Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include <malloc.h> | 5 #include <malloc.h> |
| 6 #include <new.h> | 6 #include <new.h> |
| 7 #include <windows.h> | 7 #include <windows.h> |
| 8 | 8 |
| 9 #include "base/basictypes.h" | 9 #include "base/basictypes.h" |
| 10 | 10 |
| 11 // This shim make it possible to perform additional checks on allocations | 11 // This shim make it possible to perform additional checks on allocations |
| 12 // before passing them to the Heap functions. | 12 // before passing them to the Heap functions. |
| 13 | 13 |
| 14 // new_mode behaves similarly to MSVC's _set_new_mode. | 14 // Heap functions are stripped from libcmt.lib using the prep_libc.py |
| 15 // If flag is 0 (default), calls to malloc will behave normally. | 15 // for each object file stripped, we re-implement them here to allow us to |
| 16 // If flag is 1, calls to malloc will behave like calls to new, | 16 // perform additional checks: |
| 17 // and the std_new_handler will be invoked on failure. | 17 // 1. Enforcing the maximum size that can be allocated to 2Gb. |
| 18 // Can be set by calling _set_new_mode(). | 18 // 2. Calling new_handler if malloc fails. |
| 19 static int new_mode = 0; | 19 |
| 20 extern "C" { | |
| 21 // We set this to 1 because part of the CRT uses a check of _crtheap != 0 | |
| 22 // to test whether the CRT has been initialized. Once we've ripped out | |
| 23 // the allocators from libcmt, we need to provide this definition so that | |
| 24 // the rest of the CRT is still usable. | |
| 25 // heapinit.c | |
| 26 void* _crtheap = reinterpret_cast<void*>(1); | |
| 27 } | |
| 20 | 28 |
| 21 namespace { | 29 namespace { |
| 22 | 30 |
| 23 // This is a simple allocator based on the windows heap. | |
| 24 const size_t kWindowsPageSize = 4096; | 31 const size_t kWindowsPageSize = 4096; |
| 25 const size_t kMaxWindowsAllocation = INT_MAX - kWindowsPageSize; | 32 const size_t kMaxWindowsAllocation = INT_MAX - kWindowsPageSize; |
| 26 static HANDLE win_heap; | 33 HANDLE win_heap; |
|
cpu_(ooo_6.6-7.5)
2015/01/22 21:11:40
: (
| |
| 34 int new_mode = 0; | |
| 27 | 35 |
| 28 // VS2013 crt uses the process heap as its heap, so we do the same here. | 36 // VS2013 crt uses the process heap as its heap, so we do the same here. |
| 29 // See heapinit.c in VS CRT sources. | 37 // See heapinit.c in VS CRT sources. |
| 30 bool win_heap_init() { | 38 bool win_heap_init() { |
| 31 win_heap = GetProcessHeap(); | 39 // Set the _crtheap global here. THis allows us to offload most of the |
| 32 if (win_heap == NULL) | 40 // memory management to the CRT, except the functions we need to shim. |
| 41 _crtheap = GetProcessHeap(); | |
| 42 if (_crtheap == NULL) | |
| 33 return false; | 43 return false; |
| 34 | 44 |
| 35 ULONG enable_lfh = 2; | 45 ULONG enable_lfh = 2; |
| 36 // NOTE: Setting LFH may fail. Vista already has it enabled. | 46 // NOTE: Setting LFH may fail. Vista already has it enabled. |
| 37 // And under the debugger, it won't use LFH. So we | 47 // And under the debugger, it won't use LFH. So we |
| 38 // ignore any errors. | 48 // ignore any errors. |
| 39 HeapSetInformation(win_heap, HeapCompatibilityInformation, &enable_lfh, | 49 HeapSetInformation(_crtheap, HeapCompatibilityInformation, &enable_lfh, |
| 40 sizeof(enable_lfh)); | 50 sizeof(enable_lfh)); |
| 41 | 51 |
| 42 return true; | 52 return true; |
| 43 } | 53 } |
| 44 | 54 |
| 45 void* win_heap_malloc(size_t size) { | 55 void* win_heap_malloc(size_t size) { |
| 46 if (size < kMaxWindowsAllocation) | 56 if (size < kMaxWindowsAllocation) |
| 47 return HeapAlloc(win_heap, 0, size); | 57 return HeapAlloc(_crtheap, 0, size); |
| 48 return NULL; | 58 return NULL; |
| 49 } | 59 } |
| 50 | 60 |
| 51 void win_heap_free(void* size) { | 61 void win_heap_free(void* size) { |
