OLD | NEW |
1 /* Copyright (c) 2007-2008 CSIRO | 1 /* Copyright (c) 2007-2008 CSIRO |
2 Copyright (c) 2007-2008 Xiph.Org Foundation | 2 Copyright (c) 2007-2008 Xiph.Org Foundation |
3 Written by Jean-Marc Valin */ | 3 Written by Jean-Marc Valin */ |
4 /* | 4 /* |
5 Redistribution and use in source and binary forms, with or without | 5 Redistribution and use in source and binary forms, with or without |
6 modification, are permitted provided that the following conditions | 6 modification, are permitted provided that the following conditions |
7 are met: | 7 are met: |
8 | 8 |
9 - Redistributions of source code must retain the above copyright | 9 - Redistributions of source code must retain the above copyright |
10 notice, this list of conditions and the following disclaimer. | 10 notice, this list of conditions and the following disclaimer. |
(...skipping 35 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
46 #endif | 46 #endif |
47 | 47 |
48 #include "mdct.h" | 48 #include "mdct.h" |
49 #include "kiss_fft.h" | 49 #include "kiss_fft.h" |
50 #include "_kiss_fft_guts.h" | 50 #include "_kiss_fft_guts.h" |
51 #include <math.h> | 51 #include <math.h> |
52 #include "os_support.h" | 52 #include "os_support.h" |
53 #include "mathops.h" | 53 #include "mathops.h" |
54 #include "stack_alloc.h" | 54 #include "stack_alloc.h" |
55 | 55 |
| 56 #if defined(MIPSr1_ASM) |
| 57 #include "mips/mdct_mipsr1.h" |
| 58 #endif |
| 59 |
| 60 |
56 #ifdef CUSTOM_MODES | 61 #ifdef CUSTOM_MODES |
57 | 62 |
58 int clt_mdct_init(mdct_lookup *l,int N, int maxshift) | 63 int clt_mdct_init(mdct_lookup *l,int N, int maxshift) |
59 { | 64 { |
60 int i; | 65 int i; |
61 int N4; | |
62 kiss_twiddle_scalar *trig; | 66 kiss_twiddle_scalar *trig; |
63 #if defined(FIXED_POINT) | 67 int shift; |
64 int N2=N>>1; | 68 int N2=N>>1; |
65 #endif | |
66 l->n = N; | 69 l->n = N; |
67 N4 = N>>2; | |
68 l->maxshift = maxshift; | 70 l->maxshift = maxshift; |
69 for (i=0;i<=maxshift;i++) | 71 for (i=0;i<=maxshift;i++) |
70 { | 72 { |
71 if (i==0) | 73 if (i==0) |
72 l->kfft[i] = opus_fft_alloc(N>>2>>i, 0, 0); | 74 l->kfft[i] = opus_fft_alloc(N>>2>>i, 0, 0); |
73 else | 75 else |
74 l->kfft[i] = opus_fft_alloc_twiddles(N>>2>>i, 0, 0, l->kfft[0]); | 76 l->kfft[i] = opus_fft_alloc_twiddles(N>>2>>i, 0, 0, l->kfft[0]); |
75 #ifndef ENABLE_TI_DSPLIB55 | 77 #ifndef ENABLE_TI_DSPLIB55 |
76 if (l->kfft[i]==NULL) | 78 if (l->kfft[i]==NULL) |
77 return 0; | 79 return 0; |
78 #endif | 80 #endif |
79 } | 81 } |
80 l->trig = trig = (kiss_twiddle_scalar*)opus_alloc((N4+1)*sizeof(kiss_twiddle_
scalar)); | 82 l->trig = trig = (kiss_twiddle_scalar*)opus_alloc((N-(N2>>maxshift))*sizeof(k
iss_twiddle_scalar)); |
81 if (l->trig==NULL) | 83 if (l->trig==NULL) |
82 return 0; | 84 return 0; |
83 /* We have enough points that sine isn't necessary */ | 85 for (shift=0;shift<=maxshift;shift++) |
| 86 { |
