |
2570 /* Figure out how many bytes of space are required to store explicitly | 3001 /* Figure out how many bytes of space are required to store explicitly |
2571 ** specified collation sequence names. | 3002 ** specified collation sequence names. |
2572 */ | 3003 */ |
2573 for(i=0; i<pList->nExpr; i++){ | 3004 for(i=0; i<pList->nExpr; i++){ |
2574 Expr *pExpr = pList->a[i].pExpr; | 3005 Expr *pExpr = pList->a[i].pExpr; |
2575 if( pExpr ){ | 3006 if( pExpr ){ |
2576 CollSeq *pColl = pExpr->pColl; | 3007 assert( pExpr->op==TK_COLLATE ); |
2577 /* Either pColl!=0 or there was an OOM failure. But if an OOM | 3008 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); |
2578 ** failure we have quit before reaching this point. */ | |
2579 if( ALWAYS(pColl) ){ | |
2580 nExtra += (1 + sqlite3Strlen30(pColl->zName)); | |
2581 } | |
2582 } | 3009 } |
2583 } | 3010 } |
2584 | 3011 |
2585 /* | 3012 /* |
2586 ** Allocate the index structure. | 3013 ** Allocate the index structure. |
2587 */ | 3014 */ |
2588 nName = sqlite3Strlen30(zName); | 3015 nName = sqlite3Strlen30(zName); |
2589 nCol = pList->nExpr; | 3016 nExtraCol = pPk ? pPk->nKeyCol : 1; |
2590 pIndex = sqlite3DbMallocZero(db, | 3017 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, |
2591 sizeof(Index) + /* Index structure */ | 3018 nName + nExtra + 1, &zExtra); |
2592 sizeof(int)*nCol + /* Index.aiColumn */ | |
2593 sizeof(int)*(nCol+1) + /* Index.aiRowEst */ | |
2594 sizeof(char *)*nCol + /* Index.azColl */ | |
2595 sizeof(u8)*nCol + /* Index.aSortOrder */ | |
2596 nName + 1 + /* Index.zName */ | |
2597 nExtra /* Collation sequence names */ | |
2598 ); | |
2599 if( db->mallocFailed ){ | 3019 if( db->mallocFailed ){ |
2600 goto exit_create_index; | 3020 goto exit_create_index; |
2601 } | 3021 } |
2602 pIndex->azColl = (char**)(&pIndex[1]); | 3022 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); |
2603 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); | 3023 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); |
2604 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); | 3024 pIndex->zName = zExtra; |
2605 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); | 3025 zExtra += nName + 1; |
2606 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); | |
2607 zExtra = (char *)(&pIndex->zName[nName+1]); | |
2608 memcpy(pIndex->zName, zName, nName+1); | 3026 memcpy(pIndex->zName, zName, nName+1); |
2609 pIndex->pTable = pTab; | 3027 pIndex->pTable = pTab; |
2610 pIndex->nColumn = pList->nExpr; | |
2611 pIndex->onError = (u8)onError; | 3028 pIndex->onError = (u8)onError; |
2612 pIndex->autoIndex = (u8)(pName==0); | 3029 pIndex->uniqNotNull = onError!=OE_None; |
| 3030 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; |
2613 pIndex->pSchema = db->aDb[iDb].pSchema; | 3031 pIndex->pSchema = db->aDb[iDb].pSchema; |
| 3032 pIndex->nKeyCol = pList->nExpr; |
| 3033 if( pPIWhere ){ |
| 3034 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); |
| 3035 pIndex->pPartIdxWhere = pPIWhere; |
| 3036 pPIWhere = 0; |
| 3037 } |
2614 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | 3038 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
2615 | 3039 |
2616 /* Check to see if we should honor DESC requests on index columns | 3040 /* Check to see if we should honor DESC requests on index columns |
2617 */ | 3041 */ |
2618 if( pDb->pSchema->file_format>=4 ){ | 3042 if( pDb->pSchema->file_format>=4 ){ |
2619 sortOrderMask = -1; /* Honor DESC */ | 3043 sortOrderMask = -1; /* Honor DESC */ |
2620 }else{ | 3044 }else{ |
2621 sortOrderMask = 0; /* Ignore DESC */ | 3045 sortOrderMask = 0; /* Ignore DESC */ |
2622 } | 3046 } |
2623 | 3047 |
2624 /* Scan the names of the columns of the table to be indexed and | 3048 /* Scan the names of the columns of the table to be indexed and |
2625 ** load the column indices into the Index structure. Report an error | 3049 ** load the column indices into the Index structure. Report an error |
2626 ** if any column is not found. | 3050 ** if any column is not found. |
2627 ** | 3051 ** |
2628 ** TODO: Add a test to make sure that the same column is not named | 3052 ** TODO: Add a test to make sure that the same column is not named |
2629 ** more than once within the same index. Only the first instance of | 3053 ** more than once within the same index. Only the first instance of |
2630 ** the column will ever be used by the optimizer. Note that using the | 3054 ** the column will ever be used by the optimizer. Note that using the |
2631 ** same column more than once cannot be an error because that would | 3055 ** same column more than once cannot be an error because that would |
2632 ** break backwards compatibility - it needs to be a warning. | 3056 ** break backwards compatibility - it needs to be a warning. |
2633 */ | 3057 */ |
2634 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ | 3058 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ |
2635 const char *zColName = pListItem->zName; | 3059 const char *zColName = pListItem->zName; |
2636 Column *pTabCol; | |
2637 int requestedSortOrder; | 3060 int requestedSortOrder; |
2638 char *zColl; /* Collation sequence name */ | 3061 char *zColl; /* Collation sequence name */ |
2639 | 3062 |
2640 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ | 3063 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ |
2641 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; | 3064 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; |
2642 } | 3065 } |
2643 if( j>=pTab->nCol ){ | 3066 if( j>=pTab->nCol ){ |
2644 sqlite3ErrorMsg(pParse, "table %s has no column named %s", | 3067 sqlite3ErrorMsg(pParse, "table %s has no column named %s", |
2645 pTab->zName, zColName); | 3068 pTab->zName, zColName); |
2646 pParse->checkSchema = 1; | 3069 pParse->checkSchema = 1; |
2647 goto exit_create_index; | 3070 goto exit_create_index; |
2648 } | 3071 } |
2649 pIndex->aiColumn[i] = j; | 3072 assert( j<=0x7fff ); |
2650 /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of | 3073 pIndex->aiColumn[i] = (i16)j; |
2651 ** the way the "idxlist" non-terminal is constructed by the parser, | 3074 if( pListItem->pExpr ){ |
2652 ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl | |
2653 ** must exist or else there must have been an OOM error. But if there | |
2654 ** was an OOM error, we would never reach this point. */ | |
2655 if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){ | |
2656 int nColl; | 3075 int nColl; |
2657 zColl = pListItem->pExpr->pColl->zName; | 3076 assert( pListItem->pExpr->op==TK_COLLATE ); |
| 3077 zColl = pListItem->pExpr->u.zToken; |
2658 nColl = sqlite3Strlen30(zColl) + 1; | 3078 nColl = sqlite3Strlen30(zColl) + 1; |
2659 assert( nExtra>=nColl ); | 3079 assert( nExtra>=nColl ); |
2660 memcpy(zExtra, zColl, nColl); | 3080 memcpy(zExtra, zColl, nColl); |
2661 zColl = zExtra; | 3081 zColl = zExtra; |
2662 zExtra += nColl; | 3082 zExtra += nColl; |
2663 nExtra -= nColl; | 3083 nExtra -= nColl; |
2664 }else{ | 3084 }else{ |
2665 zColl = pTab->aCol[j].zColl; | 3085 zColl = pTab->aCol[j].zColl; |
2666 if( !zColl ){ | 3086 if( !zColl ) zColl = "BINARY"; |
2667 zColl = db->pDfltColl->zName; | |
2668 } | |
2669 } | 3087 } |
2670 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ | 3088 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ |
2671 goto exit_create_index; | 3089 goto exit_create_index; |
2672 } | 3090 } |
2673 pIndex->azColl[i] = zColl; | 3091 pIndex->azColl[i] = zColl; |
2674 requestedSortOrder = pListItem->sortOrder & sortOrderMask; | 3092 requestedSortOrder = pListItem->sortOrder & sortOrderMask; |
