| Index: experimental/Intersection/LineCubicIntersection.cpp
|
| diff --git a/experimental/Intersection/LineCubicIntersection.cpp b/experimental/Intersection/LineCubicIntersection.cpp
|
| deleted file mode 100644
|
| index c433fc2a29349e8ba8ab54a76c458b5fa917fb65..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/LineCubicIntersection.cpp
|
| +++ /dev/null
|
| @@ -1,296 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -#include "CurveIntersection.h"
|
| -#include "CubicUtilities.h"
|
| -#include "Intersections.h"
|
| -#include "LineUtilities.h"
|
| -
|
| -/*
|
| -Find the interection of a line and cubic by solving for valid t values.
|
| -
|
| -Analogous to line-quadratic intersection, solve line-cubic intersection by
|
| -representing the cubic as:
|
| - x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
|
| - y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
|
| -and the line as:
|
| - y = i*x + j (if the line is more horizontal)
|
| -or:
|
| - x = i*y + j (if the line is more vertical)
|
| -
|
| -Then using Mathematica, solve for the values of t where the cubic intersects the
|
| -line:
|
| -
|
| - (in) Resultant[
|
| - a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
|
| - e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
|
| - (out) -e + j +
|
| - 3 e t - 3 f t -
|
| - 3 e t^2 + 6 f t^2 - 3 g t^2 +
|
| - e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
|
| - i ( a -
|
| - 3 a t + 3 b t +
|
| - 3 a t^2 - 6 b t^2 + 3 c t^2 -
|
| - a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
|
| -
|
| -if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
|
| -
|
| - (in) Resultant[
|
| - a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
|
| - e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
|
| - (out) a - j -
|
| - 3 a t + 3 b t +
|
| - 3 a t^2 - 6 b t^2 + 3 c t^2 -
|
| - a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
|
| - i ( e -
|
| - 3 e t + 3 f t +
|
| - 3 e t^2 - 6 f t^2 + 3 g t^2 -
|
| - e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
|
| -
|
| -Solving this with Mathematica produces an expression with hundreds of terms;
|
| -instead, use Numeric Solutions recipe to solve the cubic.
|
| -
|
| -The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
|
| - A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) )
|
| - B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) )
|
| - C = 3*(-(-e + f ) + i*(-a + b ) )
|
| - D = (-( e ) + i*( a ) + j )
|
| -
|
| -The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
|
| - A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) )
|
| - B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) )
|
| - C = 3*( (-a + b ) - i*(-e + f ) )
|
| - D = ( ( a ) - i*( e ) - j )
|
| -
|
| -For horizontal lines:
|
| -(in) Resultant[
|
| - a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
|
| - e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
|
| -(out) e - j -
|
| - 3 e t + 3 f t +
|
| - 3 e t^2 - 6 f t^2 + 3 g t^2 -
|
| - e t^3 + 3 f t^3 - 3 g t^3 + h t^3
|
| -So the cubic coefficients are:
|
| -
|
| - */
|
| -
|
| -class LineCubicIntersections {
|
| -public:
|
| -
|
| -LineCubicIntersections(const Cubic& c, const _Line& l, Intersections& i)
|
| - : cubic(c)
|
| - , line(l)
|
| - , intersections(i) {
|
| -}
|
| -
|
| -// see parallel routine in line quadratic intersections
|
| -int intersectRay(double roots[3]) {
|
| - double adj = line[1].x - line[0].x;
|
| - double opp = line[1].y - line[0].y;
|
| - Cubic r;
|
| - for (int n = 0; n < 4; ++n) {
|
| - r[n].x = (cubic[n].y - line[0].y) * adj - (cubic[n].x - line[0].x) * opp;
|
| - }
|
| - double A, B, C, D;
|
| - coefficients(&r[0].x, A, B, C, D);
|
| - return cubicRootsValidT(A, B, C, D, roots);
|
| -}
|
| -
|
| -int intersect() {
|
| - addEndPoints();
|
| - double rootVals[3];
|
| - int roots = intersectRay(rootVals);
|
| - for (int index = 0; index < roots; ++index) {
|
| - double cubicT = rootVals[index];
|
| - double lineT = findLineT(cubicT);
|
| - if (pinTs(cubicT, lineT)) {
|
| - _Point pt;
|
| - xy_at_t(line, lineT, pt.x, pt.y);
|
| - intersections.insert(cubicT, lineT, pt);
|
| - }
|
| - }
|
| - return intersections.fUsed;
|
| -}
|
| -
|
| -int horizontalIntersect(double axisIntercept, double roots[3]) {
|
| - double A, B, C, D;
|
| - coefficients(&cubic[0].y, A, B, C, D);
|
| - D -= axisIntercept;
|
| - return cubicRootsValidT(A, B, C, D, roots);
|
| -}
|
| -
|
| -int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
|
| - addHorizontalEndPoints(left, right, axisIntercept);
|
| - double rootVals[3];
|
| - int roots = horizontalIntersect(axisIntercept, rootVals);
|
| - for (int index = 0; index < roots; ++index) {
|
| - _Point pt;
|
| - double cubicT = rootVals[index];
|
| - xy_at_t(cubic, cubicT, pt.x, pt.y);
|
| - double lineT = (pt.x - left) / (right - left);
|
