Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(49)

Unified Diff: experimental/Intersection/LineCubicIntersection.cpp

Issue 867213004: remove prototype pathops code (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: experimental/Intersection/LineCubicIntersection.cpp
diff --git a/experimental/Intersection/LineCubicIntersection.cpp b/experimental/Intersection/LineCubicIntersection.cpp
deleted file mode 100644
index c433fc2a29349e8ba8ab54a76c458b5fa917fb65..0000000000000000000000000000000000000000
--- a/experimental/Intersection/LineCubicIntersection.cpp
+++ /dev/null
@@ -1,296 +0,0 @@
-/*
- * Copyright 2012 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-#include "CurveIntersection.h"
-#include "CubicUtilities.h"
-#include "Intersections.h"
-#include "LineUtilities.h"
-
-/*
-Find the interection of a line and cubic by solving for valid t values.
-
-Analogous to line-quadratic intersection, solve line-cubic intersection by
-representing the cubic as:
- x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
- y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
-and the line as:
- y = i*x + j (if the line is more horizontal)
-or:
- x = i*y + j (if the line is more vertical)
-
-Then using Mathematica, solve for the values of t where the cubic intersects the
-line:
-
- (in) Resultant[
- a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
- e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
- (out) -e + j +
- 3 e t - 3 f t -
- 3 e t^2 + 6 f t^2 - 3 g t^2 +
- e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
- i ( a -
- 3 a t + 3 b t +
- 3 a t^2 - 6 b t^2 + 3 c t^2 -
- a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
-
-if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
-
- (in) Resultant[
- a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
- e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
- (out) a - j -
- 3 a t + 3 b t +
- 3 a t^2 - 6 b t^2 + 3 c t^2 -
- a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
- i ( e -
- 3 e t + 3 f t +
- 3 e t^2 - 6 f t^2 + 3 g t^2 -
- e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
-
-Solving this with Mathematica produces an expression with hundreds of terms;
-instead, use Numeric Solutions recipe to solve the cubic.
-
-The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
- A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) )
- B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) )
- C = 3*(-(-e + f ) + i*(-a + b ) )
- D = (-( e ) + i*( a ) + j )
-
-The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
- A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) )
- B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) )
- C = 3*( (-a + b ) - i*(-e + f ) )
- D = ( ( a ) - i*( e ) - j )
-
-For horizontal lines:
-(in) Resultant[
- a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
- e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
-(out) e - j -
- 3 e t + 3 f t +
- 3 e t^2 - 6 f t^2 + 3 g t^2 -
- e t^3 + 3 f t^3 - 3 g t^3 + h t^3
-So the cubic coefficients are:
-
- */
-
-class LineCubicIntersections {
-public:
-
-LineCubicIntersections(const Cubic& c, const _Line& l, Intersections& i)
- : cubic(c)
- , line(l)
- , intersections(i) {
-}
-
-// see parallel routine in line quadratic intersections
-int intersectRay(double roots[3]) {
- double adj = line[1].x - line[0].x;
- double opp = line[1].y - line[0].y;
- Cubic r;
- for (int n = 0; n < 4; ++n) {
- r[n].x = (cubic[n].y - line[0].y) * adj - (cubic[n].x - line[0].x) * opp;
- }
- double A, B, C, D;
- coefficients(&r[0].x, A, B, C, D);
- return cubicRootsValidT(A, B, C, D, roots);
-}
-
-int intersect() {
- addEndPoints();
- double rootVals[3];
- int roots = intersectRay(rootVals);
- for (int index = 0; index < roots; ++index) {
- double cubicT = rootVals[index];
- double lineT = findLineT(cubicT);
- if (pinTs(cubicT, lineT)) {
- _Point pt;
- xy_at_t(line, lineT, pt.x, pt.y);
- intersections.insert(cubicT, lineT, pt);
- }
- }
- return intersections.fUsed;
-}
-
-int horizontalIntersect(double axisIntercept, double roots[3]) {
- double A, B, C, D;
- coefficients(&cubic[0].y, A, B, C, D);
- D -= axisIntercept;
- return cubicRootsValidT(A, B, C, D, roots);
-}
-
-int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
- addHorizontalEndPoints(left, right, axisIntercept);
- double rootVals[3];
- int roots = horizontalIntersect(axisIntercept, rootVals);
- for (int index = 0; index < roots; ++index) {
- _Point pt;