2675 pIndex->aSortOrder[i] = (u8)requestedSortOrder; | 3093 pIndex->aSortOrder[i] = (u8)requestedSortOrder; |
| 3094 if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0; |
| 3095 } |
| 3096 if( pPk ){ |
| 3097 for(j=0; j<pPk->nKeyCol; j++){ |
| 3098 int x = pPk->aiColumn[j]; |
| 3099 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ |
| 3100 pIndex->nColumn--; |
| 3101 }else{ |
| 3102 pIndex->aiColumn[i] = x; |
| 3103 pIndex->azColl[i] = pPk->azColl[j]; |
| 3104 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; |
| 3105 i++; |
| 3106 } |
| 3107 } |
| 3108 assert( i==pIndex->nColumn ); |
| 3109 }else{ |
| 3110 pIndex->aiColumn[i] = -1; |
| 3111 pIndex->azColl[i] = "BINARY"; |
2676 } | 3112 } |
2677 sqlite3DefaultRowEst(pIndex); | 3113 sqlite3DefaultRowEst(pIndex); |
| 3114 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); |
2678 | 3115 |
2679 if( pTab==pParse->pNewTable ){ | 3116 if( pTab==pParse->pNewTable ){ |
2680 /* This routine has been called to create an automatic index as a | 3117 /* This routine has been called to create an automatic index as a |
2681 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or | 3118 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or |
2682 ** a PRIMARY KEY or UNIQUE clause following the column definitions. | 3119 ** a PRIMARY KEY or UNIQUE clause following the column definitions. |
2683 ** i.e. one of: | 3120 ** i.e. one of: |
2684 ** | 3121 ** |
2685 ** CREATE TABLE t(x PRIMARY KEY, y); | 3122 ** CREATE TABLE t(x PRIMARY KEY, y); |
2686 ** CREATE TABLE t(x, y, UNIQUE(x, y)); | 3123 ** CREATE TABLE t(x, y, UNIQUE(x, y)); |
2687 ** | 3124 ** |
2688 ** Either way, check to see if the table already has such an index. If | 3125 ** Either way, check to see if the table already has such an index. If |
2689 ** so, don't bother creating this one. This only applies to | 3126 ** so, don't bother creating this one. This only applies to |
2690 ** automatically created indices. Users can do as they wish with | 3127 ** automatically created indices. Users can do as they wish with |
2691 ** explicit indices. | 3128 ** explicit indices. |
2692 ** | 3129 ** |
2693 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent | 3130 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent |
2694 ** (and thus suppressing the second one) even if they have different | 3131 ** (and thus suppressing the second one) even if they have different |
2695 ** sort orders. | 3132 ** sort orders. |
2696 ** | 3133 ** |
2697 ** If there are different collating sequences or if the columns of | 3134 ** If there are different collating sequences or if the columns of |
2698 ** the constraint occur in different orders, then the constraints are | 3135 ** the constraint occur in different orders, then the constraints are |
2699 ** considered distinct and both result in separate indices. | 3136 ** considered distinct and both result in separate indices. |
2700 */ | 3137 */ |
2701 Index *pIdx; | 3138 Index *pIdx; |
2702 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | 3139 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
2703 int k; | 3140 int k; |
2704 assert( pIdx->onError!=OE_None ); | 3141 assert( IsUniqueIndex(pIdx) ); |
2705 assert( pIdx->autoIndex ); | 3142 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); |
2706 assert( pIndex->onError!=OE_None ); | 3143 assert( IsUniqueIndex(pIndex) ); |
2707 | 3144 |
2708 if( pIdx->nColumn!=pIndex->nColumn ) continue; | 3145 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; |
2709 for(k=0; k<pIdx->nColumn; k++){ | 3146 for(k=0; k<pIdx->nKeyCol; k++){ |
2710 const char *z1; | 3147 const char *z1; |
2711 const char *z2; | 3148 const char *z2; |
2712 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; | 3149 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; |
2713 z1 = pIdx->azColl[k]; | 3150 z1 = pIdx->azColl[k]; |
2714 z2 = pIndex->azColl[k]; | 3151 z2 = pIndex->azColl[k]; |
2715 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; | 3152 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; |
2716 } | 3153 } |
2717 if( k==pIdx->nColumn ){ | 3154 if( k==pIdx->nKeyCol ){ |
2718 if( pIdx->onError!=pIndex->onError ){ | 3155 if( pIdx->onError!=pIndex->onError ){ |
2719 /* This constraint creates the same index as a previous | 3156 /* This constraint creates the same index as a previous |
2720 ** constraint specified somewhere in the CREATE TABLE statement. | 3157 ** constraint specified somewhere in the CREATE TABLE statement. |
2721 ** However the ON CONFLICT clauses are different. If both this | 3158 ** However the ON CONFLICT clauses are different. If both this |
2722 ** constraint and the previous equivalent constraint have explicit | 3159 ** constraint and the previous equivalent constraint have explicit |
2723 ** ON CONFLICT clauses this is an error. Otherwise, use the | 3160 ** ON CONFLICT clauses this is an error. Otherwise, use the |
2724 ** explicitly specified behaviour for the index. | 3161 ** explicitly specified behavior for the index. |
2725 */ | 3162 */ |
2726 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ | 3163 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ |
2727 sqlite3ErrorMsg(pParse, | 3164 sqlite3ErrorMsg(pParse, |
2728 "conflicting ON CONFLICT clauses specified", 0); | 3165 "conflicting ON CONFLICT clauses specified", 0); |
2729 } | 3166 } |
2730 if( pIdx->onError==OE_Default ){ | 3167 if( pIdx->onError==OE_Default ){ |
2731 pIdx->onError = pIndex->onError; | 3168 pIdx->onError = pIndex->onError; |
2732 } | 3169 } |
2733 } | 3170 } |
2734 goto exit_create_index; | 3171 goto exit_create_index; |
2735 } | 3172 } |
2736 } | 3173 } |
2737 } | 3174 } |
2738 | 3175 |
2739 /* Link the new Index structure to its table and to the other | 3176 /* Link the new Index structure to its table and to the other |
2740 ** in-memory database structures. | 3177 ** in-memory database structures. |
2741 */ | 3178 */ |
2742 if( db->init.busy ){ | 3179 if( db->init.busy ){ |
2743 Index *p; | 3180 Index *p; |
2744 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); | 3181 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); |
2745 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, | 3182 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, |
2746 pIndex->zName, sqlite3Strlen30(pIndex->zName), | 3183 pIndex->zName, pIndex); |
2747 pIndex); | |
2748 if( p ){ | 3184 if( p ){ |
2749 assert( p==pIndex ); /* Malloc must have failed */ | 3185 assert( p==pIndex ); /* Malloc must have failed */ |
2750 db->mallocFailed = 1; | 3186 db->mallocFailed = 1; |
2751 goto exit_create_index; | 3187 goto exit_create_index; |
2752 } | 3188 } |
2753 db->flags |= SQLITE_InternChanges; | 3189 db->flags |= SQLITE_InternChanges; |
2754 if( pTblName!=0 ){ | 3190 if( pTblName!=0 ){ |
2755 pIndex->tnum = db->init.newTnum; | 3191 pIndex->tnum = db->init.newTnum; |
2756 } | 3192 } |
2757 } | 3193 } |
2758 | 3194 |
2759 /* If the db->init.busy is 0 then create the index on disk. This | 3195 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the |
2760 ** involves writing the index into the master table and filling in the | 3196 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then |
2761 ** index with the current table contents. | 3197 ** emit code to allocate the index rootpage on disk and make an entry for |
| 3198 ** the index in the sqlite_master table and populate the index with |
| 3199 ** content. But, do not do this if we are simply reading the sqlite_master |
| 3200 ** table to parse the schema, or if this index is the PRIMARY KEY index |
| 3201 ** of a WITHOUT ROWID table. |
2762 ** | 3202 ** |
