OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2005-07-08 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains code associated with the ANALYZE command. |
| 13 ** |
| 14 ** The ANALYZE command gather statistics about the content of tables |
| 15 ** and indices. These statistics are made available to the query planner |
| 16 ** to help it make better decisions about how to perform queries. |
| 17 ** |
| 18 ** The following system tables are or have been supported: |
| 19 ** |
| 20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat); |
| 21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); |
| 22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); |
| 23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); |
| 24 ** |
| 25 ** Additional tables might be added in future releases of SQLite. |
| 26 ** The sqlite_stat2 table is not created or used unless the SQLite version |
| 27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled |
| 28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. |
| 29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only |
| 30 ** created and used by SQLite versions 3.7.9 and later and with |
| 31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 |
| 32 ** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced |
| 33 ** version of sqlite_stat3 and is only available when compiled with |
| 34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is |
| 35 ** not possible to enable both STAT3 and STAT4 at the same time. If they |
| 36 ** are both enabled, then STAT4 takes precedence. |
| 37 ** |
| 38 ** For most applications, sqlite_stat1 provides all the statistics required |
| 39 ** for the query planner to make good choices. |
| 40 ** |
| 41 ** Format of sqlite_stat1: |
| 42 ** |
| 43 ** There is normally one row per index, with the index identified by the |
| 44 ** name in the idx column. The tbl column is the name of the table to |
| 45 ** which the index belongs. In each such row, the stat column will be |
| 46 ** a string consisting of a list of integers. The first integer in this |
| 47 ** list is the number of rows in the index. (This is the same as the |
| 48 ** number of rows in the table, except for partial indices.) The second |
| 49 ** integer is the average number of rows in the index that have the same |
| 50 ** value in the first column of the index. The third integer is the average |
| 51 ** number of rows in the index that have the same value for the first two |
| 52 ** columns. The N-th integer (for N>1) is the average number of rows in |
| 53 ** the index which have the same value for the first N-1 columns. For |
| 54 ** a K-column index, there will be K+1 integers in the stat column. If |
| 55 ** the index is unique, then the last integer will be 1. |
| 56 ** |
| 57 ** The list of integers in the stat column can optionally be followed |
| 58 ** by the keyword "unordered". The "unordered" keyword, if it is present, |
| 59 ** must be separated from the last integer by a single space. If the |
| 60 ** "unordered" keyword is present, then the query planner assumes that |
| 61 ** the index is unordered and will not use the index for a range query. |
| 62 ** |
| 63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat |
| 64 ** column contains a single integer which is the (estimated) number of |
| 65 ** rows in the table identified by sqlite_stat1.tbl. |
| 66 ** |
| 67 ** Format of sqlite_stat2: |
| 68 ** |
| 69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled |
| 70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between |
| 71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information |
| 72 ** about the distribution of keys within an index. The index is identified by |
| 73 ** the "idx" column and the "tbl" column is the name of the table to which |
| 74 ** the index belongs. There are usually 10 rows in the sqlite_stat2 |
| 75 ** table for each index. |
| 76 ** |
| 77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 |
| 78 ** inclusive are samples of the left-most key value in the index taken at |
| 79 ** evenly spaced points along the index. Let the number of samples be S |
| 80 ** (10 in the standard build) and let C be the number of rows in the index. |
| 81 ** Then the sampled rows are given by: |
| 82 ** |
| 83 ** rownumber = (i*C*2 + C)/(S*2) |
| 84 ** |
| 85 ** For i between 0 and S-1. Conceptually, the index space is divided into |
| 86 ** S uniform buckets and the samples are the middle row from each bucket. |
| 87 ** |
| 88 ** The format for sqlite_stat2 is recorded here for legacy reference. This |
| 89 ** version of SQLite does not support sqlite_stat2. It neither reads nor |
| 90 ** writes the sqlite_stat2 table. This version of SQLite only supports |
| 91 ** sqlite_stat3. |
| 92 ** |
| 93 ** Format for sqlite_stat3: |
| 94 ** |
| 95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the |
| 96 ** sqlite_stat4 format will be described first. Further information |
| 97 ** about sqlite_stat3 follows the sqlite_stat4 description. |
| 98 ** |
| 99 ** Format for sqlite_stat4: |
| 100 ** |
| 101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data |
| 102 ** to aid the query planner in choosing good indices based on the values |
| 103 ** that indexed columns are compared against in the WHERE clauses of |
| 104 ** queries. |
| 105 ** |
| 106 ** The sqlite_stat4 table contains multiple entries for each index. |
| 107 ** The idx column names the index and the tbl column is the table of the |
| 108 ** index. If the idx and tbl columns are the same, then the sample is |
| 109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the |
| 110 ** binary encoding of a key from the index. The nEq column is a |
| 111 ** list of integers. The first integer is the approximate number |
| 112 ** of entries in the index whose left-most column exactly matches |
| 113 ** the left-most column of the sample. The second integer in nEq |
| 114 ** is the approximate number of entries in the index where the |
| 115 ** first two columns match the first two columns of the sample. |
| 116 ** And so forth. nLt is another list of integers that show the approximate |
| 117 ** number of entries that are strictly less than the sample. The first |
| 118 ** integer in nLt contains the number of entries in the index where the |
| 119 ** left-most column is less than the left-most column of the sample. |
| 120 ** The K-th integer in the nLt entry is the number of index entries |
| 121 ** where the first K columns are less than the first K columns of the |
| 122 ** sample. The nDLt column is like nLt except that it contains the |
| 123 ** number of distinct entries in the index that are less than the |
| 124 ** sample. |
| 125 ** |
| 126 ** There can be an arbitrary number of sqlite_stat4 entries per index. |
| 127 ** The ANALYZE command will typically generate sqlite_stat4 tables |
| 128 ** that contain between 10 and 40 samples which are distributed across |
| 129 ** the key space, though not uniformly, and which include samples with |
| 130 ** large nEq values. |
| 131 ** |
| 132 ** Format for sqlite_stat3 redux: |
| 133 ** |
| 134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only |
| 135 ** looks at the left-most column of the index. The sqlite_stat3.sample |
| 136 ** column contains the actual value of the left-most column instead |
| 137 ** of a blob encoding of the complete index key as is found in |
| 138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 |
| 139 ** all contain just a single integer which is the same as the first |
| 140 ** integer in the equivalent columns in sqlite_stat4. |
| 141 */ |
| 142 #ifndef SQLITE_OMIT_ANALYZE |
| 143 #include "sqliteInt.h" |
| 144 |
| 145 #if defined(SQLITE_ENABLE_STAT4) |
| 146 # define IsStat4 1 |
| 147 # define IsStat3 0 |
| 148 #elif defined(SQLITE_ENABLE_STAT3) |
| 149 # define IsStat4 0 |
| 150 # define IsStat3 1 |
| 151 #else |
| 152 # define IsStat4 0 |
| 153 # define IsStat3 0 |
| 154 # undef SQLITE_STAT4_SAMPLES |
| 155 # define SQLITE_STAT4_SAMPLES 1 |
| 156 #endif |
| 157 #define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */ |
| 158 |
| 159 /* |
| 160 ** This routine generates code that opens the sqlite_statN tables. |
| 161 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now |
| 162 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when |
| 163 ** appropriate compile-time options are provided. |
| 164 ** |
| 165 ** If the sqlite_statN tables do not previously exist, it is created. |
| 166 ** |
| 167 ** Argument zWhere may be a pointer to a buffer containing a table name, |
| 168 ** or it may be a NULL pointer. If it is not NULL, then all entries in |
| 169 ** the sqlite_statN tables associated with the named table are deleted. |
| 170 ** If zWhere==0, then code is generated to delete all stat table entries. |
| 171 */ |
| 172 static void openStatTable( |
| 173 Parse *pParse, /* Parsing context */ |
| 174 int iDb, /* The database we are looking in */ |
| 175 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ |
| 176 const char *zWhere, /* Delete entries for this table or index */ |
| 177 const char *zWhereType /* Either "tbl" or "idx" */ |