| 87 /* We have enough points that sine isn't necessary */ |
84 #if defined(FIXED_POINT) | 88 #if defined(FIXED_POINT) |
85 for (i=0;i<=N4;i++) | 89 #if 1 |
86 trig[i] = TRIG_UPSCALE*celt_cos_norm(DIV32(ADD32(SHL32(EXTEND32(i),17),N2)
,N)); | 90 for (i=0;i<N2;i++) |
| 91 trig[i] = TRIG_UPSCALE*celt_cos_norm(DIV32(ADD32(SHL32(EXTEND32(i),17),
N2+16384),N)); |
87 #else | 92 #else |
88 for (i=0;i<=N4;i++) | 93 for (i=0;i<N2;i++) |
89 trig[i] = (kiss_twiddle_scalar)cos(2*PI*i/N); | 94 trig[i] = (kiss_twiddle_scalar)MAX32(-32767,MIN32(32767,floor(.5+32768*
cos(2*M_PI*(i+.125)/N)))); |
90 #endif | 95 #endif |
| 96 #else |
| 97 for (i=0;i<N2;i++) |
| 98 trig[i] = (kiss_twiddle_scalar)cos(2*PI*(i+.125)/N); |
| 99 #endif |
| 100 trig += N2; |
| 101 N2 >>= 1; |
| 102 N >>= 1; |
| 103 } |
91 return 1; | 104 return 1; |
92 } | 105 } |
93 | 106 |
94 void clt_mdct_clear(mdct_lookup *l) | 107 void clt_mdct_clear(mdct_lookup *l) |
95 { | 108 { |
96 int i; | 109 int i; |
97 for (i=0;i<=l->maxshift;i++) | 110 for (i=0;i<=l->maxshift;i++) |
98 opus_fft_free(l->kfft[i]); | 111 opus_fft_free(l->kfft[i]); |
99 opus_free((kiss_twiddle_scalar*)l->trig); | 112 opus_free((kiss_twiddle_scalar*)l->trig); |
100 } | 113 } |
101 | 114 |
102 #endif /* CUSTOM_MODES */ | 115 #endif /* CUSTOM_MODES */ |
103 | 116 |
104 /* Forward MDCT trashes the input array */ | 117 /* Forward MDCT trashes the input array */ |
| 118 #ifndef OVERRIDE_clt_mdct_forward |
105 void clt_mdct_forward(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar
* OPUS_RESTRICT out, | 119 void clt_mdct_forward(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar
* OPUS_RESTRICT out, |
106 const opus_val16 *window, int overlap, int shift, int stride) | 120 const opus_val16 *window, int overlap, int shift, int stride) |
107 { | 121 { |
108 int i; | 122 int i; |
109 int N, N2, N4; | 123 int N, N2, N4; |
110 kiss_twiddle_scalar sine; | |
111 VARDECL(kiss_fft_scalar, f); | 124 VARDECL(kiss_fft_scalar, f); |
112 VARDECL(kiss_fft_scalar, f2); | 125 VARDECL(kiss_fft_cpx, f2); |
| 126 const kiss_fft_state *st = l->kfft[shift]; |
| 127 const kiss_twiddle_scalar *trig; |
| 128 opus_val16 scale; |
| 129 #ifdef FIXED_POINT |
| 130 /* Allows us to scale with MULT16_32_Q16(), which is faster than |
| 131 MULT16_32_Q15() on ARM. */ |
| 132 int scale_shift = st->scale_shift-1; |
| 133 #endif |
113 SAVE_STACK; | 134 SAVE_STACK; |
| 135 scale = st->scale; |
| 136 |
114 N = l->n; | 137 N = l->n; |
115 N >>= shift; | 138 trig = l->trig; |
| 139 for (i=0;i<shift;i++) |
| 140 { |
| 141 N >>= 1; |
| 142 trig += N; |
| 143 } |
116 N2 = N>>1; | 144 N2 = N>>1; |
117 N4 = N>>2; | 145 N4 = N>>2; |
| 146 |
118 ALLOC(f, N2, kiss_fft_scalar); | 147 ALLOC(f, N2, kiss_fft_scalar); |
119 ALLOC(f2, N2, kiss_fft_scalar); | 148 ALLOC(f2, N4, kiss_fft_cpx); |
120 /* sin(x) ~= x here */ | |
121 #ifdef FIXED_POINT | |