2763 ** The db->init.busy is 0 when the user first enters a CREATE INDEX | 3203 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY |
2764 ** command. db->init.busy is 1 when a database is opened and | 3204 ** or UNIQUE index in a CREATE TABLE statement. Since the table |
2765 ** CREATE INDEX statements are read out of the master table. In | |
2766 ** the latter case the index already exists on disk, which is why | |
2767 ** we don't want to recreate it. | |
2768 ** | |
2769 ** If pTblName==0 it means this index is generated as a primary key | |
2770 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table | |
2771 ** has just been created, it contains no data and the index initialization | 3205 ** has just been created, it contains no data and the index initialization |
2772 ** step can be skipped. | 3206 ** step can be skipped. |
2773 */ | 3207 */ |
2774 else{ /* if( db->init.busy==0 ) */ | 3208 else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){ |
2775 Vdbe *v; | 3209 Vdbe *v; |
2776 char *zStmt; | 3210 char *zStmt; |
2777 int iMem = ++pParse->nMem; | 3211 int iMem = ++pParse->nMem; |
2778 | 3212 |
2779 v = sqlite3GetVdbe(pParse); | 3213 v = sqlite3GetVdbe(pParse); |
2780 if( v==0 ) goto exit_create_index; | 3214 if( v==0 ) goto exit_create_index; |
2781 | 3215 |
2782 | 3216 |
2783 /* Create the rootpage for the index | 3217 /* Create the rootpage for the index |
2784 */ | 3218 */ |
2785 sqlite3BeginWriteOperation(pParse, 1, iDb); | 3219 sqlite3BeginWriteOperation(pParse, 1, iDb); |
2786 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); | 3220 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); |
2787 | 3221 |
2788 /* Gather the complete text of the CREATE INDEX statement into | 3222 /* Gather the complete text of the CREATE INDEX statement into |
2789 ** the zStmt variable | 3223 ** the zStmt variable |
2790 */ | 3224 */ |
2791 if( pStart ){ | 3225 if( pStart ){ |
2792 assert( pEnd!=0 ); | 3226 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; |
| 3227 if( pName->z[n-1]==';' ) n--; |
2793 /* A named index with an explicit CREATE INDEX statement */ | 3228 /* A named index with an explicit CREATE INDEX statement */ |
2794 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", | 3229 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", |
2795 onError==OE_None ? "" : " UNIQUE", | 3230 onError==OE_None ? "" : " UNIQUE", n, pName->z); |
2796 pEnd->z - pName->z + 1, | |
2797 pName->z); | |
2798 }else{ | 3231 }else{ |
2799 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ | 3232 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ |
2800 /* zStmt = sqlite3MPrintf(""); */ | 3233 /* zStmt = sqlite3MPrintf(""); */ |
2801 zStmt = 0; | 3234 zStmt = 0; |
2802 } | 3235 } |
2803 | 3236 |
2804 /* Add an entry in sqlite_master for this index | 3237 /* Add an entry in sqlite_master for this index |
2805 */ | 3238 */ |
2806 sqlite3NestedParse(pParse, | 3239 sqlite3NestedParse(pParse, |
2807 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", | 3240 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", |
2808 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), | 3241 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), |
2809 pIndex->zName, | 3242 pIndex->zName, |
2810 pTab->zName, | 3243 pTab->zName, |
2811 iMem, | 3244 iMem, |
2812 zStmt | 3245 zStmt |
2813 ); | 3246 ); |
2814 sqlite3DbFree(db, zStmt); | 3247 sqlite3DbFree(db, zStmt); |
2815 | 3248 |
2816 /* Fill the index with data and reparse the schema. Code an OP_Expire | 3249 /* Fill the index with data and reparse the schema. Code an OP_Expire |
2817 ** to invalidate all pre-compiled statements. | 3250 ** to invalidate all pre-compiled statements. |
2818 */ | 3251 */ |
2819 if( pTblName ){ | 3252 if( pTblName ){ |
2820 sqlite3RefillIndex(pParse, pIndex, iMem); | 3253 sqlite3RefillIndex(pParse, pIndex, iMem); |
2821 sqlite3ChangeCookie(pParse, iDb); | 3254 sqlite3ChangeCookie(pParse, iDb); |
2822 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, | 3255 sqlite3VdbeAddParseSchemaOp(v, iDb, |
2823 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), | 3256 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); |
2824 P4_DYNAMIC); | |
2825 sqlite3VdbeAddOp1(v, OP_Expire, 0); | 3257 sqlite3VdbeAddOp1(v, OP_Expire, 0); |
2826 } | 3258 } |
2827 } | 3259 } |
2828 | 3260 |
2829 /* When adding an index to the list of indices for a table, make | 3261 /* When adding an index to the list of indices for a table, make |
2830 ** sure all indices labeled OE_Replace come after all those labeled | 3262 ** sure all indices labeled OE_Replace come after all those labeled |
2831 ** OE_Ignore. This is necessary for the correct constraint check | 3263 ** OE_Ignore. This is necessary for the correct constraint check |
2832 ** processing (in sqlite3GenerateConstraintChecks()) as part of | 3264 ** processing (in sqlite3GenerateConstraintChecks()) as part of |
2833 ** UPDATE and INSERT statements. | 3265 ** UPDATE and INSERT statements. |
2834 */ | 3266 */ |
2835 if( db->init.busy || pTblName==0 ){ | 3267 if( db->init.busy || pTblName==0 ){ |
2836 if( onError!=OE_Replace || pTab->pIndex==0 | 3268 if( onError!=OE_Replace || pTab->pIndex==0 |
2837 || pTab->pIndex->onError==OE_Replace){ | 3269 || pTab->pIndex->onError==OE_Replace){ |
2838 pIndex->pNext = pTab->pIndex; | 3270 pIndex->pNext = pTab->pIndex; |
2839 pTab->pIndex = pIndex; | 3271 pTab->pIndex = pIndex; |
2840 }else{ | 3272 }else{ |
2841 Index *pOther = pTab->pIndex; | 3273 Index *pOther = pTab->pIndex; |
2842 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ | 3274 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ |
2843 pOther = pOther->pNext; | 3275 pOther = pOther->pNext; |
2844 } | 3276 } |
2845 pIndex->pNext = pOther->pNext; | 3277 pIndex->pNext = pOther->pNext; |
2846 pOther->pNext = pIndex; | 3278 pOther->pNext = pIndex; |
2847 } | 3279 } |
2848 pRet = pIndex; | 3280 pRet = pIndex; |
2849 pIndex = 0; | 3281 pIndex = 0; |
2850 } | 3282 } |
2851 | 3283 |
2852 /* Clean up before exiting */ | 3284 /* Clean up before exiting */ |
2853 exit_create_index: | 3285 exit_create_index: |
2854 if( pIndex ){ | 3286 if( pIndex ) freeIndex(db, pIndex); |
2855 sqlite3DbFree(db, pIndex->zColAff); | 3287 sqlite3ExprDelete(db, pPIWhere); |
2856 sqlite3DbFree(db, pIndex); | |
2857 } | |
2858 sqlite3ExprListDelete(db, pList); | 3288 sqlite3ExprListDelete(db, pList); |
2859 sqlite3SrcListDelete(db, pTblName); | 3289 sqlite3SrcListDelete(db, pTblName); |
2860 sqlite3DbFree(db, zName); | 3290 sqlite3DbFree(db, zName); |
2861 return pRet; | 3291 return pRet; |
2862 } | 3292 } |
2863 | 3293 |
2864 /* | 3294 /* |
2865 ** Fill the Index.aiRowEst[] array with default information - information | 3295 ** Fill the Index.aiRowEst[] array with default information - information |
2866 ** to be used when we have not run the ANALYZE command. | 3296 ** to be used when we have not run the ANALYZE command. |
2867 ** | 3297 ** |
2868 ** aiRowEst[0] is suppose to contain the number of elements in the index. | 3298 ** aiRowEst[0] is supposed to contain the number of elements in the index. |
2869 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the | 3299 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the |
2870 ** number of rows in the table that match any particular value of the | 3300 ** number of rows in the table that match any particular value of the |
2871 ** first column of the index. aiRowEst[2] is an estimate of the number | 3301 ** first column of the index. aiRowEst[2] is an estimate of the number |
