OLD | NEW |
---|---|
1 //===- subzero/src/IceTimerTree.cpp - Pass timer defs ---------------------===// | 1 //===- subzero/src/IceTimerTree.cpp - Pass timer defs ---------------------===// |
2 // | 2 // |
3 // The Subzero Code Generator | 3 // The Subzero Code Generator |
4 // | 4 // |
5 // This file is distributed under the University of Illinois Open Source | 5 // This file is distributed under the University of Illinois Open Source |
6 // License. See LICENSE.TXT for details. | 6 // License. See LICENSE.TXT for details. |
7 // | 7 // |
8 //===----------------------------------------------------------------------===// | 8 //===----------------------------------------------------------------------===// |
9 // | 9 // |
10 // This file defines the TimerTree class, which tracks flat and | 10 // This file defines the TimerTree class, which tracks flat and |
11 // cumulative execution time collection of call chains. | 11 // cumulative execution time collection of call chains. |
12 // | 12 // |
13 //===----------------------------------------------------------------------===// | 13 //===----------------------------------------------------------------------===// |
14 | 14 |
15 #include "llvm/Support/Timer.h" | 15 #include "llvm/Support/Timer.h" |
16 | 16 |
17 #include "IceDefs.h" | 17 #include "IceDefs.h" |
18 #include "IceTimerTree.h" | 18 #include "IceTimerTree.h" |
19 | 19 |
20 namespace Ice { | 20 namespace Ice { |
21 | 21 |
22 TimerStack::TimerStack(const IceString &Name) | 22 TimerStack::TimerStack(const IceString &Name) |
23 : Name(Name), FirstTimestamp(timestamp()), LastTimestamp(FirstTimestamp), | 23 : Name(Name), FirstTimestamp(timestamp()), LastTimestamp(FirstTimestamp), |
24 StateChangeCount(0), StackTop(0) { | 24 StateChangeCount(0), StackTop(0) { |
25 if (!ALLOW_DUMP) | 25 if (!ALLOW_DUMP) |
26 return; | 26 return; |
27 Nodes.resize(1); // Reserve Nodes[0] for the root node. | 27 Nodes.resize(1); // Reserve Nodes[0] for the root node (sentinel). |
28 IDs.resize(TT__num); | 28 IDs.resize(TT__num); |
29 LeafTimes.resize(TT__num); | |
30 LeafCounts.resize(TT__num); | |
29 #define STR(s) #s | 31 #define STR(s) #s |
30 #define X(tag) \ | 32 #define X(tag) \ |
31 IDs[TT_##tag] = STR(tag); \ | 33 IDs[TT_##tag] = STR(tag); \ |
32 IDsIndex[STR(tag)] = TT_##tag; | 34 IDsIndex[STR(tag)] = TT_##tag; |
33 TIMERTREE_TABLE; | 35 TIMERTREE_TABLE; |
34 #undef X | 36 #undef X |
35 #undef STR | 37 #undef STR |
36 } | 38 } |
37 | 39 |
38 // Returns the unique timer ID for the given Name, creating a new ID | 40 // Returns the unique timer ID for the given Name, creating a new ID |
39 // if needed. | 41 // if needed. |
40 TimerIdT TimerStack::getTimerID(const IceString &Name) { | 42 TimerIdT TimerStack::getTimerID(const IceString &Name) { |
41 if (!ALLOW_DUMP) | 43 if (!ALLOW_DUMP) |
42 return 0; | 44 return 0; |
43 if (IDsIndex.find(Name) == IDsIndex.end()) { | 45 if (IDsIndex.find(Name) == IDsIndex.end()) { |
44 IDsIndex[Name] = IDs.size(); | 46 IDsIndex[Name] = IDs.size(); |
45 IDs.push_back(Name); | 47 IDs.push_back(Name); |
48 LeafTimes.push_back(decltype(LeafTimes)::value_type()); | |
49 LeafCounts.push_back(decltype(LeafCounts)::value_type()); | |
46 } | 50 } |
47 return IDsIndex[Name]; | 51 return IDsIndex[Name]; |
48 } | 52 } |
49 | 53 |
54 // Creates a mapping from TimerIdT (leaf) values in the Src timer | |
55 // stack into TimerIdT values in this timer stack. Creates new | |
56 // entries in this timer stack as needed. | |
57 TimerStack::TranslationType | |
58 TimerStack::translateIDsFrom(const TimerStack &Src) { | |
59 size_t Size = Src.IDs.size(); | |
60 TranslationType Mapping(Size); | |
61 for (TimerIdT i = 0; i < Size; ++i) { | |
62 Mapping[i] = getTimerID(Src.IDs[i]); | |
63 } | |
64 return Mapping; | |
65 } | |
66 | |
67 // Merges two timer stacks, by combining and summing corresponding | |
68 // entries. This timer stack is updated from Src. | |
69 void TimerStack::mergeFrom(const TimerStack &Src) { | |
70 if (!ALLOW_DUMP) | |
71 return; | |
72 TranslationType Mapping = translateIDsFrom(Src); | |
73 TTindex Index = 0; | |
jvoung (off chromium)
2015/01/30 18:42:56
So the TimerIDs might need mapping, but the TTinde
Jim Stichnoth
2015/01/30 20:22:25
No, they need mapping too.