| 52 HeapFree(win_heap, 0, size); | 62 HeapFree(_crtheap, 0, size); |
| 53 } | 63 } |
| 54 | 64 |
| 55 void* win_heap_realloc(void* ptr, size_t size) { | 65 void* win_heap_realloc(void* ptr, size_t size) { |
| 56 if (!ptr) | 66 if (!ptr) |
| 57 return win_heap_malloc(size); | 67 return win_heap_malloc(size); |
| 58 if (!size) { | 68 if (!size) { |
| 59 win_heap_free(ptr); | 69 win_heap_free(ptr); |
| 60 return NULL; | 70 return NULL; |
| 61 } | 71 } |
| 62 if (size < kMaxWindowsAllocation) | 72 if (size < kMaxWindowsAllocation) |
| 63 return HeapReAlloc(win_heap, 0, ptr, size); | 73 return HeapReAlloc(_crtheap, 0, ptr, size); |
| 64 return NULL; | 74 return NULL; |
| 65 } | 75 } |
| 66 | 76 |
| 67 size_t win_heap_msize(void* ptr) { | 77 void win_heap_term() { |
| 68 return HeapSize(win_heap, 0, ptr); | 78 _crtheap = NULL; |
| 69 } | 79 } |
| 70 | 80 |
| 71 void* win_heap_memalign(size_t alignment, size_t size) { | |
| 72 // Reserve enough space to ensure we can align and set aligned_ptr[-1] to the | |
| 73 // original allocation for use with win_heap_memalign_free() later. | |
| 74 size_t allocation_size = size + (alignment - 1) + sizeof(void*); | |
| 75 | |
| 76 // Check for overflow. Alignment and size are checked in allocator_shim. | |
| 77 if (size >= allocation_size || alignment >= allocation_size) { | |
| 78 return NULL; | |
| 79 } | |
| 80 | |
| 81 // Since we're directly calling the allocator function, before OOM handling, | |
| 82 // we need to NULL check to ensure the allocation succeeded. | |
| 83 void* ptr = win_heap_malloc(allocation_size); | |
| 84 if (!ptr) | |
| 85 return ptr; | |
| 86 | |
| 87 char* aligned_ptr = static_cast<char*>(ptr) + sizeof(void*); | |
| 88 aligned_ptr += | |
| 89 alignment - reinterpret_cast<uintptr_t>(aligned_ptr) & (alignment - 1); | |
| 90 | |
| 91 reinterpret_cast<void**>(aligned_ptr)[-1] = ptr; | |
| 92 return aligned_ptr; | |
| 93 } | |
| 94 | |
| 95 void win_heap_memalign_free(void* ptr) { | |
| 96 if (ptr) | |
| 97 win_heap_free(static_cast<void**>(ptr)[-1]); | |
| 98 } | |
| 99 | |
| 100 void win_heap_term() { | |
| 101 win_heap = NULL; | |
| 102 } | |
| 103 | |
| 104 } // namespace | |
| 105 | |
| 106 // Call the new handler, if one has been set. | 81 // Call the new handler, if one has been set. |
| 107 // Returns true on successfully calling the handler, false otherwise. | 82 // Returns true on successfully calling the handler, false otherwise. |
| 108 inline bool call_new_handler(bool nothrow, size_t size) { | 83 inline bool call_new_handler(bool nothrow, size_t size) { |
| 109 // Get the current new handler. | 84 // Get the current new handler. |
| 110 _PNH nh = _query_new_handler(); | 85 _PNH nh = _query_new_handler(); |
| 111 #if defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS | 86 #if defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS |
| 112 if (!nh) | 87 if (!nh) |
| 113 return false; | 88 return false; |
| 114 // Since exceptions are disabled, we don't really know if new_handler | 89 // Since exceptions are disabled, we don't really know if new_handler |
| 115 // failed. Assume it will abort if it fails. | 90 // failed. Assume it will abort if it fails. |
| 116 return nh(size); | 91 return nh(size); |
| 117 #else | 92 #else |
| 118 #error "Exceptions in allocator shim are not supported!" | 93 #error "Exceptions in allocator shim are not supported!" |
| 119 #endif // defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS | 94 #endif // defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS |
| 120 return false; | 95 return false; |
| 121 } | 96 } |
| 122 | 97 |
| 98 // Implement a C++ style allocation, which always calls the new_handler | |
| 99 // on failure. | |