122 sine = TRIG_UPSCALE*(QCONST16(0.7853981f, 15)+N2)/N; | |
123 #else | |
124 sine = (kiss_twiddle_scalar)2*PI*(.125f)/N; | |
125 #endif | |
126 | 149 |
127 /* Consider the input to be composed of four blocks: [a, b, c, d] */ | 150 /* Consider the input to be composed of four blocks: [a, b, c, d] */ |
128 /* Window, shuffle, fold */ | 151 /* Window, shuffle, fold */ |
129 { | 152 { |
130 /* Temp pointers to make it really clear to the compiler what we're doing
*/ | 153 /* Temp pointers to make it really clear to the compiler what we're doing
*/ |
131 const kiss_fft_scalar * OPUS_RESTRICT xp1 = in+(overlap>>1); | 154 const kiss_fft_scalar * OPUS_RESTRICT xp1 = in+(overlap>>1); |
132 const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+N2-1+(overlap>>1); | 155 const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+N2-1+(overlap>>1); |
133 kiss_fft_scalar * OPUS_RESTRICT yp = f; | 156 kiss_fft_scalar * OPUS_RESTRICT yp = f; |
134 const opus_val16 * OPUS_RESTRICT wp1 = window+(overlap>>1); | 157 const opus_val16 * OPUS_RESTRICT wp1 = window+(overlap>>1); |
135 const opus_val16 * OPUS_RESTRICT wp2 = window+(overlap>>1)-1; | 158 const opus_val16 * OPUS_RESTRICT wp2 = window+(overlap>>1)-1; |
(...skipping 24 matching lines...) Expand all Loading... |
160 *yp++ = MULT16_32_Q15(*wp2, *xp1) + MULT16_32_Q15(*wp1, xp2[N2]); | 183 *yp++ = MULT16_32_Q15(*wp2, *xp1) + MULT16_32_Q15(*wp1, xp2[N2]); |
161 xp1+=2; | 184 xp1+=2; |
162 xp2-=2; | 185 xp2-=2; |
163 wp1+=2; | 186 wp1+=2; |
164 wp2-=2; | 187 wp2-=2; |
165 } | 188 } |
166 } | 189 } |
167 /* Pre-rotation */ | 190 /* Pre-rotation */ |
168 { | 191 { |
169 kiss_fft_scalar * OPUS_RESTRICT yp = f; | 192 kiss_fft_scalar * OPUS_RESTRICT yp = f; |
170 const kiss_twiddle_scalar *t = &l->trig[0]; | 193 const kiss_twiddle_scalar *t = &trig[0]; |
171 for(i=0;i<N4;i++) | 194 for(i=0;i<N4;i++) |
172 { | 195 { |
| 196 kiss_fft_cpx yc; |
| 197 kiss_twiddle_scalar t0, t1; |
173 kiss_fft_scalar re, im, yr, yi; | 198 kiss_fft_scalar re, im, yr, yi; |
174 re = yp[0]; | 199 t0 = t[i]; |
175 im = yp[1]; | 200 t1 = t[N4+i]; |
176 yr = -S_MUL(re,t[i<<shift]) - S_MUL(im,t[(N4-i)<<shift]); | 201 re = *yp++; |
177 yi = -S_MUL(im,t[i<<shift]) + S_MUL(re,t[(N4-i)<<shift]); | 202 im = *yp++; |
178 /* works because the cos is nearly one */ | 203 yr = S_MUL(re,t0) - S_MUL(im,t1); |
179 *yp++ = yr + S_MUL(yi,sine); | 204 yi = S_MUL(im,t0) + S_MUL(re,t1); |
180 *yp++ = yi - S_MUL(yr,sine); | 205 yc.r = yr; |
| 206 yc.i = yi; |
| 207 yc.r = PSHR32(MULT16_32_Q16(scale, yc.r), scale_shift); |
| 208 yc.i = PSHR32(MULT16_32_Q16(scale, yc.i), scale_shift); |
| 209 f2[st->bitrev[i]] = yc; |
181 } | 210 } |
182 } | 211 } |
183 | 212 |
184 /* N/4 complex FFT, down-scales by 4/N */ | 213 /* N/4 complex FFT, does not downscale anymore */ |
185 opus_fft(l->kfft[shift], (kiss_fft_cpx *)f, (kiss_fft_cpx *)f2); | 214 opus_fft_impl(st, f2); |
