Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(53)

Unified Diff: experimental/Intersection/CubicUtilities.cpp

Issue 867213004: remove prototype pathops code (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « experimental/Intersection/CubicUtilities.h ('k') | experimental/Intersection/CubicUtilities_Test.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: experimental/Intersection/CubicUtilities.cpp
diff --git a/experimental/Intersection/CubicUtilities.cpp b/experimental/Intersection/CubicUtilities.cpp
deleted file mode 100644
index 474dc5e526ce6d5f8ca04e1fe16a5bfc7d24b2ec..0000000000000000000000000000000000000000
--- a/experimental/Intersection/CubicUtilities.cpp
+++ /dev/null
@@ -1,424 +0,0 @@
-/*
- * Copyright 2012 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-#include "CubicUtilities.h"
-#include "Extrema.h"
-#include "LineUtilities.h"
-#include "QuadraticUtilities.h"
-
-const int gPrecisionUnit = 256; // FIXME: arbitrary -- should try different values in test framework
-
-// FIXME: cache keep the bounds and/or precision with the caller?
-double calcPrecision(const Cubic& cubic) {
- _Rect dRect;
- dRect.setBounds(cubic); // OPTIMIZATION: just use setRawBounds ?
- double width = dRect.right - dRect.left;
- double height = dRect.bottom - dRect.top;
- return (width > height ? width : height) / gPrecisionUnit;
-}
-
-#ifdef SK_DEBUG
-double calcPrecision(const Cubic& cubic, double t, double scale) {
- Cubic part;
- sub_divide(cubic, SkTMax(0., t - scale), SkTMin(1., t + scale), part);
- return calcPrecision(part);
-}
-#endif
-
-bool clockwise(const Cubic& c) {
- double sum = (c[0].x - c[3].x) * (c[0].y + c[3].y);
- for (int idx = 0; idx < 3; ++idx){
- sum += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
- }
- return sum <= 0;
-}
-
-void coefficients(const double* cubic, double& A, double& B, double& C, double& D) {
- A = cubic[6]; // d
- B = cubic[4] * 3; // 3*c
- C = cubic[2] * 3; // 3*b
- D = cubic[0]; // a
- A -= D - C + B; // A = -a + 3*b - 3*c + d
- B += 3 * D - 2 * C; // B = 3*a - 6*b + 3*c
- C -= 3 * D; // C = -3*a + 3*b
-}
-
-bool controls_contained_by_ends(const Cubic& c) {
- _Vector startTan = c[1] - c[0];
- if (startTan.x == 0 && startTan.y == 0) {
- startTan = c[2] - c[0];
- }
- _Vector endTan = c[2] - c[3];
- if (endTan.x == 0 && endTan.y == 0) {
- endTan = c[1] - c[3];
- }
- if (startTan.dot(endTan) >= 0) {
- return false;
- }
- _Line startEdge = {c[0], c[0]};
- startEdge[1].x -= startTan.y;
- startEdge[1].y += startTan.x;
- _Line endEdge = {c[3], c[3]};
- endEdge[1].x -= endTan.y;
- endEdge[1].y += endTan.x;
- double leftStart1 = is_left(startEdge, c[1]);
- if (leftStart1 * is_left(startEdge, c[2]) < 0) {
- return false;
- }
- double leftEnd1 = is_left(endEdge, c[1]);
- if (leftEnd1 * is_left(endEdge, c[2]) < 0) {
- return false;
- }
- return leftStart1 * leftEnd1 >= 0;
-}
-
-bool ends_are_extrema_in_x_or_y(const Cubic& c) {
- return (between(c[0].x, c[1].x, c[3].x) && between(c[0].x, c[2].x, c[3].x))
- || (between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y));
-}
-
-bool monotonic_in_y(const Cubic& c) {
- return between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y);
-}
-
-bool serpentine(const Cubic& c) {
- if (!controls_contained_by_ends(c)) {
- return false;
- }
- double wiggle = (c[0].x - c[2].x) * (c[0].y + c[2].y);
- for (int idx = 0; idx < 2; ++idx){
- wiggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
- }
- double waggle = (c[1].x - c[3].x) * (c[1].y + c[3].y);
- for (int idx = 1; idx < 3; ++idx){
- waggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
- }
- return wiggle * waggle < 0;
-}
-
-// cubic roots
-
-const double PI = 4 * atan(1);
-
-// from SkGeometry.cpp (and Numeric Solutions, 5.6)
-int cubicRootsValidT(double A, double B, double C, double D, double t[3]) {
-#if 0
- if (approximately_zero(A)) { // we're just a quadratic
- return quadraticRootsValidT(B, C, D, t);
- }
- double a, b, c;
- {
- double invA = 1 / A;
- a = B * invA;
- b = C * invA;
- c = D * invA;
- }
- double a2 = a * a;
- double Q = (a2 - b * 3) / 9;