The "Index" variable i
| |
74 for (const TimerTreeNode &Node : Src.Nodes) { | |
75 // The first node is reserved as a sentinel, so avoid it. | |
76 if (Index > 0) { | |
77 // Find the full path to the Src node, translated to path | |
78 // components corresponding to this timer stack. | |
79 PathType Path = Src.getPath(Index, Mapping); | |
80 // Find a node in this timer stack corresponding to the given | |
81 // path, creating new interior nodes as necessary. | |
82 TTindex MyIndex = findPath(Path); | |
83 Nodes[MyIndex].Time += Node.Time; | |
84 Nodes[MyIndex].UpdateCount += Node.UpdateCount; | |
85 } | |
86 ++Index; | |
87 } | |
88 for (TimerIdT i = 0; i < Src.LeafTimes.size(); ++i) { | |
89 LeafTimes[Mapping[i]] += Src.LeafTimes[i]; | |
90 LeafCounts[Mapping[i]] += Src.LeafCounts[i]; | |
91 } | |
92 StateChangeCount += Src.StateChangeCount; | |
93 } | |
94 | |
95 // Constructs a path consisting of the sequence of leaf values leading | |
96 // to a given node, with the Mapping translation applied to the leaf | |
97 // values. The path ends up being in "reverse" order, i.e. from leaf | |
98 // to root. | |
99 TimerStack::PathType TimerStack::getPath(TTindex Index, | |
100 const TranslationType &Mapping) const { | |
101 PathType Path; | |
102 while (Index) { | |
103 Path.push_back(Mapping[Nodes[Index].Interior]); | |
104 assert(Nodes[Index].Parent < Index); | |
105 Index = Nodes[Index].Parent; | |
106 } | |
107 return Path; | |
108 } | |
109 | |
110 // Given a parent node and a leaf ID, returns the index of the | |
111 // parent's child ID, creating a new node for the child as necessary. | |
112 TimerStack::TTindex TimerStack::getChildIndex(TimerStack::TTindex Parent, | |
113 TimerIdT ID) { | |
114 if (Nodes[Parent].Children.size() <= ID) | |
115 Nodes[Parent].Children.resize(ID + 1); | |
116 if (Nodes[Parent].Children[ID] == 0) { | |
117 TTindex Size = Nodes.size(); | |
118 Nodes[Parent].Children[ID] = Size; | |
119 Nodes.resize(Size + 1); | |
120 Nodes[Size].Parent = Parent; | |
121 Nodes[Size].Interior = ID; | |
122 } | |
123 return Nodes[Parent].Children[ID]; | |
124 } | |
125 | |
126 // Finds a node in the timer stack corresponding to the given path, | |
127 // creating new interior nodes as necessary. | |
128 TimerStack::TTindex TimerStack::findPath(const PathType &Path) { | |
129 TTindex CurIndex = 0; | |
130 // The path is in reverse order (leaf to root), so it needs to be | |
131 // followed in reverse. | |
132 for (TTindex Index : reverse_range(Path)) { | |
133 CurIndex = getChildIndex(CurIndex, Index); | |
134 } | |
135 assert(CurIndex); // shouldn't be the sentinel node | |
136 return CurIndex; | |
137 } | |
138 | |
50 // Pushes a new marker onto the timer stack. | 139 // Pushes a new marker onto the timer stack. |
51 void TimerStack::push(TimerIdT ID) { | 140 void TimerStack::push(TimerIdT ID) { |
52 if (!ALLOW_DUMP) | 141 if (!ALLOW_DUMP) |
53 return; | 142 return; |
54 const bool UpdateCounts = false; | 143 const bool UpdateCounts = false; |
55 update(UpdateCounts); | 144 update(UpdateCounts); |
56 if (Nodes[StackTop].Children.size() <= ID) | 145 StackTop = getChildIndex(StackTop, ID); |
57 Nodes[StackTop].Children.resize(ID + 1); | 146 assert(StackTop); |
58 if (Nodes[StackTop].Children[ID] == 0) { | |
59 TTindex Size = Nodes.size(); | |
60 Nodes[StackTop].Children[ID] = Size; | |
61 Nodes.resize(Size + 1); | |
62 Nodes[Size].Parent = StackTop; | |
63 Nodes[Size].Interior = ID; | |
64 } | |
65 StackTop = Nodes[StackTop].Children[ID]; | |
66 } | 147 } |
67 | 148 |
68 // Pop the top marker from the timer stack. Validates via assert() | 149 // Pops the top marker from the timer stack. Validates via assert() |
69 // that the expected marker is popped. | 150 // that the expected marker is popped. |
70 void TimerStack::pop(TimerIdT ID) { | 151 void TimerStack::pop(TimerIdT ID) { |
71 if (!ALLOW_DUMP) | 152 if (!ALLOW_DUMP) |
72 return; | 153 return; |
73 const bool UpdateCounts = true; | 154 const bool UpdateCounts = true; |
74 update(UpdateCounts); | 155 update(UpdateCounts); |
75 assert(StackTop); | 156 assert(StackTop); |
76 assert(Nodes[StackTop].Parent < StackTop); | 157 assert(Nodes[StackTop].Parent < StackTop); |
77 // Verify that the expected ID is being popped. | 158 // Verify that the expected ID is being popped. |
78 assert(Nodes[StackTop].Interior == ID); | 159 assert(Nodes[StackTop].Interior == ID); |
(...skipping 139 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
218 dumpHelper(Str, FlatMap, TotalTime); | 299 dumpHelper(Str, FlatMap, TotalTime); |
219 Str << "Number of timer updates: " << StateChangeCount << "\n"; | 300 Str << "Number of timer updates: " << StateChangeCount << "\n"; |
220 } | 301 } |
221 | 302 |
222 double TimerStack::timestamp() { | 303 double TimerStack::timestamp() { |
223 // TODO: Implement in terms of std::chrono for C++11. | 304 // TODO: Implement in terms of std::chrono for C++11. |
224 return llvm::TimeRecord::getCurrentTime(false).getWallTime(); | 305 return llvm::TimeRecord::getCurrentTime(false).getWallTime(); |
225 } | 306 } |
226 | 307 |
227 } // end of namespace Ice | 308 } // end of namespace Ice |
OLD | NEW |