2872 ** of rows that match any particular combiniation of the first 2 columns | 3302 ** of rows that match any particular combination of the first 2 columns |
2873 ** of the index. And so forth. It must always be the case that | 3303 ** of the index. And so forth. It must always be the case that |
2874 * | 3304 * |
2875 ** aiRowEst[N]<=aiRowEst[N-1] | 3305 ** aiRowEst[N]<=aiRowEst[N-1] |
2876 ** aiRowEst[N]>=1 | 3306 ** aiRowEst[N]>=1 |
2877 ** | 3307 ** |
2878 ** Apart from that, we have little to go on besides intuition as to | 3308 ** Apart from that, we have little to go on besides intuition as to |
2879 ** how aiRowEst[] should be initialized. The numbers generated here | 3309 ** how aiRowEst[] should be initialized. The numbers generated here |
2880 ** are based on typical values found in actual indices. | 3310 ** are based on typical values found in actual indices. |
2881 */ | 3311 */ |
2882 void sqlite3DefaultRowEst(Index *pIdx){ | 3312 void sqlite3DefaultRowEst(Index *pIdx){ |
2883 unsigned *a = pIdx->aiRowEst; | 3313 /* 10, 9, 8, 7, 6 */ |
| 3314 LogEst aVal[] = { 33, 32, 30, 28, 26 }; |
| 3315 LogEst *a = pIdx->aiRowLogEst; |
| 3316 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); |
2884 int i; | 3317 int i; |
2885 unsigned n; | 3318 |
2886 assert( a!=0 ); | 3319 /* Set the first entry (number of rows in the index) to the estimated |
2887 a[0] = pIdx->pTable->nRowEst; | 3320 ** number of rows in the table. Or 10, if the estimated number of rows |
2888 if( a[0]<10 ) a[0] = 10; | 3321 ** in the table is less than that. */ |
2889 n = 10; | 3322 a[0] = pIdx->pTable->nRowLogEst; |
2890 for(i=1; i<=pIdx->nColumn; i++){ | 3323 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); |
2891 a[i] = n; | 3324 |
2892 if( n>5 ) n--; | 3325 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is |
| 3326 ** 6 and each subsequent value (if any) is 5. */ |
| 3327 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); |
| 3328 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ |
| 3329 a[i] = 23; assert( 23==sqlite3LogEst(5) ); |
2893 } | 3330 } |
2894 if( pIdx->onError!=OE_None ){ | 3331 |
2895 a[pIdx->nColumn] = 1; | 3332 assert( 0==sqlite3LogEst(1) ); |
2896 } | 3333 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; |
2897 } | 3334 } |
2898 | 3335 |
2899 /* | 3336 /* |
2900 ** This routine will drop an existing named index. This routine | 3337 ** This routine will drop an existing named index. This routine |
2901 ** implements the DROP INDEX statement. | 3338 ** implements the DROP INDEX statement. |
2902 */ | 3339 */ |
2903 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ | 3340 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ |
2904 Index *pIndex; | 3341 Index *pIndex; |
2905 Vdbe *v; | 3342 Vdbe *v; |
2906 sqlite3 *db = pParse->db; | 3343 sqlite3 *db = pParse->db; |
(...skipping 10 matching lines...) Expand all Loading... |
2917 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); | 3354 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); |
2918 if( pIndex==0 ){ | 3355 if( pIndex==0 ){ |
2919 if( !ifExists ){ | 3356 if( !ifExists ){ |
2920 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); | 3357 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); |
2921 }else{ | 3358 }else{ |
2922 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); | 3359 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); |
2923 } | 3360 } |
2924 pParse->checkSchema = 1; | 3361 pParse->checkSchema = 1; |
2925 goto exit_drop_index; | 3362 goto exit_drop_index; |
2926 } | 3363 } |
2927 if( pIndex->autoIndex ){ | 3364 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ |
2928 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " | 3365 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " |
2929 "or PRIMARY KEY constraint cannot be dropped", 0); | 3366 "or PRIMARY KEY constraint cannot be dropped", 0); |
2930 goto exit_drop_index; | 3367 goto exit_drop_index; |
2931 } | 3368 } |
2932 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); | 3369 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); |
2933 #ifndef SQLITE_OMIT_AUTHORIZATION | 3370 #ifndef SQLITE_OMIT_AUTHORIZATION |
2934 { | 3371 { |
2935 int code = SQLITE_DROP_INDEX; | 3372 int code = SQLITE_DROP_INDEX; |
2936 Table *pTab = pIndex->pTable; | 3373 Table *pTab = pIndex->pTable; |
2937 const char *zDb = db->aDb[iDb].zName; | 3374 const char *zDb = db->aDb[iDb].zName; |
2938 const char *zTab = SCHEMA_TABLE(iDb); | 3375 const char *zTab = SCHEMA_TABLE(iDb); |
2939 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ | 3376 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ |
2940 goto exit_drop_index; | 3377 goto exit_drop_index; |
2941 } | 3378 } |
2942 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; | 3379 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; |
2943 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ | 3380 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ |
2944 goto exit_drop_index; | 3381 goto exit_drop_index; |
2945 } | 3382 } |
2946 } | 3383 } |
2947 #endif | 3384 #endif |
2948 | 3385 |
2949 /* Generate code to remove the index and from the master table */ | 3386 /* Generate code to remove the index and from the master table */ |
2950 v = sqlite3GetVdbe(pParse); | 3387 v = sqlite3GetVdbe(pParse); |
2951 if( v ){ | 3388 if( v ){ |
2952 sqlite3BeginWriteOperation(pParse, 1, iDb); | 3389 sqlite3BeginWriteOperation(pParse, 1, iDb); |
2953 sqlite3NestedParse(pParse, | 3390 sqlite3NestedParse(pParse, |
2954 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", | 3391 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", |
2955 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), | 3392 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName |
2956 pIndex->zName | |
2957 ); | 3393 ); |
2958 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ | 3394 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); |
2959 sqlite3NestedParse(pParse, | |
2960 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q", | |
2961 db->aDb[iDb].zName, pIndex->zName | |
2962 ); | |
2963 } | |
2964 sqlite3ChangeCookie(pParse, iDb); | 3395 sqlite3ChangeCookie(pParse, iDb); |
2965 destroyRootPage(pParse, pIndex->tnum, iDb); | 3396 destroyRootPage(pParse, pIndex->tnum, iDb); |
2966 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); | 3397 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); |
2967 } | 3398 } |
2968 | 3399 |
2969 exit_drop_index: | 3400 exit_drop_index: |
2970 sqlite3SrcListDelete(db, pName); | 3401 sqlite3SrcListDelete(db, pName); |
2971 } | 3402 } |
2972 | 3403 |
2973 /* | 3404 /* |
2974 ** pArray is a pointer to an array of objects. Each object in the | 3405 ** pArray is a pointer to an array of objects. Each object in the |
2975 ** array is szEntry bytes in size. This routine allocates a new | 3406 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() |
2976 ** object on the end of the array. | 3407 ** to extend the array so that there is space for a new object at the end. |
2977 ** | 3408 ** |
2978 ** *pnEntry is the number of entries already in use. *pnAlloc is | 3409 ** When this function is called, *pnEntry contains the current size of |
2979 ** the previously allocated size of the array. initSize is the | 3410 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes |
2980 ** suggested initial array size allocation. | 3411 ** in total). |
2981 ** | 3412 ** |
2982 ** The index of the new entry is returned in *pIdx. | 3413 ** If the realloc() is successful (i.e. if no OOM condition occurs), the |
| 3414 ** space allocated for the new object is zeroed, *pnEntry updated to |