- double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
- double Q3 = Q * Q * Q;
- double R2MinusQ3 = R * R - Q3;
- double adiv3 = a / 3;
- double* roots = t;
- double r;
-
- if (R2MinusQ3 < 0) // we have 3 real roots
- {
- double theta = acos(R / sqrt(Q3));
- double neg2RootQ = -2 * sqrt(Q);
-
- r = neg2RootQ * cos(theta / 3) - adiv3;
- if (is_unit_interval(r))
- *roots++ = r;
-
- r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
- if (is_unit_interval(r))
- *roots++ = r;
-
- r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
- if (is_unit_interval(r))
- *roots++ = r;
- }
- else // we have 1 real root
- {
- double A = fabs(R) + sqrt(R2MinusQ3);
- A = cube_root(A);
- if (R > 0) {
- A = -A;
- }
- if (A != 0) {
- A += Q / A;
- }
- r = A - adiv3;
- if (is_unit_interval(r))
- *roots++ = r;
- }
- return (int)(roots - t);
-#else
- double s[3];
- int realRoots = cubicRootsReal(A, B, C, D, s);
- int foundRoots = add_valid_ts(s, realRoots, t);
- return foundRoots;
-#endif
-}
-
-int cubicRootsReal(double A, double B, double C, double D, double s[3]) {
-#ifdef SK_DEBUG
- // create a string mathematica understands
- // GDB set print repe 15 # if repeated digits is a bother
- // set print elements 400 # if line doesn't fit
- char str[1024];
- bzero(str, sizeof(str));
- sprintf(str, "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", A, B, C, D);
- mathematica_ize(str, sizeof(str));
-#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
- SkDebugf("%s\n", str);
-#endif
-#endif
- if (approximately_zero(A)
- && approximately_zero_when_compared_to(A, B)
- && approximately_zero_when_compared_to(A, C)
- && approximately_zero_when_compared_to(A, D)) { // we're just a quadratic
- return quadraticRootsReal(B, C, D, s);
- }
- if (approximately_zero_when_compared_to(D, A)
- && approximately_zero_when_compared_to(D, B)
- && approximately_zero_when_compared_to(D, C)) { // 0 is one root
- int num = quadraticRootsReal(A, B, C, s);
- for (int i = 0; i < num; ++i) {
- if (approximately_zero(s[i])) {
- return num;
- }
- }
- s[num++] = 0;
- return num;
- }
- if (approximately_zero(A + B + C + D)) { // 1 is one root
- int num = quadraticRootsReal(A, A + B, -D, s);
- for (int i = 0; i < num; ++i) {
- if (AlmostEqualUlps(s[i], 1)) {
- return num;
- }
- }
- s[num++] = 1;
- return num;
- }
- double a, b, c;
- {
- double invA = 1 / A;
- a = B * invA;
- b = C * invA;
- c = D * invA;
- }
- double a2 = a * a;
- double Q = (a2 - b * 3) / 9;
- double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
- double R2 = R * R;
- double Q3 = Q * Q * Q;
- double R2MinusQ3 = R2 - Q3;
- double adiv3 = a / 3;
- double r;
- double* roots = s;
-#if 0
- if (approximately_zero_squared(R2MinusQ3) && AlmostEqualUlps(R2, Q3)) {
- if (approximately_zero_squared(R)) {/* one triple solution */
- *roots++ = -adiv3;
- } else { /* one single and one double solution */
-
- double u = cube_root(-R);
- *roots++ = 2 * u - adiv3;
- *roots++ = -u - adiv3;
- }
- }
- else
-#endif
- if (R2MinusQ3 < 0) // we have 3 real roots
- {
- double theta = acos(R / sqrt(Q3));
- double neg2RootQ = -2 * sqrt(Q);
-
- r = neg2RootQ * cos(theta / 3) - adiv3;
- *roots++ = r;
-
- r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
- if (!AlmostEqualUlps(s[0], r)) {
- *roots++ = r;
- }
- r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
- if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1], r))) {
- *roots++ = r;
- }
- }
- else // we have 1 real root
- {
- double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
- double A = fabs(R) + sqrtR2MinusQ3;
- A = cube_root(A);
- if (R > 0) {
- A = -A;
- }
- if (A != 0) {
- A += Q / A;
- }
- r = A - adiv3;
- *roots++ = r;
- if (AlmostEqualUlps(R2, Q3)) {
- r = -A / 2 - adiv3;
- if (!AlmostEqualUlps(s[0], r)) {
- *roots++ = r;
- }
- }
- }
- return (int)(roots - s);
-}
-
-// from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
-// c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
-// c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
-// = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
-static double derivativeAtT(const double* cubic, double t) {
- double one_t = 1 - t;