| 178 ){ |
| 179 static const struct { |
| 180 const char *zName; |
| 181 const char *zCols; |
| 182 } aTable[] = { |
| 183 { "sqlite_stat1", "tbl,idx,stat" }, |
| 184 #if defined(SQLITE_ENABLE_STAT4) |
| 185 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, |
| 186 { "sqlite_stat3", 0 }, |
| 187 #elif defined(SQLITE_ENABLE_STAT3) |
| 188 { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" }, |
| 189 { "sqlite_stat4", 0 }, |
| 190 #else |
| 191 { "sqlite_stat3", 0 }, |
| 192 { "sqlite_stat4", 0 }, |
| 193 #endif |
| 194 }; |
| 195 int i; |
| 196 sqlite3 *db = pParse->db; |
| 197 Db *pDb; |
| 198 Vdbe *v = sqlite3GetVdbe(pParse); |
| 199 int aRoot[ArraySize(aTable)]; |
| 200 u8 aCreateTbl[ArraySize(aTable)]; |
| 201 |
| 202 if( v==0 ) return; |
| 203 assert( sqlite3BtreeHoldsAllMutexes(db) ); |
| 204 assert( sqlite3VdbeDb(v)==db ); |
| 205 pDb = &db->aDb[iDb]; |
| 206 |
| 207 /* Create new statistic tables if they do not exist, or clear them |
| 208 ** if they do already exist. |
| 209 */ |
| 210 for(i=0; i<ArraySize(aTable); i++){ |
| 211 const char *zTab = aTable[i].zName; |
| 212 Table *pStat; |
| 213 if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){ |
| 214 if( aTable[i].zCols ){ |
| 215 /* The sqlite_statN table does not exist. Create it. Note that a |
| 216 ** side-effect of the CREATE TABLE statement is to leave the rootpage |
| 217 ** of the new table in register pParse->regRoot. This is important |
| 218 ** because the OpenWrite opcode below will be needing it. */ |
| 219 sqlite3NestedParse(pParse, |
| 220 "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols |
| 221 ); |
| 222 aRoot[i] = pParse->regRoot; |
| 223 aCreateTbl[i] = OPFLAG_P2ISREG; |
| 224 } |
| 225 }else{ |
| 226 /* The table already exists. If zWhere is not NULL, delete all entries |
| 227 ** associated with the table zWhere. If zWhere is NULL, delete the |
| 228 ** entire contents of the table. */ |
| 229 aRoot[i] = pStat->tnum; |
| 230 aCreateTbl[i] = 0; |
| 231 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); |
| 232 if( zWhere ){ |
| 233 sqlite3NestedParse(pParse, |
| 234 "DELETE FROM %Q.%s WHERE %s=%Q", |
| 235 pDb->zName, zTab, zWhereType, zWhere |
| 236 ); |
| 237 }else{ |
| 238 /* The sqlite_stat[134] table already exists. Delete all rows. */ |
| 239 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); |
| 240 } |
| 241 } |
| 242 } |
| 243 |
| 244 /* Open the sqlite_stat[134] tables for writing. */ |
| 245 for(i=0; aTable[i].zCols; i++){ |
| 246 assert( i<ArraySize(aTable) ); |
| 247 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); |
| 248 sqlite3VdbeChangeP5(v, aCreateTbl[i]); |
| 249 VdbeComment((v, aTable[i].zName)); |
| 250 } |
| 251 } |
| 252 |
| 253 /* |
| 254 ** Recommended number of samples for sqlite_stat4 |
| 255 */ |
| 256 #ifndef SQLITE_STAT4_SAMPLES |
| 257 # define SQLITE_STAT4_SAMPLES 24 |
| 258 #endif |
| 259 |
| 260 /* |
| 261 ** Three SQL functions - stat_init(), stat_push(), and stat_get() - |
| 262 ** share an instance of the following structure to hold their state |
| 263 ** information. |
| 264 */ |
| 265 typedef struct Stat4Accum Stat4Accum; |
| 266 typedef struct Stat4Sample Stat4Sample; |
| 267 struct Stat4Sample { |
| 268 tRowcnt *anEq; /* sqlite_stat4.nEq */ |
| 269 tRowcnt *anDLt; /* sqlite_stat4.nDLt */ |
| 270 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 271 tRowcnt *anLt; /* sqlite_stat4.nLt */ |
| 272 union { |
| 273 i64 iRowid; /* Rowid in main table of the key */ |
| 274 u8 *aRowid; /* Key for WITHOUT ROWID tables */ |
| 275 } u; |
| 276 u32 nRowid; /* Sizeof aRowid[] */ |
| 277 u8 isPSample; /* True if a periodic sample */ |
| 278 int iCol; /* If !isPSample, the reason for inclusion */ |
| 279 u32 iHash; /* Tiebreaker hash */ |
| 280 #endif |
| 281 }; |
| 282 struct Stat4Accum { |
| 283 tRowcnt nRow; /* Number of rows in the entire table */ |
| 284 tRowcnt nPSample; /* How often to do a periodic sample */ |
| 285 int nCol; /* Number of columns in index + pk/rowid */ |
| 286 int nKeyCol; /* Number of index columns w/o the pk/rowid */ |
| 287 int mxSample; /* Maximum number of samples to accumulate */ |
| 288 Stat4Sample current; /* Current row as a Stat4Sample */ |
| 289 u32 iPrn; /* Pseudo-random number used for sampling */ |
| 290 Stat4Sample *aBest; /* Array of nCol best samples */ |
| 291 int iMin; /* Index in a[] of entry with minimum score */ |
| 292 int nSample; /* Current number of samples */ |
| 293 int iGet; /* Index of current sample accessed by stat_get() */ |
| 294 Stat4Sample *a; /* Array of mxSample Stat4Sample objects */ |
| 295 sqlite3 *db; /* Database connection, for malloc() */ |
| 296 }; |
| 297 |
| 298 /* Reclaim memory used by a Stat4Sample |
| 299 */ |
| 300 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 301 static void sampleClear(sqlite3 *db, Stat4Sample *p){ |
| 302 assert( db!=0 ); |
| 303 if( p->nRowid ){ |
| 304 sqlite3DbFree(db, p->u.aRowid); |
| 305 p->nRowid = 0; |
| 306 } |
| 307 } |
| 308 #endif |
| 309 |
| 310 /* Initialize the BLOB value of a ROWID |
| 311 */ |
| 312 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 313 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){ |
| 314 assert( db!=0 ); |
| 315 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); |
| 316 p->u.aRowid = sqlite3DbMallocRaw(db, n); |
| 317 if( p->u.aRowid ){ |
| 318 p->nRowid = n; |
| 319 memcpy(p->u.aRowid, pData, n); |
| 320 }else{ |
| 321 p->nRowid = 0; |
| 322 } |
| 323 } |
| 324 #endif |
| 325 |
| 326 /* Initialize the INTEGER value of a ROWID. |
| 327 */ |
| 328 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 329 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){ |
| 330 assert( db!=0 ); |
| 331 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); |
| 332 p->nRowid = 0; |
| 333 p->u.iRowid = iRowid; |
| 334 } |
| 335 #endif |
| 336 |
| 337 |
| 338 /* |
| 339 ** Copy the contents of object (*pFrom) into (*pTo). |
| 340 */ |
| 341 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 342 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){ |
| 343 pTo->isPSample = pFrom->isPSample; |
| 344 pTo->iCol = pFrom->iCol; |
| 345 pTo->iHash = pFrom->iHash; |
| 346 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); |
| 347 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); |
| 348 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); |
| 349 if( pFrom->nRowid ){ |
| 350 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); |
| 351 }else{ |
| 352 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); |
| 353 } |
| 354 } |
| 355 #endif |
| 356 |
| 357 /* |
| 358 ** Reclaim all memory of a Stat4Accum structure. |
| 359 */ |
| 360 static void stat4Destructor(void *pOld){ |
| 361 Stat4Accum *p = (Stat4Accum*)pOld; |
| 362 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 363 int i; |
| 364 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); |
| 365 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); |
| 366 sampleClear(p->db, &p->current); |
| 367 #endif |
| 368 sqlite3DbFree(p->db, p); |
| 369 } |
| 370 |
| 371 /* |
| 372 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters |
| 373 ** are: |
| 374 ** N: The number of columns in the index including the rowid/pk (note 1) |
| 375 ** K: The number of columns in the index excluding the rowid/pk. |
| 376 ** C: The number of rows in the index (note 2) |
| 377 ** |
| 378 ** Note 1: In the special case of the covering index that implements a |
| 379 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the |
| 380 ** total number of columns in the table. |
| 381 ** |
| 382 ** Note 2: C is only used for STAT3 and STAT4. |
| 383 ** |
| 384 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on |
| 385 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the |
| 386 ** PRIMARY KEY of the table. The covering index that implements the |
| 387 ** original WITHOUT ROWID table as N==K as a special case. |
| 388 ** |
| 389 ** This routine allocates the Stat4Accum object in heap memory. The return |
| 390 ** value is a pointer to the Stat4Accum object. The datatype of the |
| 391 ** return value is BLOB, but it is really just a pointer to the Stat4Accum |
| 392 ** object. |
| 393 */ |
| 394 static void statInit( |
| 395 sqlite3_context *context, |
| 396 int argc, |
| 397 sqlite3_value **argv |
| 398 ){ |
| 399 Stat4Accum *p; |
| 400 int nCol; /* Number of columns in index being sampled */ |
| 401 int nKeyCol; /* Number of key columns */ |
| 402 int nColUp; /* nCol rounded up for alignment */ |
| 403 int n; /* Bytes of space to allocate */ |
| 404 sqlite3 *db; /* Database connection */ |
| 405 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 406 int mxSample = SQLITE_STAT4_SAMPLES; |
| 407 #endif |
| 408 |
| 409 /* Decode the three function arguments */ |
| 410 UNUSED_PARAMETER(argc); |
| 411 nCol = sqlite3_value_int(argv[0]); |
| 412 assert( nCol>0 ); |
| 413 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; |
| 414 nKeyCol = sqlite3_value_int(argv[1]); |
| 415 assert( nKeyCol<=nCol ); |
| 416 assert( nKeyCol>0 ); |
| 417 |
| 418 /* Allocate the space required for the Stat4Accum object */ |