| 3415 ** reflect the new size of the array and a pointer to the new allocation |
| 3416 ** returned. *pIdx is set to the index of the new array entry in this case. |
2983 ** | 3417 ** |
2984 ** This routine returns a pointer to the array of objects. This | 3418 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains |
2985 ** might be the same as the pArray parameter or it might be a different | 3419 ** unchanged and a copy of pArray returned. |
2986 ** pointer if the array was resized. | |
2987 */ | 3420 */ |
2988 void *sqlite3ArrayAllocate( | 3421 void *sqlite3ArrayAllocate( |
2989 sqlite3 *db, /* Connection to notify of malloc failures */ | 3422 sqlite3 *db, /* Connection to notify of malloc failures */ |
2990 void *pArray, /* Array of objects. Might be reallocated */ | 3423 void *pArray, /* Array of objects. Might be reallocated */ |
2991 int szEntry, /* Size of each object in the array */ | 3424 int szEntry, /* Size of each object in the array */ |
2992 int initSize, /* Suggested initial allocation, in elements */ | |
2993 int *pnEntry, /* Number of objects currently in use */ | 3425 int *pnEntry, /* Number of objects currently in use */ |
2994 int *pnAlloc, /* Current size of the allocation, in elements */ | |
2995 int *pIdx /* Write the index of a new slot here */ | 3426 int *pIdx /* Write the index of a new slot here */ |
2996 ){ | 3427 ){ |
2997 char *z; | 3428 char *z; |
2998 if( *pnEntry >= *pnAlloc ){ | 3429 int n = *pnEntry; |
2999 void *pNew; | 3430 if( (n & (n-1))==0 ){ |
3000 int newSize; | 3431 int sz = (n==0) ? 1 : 2*n; |
3001 newSize = (*pnAlloc)*2 + initSize; | 3432 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); |
3002 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); | |
3003 if( pNew==0 ){ | 3433 if( pNew==0 ){ |
3004 *pIdx = -1; | 3434 *pIdx = -1; |
3005 return pArray; | 3435 return pArray; |
3006 } | 3436 } |
3007 *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry; | |
3008 pArray = pNew; | 3437 pArray = pNew; |
3009 } | 3438 } |
3010 z = (char*)pArray; | 3439 z = (char*)pArray; |
3011 memset(&z[*pnEntry * szEntry], 0, szEntry); | 3440 memset(&z[n * szEntry], 0, szEntry); |
3012 *pIdx = *pnEntry; | 3441 *pIdx = n; |
3013 ++*pnEntry; | 3442 ++*pnEntry; |
3014 return pArray; | 3443 return pArray; |
3015 } | 3444 } |
3016 | 3445 |
3017 /* | 3446 /* |
3018 ** Append a new element to the given IdList. Create a new IdList if | 3447 ** Append a new element to the given IdList. Create a new IdList if |
3019 ** need be. | 3448 ** need be. |
3020 ** | 3449 ** |
3021 ** A new IdList is returned, or NULL if malloc() fails. | 3450 ** A new IdList is returned, or NULL if malloc() fails. |
3022 */ | 3451 */ |
3023 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ | 3452 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ |
3024 int i; | 3453 int i; |
3025 if( pList==0 ){ | 3454 if( pList==0 ){ |
3026 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); | 3455 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); |
3027 if( pList==0 ) return 0; | 3456 if( pList==0 ) return 0; |
3028 pList->nAlloc = 0; | |
3029 } | 3457 } |
3030 pList->a = sqlite3ArrayAllocate( | 3458 pList->a = sqlite3ArrayAllocate( |
3031 db, | 3459 db, |
3032 pList->a, | 3460 pList->a, |
3033 sizeof(pList->a[0]), | 3461 sizeof(pList->a[0]), |
3034 5, | |
3035 &pList->nId, | 3462 &pList->nId, |
3036 &pList->nAlloc, | |
3037 &i | 3463 &i |
3038 ); | 3464 ); |
3039 if( i<0 ){ | 3465 if( i<0 ){ |
3040 sqlite3IdListDelete(db, pList); | 3466 sqlite3IdListDelete(db, pList); |
3041 return 0; | 3467 return 0; |
3042 } | 3468 } |
3043 pList->a[i].zName = sqlite3NameFromToken(db, pToken); | 3469 pList->a[i].zName = sqlite3NameFromToken(db, pToken); |
3044 return pList; | 3470 return pList; |
3045 } | 3471 } |
3046 | 3472 |
(...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3097 ){ | 3523 ){ |
3098 int i; | 3524 int i; |
3099 | 3525 |
3100 /* Sanity checking on calling parameters */ | 3526 /* Sanity checking on calling parameters */ |
3101 assert( iStart>=0 ); | 3527 assert( iStart>=0 ); |
3102 assert( nExtra>=1 ); | 3528 assert( nExtra>=1 ); |
3103 assert( pSrc!=0 ); | 3529 assert( pSrc!=0 ); |
3104 assert( iStart<=pSrc->nSrc ); | 3530 assert( iStart<=pSrc->nSrc ); |
3105 | 3531 |
3106 /* Allocate additional space if needed */ | 3532 /* Allocate additional space if needed */ |
3107 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){ | 3533 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ |
3108 SrcList *pNew; | 3534 SrcList *pNew; |
3109 int nAlloc = pSrc->nSrc+nExtra; | 3535 int nAlloc = pSrc->nSrc+nExtra; |
3110 int nGot; | 3536 int nGot; |
3111 pNew = sqlite3DbRealloc(db, pSrc, | 3537 pNew = sqlite3DbRealloc(db, pSrc, |
3112 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); | 3538 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); |
3113 if( pNew==0 ){ | 3539 if( pNew==0 ){ |
3114 assert( db->mallocFailed ); | 3540 assert( db->mallocFailed ); |
3115 return pSrc; | 3541 return pSrc; |
3116 } | 3542 } |
3117 pSrc = pNew; | 3543 pSrc = pNew; |
3118 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; | 3544 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; |
3119 pSrc->nAlloc = (u16)nGot; | 3545 pSrc->nAlloc = nGot; |
3120 } | 3546 } |
3121 | 3547 |
3122 /* Move existing slots that come after the newly inserted slots | 3548 /* Move existing slots that come after the newly inserted slots |
3123 ** out of the way */ | 3549 ** out of the way */ |
3124 for(i=pSrc->nSrc-1; i>=iStart; i--){ | 3550 for(i=pSrc->nSrc-1; i>=iStart; i--){ |
3125 pSrc->a[i+nExtra] = pSrc->a[i]; | 3551 pSrc->a[i+nExtra] = pSrc->a[i]; |
3126 } | 3552 } |
3127 pSrc->nSrc += (i16)nExtra; | 3553 pSrc->nSrc += nExtra; |
3128 | 3554 |
3129 /* Zero the newly allocated slots */ | 3555 /* Zero the newly allocated slots */ |
3130 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); | 3556 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); |
3131 for(i=iStart; i<iStart+nExtra; i++){ | 3557 for(i=iStart; i<iStart+nExtra; i++){ |
3132 pSrc->a[i].iCursor = -1; | 3558 pSrc->a[i].iCursor = -1; |
3133 } | 3559 } |
3134 | 3560 |
3135 /* Return a pointer to the enlarged SrcList */ | 3561 /* Return a pointer to the enlarged SrcList */ |
3136 return pSrc; | 3562 return pSrc; |
3137 } | 3563 } |
(...skipping 103 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3241 sqlite3DbFree(db, pList); | 3667 sqlite3DbFree(db, pList); |
3242 } | 3668 } |
3243 | 3669 |
3244 /* | 3670 /* |
3245 ** This routine is called by the parser to add a new term to the | 3671 ** This routine is called by the parser to add a new term to the |
3246 ** end of a growing FROM clause. The "p" parameter is the part of | 3672 ** end of a growing FROM clause. The "p" parameter is the part of |
3247 ** the FROM clause that has already been constructed. "p" is NULL | 3673 ** the FROM clause that has already been constructed. "p" is NULL |
3248 ** if this is the first term of the FROM clause. pTable and pDatabase | 3674 ** if this is the first term of the FROM clause. pTable and pDatabase |
3249 ** are the name of the table and database named in the FROM clause term. | 3675 ** are the name of the table and database named in the FROM clause term. |
3250 ** pDatabase is NULL if the database name qualifier is missing - the | 3676 ** pDatabase is NULL if the database name qualifier is missing - the |
3251 ** usual case. If the term has a alias, then pAlias points to the | 3677 ** usual case. If the term has an alias, then pAlias points to the |
3252 ** alias token. If the term is a subquery, then pSubquery is the | 3678 ** alias token. If the term is a subquery, then pSubquery is the |