| - if (pinTs(cubicT, lineT)) {
|
| - intersections.insert(cubicT, lineT, pt);
|
| - }
|
| - }
|
| - if (flipped) {
|
| - flip();
|
| - }
|
| - return intersections.fUsed;
|
| -}
|
| -
|
| -int verticalIntersect(double axisIntercept, double roots[3]) {
|
| - double A, B, C, D;
|
| - coefficients(&cubic[0].x, A, B, C, D);
|
| - D -= axisIntercept;
|
| - return cubicRootsValidT(A, B, C, D, roots);
|
| -}
|
| -
|
| -int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
|
| - addVerticalEndPoints(top, bottom, axisIntercept);
|
| - double rootVals[3];
|
| - int roots = verticalIntersect(axisIntercept, rootVals);
|
| - for (int index = 0; index < roots; ++index) {
|
| - _Point pt;
|
| - double cubicT = rootVals[index];
|
| - xy_at_t(cubic, cubicT, pt.x, pt.y);
|
| - double lineT = (pt.y - top) / (bottom - top);
|
| - if (pinTs(cubicT, lineT)) {
|
| - intersections.insert(cubicT, lineT, pt);
|
| - }
|
| - }
|
| - if (flipped) {
|
| - flip();
|
| - }
|
| - return intersections.fUsed;
|
| -}
|
| -
|
| -protected:
|
| -
|
| -void addEndPoints()
|
| -{
|
| - for (int cIndex = 0; cIndex < 4; cIndex += 3) {
|
| - for (int lIndex = 0; lIndex < 2; lIndex++) {
|
| - if (cubic[cIndex] == line[lIndex]) {
|
| - intersections.insert(cIndex >> 1, lIndex, line[lIndex]);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -void addHorizontalEndPoints(double left, double right, double y)
|
| -{
|
| - for (int cIndex = 0; cIndex < 4; cIndex += 3) {
|
| - if (cubic[cIndex].y != y) {
|
| - continue;
|
| - }
|
| - if (cubic[cIndex].x == left) {
|
| - intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
|
| - }
|
| - if (cubic[cIndex].x == right) {
|
| - intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
|
| - }
|
| - }
|
| -}
|
| -
|
| -void addVerticalEndPoints(double top, double bottom, double x)
|
| -{
|
| - for (int cIndex = 0; cIndex < 4; cIndex += 3) {
|
| - if (cubic[cIndex].x != x) {
|
| - continue;
|
| - }
|
| - if (cubic[cIndex].y == top) {
|
| - intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
|
| - }
|
| - if (cubic[cIndex].y == bottom) {
|
| - intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
|
| - }
|
| - }
|
| -}
|
| -
|
| -double findLineT(double t) {
|
| - double x, y;
|
| - xy_at_t(cubic, t, x, y);
|
| - double dx = line[1].x - line[0].x;
|
| - double dy = line[1].y - line[0].y;
|
| - if (fabs(dx) > fabs(dy)) {
|
| - return (x - line[0].x) / dx;
|
| - }
|
| - return (y - line[0].y) / dy;
|
| -}
|
| -
|
| -void flip() {
|
| - // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y
|
| - int roots = intersections.fUsed;
|
| - for (int index = 0; index < roots; ++index) {
|
| - intersections.fT[1][index] = 1 - intersections.fT[1][index];
|
| - }
|
| -}
|
| -
|
| -static bool pinTs(double& cubicT, double& lineT) {
|
| - if (!approximately_one_or_less(lineT)) {
|
| - return false;
|
| - }
|
| - if (!approximately_zero_or_more(lineT)) {
|
| - return false;
|
| - }
|
| - if (precisely_less_than_zero(cubicT)) {
|
| - cubicT = 0;
|
| - } else if (precisely_greater_than_one(cubicT)) {
|
| - cubicT = 1;
|
| - }
|
| - if (precisely_less_than_zero(lineT)) {
|
| - lineT = 0;
|
| - } else if (precisely_greater_than_one(lineT)) {
|
| - lineT = 1;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -private:
|
| -
|
| -const Cubic& cubic;
|
| -const _Line& line;
|
| -Intersections& intersections;
|
| -};
|
| -
|
| -int horizontalIntersect(const Cubic& cubic, double left, double right, double y,
|
| - double tRange[3]) {
|
| - LineCubicIntersections c(cubic, *((_Line*) 0), *((Intersections*) 0));
|
| - double rootVals[3];
|
| - int result = c.horizontalIntersect(y, rootVals);
|
| - int tCount = 0;
|
| - for (int index = 0; index < result; ++index) {
|
| - double x, y;
|
| - xy_at_t(cubic, rootVals[index], x, y);
|
| - if (x < left || x > right) {
|
| - continue;
|
| - }
|
| - tRange[tCount++] = rootVals[index];
|
| - }
|
| - return result;
|
| -}
|
| -
|
| -int horizontalIntersect(const Cubic& cubic, double left, double right, double y,
|
| - bool flipped, Intersections& intersections) {
|
| - LineCubicIntersections c(cubic, *((_Line*) 0), intersections);
|
| - return c.horizontalIntersect(y, left, right, flipped);
|
| -}
|
| -
|
| -int verticalIntersect(const Cubic& cubic, double top, double bottom, double x,
|
| - bool flipped, Intersections& intersections) {
|
| - LineCubicIntersections c(cubic, *((_Line*) 0), intersections);
|
| - return c.verticalIntersect(x, top, bottom, flipped);
|
| -}
|
| -
|
| -int intersect(const Cubic& cubic, const _Line& line, Intersections& i) {
|
| - LineCubicIntersections c(cubic, line, i);
|
| - return c.intersect();
|
| -}
|
| -
|
| -int intersectRay(const Cubic& cubic, const _Line& line, Intersections& i) {
|
| - LineCubicIntersections c(cubic, line, i);
|
| - return c.intersectRay(i.fT[0]);
|
| -}
|
|
|