| 419 n = sizeof(*p) |
| 420 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */ |
| 421 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */ |
| 422 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 423 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */ |
| 424 + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */ |
| 425 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample) |
| 426 #endif |
| 427 ; |
| 428 db = sqlite3_context_db_handle(context); |
| 429 p = sqlite3DbMallocZero(db, n); |
| 430 if( p==0 ){ |
| 431 sqlite3_result_error_nomem(context); |
| 432 return; |
| 433 } |
| 434 |
| 435 p->db = db; |
| 436 p->nRow = 0; |
| 437 p->nCol = nCol; |
| 438 p->nKeyCol = nKeyCol; |
| 439 p->current.anDLt = (tRowcnt*)&p[1]; |
| 440 p->current.anEq = &p->current.anDLt[nColUp]; |
| 441 |
| 442 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 443 { |
| 444 u8 *pSpace; /* Allocated space not yet assigned */ |
| 445 int i; /* Used to iterate through p->aSample[] */ |
| 446 |
| 447 p->iGet = -1; |
| 448 p->mxSample = mxSample; |
| 449 p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1); |
| 450 p->current.anLt = &p->current.anEq[nColUp]; |
| 451 p->iPrn = nCol*0x689e962d ^ sqlite3_value_int(argv[2])*0xd0944565; |
| 452 |
| 453 /* Set up the Stat4Accum.a[] and aBest[] arrays */ |
| 454 p->a = (struct Stat4Sample*)&p->current.anLt[nColUp]; |
| 455 p->aBest = &p->a[mxSample]; |
| 456 pSpace = (u8*)(&p->a[mxSample+nCol]); |
| 457 for(i=0; i<(mxSample+nCol); i++){ |
| 458 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); |
| 459 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); |
| 460 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); |
| 461 } |
| 462 assert( (pSpace - (u8*)p)==n ); |
| 463 |
| 464 for(i=0; i<nCol; i++){ |
| 465 p->aBest[i].iCol = i; |
| 466 } |
| 467 } |
| 468 #endif |
| 469 |
| 470 /* Return a pointer to the allocated object to the caller. Note that |
| 471 ** only the pointer (the 2nd parameter) matters. The size of the object |
| 472 ** (given by the 3rd parameter) is never used and can be any positive |
| 473 ** value. */ |
| 474 sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor); |
| 475 } |
| 476 static const FuncDef statInitFuncdef = { |
| 477 2+IsStat34, /* nArg */ |
| 478 SQLITE_UTF8, /* funcFlags */ |
| 479 0, /* pUserData */ |
| 480 0, /* pNext */ |
| 481 statInit, /* xFunc */ |
| 482 0, /* xStep */ |
| 483 0, /* xFinalize */ |
| 484 "stat_init", /* zName */ |
| 485 0, /* pHash */ |
| 486 0 /* pDestructor */ |
| 487 }; |
| 488 |
| 489 #ifdef SQLITE_ENABLE_STAT4 |
| 490 /* |
| 491 ** pNew and pOld are both candidate non-periodic samples selected for |
| 492 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and |
| 493 ** considering only any trailing columns and the sample hash value, this |
| 494 ** function returns true if sample pNew is to be preferred over pOld. |
| 495 ** In other words, if we assume that the cardinalities of the selected |
| 496 ** column for pNew and pOld are equal, is pNew to be preferred over pOld. |
| 497 ** |
| 498 ** This function assumes that for each argument sample, the contents of |
| 499 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. |
| 500 */ |
| 501 static int sampleIsBetterPost( |
| 502 Stat4Accum *pAccum, |
| 503 Stat4Sample *pNew, |
| 504 Stat4Sample *pOld |
| 505 ){ |
| 506 int nCol = pAccum->nCol; |
| 507 int i; |
| 508 assert( pNew->iCol==pOld->iCol ); |
| 509 for(i=pNew->iCol+1; i<nCol; i++){ |
| 510 if( pNew->anEq[i]>pOld->anEq[i] ) return 1; |
| 511 if( pNew->anEq[i]<pOld->anEq[i] ) return 0; |
| 512 } |
| 513 if( pNew->iHash>pOld->iHash ) return 1; |
| 514 return 0; |
| 515 } |
| 516 #endif |
| 517 |
| 518 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 519 /* |
| 520 ** Return true if pNew is to be preferred over pOld. |
| 521 ** |
| 522 ** This function assumes that for each argument sample, the contents of |
| 523 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. |
| 524 */ |
| 525 static int sampleIsBetter( |
| 526 Stat4Accum *pAccum, |
| 527 Stat4Sample *pNew, |
| 528 Stat4Sample *pOld |
| 529 ){ |
| 530 tRowcnt nEqNew = pNew->anEq[pNew->iCol]; |
| 531 tRowcnt nEqOld = pOld->anEq[pOld->iCol]; |
| 532 |
| 533 assert( pOld->isPSample==0 && pNew->isPSample==0 ); |
| 534 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); |
| 535 |
| 536 if( (nEqNew>nEqOld) ) return 1; |
| 537 #ifdef SQLITE_ENABLE_STAT4 |
| 538 if( nEqNew==nEqOld ){ |
| 539 if( pNew->iCol<pOld->iCol ) return 1; |
| 540 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); |
| 541 } |
| 542 return 0; |
| 543 #else |
| 544 return (nEqNew==nEqOld && pNew->iHash>pOld->iHash); |
| 545 #endif |
| 546 } |
| 547 |
| 548 /* |
| 549 ** Copy the contents of sample *pNew into the p->a[] array. If necessary, |
| 550 ** remove the least desirable sample from p->a[] to make room. |
| 551 */ |
| 552 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){ |
| 553 Stat4Sample *pSample = 0; |
| 554 int i; |
| 555 |
| 556 assert( IsStat4 || nEqZero==0 ); |
| 557 |
| 558 #ifdef SQLITE_ENABLE_STAT4 |
| 559 if( pNew->isPSample==0 ){ |
| 560 Stat4Sample *pUpgrade = 0; |
| 561 assert( pNew->anEq[pNew->iCol]>0 ); |
| 562 |
| 563 /* This sample is being added because the prefix that ends in column |
| 564 ** iCol occurs many times in the table. However, if we have already |
| 565 ** added a sample that shares this prefix, there is no need to add |
| 566 ** this one. Instead, upgrade the priority of the highest priority |
| 567 ** existing sample that shares this prefix. */ |
| 568 for(i=p->nSample-1; i>=0; i--){ |
| 569 Stat4Sample *pOld = &p->a[i]; |
| 570 if( pOld->anEq[pNew->iCol]==0 ){ |
| 571 if( pOld->isPSample ) return; |
| 572 assert( pOld->iCol>pNew->iCol ); |
| 573 assert( sampleIsBetter(p, pNew, pOld) ); |
| 574 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ |
| 575 pUpgrade = pOld; |
| 576 } |
| 577 } |
| 578 } |
| 579 if( pUpgrade ){ |
| 580 pUpgrade->iCol = pNew->iCol; |
| 581 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; |
| 582 goto find_new_min; |
| 583 } |
| 584 } |
| 585 #endif |
| 586 |
| 587 /* If necessary, remove sample iMin to make room for the new sample. */ |
| 588 if( p->nSample>=p->mxSample ){ |
| 589 Stat4Sample *pMin = &p->a[p->iMin]; |
| 590 tRowcnt *anEq = pMin->anEq; |
| 591 tRowcnt *anLt = pMin->anLt; |
| 592 tRowcnt *anDLt = pMin->anDLt; |
| 593 sampleClear(p->db, pMin); |
| 594 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); |
| 595 pSample = &p->a[p->nSample-1]; |
| 596 pSample->nRowid = 0; |
| 597 pSample->anEq = anEq; |
| 598 pSample->anDLt = anDLt; |
| 599 pSample->anLt = anLt; |
| 600 p->nSample = p->mxSample-1; |
| 601 } |
| 602 |
| 603 /* The "rows less-than" for the rowid column must be greater than that |
| 604 ** for the last sample in the p->a[] array. Otherwise, the samples would |
| 605 ** be out of order. */ |
| 606 #ifdef SQLITE_ENABLE_STAT4 |
| 607 assert( p->nSample==0 |
| 608 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); |
| 609 #endif |
| 610 |
| 611 /* Insert the new sample */ |
| 612 pSample = &p->a[p->nSample]; |
| 613 sampleCopy(p, pSample, pNew); |
| 614 p->nSample++; |
| 615 |
| 616 /* Zero the first nEqZero entries in the anEq[] array. */ |
| 617 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); |
| 618 |
| 619 #ifdef SQLITE_ENABLE_STAT4 |
| 620 find_new_min: |
| 621 #endif |
| 622 if( p->nSample>=p->mxSample ){ |
| 623 int iMin = -1; |
| 624 for(i=0; i<p->mxSample; i++){ |
| 625 if( p->a[i].isPSample ) continue; |
| 626 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ |
| 627 iMin = i; |
| 628 } |
| 629 } |
| 630 assert( iMin>=0 ); |
| 631 p->iMin = iMin; |
| 632 } |
| 633 } |
| 634 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 635 |
| 636 /* |
| 637 ** Field iChng of the index being scanned has changed. So at this point |
| 638 ** p->current contains a sample that reflects the previous row of the |
| 639 ** index. The value of anEq[iChng] and subsequent anEq[] elements are |
| 640 ** correct at this point. |
| 641 */ |
| 642 static void samplePushPrevious(Stat4Accum *p, int iChng){ |
| 643 #ifdef SQLITE_ENABLE_STAT4 |
| 644 int i; |
| 645 |
| 646 /* Check if any samples from the aBest[] array should be pushed |
| 647 ** into IndexSample.a[] at this point. */ |
| 648 for(i=(p->nCol-2); i>=iChng; i--){ |
| 649 Stat4Sample *pBest = &p->aBest[i]; |
| 650 pBest->anEq[i] = p->current.anEq[i]; |
| 651 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ |
| 652 sampleInsert(p, pBest, i); |
| 653 } |
| 654 } |
| 655 |
| 656 /* Update the anEq[] fields of any samples already collected. */ |
| 657 for(i=p->nSample-1; i>=0; i--){ |
| 658 int j; |
| 659 for(j=iChng; j<p->nCol; j++){ |
| 660 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; |
| 661 } |
| 662 } |
| 663 #endif |
| 664 |
| 665 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4) |
| 666 if( iChng==0 ){ |
| 667 tRowcnt nLt = p->current.anLt[0]; |
| 668 tRowcnt nEq = p->current.anEq[0]; |
| 669 |
| 670 /* Check if this is to be a periodic sample. If so, add it. */ |
| 671 if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){ |
