Chromium Code Reviews| Index: third_party/tlslite/tlslite/utils/aesgcm.py |
| diff --git a/third_party/tlslite/tlslite/utils/aesgcm.py b/third_party/tlslite/tlslite/utils/aesgcm.py |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..4cb772059e55d6a2fb758ba3ea28db37833d32be |
| --- /dev/null |
| +++ b/third_party/tlslite/tlslite/utils/aesgcm.py |
| @@ -0,0 +1,193 @@ |
| +# Author: Google |
| +# See the LICENSE file for legal information regarding use of this file. |
| + |
| +# GCM derived from Go's implementation in crypto/cipher. |
| +# |
| +# https://golang.org/src/crypto/cipher/gcm.go |
| + |
| +# GCM works over elements of the field GF(2^128), each of which is a 128-bit |
| +# polynomial. Throughout this implementation, polynomials are represented as |
| +# Python integers with the low-order terms at the most significant bits. So a |
| +# 128-bit polynomial is an integer from 0 to 2^128-1 with the most significant |
| +# bit representing the x^0 term and the least significant bit representing the |
| +# x^127 term. This bit reversal also applies to polynomials used as indices in a |
| +# look-up table. |
| + |
| +from .cryptomath import bytesToNumber, numberToByteArray |
| + |
| +class AESGCM(object): |
| + """ |
| + AES-GCM implementation. Note: this implementation does not attempt |
| + to be side-channel resistant. It's also rather slow. |
| + """ |
| + |
| + def __init__(self, key, implementation, rawAesEncrypt): |
| + self.isBlockCipher = False |
| + self.isAEAD = True |
| + self.nonceLength = 12 |
| + self.tagLength = 16 |
| + self.implementation = implementation |
| + if len(key) == 16: |
| + self.name = "aes128gcm" |
| + elif len(key) == 32: |
| + self.name = "aes256gcm" |
| + else: |
| + raise AssertionError() |
| + |
| + self._rawAesEncrypt = rawAesEncrypt |
| + |
| + # The GCM key is AES(0). |
| + h = bytesToNumber(self._rawAesEncrypt(bytearray(16))) |
| + |
| + # Pre-compute all 4-bit multiples of h. Note that bits are reversed |
| + # because our polynomial representation places low-order terms at the |
| + # most significant bit. Thus x^0 * h = h is at index 0b1000 = 8 and |
| + # x^1 * h is at index 0b0100 = 4. |
| + self._productTable = [0] * 16 |
| + self._productTable[_reverseBits(1)] = h |
| + for i in range(2, 16, 2): |
| + self._productTable[_reverseBits(i)] = \ |
| + _gcmShift(self._productTable[_reverseBits(i/2)]) |
| + self._productTable[_reverseBits(i+1)] = \ |
| + _gcmAdd(self._productTable[_reverseBits(i)], h) |
| + |
| + def _rawAesCtrEncrypt(self, counter, inp): |
| + """ |
| + Encrypts (or decrypts) plaintext with AES-CTR. counter is modified. |
| + """ |
| + out = bytearray(len(inp)) |
| + for i in range(0, len(out), 16): |
| + mask = self._rawAesEncrypt(counter) |
| + for j in range(i, min(len(out), i + 16)): |
| + out[j] = inp[j] ^ mask[j-i] |
| + _inc32(counter) |
| + return out |
| + |
| + def _auth(self, ciphertext, ad, tagMask): |
| + y = 0 |
| + y = self._update(y, ad) |
| + y = self._update(y, ciphertext) |
| + y ^= (len(ad) << (3 + 64)) | (len(ciphertext) << 3) |
| + y = self._mul(y) |
| + y ^= bytesToNumber(tagMask) |
| + return numberToByteArray(y, 16) |
| + |
| + def _update(self, y, data): |
| + for i in range(0, len(data) // 16): |
| + y ^= bytesToNumber(data[16*i:16*i+16]) |
| + y = self._mul(y) |
| + extra = len(data) % 16 |
| + if extra != 0: |
| + block = bytearray(16) |
| + block[:extra] = data[-extra:] |
| + y ^= bytesToNumber(block) |
| + y = self._mul(y) |
| + return y |
| + |
| + def _mul(self, y): |
| + """ Returns y*H, where H is the GCM key. """ |