| 100 inline void* generic_cpp_alloc(size_t size, bool nothrow) { | |
| 101 void* ptr; | |
| 102 for (;;) { | |
| 103 ptr = malloc(size); | |
| 104 if (ptr) | |
| 105 return ptr; | |
| 106 if (!call_new_handler(nothrow, size)) | |
| 107 break; | |
| 108 } | |
| 109 return ptr; | |
| 110 } | |
| 111 | |
| 112 } // namespace | |
| 113 | |
| 114 // new.cpp | |
| 115 void* operator new(size_t size) { | |
| 116 return generic_cpp_alloc(size, false); | |
| 117 } | |
| 118 | |
| 119 // delete.cpp | |
| 120 void operator delete(void* p) throw() { | |
| 121 free(p); | |
| 122 } | |
| 123 | |
| 124 // new2.cpp | |
| 125 void* operator new[](size_t size) { | |
| 126 return generic_cpp_alloc(size, false); | |
| 127 } | |
| 128 | |
| 129 // delete2.cpp | |
| 130 void operator delete[](void* p) throw() { | |
| 131 free(p); | |
| 132 } | |
| 133 | |
| 134 // newopnt.cpp | |
| 135 void* operator new(size_t size, const std::nothrow_t& nt) { | |
| 136 return generic_cpp_alloc(size, true); | |
| 137 } | |
| 138 | |
| 139 // newaopnt.cpp | |
| 140 void* operator new[](size_t size, const std::nothrow_t& nt) { | |
| 141 return generic_cpp_alloc(size, true); | |
| 142 } | |
| 143 | |
| 144 // This function behaves similarly to MSVC's _set_new_mode. | |
| 145 // If flag is 0 (default), calls to malloc will behave normally. | |
| 146 // If flag is 1, calls to malloc will behave like calls to new, | |
| 147 // and the std_new_handler will be invoked on failure. | |
| 148 // Returns the previous mode. | |
| 149 // new_mode.cpp | |
| 150 int _set_new_mode(int flag) throw() { | |
| 151 int old_mode = new_mode; | |
| 152 new_mode = flag; | |
| 153 return old_mode; | |
| 154 } | |
| 155 | |
| 156 // new_mode.cpp | |
| 157 int _query_new_mode() { | |
| 158 return new_mode; | |
| 159 } | |
| 160 | |
| 123 extern "C" { | 161 extern "C" { |
| 124 | 162 // malloc.c |
| 125 void* malloc(size_t size) { | 163 void* malloc(size_t size) { |
| 126 void* ptr; | 164 void* ptr; |
| 127 for (;;) { | 165 for (;;) { |
| 128 ptr = win_heap_malloc(size); | 166 ptr = win_heap_malloc(size); |
| 129 if (ptr) | 167 if (ptr) |
| 130 return ptr; | 168 return ptr; |
| 131 | 169 |
| 132 if (!new_mode || !call_new_handler(true, size)) | 170 if (!new_mode || !call_new_handler(true, size)) |
| 133 break; | 171 break; |
| 134 } | 172 } |
| 135 return ptr; | 173 return ptr; |
| 136 } | 174 } |
| 137 | 175 |
| 176 // free.c | |
| 138 void free(void* p) { | 177 void free(void* p) { |
| 139 win_heap_free(p); | 178 win_heap_free(p); |
| 140 return; | 179 return; |
| 141 } | 180 } |
| 142 | 181 |
| 182 // realloc.c | |
| 143 void* realloc(void* ptr, size_t size) { | 183 void* realloc(void* ptr, size_t size) { |
| 144 // Webkit is brittle for allocators that return NULL for malloc(0). The | 184 // Webkit is brittle for allocators that return NULL for malloc(0). The |
| 145 // realloc(0, 0) code path does not guarantee a non-NULL return, so be sure | 185 // realloc(0, 0) code path does not guarantee a non-NULL return, so be sure |
| 146 // to call malloc for this case. | 186 // to call malloc for this case. |
| 147 if (!ptr) | 187 if (!ptr) |
| 148 return malloc(size); | 188 return malloc(size); |
| 149 | 189 |
| 150 void* new_ptr; | 190 void* new_ptr; |
| 151 for (;;) { | 191 for (;;) { |
| 152 new_ptr = win_heap_realloc(ptr, size); | 192 new_ptr = win_heap_realloc(ptr, size); |
| 153 | 193 |
| 154 // Subtle warning: NULL return does not alwas indicate out-of-memory. If | 194 // Subtle warning: NULL return does not alwas indicate out-of-memory. If |
| 155 // the requested new size is zero, realloc should free the ptr and return | 195 // the requested new size is zero, realloc should free the ptr and return |
| 156 // NULL. | 196 // NULL. |
| 157 if (new_ptr || !size) | 197 if (new_ptr || !size) |