| 672 p->current.isPSample = 1; |
| 673 sampleInsert(p, &p->current, 0); |
| 674 p->current.isPSample = 0; |
| 675 }else |
| 676 |
| 677 /* Or if it is a non-periodic sample. Add it in this case too. */ |
| 678 if( p->nSample<p->mxSample |
| 679 || sampleIsBetter(p, &p->current, &p->a[p->iMin]) |
| 680 ){ |
| 681 sampleInsert(p, &p->current, 0); |
| 682 } |
| 683 } |
| 684 #endif |
| 685 |
| 686 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 687 UNUSED_PARAMETER( p ); |
| 688 UNUSED_PARAMETER( iChng ); |
| 689 #endif |
| 690 } |
| 691 |
| 692 /* |
| 693 ** Implementation of the stat_push SQL function: stat_push(P,C,R) |
| 694 ** Arguments: |
| 695 ** |
| 696 ** P Pointer to the Stat4Accum object created by stat_init() |
| 697 ** C Index of left-most column to differ from previous row |
| 698 ** R Rowid for the current row. Might be a key record for |
| 699 ** WITHOUT ROWID tables. |
| 700 ** |
| 701 ** This SQL function always returns NULL. It's purpose it to accumulate |
| 702 ** statistical data and/or samples in the Stat4Accum object about the |
| 703 ** index being analyzed. The stat_get() SQL function will later be used to |
| 704 ** extract relevant information for constructing the sqlite_statN tables. |
| 705 ** |
| 706 ** The R parameter is only used for STAT3 and STAT4 |
| 707 */ |
| 708 static void statPush( |
| 709 sqlite3_context *context, |
| 710 int argc, |
| 711 sqlite3_value **argv |
| 712 ){ |
| 713 int i; |
| 714 |
| 715 /* The three function arguments */ |
| 716 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); |
| 717 int iChng = sqlite3_value_int(argv[1]); |
| 718 |
| 719 UNUSED_PARAMETER( argc ); |
| 720 UNUSED_PARAMETER( context ); |
| 721 assert( p->nCol>0 ); |
| 722 assert( iChng<p->nCol ); |
| 723 |
| 724 if( p->nRow==0 ){ |
| 725 /* This is the first call to this function. Do initialization. */ |
| 726 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; |
| 727 }else{ |
| 728 /* Second and subsequent calls get processed here */ |
| 729 samplePushPrevious(p, iChng); |
| 730 |
| 731 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply |
| 732 ** to the current row of the index. */ |
| 733 for(i=0; i<iChng; i++){ |
| 734 p->current.anEq[i]++; |
| 735 } |
| 736 for(i=iChng; i<p->nCol; i++){ |
| 737 p->current.anDLt[i]++; |
| 738 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 739 p->current.anLt[i] += p->current.anEq[i]; |
| 740 #endif |
| 741 p->current.anEq[i] = 1; |
| 742 } |
| 743 } |
| 744 p->nRow++; |
| 745 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 746 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ |
| 747 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); |
| 748 }else{ |
| 749 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), |
| 750 sqlite3_value_blob(argv[2])); |
| 751 } |
| 752 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; |
| 753 #endif |
| 754 |
| 755 #ifdef SQLITE_ENABLE_STAT4 |
| 756 { |
| 757 tRowcnt nLt = p->current.anLt[p->nCol-1]; |
| 758 |
| 759 /* Check if this is to be a periodic sample. If so, add it. */ |
| 760 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ |
| 761 p->current.isPSample = 1; |
| 762 p->current.iCol = 0; |
| 763 sampleInsert(p, &p->current, p->nCol-1); |
| 764 p->current.isPSample = 0; |
| 765 } |
| 766 |
| 767 /* Update the aBest[] array. */ |
| 768 for(i=0; i<(p->nCol-1); i++){ |
| 769 p->current.iCol = i; |
| 770 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ |
| 771 sampleCopy(p, &p->aBest[i], &p->current); |
| 772 } |
| 773 } |
| 774 } |
| 775 #endif |
| 776 } |
| 777 static const FuncDef statPushFuncdef = { |
| 778 2+IsStat34, /* nArg */ |
| 779 SQLITE_UTF8, /* funcFlags */ |
| 780 0, /* pUserData */ |
| 781 0, /* pNext */ |
| 782 statPush, /* xFunc */ |
| 783 0, /* xStep */ |
| 784 0, /* xFinalize */ |
| 785 "stat_push", /* zName */ |
| 786 0, /* pHash */ |
| 787 0 /* pDestructor */ |
| 788 }; |
| 789 |
| 790 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ |
| 791 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ |
| 792 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ |
| 793 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ |
| 794 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ |
| 795 |
| 796 /* |
| 797 ** Implementation of the stat_get(P,J) SQL function. This routine is |
| 798 ** used to query statistical information that has been gathered into |
| 799 ** the Stat4Accum object by prior calls to stat_push(). The P parameter |
| 800 ** has type BLOB but it is really just a pointer to the Stat4Accum object. |
| 801 ** The content to returned is determined by the parameter J |
| 802 ** which is one of the STAT_GET_xxxx values defined above. |
| 803 ** |
| 804 ** If neither STAT3 nor STAT4 are enabled, then J is always |
| 805 ** STAT_GET_STAT1 and is hence omitted and this routine becomes |
| 806 ** a one-parameter function, stat_get(P), that always returns the |
| 807 ** stat1 table entry information. |
| 808 */ |
| 809 static void statGet( |
| 810 sqlite3_context *context, |
| 811 int argc, |
| 812 sqlite3_value **argv |
| 813 ){ |
| 814 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); |
| 815 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 816 /* STAT3 and STAT4 have a parameter on this routine. */ |
| 817 int eCall = sqlite3_value_int(argv[1]); |
| 818 assert( argc==2 ); |
| 819 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ |
| 820 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT |
| 821 || eCall==STAT_GET_NDLT |
| 822 ); |
| 823 if( eCall==STAT_GET_STAT1 ) |
| 824 #else |
| 825 assert( argc==1 ); |
| 826 #endif |
| 827 { |
| 828 /* Return the value to store in the "stat" column of the sqlite_stat1 |
| 829 ** table for this index. |
| 830 ** |
| 831 ** The value is a string composed of a list of integers describing |
| 832 ** the index. The first integer in the list is the total number of |
| 833 ** entries in the index. There is one additional integer in the list |
| 834 ** for each indexed column. This additional integer is an estimate of |
| 835 ** the number of rows matched by a stabbing query on the index using |
| 836 ** a key with the corresponding number of fields. In other words, |
| 837 ** if the index is on columns (a,b) and the sqlite_stat1 value is |
| 838 ** "100 10 2", then SQLite estimates that: |
| 839 ** |
| 840 ** * the index contains 100 rows, |
| 841 ** * "WHERE a=?" matches 10 rows, and |
| 842 ** * "WHERE a=? AND b=?" matches 2 rows. |
| 843 ** |
| 844 ** If D is the count of distinct values and K is the total number of |
| 845 ** rows, then each estimate is computed as: |
| 846 ** |
| 847 ** I = (K+D-1)/D |
| 848 */ |
| 849 char *z; |
| 850 int i; |
| 851 |
| 852 char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 ); |
| 853 if( zRet==0 ){ |
| 854 sqlite3_result_error_nomem(context); |
| 855 return; |
| 856 } |
| 857 |
| 858 sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow); |
| 859 z = zRet + sqlite3Strlen30(zRet); |
| 860 for(i=0; i<p->nKeyCol; i++){ |
| 861 u64 nDistinct = p->current.anDLt[i] + 1; |
| 862 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; |
| 863 sqlite3_snprintf(24, z, " %llu", iVal); |
| 864 z += sqlite3Strlen30(z); |
| 865 assert( p->current.anEq[i] ); |
| 866 } |
| 867 assert( z[0]=='\0' && z>zRet ); |
| 868 |
| 869 sqlite3_result_text(context, zRet, -1, sqlite3_free); |
| 870 } |
| 871 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 872 else if( eCall==STAT_GET_ROWID ){ |
| 873 if( p->iGet<0 ){ |
| 874 samplePushPrevious(p, 0); |
| 875 p->iGet = 0; |
| 876 } |
| 877 if( p->iGet<p->nSample ){ |
| 878 Stat4Sample *pS = p->a + p->iGet; |
| 879 if( pS->nRowid==0 ){ |
| 880 sqlite3_result_int64(context, pS->u.iRowid); |
| 881 }else{ |
| 882 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, |
| 883 SQLITE_TRANSIENT); |
| 884 } |
| 885 } |
| 886 }else{ |
| 887 tRowcnt *aCnt = 0; |
| 888 |
| 889 assert( p->iGet<p->nSample ); |
| 890 switch( eCall ){ |
| 891 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; |
| 892 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; |
| 893 default: { |
| 894 aCnt = p->a[p->iGet].anDLt; |
| 895 p->iGet++; |
| 896 break; |
| 897 } |
| 898 } |
| 899 |
| 900 if( IsStat3 ){ |
| 901 sqlite3_result_int64(context, (i64)aCnt[0]); |
| 902 }else{ |
| 903 char *zRet = sqlite3MallocZero(p->nCol * 25); |
| 904 if( zRet==0 ){ |
| 905 sqlite3_result_error_nomem(context); |
| 906 }else{ |
| 907 int i; |
| 908 char *z = zRet; |
| 909 for(i=0; i<p->nCol; i++){ |
| 910 sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); |
| 911 z += sqlite3Strlen30(z); |
| 912 } |
| 913 assert( z[0]=='\0' && z>zRet ); |
| 914 z[-1] = '\0'; |
| 915 sqlite3_result_text(context, zRet, -1, sqlite3_free); |
| 916 } |
| 917 } |
| 918 } |
| 919 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 920 #ifndef SQLITE_DEBUG |
| 921 UNUSED_PARAMETER( argc ); |
| 922 #endif |
| 923 } |
| 924 static const FuncDef statGetFuncdef = { |
| 925 1+IsStat34, /* nArg */ |
| 926 SQLITE_UTF8, /* funcFlags */ |
| 927 0, /* pUserData */ |
| 928 0, /* pNext */ |
| 929 statGet, /* xFunc */ |
