Index: experimental/Intersection/LineParameters.h |
diff --git a/experimental/Intersection/LineParameters.h b/experimental/Intersection/LineParameters.h |
deleted file mode 100644 |
index 637b3b6d21d41e66474048c93a4c1658e3a93ff7..0000000000000000000000000000000000000000 |
--- a/experimental/Intersection/LineParameters.h |
+++ /dev/null |
@@ -1,108 +0,0 @@ |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
-#include "DataTypes.h" |
- |
-// Sources |
-// computer-aided design - volume 22 number 9 november 1990 pp 538 - 549 |
-// online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf |
- |
-// This turns a line segment into a parameterized line, of the form |
-// ax + by + c = 0 |
-// When a^2 + b^2 == 1, the line is normalized. |
-// The distance to the line for (x, y) is d(x,y) = ax + by + c |
-// |
-// Note that the distances below are not necessarily normalized. To get the true |
-// distance, it's necessary to either call normalize() after xxxEndPoints(), or |
-// divide the result of xxxDistance() by sqrt(normalSquared()) |
- |
-class LineParameters { |
-public: |
- void cubicEndPoints(const Cubic& pts) { |
- cubicEndPoints(pts, 0, 3); |
- } |
- |
- void cubicEndPoints(const Cubic& pts, int s, int e) { |
- a = approximately_pin(pts[s].y - pts[e].y); |
- b = approximately_pin(pts[e].x - pts[s].x); |
- c = pts[s].x * pts[e].y - pts[e].x * pts[s].y; |
- } |
- |
- void lineEndPoints(const _Line& pts) { |
- a = approximately_pin(pts[0].y - pts[1].y); |
- b = approximately_pin(pts[1].x - pts[0].x); |
- c = pts[0].x * pts[1].y - pts[1].x * pts[0].y; |
- } |
- |
- void quadEndPoints(const Quadratic& pts) { |
- quadEndPoints(pts, 0, 2); |
- } |
- |
- void quadEndPoints(const Quadratic& pts, int s, int e) { |
- a = approximately_pin(pts[s].y - pts[e].y); |
- b = approximately_pin(pts[e].x - pts[s].x); |
- c = pts[s].x * pts[e].y - pts[e].x * pts[s].y; |
- } |
- |
- double normalSquared() const { |
- return a * a + b * b; |
- } |
- |
- bool normalize() { |
- double normal = sqrt(normalSquared()); |
- if (approximately_zero(normal)) { |
- a = b = c = 0; |
- return false; |
- } |
- double reciprocal = 1 / normal; |
- a *= reciprocal; |
- b *= reciprocal; |
- c *= reciprocal; |
- return true; |
- } |
- |
- void cubicDistanceY(const Cubic& pts, Cubic& distance) const { |
- double oneThird = 1 / 3.0; |
- for (int index = 0; index < 4; ++index) { |
- distance[index].x = index * oneThird; |
- distance[index].y = a * pts[index].x + b * pts[index].y + c; |
- } |
- } |
- |
- void quadDistanceY(const Quadratic& pts, Quadratic& distance) const { |
- double oneHalf = 1 / 2.0; |
- for (int index = 0; index < 3; ++index) { |
- distance[index].x = index * oneHalf; |
- distance[index].y = a * pts[index].x + b * pts[index].y + c; |
- } |
- } |
- |
- double controlPtDistance(const Cubic& pts, int index) const { |
- SkASSERT(index == 1 || index == 2); |
- return a * pts[index].x + b * pts[index].y + c; |
- } |
- |
- double controlPtDistance(const Quadratic& pts) const { |
- return a * pts[1].x + b * pts[1].y + c; |
- } |
- |
- double pointDistance(const _Point& pt) const { |
- return a * pt.x + b * pt.y + c; |
- } |
- |
- double dx() const { |
- return b; |
- } |
- |
- double dy() const { |
- return -a; |
- } |
- |
-private: |
- double a; |
- double b; |
- double c; |
-}; |