- double cubicT = rootVals[index];
- xy_at_t(cubic, cubicT, pt.x, pt.y);
- double lineT = (pt.x - left) / (right - left);
- if (pinTs(cubicT, lineT)) {
- intersections.insert(cubicT, lineT, pt);
- }
- }
- if (flipped) {
- flip();
- }
- return intersections.fUsed;
-}
-
-int verticalIntersect(double axisIntercept, double roots[3]) {
- double A, B, C, D;
- coefficients(&cubic[0].x, A, B, C, D);
- D -= axisIntercept;
- return cubicRootsValidT(A, B, C, D, roots);
-}
-
-int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
- addVerticalEndPoints(top, bottom, axisIntercept);
- double rootVals[3];
- int roots = verticalIntersect(axisIntercept, rootVals);
- for (int index = 0; index < roots; ++index) {
- _Point pt;
- double cubicT = rootVals[index];
- xy_at_t(cubic, cubicT, pt.x, pt.y);
- double lineT = (pt.y - top) / (bottom - top);
- if (pinTs(cubicT, lineT)) {
- intersections.insert(cubicT, lineT, pt);
- }
- }
- if (flipped) {
- flip();
- }
- return intersections.fUsed;
-}
-
-protected:
-
-void addEndPoints()
-{
- for (int cIndex = 0; cIndex < 4; cIndex += 3) {
- for (int lIndex = 0; lIndex < 2; lIndex++) {
- if (cubic[cIndex] == line[lIndex]) {
- intersections.insert(cIndex >> 1, lIndex, line[lIndex]);
- }
- }
- }
-}
-
-void addHorizontalEndPoints(double left, double right, double y)
-{
- for (int cIndex = 0; cIndex < 4; cIndex += 3) {
- if (cubic[cIndex].y != y) {
- continue;
- }
- if (cubic[cIndex].x == left) {
- intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
- }
- if (cubic[cIndex].x == right) {
- intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
- }
- }
-}
-
-void addVerticalEndPoints(double top, double bottom, double x)
-{
- for (int cIndex = 0; cIndex < 4; cIndex += 3) {
- if (cubic[cIndex].x != x) {
- continue;
- }
- if (cubic[cIndex].y == top) {
- intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
- }
- if (cubic[cIndex].y == bottom) {
- intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
- }
- }
-}
-
-double findLineT(double t) {
- double x, y;
- xy_at_t(cubic, t, x, y);
- double dx = line[1].x - line[0].x;
- double dy = line[1].y - line[0].y;
- if (fabs(dx) > fabs(dy)) {
- return (x - line[0].x) / dx;
- }
- return (y - line[0].y) / dy;
-}
-
-void flip() {
- // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y
- int roots = intersections.fUsed;
- for (int index = 0; index < roots; ++index) {
- intersections.fT[1][index] = 1 - intersections.fT[1][index];
- }
-}
-
-static bool pinTs(double& cubicT, double& lineT) {
- if (!approximately_one_or_less(lineT)) {
- return false;
- }
- if (!approximately_zero_or_more(lineT)) {
- return false;
- }
- if (precisely_less_than_zero(cubicT)) {
- cubicT = 0;
- } else if (precisely_greater_than_one(cubicT)) {
- cubicT = 1;
- }
- if (precisely_less_than_zero(lineT)) {
- lineT = 0;
- } else if (precisely_greater_than_one(lineT)) {
- lineT = 1;
- }
- return true;
-}
-
-private:
-
-const Cubic& cubic;
-const _Line& line;
-Intersections& intersections;
-};
-
-int horizontalIntersect(const Cubic& cubic, double left, double right, double y,
- double tRange[3]) {
- LineCubicIntersections c(cubic, *((_Line*) 0), *((Intersections*) 0));
- double rootVals[3];
- int result = c.horizontalIntersect(y, rootVals);
- int tCount = 0;
- for (int index = 0; index < result; ++index) {
- double x, y;
- xy_at_t(cubic, rootVals[index], x, y);
- if (x < left || x > right) {
- continue;
- }
- tRange[tCount++] = rootVals[index];
- }
- return result;
-}
-
-int horizontalIntersect(const Cubic& cubic, double left, double right, double y,
- bool flipped, Intersections& intersections) {
- LineCubicIntersections c(cubic, *((_Line*) 0), intersections);
- return c.horizontalIntersect(y, left, right, flipped);
-}
-
-int verticalIntersect(const Cubic& cubic, double top, double bottom, double x,
- bool flipped, Intersections& intersections) {
- LineCubicIntersections c(cubic, *((_Line*) 0), intersections);
- return c.verticalIntersect(x, top, bottom, flipped);
-}
-
-int intersect(const Cubic& cubic, const _Line& line, Intersections& i) {
- LineCubicIntersections c(cubic, line, i);
- return c.intersect();
-}
-
-int intersectRay(const Cubic& cubic, const _Line& line, Intersections& i) {
- LineCubicIntersections c(cubic, line, i);
- return c.intersectRay(i.fT[0]);
-}
« no previous file with comments | « experimental/Intersection/Intersections.cpp ('k') | experimental/Intersection/LineCubicIntersection_Test.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698