| 930 0, /* xStep */ |
| 931 0, /* xFinalize */ |
| 932 "stat_get", /* zName */ |
| 933 0, /* pHash */ |
| 934 0 /* pDestructor */ |
| 935 }; |
| 936 |
| 937 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){ |
| 938 assert( regOut!=regStat4 && regOut!=regStat4+1 ); |
| 939 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 940 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); |
| 941 #elif SQLITE_DEBUG |
| 942 assert( iParam==STAT_GET_STAT1 ); |
| 943 #else |
| 944 UNUSED_PARAMETER( iParam ); |
| 945 #endif |
| 946 sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut); |
| 947 sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF); |
| 948 sqlite3VdbeChangeP5(v, 1 + IsStat34); |
| 949 } |
| 950 |
| 951 /* |
| 952 ** Generate code to do an analysis of all indices associated with |
| 953 ** a single table. |
| 954 */ |
| 955 static void analyzeOneTable( |
| 956 Parse *pParse, /* Parser context */ |
| 957 Table *pTab, /* Table whose indices are to be analyzed */ |
| 958 Index *pOnlyIdx, /* If not NULL, only analyze this one index */ |
| 959 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ |
| 960 int iMem, /* Available memory locations begin here */ |
| 961 int iTab /* Next available cursor */ |
| 962 ){ |
| 963 sqlite3 *db = pParse->db; /* Database handle */ |
| 964 Index *pIdx; /* An index to being analyzed */ |
| 965 int iIdxCur; /* Cursor open on index being analyzed */ |
| 966 int iTabCur; /* Table cursor */ |
| 967 Vdbe *v; /* The virtual machine being built up */ |
| 968 int i; /* Loop counter */ |
| 969 int jZeroRows = -1; /* Jump from here if number of rows is zero */ |
| 970 int iDb; /* Index of database containing pTab */ |
| 971 u8 needTableCnt = 1; /* True to count the table */ |
| 972 int regNewRowid = iMem++; /* Rowid for the inserted record */ |
| 973 int regStat4 = iMem++; /* Register to hold Stat4Accum object */ |
| 974 int regChng = iMem++; /* Index of changed index field */ |
| 975 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 976 int regRowid = iMem++; /* Rowid argument passed to stat_push() */ |
| 977 #endif |
| 978 int regTemp = iMem++; /* Temporary use register */ |
| 979 int regTabname = iMem++; /* Register containing table name */ |
| 980 int regIdxname = iMem++; /* Register containing index name */ |
| 981 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ |
| 982 int regPrev = iMem; /* MUST BE LAST (see below) */ |
| 983 |
| 984 pParse->nMem = MAX(pParse->nMem, iMem); |
| 985 v = sqlite3GetVdbe(pParse); |
| 986 if( v==0 || NEVER(pTab==0) ){ |
| 987 return; |
| 988 } |
| 989 if( pTab->tnum==0 ){ |
| 990 /* Do not gather statistics on views or virtual tables */ |
| 991 return; |
| 992 } |
| 993 if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){ |
| 994 /* Do not gather statistics on system tables */ |
| 995 return; |
| 996 } |
| 997 assert( sqlite3BtreeHoldsAllMutexes(db) ); |
| 998 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 999 assert( iDb>=0 ); |
| 1000 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 1001 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 1002 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, |
| 1003 db->aDb[iDb].zName ) ){ |
| 1004 return; |
| 1005 } |
| 1006 #endif |
| 1007 |
| 1008 /* Establish a read-lock on the table at the shared-cache level. |
| 1009 ** Open a read-only cursor on the table. Also allocate a cursor number |
| 1010 ** to use for scanning indexes (iIdxCur). No index cursor is opened at |
| 1011 ** this time though. */ |
| 1012 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
| 1013 iTabCur = iTab++; |
| 1014 iIdxCur = iTab++; |
| 1015 pParse->nTab = MAX(pParse->nTab, iTab); |
| 1016 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); |
| 1017 sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); |
| 1018 |
| 1019 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 1020 int nCol; /* Number of columns in pIdx. "N" */ |
| 1021 int addrRewind; /* Address of "OP_Rewind iIdxCur" */ |
| 1022 int addrNextRow; /* Address of "next_row:" */ |
| 1023 const char *zIdxName; /* Name of the index */ |
| 1024 int nColTest; /* Number of columns to test for changes */ |
| 1025 |
| 1026 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; |
| 1027 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; |
| 1028 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ |
| 1029 nCol = pIdx->nKeyCol; |
| 1030 zIdxName = pTab->zName; |
| 1031 nColTest = nCol - 1; |
| 1032 }else{ |
| 1033 nCol = pIdx->nColumn; |
| 1034 zIdxName = pIdx->zName; |
| 1035 nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; |
| 1036 } |
| 1037 |
| 1038 /* Populate the register containing the index name. */ |
| 1039 sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, zIdxName, 0); |
| 1040 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); |
| 1041 |
| 1042 /* |
| 1043 ** Pseudo-code for loop that calls stat_push(): |
| 1044 ** |
| 1045 ** Rewind csr |
| 1046 ** if eof(csr) goto end_of_scan; |
| 1047 ** regChng = 0 |
| 1048 ** goto chng_addr_0; |
| 1049 ** |
| 1050 ** next_row: |
| 1051 ** regChng = 0 |
| 1052 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 |
| 1053 ** regChng = 1 |
| 1054 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 |
| 1055 ** ... |
| 1056 ** regChng = N |
| 1057 ** goto chng_addr_N |
| 1058 ** |
| 1059 ** chng_addr_0: |
| 1060 ** regPrev(0) = idx(0) |
| 1061 ** chng_addr_1: |
| 1062 ** regPrev(1) = idx(1) |
| 1063 ** ... |
| 1064 ** |
| 1065 ** endDistinctTest: |
| 1066 ** regRowid = idx(rowid) |
| 1067 ** stat_push(P, regChng, regRowid) |
| 1068 ** Next csr |
| 1069 ** if !eof(csr) goto next_row; |
| 1070 ** |
| 1071 ** end_of_scan: |
| 1072 */ |
| 1073 |
| 1074 /* Make sure there are enough memory cells allocated to accommodate |
| 1075 ** the regPrev array and a trailing rowid (the rowid slot is required |
| 1076 ** when building a record to insert into the sample column of |
| 1077 ** the sqlite_stat4 table. */ |
| 1078 pParse->nMem = MAX(pParse->nMem, regPrev+nColTest); |
| 1079 |
| 1080 /* Open a read-only cursor on the index being analyzed. */ |
| 1081 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); |
| 1082 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); |
| 1083 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
| 1084 VdbeComment((v, "%s", pIdx->zName)); |
| 1085 |
| 1086 /* Invoke the stat_init() function. The arguments are: |
| 1087 ** |
| 1088 ** (1) the number of columns in the index including the rowid |
| 1089 ** (or for a WITHOUT ROWID table, the number of PK columns), |
| 1090 ** (2) the number of columns in the key without the rowid/pk |
| 1091 ** (3) the number of rows in the index, |
| 1092 ** |
| 1093 ** |
| 1094 ** The third argument is only used for STAT3 and STAT4 |
| 1095 */ |
| 1096 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1097 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); |
| 1098 #endif |
| 1099 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); |
| 1100 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); |
| 1101 sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4); |
| 1102 sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF); |
| 1103 sqlite3VdbeChangeP5(v, 2+IsStat34); |
| 1104 |
| 1105 /* Implementation of the following: |
| 1106 ** |
| 1107 ** Rewind csr |
| 1108 ** if eof(csr) goto end_of_scan; |
| 1109 ** regChng = 0 |
| 1110 ** goto next_push_0; |
| 1111 ** |
| 1112 */ |
| 1113 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); |
| 1114 VdbeCoverage(v); |
| 1115 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); |
| 1116 addrNextRow = sqlite3VdbeCurrentAddr(v); |
| 1117 |
| 1118 if( nColTest>0 ){ |
| 1119 int endDistinctTest = sqlite3VdbeMakeLabel(v); |
| 1120 int *aGotoChng; /* Array of jump instruction addresses */ |
| 1121 aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*nColTest); |
| 1122 if( aGotoChng==0 ) continue; |
| 1123 |
| 1124 /* |
| 1125 ** next_row: |
| 1126 ** regChng = 0 |
| 1127 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 |
| 1128 ** regChng = 1 |
| 1129 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 |
| 1130 ** ... |
| 1131 ** regChng = N |
| 1132 ** goto endDistinctTest |
| 1133 */ |
| 1134 sqlite3VdbeAddOp0(v, OP_Goto); |
| 1135 addrNextRow = sqlite3VdbeCurrentAddr(v); |
| 1136 if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ |
| 1137 /* For a single-column UNIQUE index, once we have found a non-NULL |
| 1138 ** row, we know that all the rest will be distinct, so skip |
| 1139 ** subsequent distinctness tests. */ |
| 1140 sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); |
| 1141 VdbeCoverage(v); |
| 1142 } |
| 1143 for(i=0; i<nColTest; i++){ |
| 1144 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); |
| 1145 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); |
| 1146 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); |
| 1147 aGotoChng[i] = |
| 1148 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); |
| 1149 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); |
| 1150 VdbeCoverage(v); |
| 1151 } |
| 1152 sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); |