3253 ** SELECT statement that the subquery encodes. The pTable and | 3679 ** SELECT statement that the subquery encodes. The pTable and |
3254 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing | 3680 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing |
3255 ** parameters are the content of the ON and USING clauses. | 3681 ** parameters are the content of the ON and USING clauses. |
3256 ** | 3682 ** |
3257 ** Return a new SrcList which encodes is the FROM with the new | 3683 ** Return a new SrcList which encodes is the FROM with the new |
3258 ** term added. | 3684 ** term added. |
3259 */ | 3685 */ |
3260 SrcList *sqlite3SrcListAppendFromTerm( | 3686 SrcList *sqlite3SrcListAppendFromTerm( |
3261 Parse *pParse, /* Parsing context */ | 3687 Parse *pParse, /* Parsing context */ |
(...skipping 63 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3325 ** | 3751 ** |
3326 ** Example: Suppose the join is like this: | 3752 ** Example: Suppose the join is like this: |
3327 ** | 3753 ** |
3328 ** A natural cross join B | 3754 ** A natural cross join B |
3329 ** | 3755 ** |
3330 ** The operator is "natural cross join". The A and B operands are stored | 3756 ** The operator is "natural cross join". The A and B operands are stored |
3331 ** in p->a[0] and p->a[1], respectively. The parser initially stores the | 3757 ** in p->a[0] and p->a[1], respectively. The parser initially stores the |
3332 ** operator with A. This routine shifts that operator over to B. | 3758 ** operator with A. This routine shifts that operator over to B. |
3333 */ | 3759 */ |
3334 void sqlite3SrcListShiftJoinType(SrcList *p){ | 3760 void sqlite3SrcListShiftJoinType(SrcList *p){ |
3335 if( p && p->a ){ | 3761 if( p ){ |
3336 int i; | 3762 int i; |
| 3763 assert( p->a || p->nSrc==0 ); |
3337 for(i=p->nSrc-1; i>0; i--){ | 3764 for(i=p->nSrc-1; i>0; i--){ |
3338 p->a[i].jointype = p->a[i-1].jointype; | 3765 p->a[i].jointype = p->a[i-1].jointype; |
3339 } | 3766 } |
3340 p->a[0].jointype = 0; | 3767 p->a[0].jointype = 0; |
3341 } | 3768 } |
3342 } | 3769 } |
3343 | 3770 |
3344 /* | 3771 /* |
3345 ** Begin a transaction | 3772 ** Begin a transaction |
3346 */ | 3773 */ |
(...skipping 17 matching lines...) Expand all Loading... |
3364 sqlite3VdbeUsesBtree(v, i); | 3791 sqlite3VdbeUsesBtree(v, i); |
3365 } | 3792 } |
3366 } | 3793 } |
3367 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); | 3794 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); |
3368 } | 3795 } |
3369 | 3796 |
3370 /* | 3797 /* |
3371 ** Commit a transaction | 3798 ** Commit a transaction |
3372 */ | 3799 */ |
3373 void sqlite3CommitTransaction(Parse *pParse){ | 3800 void sqlite3CommitTransaction(Parse *pParse){ |
3374 sqlite3 *db; | |
3375 Vdbe *v; | 3801 Vdbe *v; |
3376 | 3802 |
3377 assert( pParse!=0 ); | 3803 assert( pParse!=0 ); |
3378 db = pParse->db; | 3804 assert( pParse->db!=0 ); |
3379 assert( db!=0 ); | |
3380 /* if( db->aDb[0].pBt==0 ) return; */ | |
3381 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ | 3805 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ |
3382 return; | 3806 return; |
3383 } | 3807 } |
3384 v = sqlite3GetVdbe(pParse); | 3808 v = sqlite3GetVdbe(pParse); |
3385 if( v ){ | 3809 if( v ){ |
3386 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); | 3810 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); |
3387 } | 3811 } |
3388 } | 3812 } |
3389 | 3813 |
3390 /* | 3814 /* |
3391 ** Rollback a transaction | 3815 ** Rollback a transaction |
3392 */ | 3816 */ |
3393 void sqlite3RollbackTransaction(Parse *pParse){ | 3817 void sqlite3RollbackTransaction(Parse *pParse){ |
3394 sqlite3 *db; | |
3395 Vdbe *v; | 3818 Vdbe *v; |
3396 | 3819 |
3397 assert( pParse!=0 ); | 3820 assert( pParse!=0 ); |
3398 db = pParse->db; | 3821 assert( pParse->db!=0 ); |
3399 assert( db!=0 ); | |
3400 /* if( db->aDb[0].pBt==0 ) return; */ | |
3401 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ | 3822 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ |
3402 return; | 3823 return; |
3403 } | 3824 } |
3404 v = sqlite3GetVdbe(pParse); | 3825 v = sqlite3GetVdbe(pParse); |
3405 if( v ){ | 3826 if( v ){ |
3406 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); | 3827 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); |
3407 } | 3828 } |
3408 } | 3829 } |
3409 | 3830 |
3410 /* | 3831 /* |
(...skipping 25 matching lines...) Expand all Loading... |
3436 if( db->aDb[1].pBt==0 && !pParse->explain ){ | 3857 if( db->aDb[1].pBt==0 && !pParse->explain ){ |
3437 int rc; | 3858 int rc; |
3438 Btree *pBt; | 3859 Btree *pBt; |
3439 static const int flags = | 3860 static const int flags = |
3440 SQLITE_OPEN_READWRITE | | 3861 SQLITE_OPEN_READWRITE | |
3441 SQLITE_OPEN_CREATE | | 3862 SQLITE_OPEN_CREATE | |
3442 SQLITE_OPEN_EXCLUSIVE | | 3863 SQLITE_OPEN_EXCLUSIVE | |
3443 SQLITE_OPEN_DELETEONCLOSE | | 3864 SQLITE_OPEN_DELETEONCLOSE | |
3444 SQLITE_OPEN_TEMP_DB; | 3865 SQLITE_OPEN_TEMP_DB; |
3445 | 3866 |
3446 rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags); | 3867 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); |
3447 if( rc!=SQLITE_OK ){ | 3868 if( rc!=SQLITE_OK ){ |
3448 sqlite3ErrorMsg(pParse, "unable to open a temporary database " | 3869 sqlite3ErrorMsg(pParse, "unable to open a temporary database " |
3449 "file for storing temporary tables"); | 3870 "file for storing temporary tables"); |
3450 pParse->rc = rc; | 3871 pParse->rc = rc; |
3451 return 1; | 3872 return 1; |
3452 } | 3873 } |
3453 db->aDb[1].pBt = pBt; | 3874 db->aDb[1].pBt = pBt; |
3454 assert( db->aDb[1].pSchema ); | 3875 assert( db->aDb[1].pSchema ); |
3455 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ | 3876 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ |
3456 db->mallocFailed = 1; | 3877 db->mallocFailed = 1; |
3457 return 1; | 3878 return 1; |
3458 } | 3879 } |
3459 } | 3880 } |
3460 return 0; | 3881 return 0; |
3461 } | 3882 } |
3462 | 3883 |
3463 /* | 3884 /* |
3464 ** Generate VDBE code that will verify the schema cookie and start | 3885 ** Record the fact that the schema cookie will need to be verified |
3465 ** a read-transaction for all named database files. | 3886 ** for database iDb. The code to actually verify the schema cookie |
3466 ** | 3887 ** will occur at the end of the top-level VDBE and will be generated |
3467 ** It is important that all schema cookies be verified and all | 3888 ** later, by sqlite3FinishCoding(). |
3468 ** read transactions be started before anything else happens in | |
3469 ** the VDBE program. But this routine can be called after much other | |
3470 ** code has been generated. So here is what we do: | |
3471 ** | |
3472 ** The first time this routine is called, we code an OP_Goto that | |
3473 ** will jump to a subroutine at the end of the program. Then we | |
3474 ** record every database that needs its schema verified in the | |
3475 ** pParse->cookieMask field. Later, after all other code has been | |
3476 ** generated, the subroutine that does the cookie verifications and | |
3477 ** starts the transactions will be coded and the OP_Goto P2 value | |
3478 ** will be made to point to that subroutine. The generation of the | |
3479 ** cookie verification subroutine code happens in sqlite3FinishCoding(). | |
3480 ** | |
3481 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the | |
3482 ** schema on any databases. This can be used to position the OP_Goto | |
3483 ** early in the code, before we know if any database tables will be used. | |
3484 */ | 3889 */ |
3485 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ | 3890 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ |
3486 Parse *pToplevel = sqlite3ParseToplevel(pParse); | 3891 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 3892 sqlite3 *db = pToplevel->db; |
3487 | 3893 |
3488 if( pToplevel->cookieGoto==0 ){ | 3894 assert( iDb>=0 && iDb<db->nDb ); |
3489 Vdbe *v = sqlite3GetVdbe(pToplevel); | 3895 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); |
3490 if( v==0 ) return; /* This only happens if there was a prior error */ | 3896 assert( iDb<SQLITE_MAX_ATTACHED+2 ); |
3491 pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; | 3897 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
3492 } | 3898 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ |
3493 if( iDb>=0 ){ | 3899 DbMaskSet(pToplevel->cookieMask, iDb); |
3494 sqlite3 *db = pToplevel->db; | 3900 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; |
3495 yDbMask mask; | 3901 if( !OMIT_TEMPDB && iDb==1 ){ |
3496 | 3902 sqlite3OpenTempDatabase(pToplevel); |
3497 assert( iDb<db->nDb ); | |
3498 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); | |
3499 assert( iDb<SQLITE_MAX_ATTACHED+2 ); | |
3500 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | |
3501 mask = ((yDbMask)1)<<iDb; | |
3502 if( (pToplevel->cookieMask & mask)==0 ){ | |
3503 pToplevel->cookieMask |= mask; | |
3504 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; | |
3505 if( !OMIT_TEMPDB && iDb==1 ){ | |
3506 sqlite3OpenTempDatabase(pToplevel); | |
3507 } | |
3508 } | 3903 } |
3509 } | 3904 } |
3510 } | 3905 } |
3511 | 3906 |
3512 /* | 3907 /* |
3513 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each | 3908 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each |
3514 ** attached database. Otherwise, invoke it for the database named zDb only. | 3909 ** attached database. Otherwise, invoke it for the database named zDb only. |
3515 */ | 3910 */ |
3516 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ | 3911 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ |
3517 sqlite3 *db = pParse->db; | 3912 sqlite3 *db = pParse->db; |
(...skipping 15 matching lines...) Expand all Loading... |
3533 ** is set if the setStatement parameter is true. A checkpoint should | 3928 ** is set if the setStatement parameter is true. A checkpoint should |
3534 ** be set for operations that might fail (due to a constraint) part of | 3929 ** be set for operations that might fail (due to a constraint) part of |
3535 ** the way through and which will need to undo some writes without having to | 3930 ** the way through and which will need to undo some writes without having to |
3536 ** rollback the whole transaction. For operations where all constraints | 3931 ** rollback the whole transaction. For operations where all constraints |
3537 ** can be checked before any changes are made to the database, it is never | 3932 ** can be checked before any changes are made to the database, it is never |
3538 ** necessary to undo a write and the checkpoint should not be set. | 3933 ** necessary to undo a write and the checkpoint should not be set. |
3539 */ | 3934 */ |
3540 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ | 3935 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ |
3541 Parse *pToplevel = sqlite3ParseToplevel(pParse); | 3936 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
3542 sqlite3CodeVerifySchema(pParse, iDb); | 3937 sqlite3CodeVerifySchema(pParse, iDb); |
3543 pToplevel->writeMask |= ((yDbMask)1)<<iDb; | 3938 DbMaskSet(pToplevel->writeMask, iDb); |
3544 pToplevel->isMultiWrite |= setStatement; | 3939 pToplevel->isMultiWrite |= setStatement; |
3545 } | 3940 } |
3546 | 3941 |
3547 /* | 3942 /* |
3548 ** Indicate that the statement currently under construction might write | 3943 ** Indicate that the statement currently under construction might write |
3549 ** more than one entry (example: deleting one row then inserting another, | 3944 ** more than one entry (example: deleting one row then inserting another, |
3550 ** inserting multiple rows in a table, or inserting a row and index entries.) | 3945 ** inserting multiple rows in a table, or inserting a row and index entries.) |
3551 ** If an abort occurs after some of these writes have completed, then it will | 3946 ** If an abort occurs after some of these writes have completed, then it will |
3552 ** be necessary to undo the completed writes. | 3947 ** be necessary to undo the completed writes. |
3553 */ | 3948 */ |
(...skipping 21 matching lines...) Expand all Loading... |
3575 void sqlite3MayAbort(Parse *pParse){ | 3970 void sqlite3MayAbort(Parse *pParse){ |
3576 Parse *pToplevel = sqlite3ParseToplevel(pParse); | 3971 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
3577 pToplevel->mayAbort = 1; | 3972 pToplevel->mayAbort = 1; |
3578 } | 3973 } |
3579 | 3974 |
3580 /* | 3975 /* |
3581 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT | 3976 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT |
3582 ** error. The onError parameter determines which (if any) of the statement | 3977 ** error. The onError parameter determines which (if any) of the statement |
3583 ** and/or current transaction is rolled back. | 3978 ** and/or current transaction is rolled back. |
3584 */ | 3979 */ |
3585 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){ | 3980 void sqlite3HaltConstraint( |
| 3981 Parse *pParse, /* Parsing context */ |
| 3982 int errCode, /* extended error code */ |
| 3983 int onError, /* Constraint type */ |
| 3984 char *p4, /* Error message */ |
| 3985 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ |
| 3986 u8 p5Errmsg /* P5_ErrMsg type */ |
| 3987 ){ |
3586 Vdbe *v = sqlite3GetVdbe(pParse); | 3988 Vdbe *v = sqlite3GetVdbe(pParse); |
| 3989 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); |
3587 if( onError==OE_Abort ){ | 3990 if( onError==OE_Abort ){ |
3588 sqlite3MayAbort(pParse); | 3991 sqlite3MayAbort(pParse); |
3589 } | 3992 } |
3590 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type); | 3993 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); |
| 3994 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); |
3591 } | 3995 } |
3592 | 3996 |
3593 /* | 3997 /* |
| 3998 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. |
| 3999 */ |
| 4000 void sqlite3UniqueConstraint( |
| 4001 Parse *pParse, /* Parsing context */ |
| 4002 int onError, /* Constraint type */ |
| 4003 Index *pIdx /* The index that triggers the constraint */ |
| 4004 ){ |
| 4005 char *zErr; |
| 4006 int j; |
| 4007 StrAccum errMsg; |
| 4008 Table *pTab = pIdx->pTable; |
| 4009 |
| 4010 sqlite3StrAccumInit(&errMsg, 0, 0, 200); |
| 4011 errMsg.db = pParse->db; |
| 4012 for(j=0; j<pIdx->nKeyCol; j++){ |
| 4013 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; |
| 4014 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); |
| 4015 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); |
| 4016 sqlite3StrAccumAppend(&errMsg, ".", 1); |
| 4017 sqlite3StrAccumAppendAll(&errMsg, zCol); |
| 4018 } |
| 4019 zErr = sqlite3StrAccumFinish(&errMsg); |
| 4020 sqlite3HaltConstraint(pParse, |
| 4021 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY |
| 4022 : SQLITE_CONSTRAINT_UNIQUE, |
| 4023 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); |
| 4024 } |
| 4025 |
| 4026 |
| 4027 /* |
| 4028 ** Code an OP_Halt due to non-unique rowid. |
| 4029 */ |
| 4030 void sqlite3RowidConstraint( |
| 4031 Parse *pParse, /* Parsing context */ |
| 4032 int onError, /* Conflict resolution algorithm */ |
| 4033 Table *pTab /* The table with the non-unique rowid */ |
| 4034 ){ |
| 4035 char *zMsg; |
| 4036 int rc; |
| 4037 if( pTab->iPKey>=0 ){ |
