| Index: experimental/Intersection/LineParameters.h
|
| diff --git a/experimental/Intersection/LineParameters.h b/experimental/Intersection/LineParameters.h
|
| deleted file mode 100644
|
| index 637b3b6d21d41e66474048c93a4c1658e3a93ff7..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/LineParameters.h
|
| +++ /dev/null
|
| @@ -1,108 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -#include "DataTypes.h"
|
| -
|
| -// Sources
|
| -// computer-aided design - volume 22 number 9 november 1990 pp 538 - 549
|
| -// online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
|
| -
|
| -// This turns a line segment into a parameterized line, of the form
|
| -// ax + by + c = 0
|
| -// When a^2 + b^2 == 1, the line is normalized.
|
| -// The distance to the line for (x, y) is d(x,y) = ax + by + c
|
| -//
|
| -// Note that the distances below are not necessarily normalized. To get the true
|
| -// distance, it's necessary to either call normalize() after xxxEndPoints(), or
|
| -// divide the result of xxxDistance() by sqrt(normalSquared())
|
| -
|
| -class LineParameters {
|
| -public:
|
| - void cubicEndPoints(const Cubic& pts) {
|
| - cubicEndPoints(pts, 0, 3);
|
| - }
|
| -
|
| - void cubicEndPoints(const Cubic& pts, int s, int e) {
|
| - a = approximately_pin(pts[s].y - pts[e].y);
|
| - b = approximately_pin(pts[e].x - pts[s].x);
|
| - c = pts[s].x * pts[e].y - pts[e].x * pts[s].y;
|
| - }
|
| -
|
| - void lineEndPoints(const _Line& pts) {
|
| - a = approximately_pin(pts[0].y - pts[1].y);
|
| - b = approximately_pin(pts[1].x - pts[0].x);
|
| - c = pts[0].x * pts[1].y - pts[1].x * pts[0].y;
|
| - }
|
| -
|
| - void quadEndPoints(const Quadratic& pts) {
|
| - quadEndPoints(pts, 0, 2);
|
| - }
|
| -
|
| - void quadEndPoints(const Quadratic& pts, int s, int e) {
|
| - a = approximately_pin(pts[s].y - pts[e].y);
|
| - b = approximately_pin(pts[e].x - pts[s].x);
|
| - c = pts[s].x * pts[e].y - pts[e].x * pts[s].y;
|
| - }
|
| -
|
| - double normalSquared() const {
|
| - return a * a + b * b;
|
| - }
|
| -
|
| - bool normalize() {
|
| - double normal = sqrt(normalSquared());
|
| - if (approximately_zero(normal)) {
|
| - a = b = c = 0;
|
| - return false;
|
| - }
|
| - double reciprocal = 1 / normal;
|
| - a *= reciprocal;
|
| - b *= reciprocal;
|
| - c *= reciprocal;
|
| - return true;
|
| - }
|
| -
|
| - void cubicDistanceY(const Cubic& pts, Cubic& distance) const {
|
| - double oneThird = 1 / 3.0;
|
| - for (int index = 0; index < 4; ++index) {
|
| - distance[index].x = index * oneThird;
|
| - distance[index].y = a * pts[index].x + b * pts[index].y + c;
|
| - }
|
| - }
|
| -
|
| - void quadDistanceY(const Quadratic& pts, Quadratic& distance) const {
|
| - double oneHalf = 1 / 2.0;
|
| - for (int index = 0; index < 3; ++index) {
|
| - distance[index].x = index * oneHalf;
|
| - distance[index].y = a * pts[index].x + b * pts[index].y + c;
|
| - }
|
| - }
|
| -
|
| - double controlPtDistance(const Cubic& pts, int index) const {
|
| - SkASSERT(index == 1 || index == 2);
|
| - return a * pts[index].x + b * pts[index].y + c;
|
| - }
|
| -
|
| - double controlPtDistance(const Quadratic& pts) const {
|
| - return a * pts[1].x + b * pts[1].y + c;
|
| - }
|
| -
|
| - double pointDistance(const _Point& pt) const {
|
| - return a * pt.x + b * pt.y + c;
|
| - }
|
| -
|
| - double dx() const {
|
| - return b;
|
| - }
|
| -
|
| - double dy() const {
|
| - return -a;
|
| - }
|
| -
|
| -private:
|
| - double a;
|
| - double b;
|
| - double c;
|
| -};
|
|
|