| 1153 sqlite3VdbeAddOp2(v, OP_Goto, 0, endDistinctTest); |
| 1154 |
| 1155 |
| 1156 /* |
| 1157 ** chng_addr_0: |
| 1158 ** regPrev(0) = idx(0) |
| 1159 ** chng_addr_1: |
| 1160 ** regPrev(1) = idx(1) |
| 1161 ** ... |
| 1162 */ |
| 1163 sqlite3VdbeJumpHere(v, addrNextRow-1); |
| 1164 for(i=0; i<nColTest; i++){ |
| 1165 sqlite3VdbeJumpHere(v, aGotoChng[i]); |
| 1166 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); |
| 1167 } |
| 1168 sqlite3VdbeResolveLabel(v, endDistinctTest); |
| 1169 sqlite3DbFree(db, aGotoChng); |
| 1170 } |
| 1171 |
| 1172 /* |
| 1173 ** chng_addr_N: |
| 1174 ** regRowid = idx(rowid) // STAT34 only |
| 1175 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only |
| 1176 ** Next csr |
| 1177 ** if !eof(csr) goto next_row; |
| 1178 */ |
| 1179 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1180 assert( regRowid==(regStat4+2) ); |
| 1181 if( HasRowid(pTab) ){ |
| 1182 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); |
| 1183 }else{ |
| 1184 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); |
| 1185 int j, k, regKey; |
| 1186 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); |
| 1187 for(j=0; j<pPk->nKeyCol; j++){ |
| 1188 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); |
| 1189 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); |
| 1190 VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); |
| 1191 } |
| 1192 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); |
| 1193 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); |
| 1194 } |
| 1195 #endif |
| 1196 assert( regChng==(regStat4+1) ); |
| 1197 sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp); |
| 1198 sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); |
| 1199 sqlite3VdbeChangeP5(v, 2+IsStat34); |
| 1200 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); |
| 1201 |
| 1202 /* Add the entry to the stat1 table. */ |
| 1203 callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); |
| 1204 assert( "BBB"[0]==SQLITE_AFF_TEXT ); |
| 1205 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); |
| 1206 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); |
| 1207 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); |
| 1208 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
| 1209 |
| 1210 /* Add the entries to the stat3 or stat4 table. */ |
| 1211 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1212 { |
| 1213 int regEq = regStat1; |
| 1214 int regLt = regStat1+1; |
| 1215 int regDLt = regStat1+2; |
| 1216 int regSample = regStat1+3; |
| 1217 int regCol = regStat1+4; |
| 1218 int regSampleRowid = regCol + nCol; |
| 1219 int addrNext; |
| 1220 int addrIsNull; |
| 1221 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; |
| 1222 |
| 1223 pParse->nMem = MAX(pParse->nMem, regCol+nCol); |
| 1224 |
| 1225 addrNext = sqlite3VdbeCurrentAddr(v); |
| 1226 callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); |
| 1227 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); |
| 1228 VdbeCoverage(v); |
| 1229 callStatGet(v, regStat4, STAT_GET_NEQ, regEq); |
| 1230 callStatGet(v, regStat4, STAT_GET_NLT, regLt); |
| 1231 callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); |
| 1232 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); |
| 1233 /* We know that the regSampleRowid row exists because it was read by |
| 1234 ** the previous loop. Thus the not-found jump of seekOp will never |
| 1235 ** be taken */ |
| 1236 VdbeCoverageNeverTaken(v); |
| 1237 #ifdef SQLITE_ENABLE_STAT3 |
| 1238 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, |
| 1239 pIdx->aiColumn[0], regSample); |
| 1240 #else |
| 1241 for(i=0; i<nCol; i++){ |
| 1242 i16 iCol = pIdx->aiColumn[i]; |
| 1243 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i); |
| 1244 } |
| 1245 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); |
| 1246 #endif |
| 1247 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); |
| 1248 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); |
| 1249 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); |
| 1250 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ |
| 1251 sqlite3VdbeJumpHere(v, addrIsNull); |
| 1252 } |
| 1253 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 1254 |
| 1255 /* End of analysis */ |
| 1256 sqlite3VdbeJumpHere(v, addrRewind); |
| 1257 } |
| 1258 |
| 1259 |
| 1260 /* Create a single sqlite_stat1 entry containing NULL as the index |
| 1261 ** name and the row count as the content. |
| 1262 */ |
| 1263 if( pOnlyIdx==0 && needTableCnt ){ |
| 1264 VdbeComment((v, "%s", pTab->zName)); |
| 1265 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); |
| 1266 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); |
| 1267 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); |
| 1268 assert( "BBB"[0]==SQLITE_AFF_TEXT ); |
| 1269 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); |
| 1270 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); |
| 1271 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); |
| 1272 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
| 1273 sqlite3VdbeJumpHere(v, jZeroRows); |
| 1274 } |
| 1275 } |
| 1276 |
| 1277 |
| 1278 /* |
| 1279 ** Generate code that will cause the most recent index analysis to |
| 1280 ** be loaded into internal hash tables where is can be used. |
| 1281 */ |
| 1282 static void loadAnalysis(Parse *pParse, int iDb){ |
| 1283 Vdbe *v = sqlite3GetVdbe(pParse); |
| 1284 if( v ){ |
| 1285 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); |
| 1286 } |
| 1287 } |
| 1288 |
| 1289 /* |
| 1290 ** Generate code that will do an analysis of an entire database |
| 1291 */ |
| 1292 static void analyzeDatabase(Parse *pParse, int iDb){ |
| 1293 sqlite3 *db = pParse->db; |
| 1294 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ |
| 1295 HashElem *k; |
| 1296 int iStatCur; |
| 1297 int iMem; |
| 1298 int iTab; |
| 1299 |
| 1300 sqlite3BeginWriteOperation(pParse, 0, iDb); |
| 1301 iStatCur = pParse->nTab; |
| 1302 pParse->nTab += 3; |
| 1303 openStatTable(pParse, iDb, iStatCur, 0, 0); |
| 1304 iMem = pParse->nMem+1; |
| 1305 iTab = pParse->nTab; |
| 1306 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 1307 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ |
| 1308 Table *pTab = (Table*)sqliteHashData(k); |
| 1309 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); |
| 1310 } |
| 1311 loadAnalysis(pParse, iDb); |
| 1312 } |
| 1313 |
| 1314 /* |
| 1315 ** Generate code that will do an analysis of a single table in |
| 1316 ** a database. If pOnlyIdx is not NULL then it is a single index |
| 1317 ** in pTab that should be analyzed. |
| 1318 */ |
| 1319 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ |
| 1320 int iDb; |
| 1321 int iStatCur; |
| 1322 |
| 1323 assert( pTab!=0 ); |
| 1324 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); |
| 1325 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| 1326 sqlite3BeginWriteOperation(pParse, 0, iDb); |
| 1327 iStatCur = pParse->nTab; |
| 1328 pParse->nTab += 3; |
| 1329 if( pOnlyIdx ){ |
| 1330 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); |
| 1331 }else{ |
| 1332 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); |
| 1333 } |
| 1334 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); |
| 1335 loadAnalysis(pParse, iDb); |
| 1336 } |
| 1337 |
| 1338 /* |
| 1339 ** Generate code for the ANALYZE command. The parser calls this routine |
| 1340 ** when it recognizes an ANALYZE command. |
| 1341 ** |
| 1342 ** ANALYZE -- 1 |
| 1343 ** ANALYZE <database> -- 2 |
| 1344 ** ANALYZE ?<database>.?<tablename> -- 3 |
| 1345 ** |
| 1346 ** Form 1 causes all indices in all attached databases to be analyzed. |
| 1347 ** Form 2 analyzes all indices the single database named. |
| 1348 ** Form 3 analyzes all indices associated with the named table. |
| 1349 */ |
| 1350 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ |
| 1351 sqlite3 *db = pParse->db; |
| 1352 int iDb; |
| 1353 int i; |
| 1354 char *z, *zDb; |
| 1355 Table *pTab; |
| 1356 Index *pIdx; |
| 1357 Token *pTableName; |
| 1358 Vdbe *v; |
| 1359 |
| 1360 /* Read the database schema. If an error occurs, leave an error message |
| 1361 ** and code in pParse and return NULL. */ |
| 1362 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); |
| 1363 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| 1364 return; |
| 1365 } |
| 1366 |
| 1367 assert( pName2!=0 || pName1==0 ); |
| 1368 if( pName1==0 ){ |
| 1369 /* Form 1: Analyze everything */ |
| 1370 for(i=0; i<db->nDb; i++){ |
| 1371 if( i==1 ) continue; /* Do not analyze the TEMP database */ |
| 1372 analyzeDatabase(pParse, i); |
| 1373 } |
| 1374 }else if( pName2->n==0 ){ |
| 1375 /* Form 2: Analyze the database or table named */ |
| 1376 iDb = sqlite3FindDb(db, pName1); |
| 1377 if( iDb>=0 ){ |
| 1378 analyzeDatabase(pParse, iDb); |
| 1379 }else{ |
| 1380 z = sqlite3NameFromToken(db, pName1); |
| 1381 if( z ){ |
| 1382 if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){ |
| 1383 analyzeTable(pParse, pIdx->pTable, pIdx); |
| 1384 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){ |
| 1385 analyzeTable(pParse, pTab, 0); |