186 | 215 |
187 /* Post-rotate */ | 216 /* Post-rotate */ |
188 { | 217 { |
189 /* Temp pointers to make it really clear to the compiler what we're doing
*/ | 218 /* Temp pointers to make it really clear to the compiler what we're doing
*/ |
190 const kiss_fft_scalar * OPUS_RESTRICT fp = f2; | 219 const kiss_fft_cpx * OPUS_RESTRICT fp = f2; |
191 kiss_fft_scalar * OPUS_RESTRICT yp1 = out; | 220 kiss_fft_scalar * OPUS_RESTRICT yp1 = out; |
192 kiss_fft_scalar * OPUS_RESTRICT yp2 = out+stride*(N2-1); | 221 kiss_fft_scalar * OPUS_RESTRICT yp2 = out+stride*(N2-1); |
193 const kiss_twiddle_scalar *t = &l->trig[0]; | 222 const kiss_twiddle_scalar *t = &trig[0]; |
194 /* Temp pointers to make it really clear to the compiler what we're doing
*/ | 223 /* Temp pointers to make it really clear to the compiler what we're doing
*/ |
195 for(i=0;i<N4;i++) | 224 for(i=0;i<N4;i++) |
196 { | 225 { |
197 kiss_fft_scalar yr, yi; | 226 kiss_fft_scalar yr, yi; |
198 yr = S_MUL(fp[1],t[(N4-i)<<shift]) + S_MUL(fp[0],t[i<<shift]); | 227 yr = S_MUL(fp->i,t[N4+i]) - S_MUL(fp->r,t[i]); |
199 yi = S_MUL(fp[0],t[(N4-i)<<shift]) - S_MUL(fp[1],t[i<<shift]); | 228 yi = S_MUL(fp->r,t[N4+i]) + S_MUL(fp->i,t[i]); |
200 /* works because the cos is nearly one */ | 229 *yp1 = yr; |
201 *yp1 = yr - S_MUL(yi,sine); | 230 *yp2 = yi; |
202 *yp2 = yi + S_MUL(yr,sine);; | 231 fp++; |
203 fp += 2; | |
204 yp1 += 2*stride; | 232 yp1 += 2*stride; |
205 yp2 -= 2*stride; | 233 yp2 -= 2*stride; |
206 } | 234 } |
207 } | 235 } |
208 RESTORE_STACK; | 236 RESTORE_STACK; |
209 } | 237 } |
| 238 #endif /* OVERRIDE_clt_mdct_forward */ |
210 | 239 |
| 240 #ifndef OVERRIDE_clt_mdct_backward |
211 void clt_mdct_backward(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scala
r * OPUS_RESTRICT out, | 241 void clt_mdct_backward(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scala
r * OPUS_RESTRICT out, |
212 const opus_val16 * OPUS_RESTRICT window, int overlap, int shift, int strid
e) | 242 const opus_val16 * OPUS_RESTRICT window, int overlap, int shift, int strid
e) |
213 { | 243 { |
214 int i; | 244 int i; |
215 int N, N2, N4; | 245 int N, N2, N4; |
216 kiss_twiddle_scalar sine; | 246 const kiss_twiddle_scalar *trig; |
217 VARDECL(kiss_fft_scalar, f2); | 247 |
218 SAVE_STACK; | |
219 N = l->n; | 248 N = l->n; |
220 N >>= shift; | 249 trig = l->trig; |
| 250 for (i=0;i<shift;i++) |
| 251 { |
| 252 N >>= 1; |
| 253 trig += N; |
| 254 } |
221 N2 = N>>1; | 255 N2 = N>>1; |
222 N4 = N>>2; | 256 N4 = N>>2; |
223 ALLOC(f2, N2, kiss_fft_scalar); | |
224 /* sin(x) ~= x here */ | |
225 #ifdef FIXED_POINT | |
226 sine = TRIG_UPSCALE*(QCONST16(0.7853981f, 15)+N2)/N; | |
227 #else | |
228 sine = (kiss_twiddle_scalar)2*PI*(.125f)/N; | |
229 #endif | |
230 | 257 |
231 /* Pre-rotate */ | 258 /* Pre-rotate */ |
232 { | 259 { |
233 /* Temp pointers to make it really clear to the compiler what we're doing