- double a = cubic[0];
- double b = cubic[2];
- double c = cubic[4];
- double d = cubic[6];
- return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
-}
-
-double dx_at_t(const Cubic& cubic, double t) {
- return derivativeAtT(&cubic[0].x, t);
-}
-
-double dy_at_t(const Cubic& cubic, double t) {
- return derivativeAtT(&cubic[0].y, t);
-}
-
-// OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
-_Vector dxdy_at_t(const Cubic& cubic, double t) {
- _Vector result = { derivativeAtT(&cubic[0].x, t), derivativeAtT(&cubic[0].y, t) };
- return result;
-}
-
-// OPTIMIZE? share code with formulate_F1DotF2
-int find_cubic_inflections(const Cubic& src, double tValues[])
-{
- double Ax = src[1].x - src[0].x;
- double Ay = src[1].y - src[0].y;
- double Bx = src[2].x - 2 * src[1].x + src[0].x;
- double By = src[2].y - 2 * src[1].y + src[0].y;
- double Cx = src[3].x + 3 * (src[1].x - src[2].x) - src[0].x;
- double Cy = src[3].y + 3 * (src[1].y - src[2].y) - src[0].y;
- return quadraticRootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
-}
-
-static void formulate_F1DotF2(const double src[], double coeff[4])
-{
- double a = src[2] - src[0];
- double b = src[4] - 2 * src[2] + src[0];
- double c = src[6] + 3 * (src[2] - src[4]) - src[0];
- coeff[0] = c * c;
- coeff[1] = 3 * b * c;
- coeff[2] = 2 * b * b + c * a;
- coeff[3] = a * b;
-}
-
-/* from SkGeometry.cpp
- Looking for F' dot F'' == 0
-
- A = b - a
- B = c - 2b + a
- C = d - 3c + 3b - a
-
- F' = 3Ct^2 + 6Bt + 3A
- F'' = 6Ct + 6B
-
- F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
-*/
-int find_cubic_max_curvature(const Cubic& src, double tValues[])
-{
- double coeffX[4], coeffY[4];
- int i;
- formulate_F1DotF2(&src[0].x, coeffX);
- formulate_F1DotF2(&src[0].y, coeffY);
- for (i = 0; i < 4; i++) {
- coeffX[i] = coeffX[i] + coeffY[i];
- }
- return cubicRootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
-}
-
-
-bool rotate(const Cubic& cubic, int zero, int index, Cubic& rotPath) {
- double dy = cubic[index].y - cubic[zero].y;
- double dx = cubic[index].x - cubic[zero].x;
- if (approximately_zero(dy)) {
- if (approximately_zero(dx)) {
- return false;
- }
- memcpy(rotPath, cubic, sizeof(Cubic));
- return true;
- }
- for (int index = 0; index < 4; ++index) {
- rotPath[index].x = cubic[index].x * dx + cubic[index].y * dy;
- rotPath[index].y = cubic[index].y * dx - cubic[index].x * dy;
- }
- return true;
-}
-
-#if 0 // unused for now
-double secondDerivativeAtT(const double* cubic, double t) {
- double a = cubic[0];
- double b = cubic[2];
- double c = cubic[4];
- double d = cubic[6];
- return (c - 2 * b + a) * (1 - t) + (d - 2 * c + b) * t;
-}
-#endif
-
-_Point top(const Cubic& cubic, double startT, double endT) {
- Cubic sub;
- sub_divide(cubic, startT, endT, sub);
- _Point topPt = sub[0];
- if (topPt.y > sub[3].y || (topPt.y == sub[3].y && topPt.x > sub[3].x)) {
- topPt = sub[3];
- }
- double extremeTs[2];
- if (!monotonic_in_y(sub)) {
- int roots = findExtrema(sub[0].y, sub[1].y, sub[2].y, sub[3].y, extremeTs);
- for (int index = 0; index < roots; ++index) {
- _Point mid;
- double t = startT + (endT - startT) * extremeTs[index];
- xy_at_t(cubic, t, mid.x, mid.y);
- if (topPt.y > mid.y || (topPt.y == mid.y && topPt.x > mid.x)) {
- topPt = mid;
- }
- }
- }
- return topPt;
-}
-
-// OPTIMIZE: avoid computing the unused half
-void xy_at_t(const Cubic& cubic, double t, double& x, double& y) {
- _Point xy = xy_at_t(cubic, t);
- if (&x) {
- x = xy.x;
- }
- if (&y) {
- y = xy.y;
- }
-}
-
-_Point xy_at_t(const Cubic& cubic, double t) {
- double one_t = 1 - t;
- double one_t2 = one_t * one_t;
- double a = one_t2 * one_t;
- double b = 3 * one_t2 * t;
- double t2 = t * t;
- double c = 3 * one_t * t2;
- double d = t2 * t;
- _Point result = {a * cubic[0].x + b * cubic[1].x + c * cubic[2].x + d * cubic[3].x,
- a * cubic[0].y + b * cubic[1].y + c * cubic[2].y + d * cubic[3].y};
- return result;
-}
« no previous file with comments | « experimental/Intersection/CubicUtilities.h ('k') | experimental/Intersection/CubicUtilities_Test.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698