Index: experimental/Intersection/CubicUtilities.cpp |
diff --git a/experimental/Intersection/CubicUtilities.cpp b/experimental/Intersection/CubicUtilities.cpp |
deleted file mode 100644 |
index 474dc5e526ce6d5f8ca04e1fe16a5bfc7d24b2ec..0000000000000000000000000000000000000000 |
--- a/experimental/Intersection/CubicUtilities.cpp |
+++ /dev/null |
@@ -1,424 +0,0 @@ |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
-#include "CubicUtilities.h" |
-#include "Extrema.h" |
-#include "LineUtilities.h" |
-#include "QuadraticUtilities.h" |
- |
-const int gPrecisionUnit = 256; // FIXME: arbitrary -- should try different values in test framework |
- |
-// FIXME: cache keep the bounds and/or precision with the caller? |
-double calcPrecision(const Cubic& cubic) { |
- _Rect dRect; |
- dRect.setBounds(cubic); // OPTIMIZATION: just use setRawBounds ? |
- double width = dRect.right - dRect.left; |
- double height = dRect.bottom - dRect.top; |
- return (width > height ? width : height) / gPrecisionUnit; |
-} |
- |
-#ifdef SK_DEBUG |
-double calcPrecision(const Cubic& cubic, double t, double scale) { |
- Cubic part; |
- sub_divide(cubic, SkTMax(0., t - scale), SkTMin(1., t + scale), part); |
- return calcPrecision(part); |
-} |
-#endif |
- |
-bool clockwise(const Cubic& c) { |
- double sum = (c[0].x - c[3].x) * (c[0].y + c[3].y); |
- for (int idx = 0; idx < 3; ++idx){ |
- sum += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y); |
- } |
- return sum <= 0; |
-} |
- |
-void coefficients(const double* cubic, double& A, double& B, double& C, double& D) { |
- A = cubic[6]; // d |
- B = cubic[4] * 3; // 3*c |
- C = cubic[2] * 3; // 3*b |
- D = cubic[0]; // a |
- A -= D - C + B; // A = -a + 3*b - 3*c + d |
- B += 3 * D - 2 * C; // B = 3*a - 6*b + 3*c |
- C -= 3 * D; // C = -3*a + 3*b |
-} |
- |
-bool controls_contained_by_ends(const Cubic& c) { |
- _Vector startTan = c[1] - c[0]; |
- if (startTan.x == 0 && startTan.y == 0) { |
- startTan = c[2] - c[0]; |
- } |
- _Vector endTan = c[2] - c[3]; |
- if (endTan.x == 0 && endTan.y == 0) { |
- endTan = c[1] - c[3]; |
- } |
- if (startTan.dot(endTan) >= 0) { |
- return false; |
- } |
- _Line startEdge = {c[0], c[0]}; |
- startEdge[1].x -= startTan.y; |
- startEdge[1].y += startTan.x; |
- _Line endEdge = {c[3], c[3]}; |
- endEdge[1].x -= endTan.y; |
- endEdge[1].y += endTan.x; |
- double leftStart1 = is_left(startEdge, c[1]); |
- if (leftStart1 * is_left(startEdge, c[2]) < 0) { |
- return false; |
- } |
- double leftEnd1 = is_left(endEdge, c[1]); |
- if (leftEnd1 * is_left(endEdge, c[2]) < 0) { |
- return false; |
- } |
- return leftStart1 * leftEnd1 >= 0; |
-} |
- |
-bool ends_are_extrema_in_x_or_y(const Cubic& c) { |
- return (between(c[0].x, c[1].x, c[3].x) && between(c[0].x, c[2].x, c[3].x)) |
- || (between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y)); |
-} |
- |
-bool monotonic_in_y(const Cubic& c) { |
- return between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y); |
-} |
- |
-bool serpentine(const Cubic& c) { |
- if (!controls_contained_by_ends(c)) { |
- return false; |
- } |
- double wiggle = (c[0].x - c[2].x) * (c[0].y + c[2].y); |
- for (int idx = 0; idx < 2; ++idx){ |
- wiggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y); |
- } |
- double waggle = (c[1].x - c[3].x) * (c[1].y + c[3].y); |
- for (int idx = 1; idx < 3; ++idx){ |
- waggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y); |
- } |
- return wiggle * waggle < 0; |
-} |
- |
-// cubic roots |
- |
-const double PI = 4 * atan(1); |
- |
-// from SkGeometry.cpp (and Numeric Solutions, 5.6) |
-int cubicRootsValidT(double A, double B, double C, double D, double t[3]) { |
-#if 0 |
- if (approximately_zero(A)) { // we're just a quadratic |
- return quadraticRootsValidT(B, C, D, t); |
- } |
- double a, b, c; |
- { |
- double invA = 1 / A; |
- a = B * invA; |
- b = C * invA; |
- c = D * invA; |
- } |
- double a2 = a * a; |
- double Q = (a2 - b * 3) / 9; |
- double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; |
- double Q3 = Q * Q * Q; |
- double R2MinusQ3 = R * R - Q3; |
- double adiv3 = a / 3; |
- double* roots = t; |
- double r; |
- |
- if (R2MinusQ3 < 0) // we have 3 real roots |
- { |
- double theta = acos(R / sqrt(Q3)); |
- double neg2RootQ = -2 * sqrt(Q); |