*/ | 260 /* Temp pointers to make it really clear to the compiler what we're doing
*/ |
234 const kiss_fft_scalar * OPUS_RESTRICT xp1 = in; | 261 const kiss_fft_scalar * OPUS_RESTRICT xp1 = in; |
235 const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+stride*(N2-1); | 262 const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+stride*(N2-1); |
236 kiss_fft_scalar * OPUS_RESTRICT yp = f2; | 263 kiss_fft_scalar * OPUS_RESTRICT yp = out+(overlap>>1); |
237 const kiss_twiddle_scalar *t = &l->trig[0]; | 264 const kiss_twiddle_scalar * OPUS_RESTRICT t = &trig[0]; |
| 265 const opus_int16 * OPUS_RESTRICT bitrev = l->kfft[shift]->bitrev; |
238 for(i=0;i<N4;i++) | 266 for(i=0;i<N4;i++) |
239 { | 267 { |
| 268 int rev; |
240 kiss_fft_scalar yr, yi; | 269 kiss_fft_scalar yr, yi; |
241 yr = -S_MUL(*xp2, t[i<<shift]) + S_MUL(*xp1,t[(N4-i)<<shift]); | 270 rev = *bitrev++; |
242 yi = -S_MUL(*xp2, t[(N4-i)<<shift]) - S_MUL(*xp1,t[i<<shift]); | 271 yr = S_MUL(*xp2, t[i]) + S_MUL(*xp1, t[N4+i]); |
243 /* works because the cos is nearly one */ | 272 yi = S_MUL(*xp1, t[i]) - S_MUL(*xp2, t[N4+i]); |
244 *yp++ = yr - S_MUL(yi,sine); | 273 /* We swap real and imag because we use an FFT instead of an IFFT. */ |
245 *yp++ = yi + S_MUL(yr,sine); | 274 yp[2*rev+1] = yr; |
| 275 yp[2*rev] = yi; |
| 276 /* Storing the pre-rotation directly in the bitrev order. */ |
246 xp1+=2*stride; | 277 xp1+=2*stride; |
247 xp2-=2*stride; | 278 xp2-=2*stride; |
248 } | 279 } |
249 } | 280 } |
250 | 281 |
251 /* Inverse N/4 complex FFT. This one should *not* downscale even in fixed-poi
nt */ | 282 opus_fft_impl(l->kfft[shift], (kiss_fft_cpx*)(out+(overlap>>1))); |
252 opus_ifft(l->kfft[shift], (kiss_fft_cpx *)f2, (kiss_fft_cpx *)(out+(overlap>>
1))); | |
253 | 283 |
254 /* Post-rotate and de-shuffle from both ends of the buffer at once to make | 284 /* Post-rotate and de-shuffle from both ends of the buffer at once to make |
255 it in-place. */ | 285 it in-place. */ |
256 { | 286 { |
257 kiss_fft_scalar * OPUS_RESTRICT yp0 = out+(overlap>>1); | 287 kiss_fft_scalar * yp0 = out+(overlap>>1); |
258 kiss_fft_scalar * OPUS_RESTRICT yp1 = out+(overlap>>1)+N2-2; | 288 kiss_fft_scalar * yp1 = out+(overlap>>1)+N2-2; |
259 const kiss_twiddle_scalar *t = &l->trig[0]; | 289 const kiss_twiddle_scalar *t = &trig[0]; |
260 /* Loop to (N4+1)>>1 to handle odd N4. When N4 is odd, the | 290 /* Loop to (N4+1)>>1 to handle odd N4. When N4 is odd, the |
261 middle pair will be computed twice. */ | 291 middle pair will be computed twice. */ |
262 for(i=0;i<(N4+1)>>1;i++) | 292 for(i=0;i<(N4+1)>>1;i++) |
263 { | 293 { |
264 kiss_fft_scalar re, im, yr, yi; | 294 kiss_fft_scalar re, im, yr, yi; |
265 kiss_twiddle_scalar t0, t1; | 295 kiss_twiddle_scalar t0, t1; |
266 re = yp0[0]; | 296 /* We swap real and imag because we're using an FFT instead of an IFFT.