| 1386 } |
| 1387 sqlite3DbFree(db, z); |
| 1388 } |
| 1389 } |
| 1390 }else{ |
| 1391 /* Form 3: Analyze the fully qualified table name */ |
| 1392 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); |
| 1393 if( iDb>=0 ){ |
| 1394 zDb = db->aDb[iDb].zName; |
| 1395 z = sqlite3NameFromToken(db, pTableName); |
| 1396 if( z ){ |
| 1397 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ |
| 1398 analyzeTable(pParse, pIdx->pTable, pIdx); |
| 1399 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ |
| 1400 analyzeTable(pParse, pTab, 0); |
| 1401 } |
| 1402 sqlite3DbFree(db, z); |
| 1403 } |
| 1404 } |
| 1405 } |
| 1406 v = sqlite3GetVdbe(pParse); |
| 1407 if( v ) sqlite3VdbeAddOp0(v, OP_Expire); |
| 1408 } |
| 1409 |
| 1410 /* |
| 1411 ** Used to pass information from the analyzer reader through to the |
| 1412 ** callback routine. |
| 1413 */ |
| 1414 typedef struct analysisInfo analysisInfo; |
| 1415 struct analysisInfo { |
| 1416 sqlite3 *db; |
| 1417 const char *zDatabase; |
| 1418 }; |
| 1419 |
| 1420 /* |
| 1421 ** The first argument points to a nul-terminated string containing a |
| 1422 ** list of space separated integers. Read the first nOut of these into |
| 1423 ** the array aOut[]. |
| 1424 */ |
| 1425 static void decodeIntArray( |
| 1426 char *zIntArray, /* String containing int array to decode */ |
| 1427 int nOut, /* Number of slots in aOut[] */ |
| 1428 tRowcnt *aOut, /* Store integers here */ |
| 1429 LogEst *aLog, /* Or, if aOut==0, here */ |
| 1430 Index *pIndex /* Handle extra flags for this index, if not NULL */ |
| 1431 ){ |
| 1432 char *z = zIntArray; |
| 1433 int c; |
| 1434 int i; |
| 1435 tRowcnt v; |
| 1436 |
| 1437 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1438 if( z==0 ) z = ""; |
| 1439 #else |
| 1440 assert( z!=0 ); |
| 1441 #endif |
| 1442 for(i=0; *z && i<nOut; i++){ |
| 1443 v = 0; |
| 1444 while( (c=z[0])>='0' && c<='9' ){ |
| 1445 v = v*10 + c - '0'; |
| 1446 z++; |
| 1447 } |
| 1448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1449 if( aOut ) aOut[i] = v; |
| 1450 if( aLog ) aLog[i] = sqlite3LogEst(v); |
| 1451 #else |
| 1452 assert( aOut==0 ); |
| 1453 UNUSED_PARAMETER(aOut); |
| 1454 assert( aLog!=0 ); |
| 1455 aLog[i] = sqlite3LogEst(v); |
| 1456 #endif |
| 1457 if( *z==' ' ) z++; |
| 1458 } |
| 1459 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1460 assert( pIndex!=0 ); |
| 1461 #else |
| 1462 if( pIndex ) |
| 1463 #endif |
| 1464 while( z[0] ){ |
| 1465 if( sqlite3_strglob("unordered*", z)==0 ){ |
| 1466 pIndex->bUnordered = 1; |
| 1467 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ |
| 1468 pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3)); |
| 1469 } |
| 1470 #ifdef SQLITE_ENABLE_COSTMULT |
| 1471 else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ |
| 1472 pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); |
| 1473 } |
| 1474 #endif |
| 1475 while( z[0]!=0 && z[0]!=' ' ) z++; |
| 1476 while( z[0]==' ' ) z++; |
| 1477 } |
| 1478 } |
| 1479 |
| 1480 /* |
| 1481 ** This callback is invoked once for each index when reading the |
| 1482 ** sqlite_stat1 table. |
| 1483 ** |
| 1484 ** argv[0] = name of the table |
| 1485 ** argv[1] = name of the index (might be NULL) |
| 1486 ** argv[2] = results of analysis - on integer for each column |
| 1487 ** |
| 1488 ** Entries for which argv[1]==NULL simply record the number of rows in |
| 1489 ** the table. |
| 1490 */ |
| 1491 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ |
| 1492 analysisInfo *pInfo = (analysisInfo*)pData; |
| 1493 Index *pIndex; |
| 1494 Table *pTable; |
| 1495 const char *z; |
| 1496 |
| 1497 assert( argc==3 ); |
| 1498 UNUSED_PARAMETER2(NotUsed, argc); |
| 1499 |
| 1500 if( argv==0 || argv[0]==0 || argv[2]==0 ){ |
| 1501 return 0; |
| 1502 } |
| 1503 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); |
| 1504 if( pTable==0 ){ |
| 1505 return 0; |
| 1506 } |
| 1507 if( argv[1]==0 ){ |
| 1508 pIndex = 0; |
| 1509 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ |
| 1510 pIndex = sqlite3PrimaryKeyIndex(pTable); |
| 1511 }else{ |
| 1512 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); |
| 1513 } |
| 1514 z = argv[2]; |
| 1515 |
| 1516 if( pIndex ){ |
| 1517 int nCol = pIndex->nKeyCol+1; |
| 1518 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1519 tRowcnt * const aiRowEst = pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero( |
| 1520 sizeof(tRowcnt) * nCol |
| 1521 ); |
| 1522 if( aiRowEst==0 ) pInfo->db->mallocFailed = 1; |
| 1523 #else |
| 1524 tRowcnt * const aiRowEst = 0; |
| 1525 #endif |
| 1526 pIndex->bUnordered = 0; |
| 1527 decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); |
| 1528 if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0]; |
| 1529 }else{ |
| 1530 Index fakeIdx; |
| 1531 fakeIdx.szIdxRow = pTable->szTabRow; |
| 1532 #ifdef SQLITE_ENABLE_COSTMULT |
| 1533 fakeIdx.pTable = pTable; |
| 1534 #endif |
| 1535 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); |
| 1536 pTable->szTabRow = fakeIdx.szIdxRow; |
| 1537 } |
| 1538 |
| 1539 return 0; |
| 1540 } |
| 1541 |
| 1542 /* |
| 1543 ** If the Index.aSample variable is not NULL, delete the aSample[] array |
| 1544 ** and its contents. |
| 1545 */ |
| 1546 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ |
| 1547 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1548 if( pIdx->aSample ){ |
| 1549 int j; |
| 1550 for(j=0; j<pIdx->nSample; j++){ |
| 1551 IndexSample *p = &pIdx->aSample[j]; |
| 1552 sqlite3DbFree(db, p->p); |
| 1553 } |
| 1554 sqlite3DbFree(db, pIdx->aSample); |
| 1555 } |
| 1556 if( db && db->pnBytesFreed==0 ){ |
| 1557 pIdx->nSample = 0; |
| 1558 pIdx->aSample = 0; |
| 1559 } |
| 1560 #else |
| 1561 UNUSED_PARAMETER(db); |
| 1562 UNUSED_PARAMETER(pIdx); |
| 1563 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 1564 } |
| 1565 |
| 1566 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1567 /* |
| 1568 ** Populate the pIdx->aAvgEq[] array based on the samples currently |
| 1569 ** stored in pIdx->aSample[]. |
| 1570 */ |
| 1571 static void initAvgEq(Index *pIdx){ |
| 1572 if( pIdx ){ |
| 1573 IndexSample *aSample = pIdx->aSample; |
| 1574 IndexSample *pFinal = &aSample[pIdx->nSample-1]; |
| 1575 int iCol; |
| 1576 int nCol = 1; |
| 1577 if( pIdx->nSampleCol>1 ){ |
| 1578 /* If this is stat4 data, then calculate aAvgEq[] values for all |
| 1579 ** sample columns except the last. The last is always set to 1, as |
| 1580 ** once the trailing PK fields are considered all index keys are |
| 1581 ** unique. */ |
| 1582 nCol = pIdx->nSampleCol-1; |
| 1583 pIdx->aAvgEq[nCol] = 1; |
| 1584 } |
| 1585 for(iCol=0; iCol<nCol; iCol++){ |
| 1586 int nSample = pIdx->nSample; |
| 1587 int i; /* Used to iterate through samples */ |
| 1588 tRowcnt sumEq = 0; /* Sum of the nEq values */ |
| 1589 tRowcnt avgEq = 0; |
| 1590 tRowcnt nRow; /* Number of rows in index */ |
| 1591 i64 nSum100 = 0; /* Number of terms contributing to sumEq */ |
| 1592 i64 nDist100; /* Number of distinct values in index */ |
| 1593 |
| 1594 if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ |
| 1595 nRow = pFinal->anLt[iCol]; |
| 1596 nDist100 = (i64)100 * pFinal->anDLt[iCol]; |
| 1597 nSample--; |
| 1598 }else{ |
| 1599 nRow = pIdx->aiRowEst[0]; |
| 1600 nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; |
| 1601 } |
| 1602 |
| 1603 /* Set nSum to the number of distinct (iCol+1) field prefixes that |
| 1604 ** occur in the stat4 table for this index. Set sumEq to the sum of |
| 1605 ** the nEq values for column iCol for the same set (adding the value |
| 1606 ** only once where there exist duplicate prefixes). */ |
| 1607 for(i=0; i<nSample; i++){ |
| 1608 if( i==(pIdx->nSample-1) |
| 1609 || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] |
| 1610 ){ |
| 1611 sumEq += aSample[i].anEq[iCol]; |
| 1612 nSum100 += 100; |
| 1613 } |
| 1614 } |
| 1615 |
| 1616 if( nDist100>nSum100 ){ |
| 1617 avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100); |
| 1618 } |
| 1619 if( avgEq==0 ) avgEq = 1; |
| 1620 pIdx->aAvgEq[iCol] = avgEq; |
| 1621 } |
| 1622 } |
| 1623 } |
| 1624 |
| 1625 /* |
| 1626 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table |
| 1627 ** is supplied instead, find the PRIMARY KEY index for that table. |
| 1628 */ |
| 1629 static Index *findIndexOrPrimaryKey( |
| 1630 sqlite3 *db, |
| 1631 const char *zName, |
| 1632 const char *zDb |
| 1633 ){ |
| 1634 Index *pIdx = sqlite3FindIndex(db, zName, zDb); |
| 1635 if( pIdx==0 ){ |
| 1636 Table *pTab = sqlite3FindTable(db, zName, zDb); |
| 1637 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); |
| 1638 } |
| 1639 return pIdx; |
| 1640 } |
| 1641 |
| 1642 /* |
| 1643 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table |
| 1644 ** into the relevant Index.aSample[] arrays. |
| 1645 ** |
| 1646 ** Arguments zSql1 and zSql2 must point to SQL statements that return |
| 1647 ** data equivalent to the following (statements are different for stat3, |
| 1648 ** see the caller of this function for details): |
| 1649 ** |
| 1650 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx |
| 1651 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 |