| 4038 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, |
| 4039 pTab->aCol[pTab->iPKey].zName); |
| 4040 rc = SQLITE_CONSTRAINT_PRIMARYKEY; |
| 4041 }else{ |
| 4042 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); |
| 4043 rc = SQLITE_CONSTRAINT_ROWID; |
| 4044 } |
| 4045 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, |
| 4046 P5_ConstraintUnique); |
| 4047 } |
| 4048 |
| 4049 /* |
3594 ** Check to see if pIndex uses the collating sequence pColl. Return | 4050 ** Check to see if pIndex uses the collating sequence pColl. Return |
3595 ** true if it does and false if it does not. | 4051 ** true if it does and false if it does not. |
3596 */ | 4052 */ |
3597 #ifndef SQLITE_OMIT_REINDEX | 4053 #ifndef SQLITE_OMIT_REINDEX |
3598 static int collationMatch(const char *zColl, Index *pIndex){ | 4054 static int collationMatch(const char *zColl, Index *pIndex){ |
3599 int i; | 4055 int i; |
3600 assert( zColl!=0 ); | 4056 assert( zColl!=0 ); |
3601 for(i=0; i<pIndex->nColumn; i++){ | 4057 for(i=0; i<pIndex->nColumn; i++){ |
3602 const char *z = pIndex->azColl[i]; | 4058 const char *z = pIndex->azColl[i]; |
3603 assert( z!=0 ); | 4059 assert( z!=0 || pIndex->aiColumn[i]<0 ); |
3604 if( 0==sqlite3StrICmp(z, zColl) ){ | 4060 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ |
3605 return 1; | 4061 return 1; |
3606 } | 4062 } |
3607 } | 4063 } |
3608 return 0; | 4064 return 0; |
3609 } | 4065 } |
3610 #endif | 4066 #endif |
3611 | 4067 |
3612 /* | 4068 /* |
3613 ** Recompute all indices of pTab that use the collating sequence pColl. | 4069 ** Recompute all indices of pTab that use the collating sequence pColl. |
3614 ** If pColl==0 then recompute all indices of pTab. | 4070 ** If pColl==0 then recompute all indices of pTab. |
(...skipping 98 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3713 if( pIndex ){ | 4169 if( pIndex ){ |
3714 sqlite3BeginWriteOperation(pParse, 0, iDb); | 4170 sqlite3BeginWriteOperation(pParse, 0, iDb); |
3715 sqlite3RefillIndex(pParse, pIndex, -1); | 4171 sqlite3RefillIndex(pParse, pIndex, -1); |
3716 return; | 4172 return; |
3717 } | 4173 } |
3718 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); | 4174 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); |
3719 } | 4175 } |
3720 #endif | 4176 #endif |
3721 | 4177 |
3722 /* | 4178 /* |
3723 ** Return a dynamicly allocated KeyInfo structure that can be used | 4179 ** Return a KeyInfo structure that is appropriate for the given Index. |
3724 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. | |
3725 ** | 4180 ** |
3726 ** If successful, a pointer to the new structure is returned. In this case | 4181 ** The KeyInfo structure for an index is cached in the Index object. |
3727 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned | 4182 ** So there might be multiple references to the returned pointer. The |
3728 ** pointer. If an error occurs (out of memory or missing collation | 4183 ** caller should not try to modify the KeyInfo object. |
3729 ** sequence), NULL is returned and the state of pParse updated to reflect | 4184 ** |
3730 ** the error. | 4185 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object |
| 4186 ** when it has finished using it. |
3731 */ | 4187 */ |
3732 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ | 4188 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ |
3733 int i; | 4189 if( pParse->nErr ) return 0; |
3734 int nCol = pIdx->nColumn; | 4190 #ifndef SQLITE_OMIT_SHARED_CACHE |
3735 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; | 4191 if( pIdx->pKeyInfo && pIdx->pKeyInfo->db!=pParse->db ){ |
| 4192 sqlite3KeyInfoUnref(pIdx->pKeyInfo); |
| 4193 pIdx->pKeyInfo = 0; |
| 4194 } |
| 4195 #endif |
| 4196 if( pIdx->pKeyInfo==0 ){ |
| 4197 int i; |
| 4198 int nCol = pIdx->nColumn; |
| 4199 int nKey = pIdx->nKeyCol; |
| 4200 KeyInfo *pKey; |
| 4201 if( pIdx->uniqNotNull ){ |
| 4202 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); |
| 4203 }else{ |
| 4204 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); |
| 4205 } |
| 4206 if( pKey ){ |
| 4207 assert( sqlite3KeyInfoIsWriteable(pKey) ); |
| 4208 for(i=0; i<nCol; i++){ |
| 4209 char *zColl = pIdx->azColl[i]; |
| 4210 assert( zColl!=0 ); |
| 4211 pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 : |
| 4212 sqlite3LocateCollSeq(pParse, zColl); |
| 4213 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; |
| 4214 } |
| 4215 if( pParse->nErr ){ |
| 4216 sqlite3KeyInfoUnref(pKey); |
| 4217 }else{ |
| 4218 pIdx->pKeyInfo = pKey; |
| 4219 } |
| 4220 } |
| 4221 } |
| 4222 return sqlite3KeyInfoRef(pIdx->pKeyInfo); |
| 4223 } |
| 4224 |
| 4225 #ifndef SQLITE_OMIT_CTE |
| 4226 /* |
| 4227 ** This routine is invoked once per CTE by the parser while parsing a |
| 4228 ** WITH clause. |
| 4229 */ |
| 4230 With *sqlite3WithAdd( |
| 4231 Parse *pParse, /* Parsing context */ |
| 4232 With *pWith, /* Existing WITH clause, or NULL */ |
| 4233 Token *pName, /* Name of the common-table */ |
| 4234 ExprList *pArglist, /* Optional column name list for the table */ |
| 4235 Select *pQuery /* Query used to initialize the table */ |
| 4236 ){ |
3736 sqlite3 *db = pParse->db; | 4237 sqlite3 *db = pParse->db; |
3737 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); | 4238 With *pNew; |
| 4239 char *zName; |
3738 | 4240 |
3739 if( pKey ){ | 4241 /* Check that the CTE name is unique within this WITH clause. If |
3740 pKey->db = pParse->db; | 4242 ** not, store an error in the Parse structure. */ |
3741 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); | 4243 zName = sqlite3NameFromToken(pParse->db, pName); |
3742 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); | 4244 if( zName && pWith ){ |
3743 for(i=0; i<nCol; i++){ | 4245 int i; |
3744 char *zColl = pIdx->azColl[i]; | 4246 for(i=0; i<pWith->nCte; i++){ |
3745 assert( zColl ); | 4247 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ |
3746 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl); | 4248 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); |
3747 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; | 4249 } |
3748 } | 4250 } |
3749 pKey->nField = (u16)nCol; | |
3750 } | 4251 } |
3751 | 4252 |
3752 if( pParse->nErr ){ | 4253 if( pWith ){ |
3753 sqlite3DbFree(db, pKey); | 4254 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); |
3754 pKey = 0; | 4255 pNew = sqlite3DbRealloc(db, pWith, nByte); |
| 4256 }else{ |
| 4257 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); |
3755 } | 4258 } |
3756 return pKey; | 4259 assert( zName!=0 || pNew==0 ); |
| 4260 assert( db->mallocFailed==0 || pNew==0 ); |
| 4261 |
| 4262 if( pNew==0 ){ |
| 4263 sqlite3ExprListDelete(db, pArglist); |
| 4264 sqlite3SelectDelete(db, pQuery); |
| 4265 sqlite3DbFree(db, zName); |
| 4266 pNew = pWith; |
| 4267 }else{ |
| 4268 pNew->a[pNew->nCte].pSelect = pQuery; |
| 4269 pNew->a[pNew->nCte].pCols = pArglist; |
| 4270 pNew->a[pNew->nCte].zName = zName; |
| 4271 pNew->a[pNew->nCte].zErr = 0; |
| 4272 pNew->nCte++; |
| 4273 } |
| 4274 |
| 4275 return pNew; |
3757 } | 4276 } |
| 4277 |
| 4278 /* |
| 4279 ** Free the contents of the With object passed as the second argument. |
| 4280 */ |
| 4281 void sqlite3WithDelete(sqlite3 *db, With *pWith){ |
| 4282 if( pWith ){ |
| 4283 int i; |
| 4284 for(i=0; i<pWith->nCte; i++){ |
| 4285 struct Cte *pCte = &pWith->a[i]; |
| 4286 sqlite3ExprListDelete(db, pCte->pCols); |
| 4287 sqlite3SelectDelete(db, pCte->pSelect); |
| 4288 sqlite3DbFree(db, pCte->zName); |
| 4289 } |
| 4290 sqlite3DbFree(db, pWith); |
| 4291 } |
| 4292 } |
| 4293 #endif /* !defined(SQLITE_OMIT_CTE) */ |
OLD | NEW |