*/ |
267 im = yp0[1]; | 297 re = yp0[1]; |
268 t0 = t[i<<shift]; | 298 im = yp0[0]; |
269 t1 = t[(N4-i)<<shift]; | 299 t0 = t[i]; |
| 300 t1 = t[N4+i]; |
270 /* We'd scale up by 2 here, but instead it's done when mixing the windo
ws */ | 301 /* We'd scale up by 2 here, but instead it's done when mixing the windo
ws */ |
271 yr = S_MUL(re,t0) - S_MUL(im,t1); | 302 yr = S_MUL(re,t0) + S_MUL(im,t1); |
272 yi = S_MUL(im,t0) + S_MUL(re,t1); | 303 yi = S_MUL(re,t1) - S_MUL(im,t0); |
273 re = yp1[0]; | 304 /* We swap real and imag because we're using an FFT instead of an IFFT.
*/ |
274 im = yp1[1]; | 305 re = yp1[1]; |
275 /* works because the cos is nearly one */ | 306 im = yp1[0]; |
276 yp0[0] = -(yr - S_MUL(yi,sine)); | 307 yp0[0] = yr; |
277 yp1[1] = yi + S_MUL(yr,sine); | 308 yp1[1] = yi; |
278 | 309 |
279 t0 = t[(N4-i-1)<<shift]; | 310 t0 = t[(N4-i-1)]; |
280 t1 = t[(i+1)<<shift]; | 311 t1 = t[(N2-i-1)]; |
281 /* We'd scale up by 2 here, but instead it's done when mixing the windo
ws */ | 312 /* We'd scale up by 2 here, but instead it's done when mixing the windo
ws */ |
282 yr = S_MUL(re,t0) - S_MUL(im,t1); | 313 yr = S_MUL(re,t0) + S_MUL(im,t1); |
283 yi = S_MUL(im,t0) + S_MUL(re,t1); | 314 yi = S_MUL(re,t1) - S_MUL(im,t0); |
284 /* works because the cos is nearly one */ | 315 yp1[0] = yr; |
285 yp1[0] = -(yr - S_MUL(yi,sine)); | 316 yp0[1] = yi; |
286 yp0[1] = yi + S_MUL(yr,sine); | |
287 yp0 += 2; | 317 yp0 += 2; |
288 yp1 -= 2; | 318 yp1 -= 2; |
289 } | 319 } |
290 } | 320 } |
291 | 321 |
292 /* Mirror on both sides for TDAC */ | 322 /* Mirror on both sides for TDAC */ |
293 { | 323 { |
294 kiss_fft_scalar * OPUS_RESTRICT xp1 = out+overlap-1; | 324 kiss_fft_scalar * OPUS_RESTRICT xp1 = out+overlap-1; |
295 kiss_fft_scalar * OPUS_RESTRICT yp1 = out; | 325 kiss_fft_scalar * OPUS_RESTRICT yp1 = out; |
296 const opus_val16 * OPUS_RESTRICT wp1 = window; | 326 const opus_val16 * OPUS_RESTRICT wp1 = window; |
297 const opus_val16 * OPUS_RESTRICT wp2 = window+overlap-1; | 327 const opus_val16 * OPUS_RESTRICT wp2 = window+overlap-1; |
298 | 328 |
299 for(i = 0; i < overlap/2; i++) | 329 for(i = 0; i < overlap/2; i++) |
300 { | 330 { |
301 kiss_fft_scalar x1, x2; | 331 kiss_fft_scalar x1, x2; |
302 x1 = *xp1; | 332 x1 = *xp1; |
303 x2 = *yp1; | 333 x2 = *yp1; |
304 *yp1++ = MULT16_32_Q15(*wp2, x2) - MULT16_32_Q15(*wp1, x1); | 334 *yp1++ = MULT16_32_Q15(*wp2, x2) - MULT16_32_Q15(*wp1, x1); |
305 *xp1-- = MULT16_32_Q15(*wp1, x2) + MULT16_32_Q15(*wp2, x1); | 335 *xp1-- = MULT16_32_Q15(*wp1, x2) + MULT16_32_Q15(*wp2, x1); |
306 wp1++; | 336 wp1++; |
307 wp2--; | 337 wp2--; |
308 } | 338 } |
309 } | 339 } |
310 RESTORE_STACK; | |
311 } | 340 } |
| 341 #endif /* OVERRIDE_clt_mdct_backward */ |
OLD | NEW |