| 1652 ** |
| 1653 ** where %Q is replaced with the database name before the SQL is executed. |
| 1654 */ |
| 1655 static int loadStatTbl( |
| 1656 sqlite3 *db, /* Database handle */ |
| 1657 int bStat3, /* Assume single column records only */ |
| 1658 const char *zSql1, /* SQL statement 1 (see above) */ |
| 1659 const char *zSql2, /* SQL statement 2 (see above) */ |
| 1660 const char *zDb /* Database name (e.g. "main") */ |
| 1661 ){ |
| 1662 int rc; /* Result codes from subroutines */ |
| 1663 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ |
| 1664 char *zSql; /* Text of the SQL statement */ |
| 1665 Index *pPrevIdx = 0; /* Previous index in the loop */ |
| 1666 IndexSample *pSample; /* A slot in pIdx->aSample[] */ |
| 1667 |
| 1668 assert( db->lookaside.bEnabled==0 ); |
| 1669 zSql = sqlite3MPrintf(db, zSql1, zDb); |
| 1670 if( !zSql ){ |
| 1671 return SQLITE_NOMEM; |
| 1672 } |
| 1673 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); |
| 1674 sqlite3DbFree(db, zSql); |
| 1675 if( rc ) return rc; |
| 1676 |
| 1677 while( sqlite3_step(pStmt)==SQLITE_ROW ){ |
| 1678 int nIdxCol = 1; /* Number of columns in stat4 records */ |
| 1679 |
| 1680 char *zIndex; /* Index name */ |
| 1681 Index *pIdx; /* Pointer to the index object */ |
| 1682 int nSample; /* Number of samples */ |
| 1683 int nByte; /* Bytes of space required */ |
| 1684 int i; /* Bytes of space required */ |
| 1685 tRowcnt *pSpace; |
| 1686 |
| 1687 zIndex = (char *)sqlite3_column_text(pStmt, 0); |
| 1688 if( zIndex==0 ) continue; |
| 1689 nSample = sqlite3_column_int(pStmt, 1); |
| 1690 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); |
| 1691 assert( pIdx==0 || bStat3 || pIdx->nSample==0 ); |
| 1692 /* Index.nSample is non-zero at this point if data has already been |
| 1693 ** loaded from the stat4 table. In this case ignore stat3 data. */ |
| 1694 if( pIdx==0 || pIdx->nSample ) continue; |
| 1695 if( bStat3==0 ){ |
| 1696 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); |
| 1697 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ |
| 1698 nIdxCol = pIdx->nKeyCol; |
| 1699 }else{ |
| 1700 nIdxCol = pIdx->nColumn; |
| 1701 } |
| 1702 } |
| 1703 pIdx->nSampleCol = nIdxCol; |
| 1704 nByte = sizeof(IndexSample) * nSample; |
| 1705 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; |
| 1706 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ |
| 1707 |
| 1708 pIdx->aSample = sqlite3DbMallocZero(db, nByte); |
| 1709 if( pIdx->aSample==0 ){ |
| 1710 sqlite3_finalize(pStmt); |
| 1711 return SQLITE_NOMEM; |
| 1712 } |
| 1713 pSpace = (tRowcnt*)&pIdx->aSample[nSample]; |
| 1714 pIdx->aAvgEq = pSpace; pSpace += nIdxCol; |
| 1715 for(i=0; i<nSample; i++){ |
| 1716 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; |
| 1717 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; |
| 1718 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; |
| 1719 } |
| 1720 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); |
| 1721 } |
| 1722 rc = sqlite3_finalize(pStmt); |
| 1723 if( rc ) return rc; |
| 1724 |
| 1725 zSql = sqlite3MPrintf(db, zSql2, zDb); |
| 1726 if( !zSql ){ |
| 1727 return SQLITE_NOMEM; |
| 1728 } |
| 1729 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); |
| 1730 sqlite3DbFree(db, zSql); |
| 1731 if( rc ) return rc; |
| 1732 |
| 1733 while( sqlite3_step(pStmt)==SQLITE_ROW ){ |
| 1734 char *zIndex; /* Index name */ |
| 1735 Index *pIdx; /* Pointer to the index object */ |
| 1736 int nCol = 1; /* Number of columns in index */ |
| 1737 |
| 1738 zIndex = (char *)sqlite3_column_text(pStmt, 0); |
| 1739 if( zIndex==0 ) continue; |
| 1740 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); |
| 1741 if( pIdx==0 ) continue; |
| 1742 /* This next condition is true if data has already been loaded from |
| 1743 ** the sqlite_stat4 table. In this case ignore stat3 data. */ |
| 1744 nCol = pIdx->nSampleCol; |
| 1745 if( bStat3 && nCol>1 ) continue; |
| 1746 if( pIdx!=pPrevIdx ){ |
| 1747 initAvgEq(pPrevIdx); |
| 1748 pPrevIdx = pIdx; |
| 1749 } |
| 1750 pSample = &pIdx->aSample[pIdx->nSample]; |
| 1751 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); |
| 1752 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); |
| 1753 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); |
| 1754 |
| 1755 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. |
| 1756 ** This is in case the sample record is corrupted. In that case, the |
| 1757 ** sqlite3VdbeRecordCompare() may read up to two varints past the |
| 1758 ** end of the allocated buffer before it realizes it is dealing with |
| 1759 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing |
| 1760 ** a buffer overread. */ |
| 1761 pSample->n = sqlite3_column_bytes(pStmt, 4); |
| 1762 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); |
| 1763 if( pSample->p==0 ){ |
| 1764 sqlite3_finalize(pStmt); |
| 1765 return SQLITE_NOMEM; |
| 1766 } |
| 1767 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); |
| 1768 pIdx->nSample++; |
| 1769 } |
| 1770 rc = sqlite3_finalize(pStmt); |
| 1771 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); |
| 1772 return rc; |
| 1773 } |
| 1774 |
| 1775 /* |
| 1776 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into |
| 1777 ** the Index.aSample[] arrays of all indices. |
| 1778 */ |
| 1779 static int loadStat4(sqlite3 *db, const char *zDb){ |
| 1780 int rc = SQLITE_OK; /* Result codes from subroutines */ |
| 1781 |
| 1782 assert( db->lookaside.bEnabled==0 ); |
| 1783 if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ |
| 1784 rc = loadStatTbl(db, 0, |
| 1785 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", |
| 1786 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", |
| 1787 zDb |
| 1788 ); |
| 1789 } |
| 1790 |
| 1791 if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){ |
| 1792 rc = loadStatTbl(db, 1, |
| 1793 "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx", |
| 1794 "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3", |
| 1795 zDb |
| 1796 ); |
| 1797 } |
| 1798 |
| 1799 return rc; |
| 1800 } |
| 1801 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 1802 |
| 1803 /* |
| 1804 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The |
| 1805 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] |
| 1806 ** arrays. The contents of sqlite_stat3/4 are used to populate the |
| 1807 ** Index.aSample[] arrays. |
| 1808 ** |
| 1809 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR |
| 1810 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined |
| 1811 ** during compilation and the sqlite_stat3/4 table is present, no data is |
| 1812 ** read from it. |
| 1813 ** |
| 1814 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the |
| 1815 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is |
| 1816 ** returned. However, in this case, data is read from the sqlite_stat1 |
| 1817 ** table (if it is present) before returning. |
| 1818 ** |
| 1819 ** If an OOM error occurs, this function always sets db->mallocFailed. |
| 1820 ** This means if the caller does not care about other errors, the return |
| 1821 ** code may be ignored. |
| 1822 */ |
| 1823 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ |
| 1824 analysisInfo sInfo; |
| 1825 HashElem *i; |
| 1826 char *zSql; |
| 1827 int rc; |
| 1828 |
| 1829 assert( iDb>=0 && iDb<db->nDb ); |
| 1830 assert( db->aDb[iDb].pBt!=0 ); |
| 1831 |
| 1832 /* Clear any prior statistics */ |
| 1833 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 1834 for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ |
| 1835 Index *pIdx = sqliteHashData(i); |
| 1836 sqlite3DefaultRowEst(pIdx); |
| 1837 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1838 sqlite3DeleteIndexSamples(db, pIdx); |
| 1839 pIdx->aSample = 0; |
| 1840 #endif |
| 1841 } |
| 1842 |
| 1843 /* Check to make sure the sqlite_stat1 table exists */ |
| 1844 sInfo.db = db; |
| 1845 sInfo.zDatabase = db->aDb[iDb].zName; |
| 1846 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ |
| 1847 return SQLITE_ERROR; |
| 1848 } |
| 1849 |
| 1850 /* Load new statistics out of the sqlite_stat1 table */ |
| 1851 zSql = sqlite3MPrintf(db, |
| 1852 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); |
| 1853 if( zSql==0 ){ |
| 1854 rc = SQLITE_NOMEM; |
| 1855 }else{ |
| 1856 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); |
| 1857 sqlite3DbFree(db, zSql); |
| 1858 } |
| 1859 |
| 1860 |
| 1861 /* Load the statistics from the sqlite_stat4 table. */ |
| 1862 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1863 if( rc==SQLITE_OK ){ |
| 1864 int lookasideEnabled = db->lookaside.bEnabled; |
| 1865 db->lookaside.bEnabled = 0; |
| 1866 rc = loadStat4(db, sInfo.zDatabase); |
| 1867 db->lookaside.bEnabled = lookasideEnabled; |
| 1868 } |
| 1869 for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ |
| 1870 Index *pIdx = sqliteHashData(i); |
| 1871 sqlite3_free(pIdx->aiRowEst); |
| 1872 pIdx->aiRowEst = 0; |
| 1873 } |
| 1874 #endif |
| 1875 |
| 1876 if( rc==SQLITE_NOMEM ){ |
| 1877 db->mallocFailed = 1; |
| 1878 } |
| 1879 return rc; |
| 1880 } |
| 1881 |
| 1882 |
| 1883 #endif /* SQLITE_OMIT_ANALYZE */ |
OLD | NEW |