| 158 return new_ptr; | 198 return new_ptr; |
| 159 if (!new_mode || !call_new_handler(true, size)) | 199 if (!new_mode || !call_new_handler(true, size)) |
| 160 break; | 200 break; |
| 161 } | 201 } |
| 162 return new_ptr; | 202 return new_ptr; |
| 163 } | 203 } |
| 164 | 204 |
| 165 | 205 // heapinit.c |
| 166 size_t _msize(void* p) { | |
| 167 return win_heap_msize(p); | |
| 168 } | |
| 169 | |
| 170 intptr_t _get_heap_handle() { | 206 intptr_t _get_heap_handle() { |
| 171 return reinterpret_cast<intptr_t>(win_heap); | 207 return reinterpret_cast<intptr_t>(win_heap); |
| 172 } | 208 } |
| 173 | 209 |
| 174 // The CRT heap initialization stub. | 210 // heapinit.c |
| 175 int _heap_init() { | 211 int _heap_init() { |
| 176 return win_heap_init() ? 1 : 0; | 212 return win_heap_init() ? 1 : 0; |
| 177 } | 213 } |
| 178 | 214 |
| 179 // The CRT heap cleanup stub. | 215 // heapinit.c |
| 180 void _heap_term() { | 216 void _heap_term() { |
| 181 win_heap_term(); | 217 win_heap_term(); |
| 182 } | 218 } |
| 183 | 219 |
| 184 // We set this to 1 because part of the CRT uses a check of _crtheap != 0 | 220 // calloc.c |
| 185 // to test whether the CRT has been initialized. Once we've ripped out | 221 void* calloc(size_t n, size_t elem_size) { |
| 186 // the allocators from libcmt, we need to provide this definition so that | 222 // Overflow check. |
| 187 // the rest of the CRT is still usable. | 223 const size_t size = n * elem_size; |
| 188 void* _crtheap = reinterpret_cast<void*>(1); | 224 if (elem_size != 0 && size / elem_size != n) |
| 189 | |
| 190 // Provide support for aligned memory through Windows only _aligned_malloc(). | |
| 191 void* _aligned_malloc(size_t size, size_t alignment) { | |
| 192 // _aligned_malloc guarantees parameter validation, so do so here. These | |
| 193 // checks are somewhat stricter than _aligned_malloc() since we're effectively | |
| 194 // using memalign() under the hood. | |
| 195 if (size == 0U || (alignment & (alignment - 1)) != 0U || | |
| 196 (alignment % sizeof(void*)) != 0U) | |
| 197 return NULL; | 225 return NULL; |
| 198 | 226 |
| 199 void* ptr; | 227 void* result = malloc(size); |
| 200 for (;;) { | 228 if (result != NULL) { |
| 201 ptr = win_heap_memalign(alignment, size); | 229 memset(result, 0, size); |
| 202 | |
| 203 if (ptr) { | |
| 204 return ptr; | |
| 205 } | |
| 206 | |
| 207 if (!new_mode || !call_new_handler(true, size)) | |
| 208 break; | |
| 209 } | 230 } |
| 210 return ptr; | 231 return result; |
| 211 } | 232 } |
| 212 | 233 |
| 213 void _aligned_free(void* p) { | 234 // recalloc.c |
| 214 // Pointers allocated with win_heap_memalign() MUST be freed via | 235 void* _recalloc(void* p, size_t n, size_t elem_size) { |
| 215 // win_heap_memalign_free() since the aligned pointer is not the real one. | 236 if (!p) |
| 216 win_heap_memalign_free(p); | 237 return calloc(n, elem_size); |
| 238 | |
| 239 // This API is a bit odd. | |
| 240 // Note: recalloc only guarantees zeroed memory when p is NULL. | |
| 241 // Generally, calls to malloc() have padding. So a request | |
| 242 // to malloc N bytes actually malloc's N+x bytes. Later, if | |
| 243 // that buffer is passed to recalloc, we don't know what N | |
| 244 // was anymore. We only know what N+x is. As such, there is | |
| 245 // no way to know what to zero out. | |
| 246 const size_t size = n * elem_size; | |
| 247 if (elem_size != 0 && size / elem_size != n) | |
| 248 return NULL; | |
| 249 return realloc(p, size); | |
| 217 } | 250 } |
| 218 | 251 |
| 219 #include "generic_allocators.cc" | 252 // calloc_impl.c |
| 253 void* _calloc_impl(size_t n, size_t size) { | |
| 254 return calloc(n, size); | |
| 255 } | |
| 220 | 256 |
| 221 } // extern C | 257 } // extern C |
| OLD | NEW |