| + ret = 0 |
| + # Multiply H by y 4 bits at a time, starting with the highest power |
| + # terms. |
| + for i in range(0, 128, 4): |
| + # Multiply by x^4. The reduction for the top four terms is |
| + # precomputed. |
| + retHigh = ret & 0xf |
| + ret >>= 4 |
| + ret ^= (_gcmReductionTable[retHigh] << (128-16)) |
| + |
| + # Add in y' * H where y' are the next four terms of y, shifted down |
| + # to the x^0..x^4. This is one of the pre-computed multiples of |
| + # H. The multiplication by x^4 shifts them back into place. |
| + ret ^= self._productTable[y & 0xf] |
| + y >>= 4 |
| + assert y == 0 |
| + return ret |
| + |
| + def seal(self, nonce, plaintext, data): |
| + """ |
| + Encrypts and authenticates plaintext using nonce and data. Returns the |
| + ciphertext, consisting of the encrypted plaintext and tag concatenated. |
| + """ |
| + |
| + if len(nonce) != 12: |
| + raise ValueError("Bad nonce length") |
| + |
| + # The initial counter value is the nonce, followed with a 32-bit counter |
| + # that starts at 1. It's used to compute the tag mask. |
| + counter = bytearray(16) |
| + counter[:12] = nonce |
| + counter[-1] = 1 |
| + tagMask = self._rawAesEncrypt(counter) |
| + |
| + # The counter starts at 2 for the actual encryption. |
| + counter[-1] = 2 |
| + ciphertext = self._rawAesCtrEncrypt(counter, plaintext) |
| + |
| + tag = self._auth(ciphertext, data, tagMask) |
| + |
| + return ciphertext + tag |
| + |
| + def open(self, nonce, ciphertext, data): |
| + """ |
| + Decrypts and authenticates ciphertext using nonce and data. If the |
| + tag is valid, the plaintext is returned. If the tag is invalid, |
| + returns None. |
| + """ |
| + |
| + if len(nonce) != 12: |
| + raise ValueError("Bad nonce length") |
| + if len(ciphertext) < 16: |
| + return None |
| + |
| + tag = ciphertext[-16:] |
| + ciphertext = ciphertext[:-16] |
| + |
| + # The initial counter value is the nonce, followed with a 32-bit counter |
|
agl
2015/01/29 19:38:17
s/with/by/
davidben
2015/01/29 21:40:59
Done.
|
| + # that starts at 1. It's used to compute the tag mask. |
| + counter = bytearray(16) |
| + counter[:12] = nonce |
| + counter[-1] = 1 |
| + tagMask = self._rawAesEncrypt(counter) |
| + |
| + if tag != self._auth(ciphertext, data, tagMask): |
| + return None |
| + |
| + # The counter starts at 2 for the actual decryption. |
| + counter[-1] = 2 |
| + return self._rawAesCtrEncrypt(counter, ciphertext) |
| + |
| +def _reverseBits(i): |
| + assert i < 16 |
| + i = ((i << 2) & 0xc) | ((i >> 2) & 0x3) |
| + i = ((i << 1) & 0xa) | ((i >> 1) & 0x5) |
| + return i |
| + |
| +def _gcmAdd(x, y): |
| + return x ^ y |
| + |
| +def _gcmShift(x): |
| + # Multiplying by x is a right shift, due to bit order. |
| + highTermSet = x & 1 |
| + x >>= 1 |
| + if highTermSet: |
| + # The x^127 term was shifted up to x^128, so subtract a 1+x+x^2+x^7 |
| + # term. This is 0b11100001 or 0xe1 when represented as an 8-bit |
| + # polynomial. |
| + x ^= 0xe1 << (128-8) |
| + return x |
| + |
| +def _inc32(counter): |
| + for i in range(len(counter)-1, len(counter)-5, -1): |
| + counter[i] = (counter[i] + 1) % 256 |
| + if counter[i] != 0: |
| + break |
| + return counter |
| + |
| +# _gcmReductionTable[i] is i * (1+x+x^2+x^7) for all 4-bit polynomials i. The |
| +# result is stored as a 16-bit polynomial. This is used in the reduction step to |
| +# multiply elements of GF(2^128) by x^4. |
| +_gcmReductionTable = [ |
| + 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, |
| + 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, |
| +] |