- |
- r = neg2RootQ * cos(theta / 3) - adiv3; |
- if (is_unit_interval(r)) |
- *roots++ = r; |
- |
- r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; |
- if (is_unit_interval(r)) |
- *roots++ = r; |
- |
- r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; |
- if (is_unit_interval(r)) |
- *roots++ = r; |
- } |
- else // we have 1 real root |
- { |
- double A = fabs(R) + sqrt(R2MinusQ3); |
- A = cube_root(A); |
- if (R > 0) { |
- A = -A; |
- } |
- if (A != 0) { |
- A += Q / A; |
- } |
- r = A - adiv3; |
- if (is_unit_interval(r)) |
- *roots++ = r; |
- } |
- return (int)(roots - t); |
-#else |
- double s[3]; |
- int realRoots = cubicRootsReal(A, B, C, D, s); |
- int foundRoots = add_valid_ts(s, realRoots, t); |
- return foundRoots; |
-#endif |
-} |
- |
-int cubicRootsReal(double A, double B, double C, double D, double s[3]) { |
-#ifdef SK_DEBUG |
- // create a string mathematica understands |
- // GDB set print repe 15 # if repeated digits is a bother |
- // set print elements 400 # if line doesn't fit |
- char str[1024]; |
- bzero(str, sizeof(str)); |
- sprintf(str, "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", A, B, C, D); |
- mathematica_ize(str, sizeof(str)); |
-#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA |
- SkDebugf("%s\n", str); |
-#endif |
-#endif |
- if (approximately_zero(A) |
- && approximately_zero_when_compared_to(A, B) |
- && approximately_zero_when_compared_to(A, C) |
- && approximately_zero_when_compared_to(A, D)) { // we're just a quadratic |
- return quadraticRootsReal(B, C, D, s); |
- } |
- if (approximately_zero_when_compared_to(D, A) |
- && approximately_zero_when_compared_to(D, B) |
- && approximately_zero_when_compared_to(D, C)) { // 0 is one root |
- int num = quadraticRootsReal(A, B, C, s); |
- for (int i = 0; i < num; ++i) { |
- if (approximately_zero(s[i])) { |
- return num; |
- } |
- } |
- s[num++] = 0; |
- return num; |
- } |
- if (approximately_zero(A + B + C + D)) { // 1 is one root |
- int num = quadraticRootsReal(A, A + B, -D, s); |
- for (int i = 0; i < num; ++i) { |
- if (AlmostEqualUlps(s[i], 1)) { |
- return num; |
- } |
- } |
- s[num++] = 1; |
- return num; |
- } |
- double a, b, c; |
- { |
- double invA = 1 / A; |
- a = B * invA; |
- b = C * invA; |
- c = D * invA; |
- } |
- double a2 = a * a; |
- double Q = (a2 - b * 3) / 9; |
- double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; |
- double R2 = R * R; |
- double Q3 = Q * Q * Q; |
- double R2MinusQ3 = R2 - Q3; |
- double adiv3 = a / 3; |
- double r; |
- double* roots = s; |
-#if 0 |
- if (approximately_zero_squared(R2MinusQ3) && AlmostEqualUlps(R2, Q3)) { |
- if (approximately_zero_squared(R)) {/* one triple solution */ |
- *roots++ = -adiv3; |
- } else { /* one single and one double solution */ |
- |
- double u = cube_root(-R); |
- *roots++ = 2 * u - adiv3; |
- *roots++ = -u - adiv3; |
- } |
- } |
- else |
-#endif |
- if (R2MinusQ3 < 0) // we have 3 real roots |
- { |
- double theta = acos(R / sqrt(Q3)); |
- double neg2RootQ = -2 * sqrt(Q); |
- |
- r = neg2RootQ * cos(theta / 3) - adiv3; |
- *roots++ = r; |
- |
- r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; |
- if (!AlmostEqualUlps(s[0], r)) { |
- *roots++ = r; |
- } |
- r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; |
- if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1], r))) { |
- *roots++ = r; |
- } |
- } |
- else // we have 1 real root |
- { |
- double sqrtR2MinusQ3 = sqrt(R2MinusQ3); |
- double A = fabs(R) + sqrtR2MinusQ3; |
- A = cube_root(A); |
- if (R > 0) { |
- A = -A; |
- } |
- if (A != 0) { |
- A += Q / A; |
- } |
- r = A - adiv3; |
- *roots++ = r; |
- if (AlmostEqualUlps(R2, Q3)) { |
- r = -A / 2 - adiv3; |
- if (!AlmostEqualUlps(s[0], r)) { |
- *roots++ = r; |
- } |
- } |
- } |
- return (int)(roots - s); |
-} |
- |
-// from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf |
-// c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3 |
-// c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2 |
-// = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2 |
-static double derivativeAtT(const double* cubic, double t) { |
- double one_t = 1 - t; |
- double a = cubic[0]; |
- double b = cubic[2]; |
- double c = cubic[4]; |
- double d = cubic[6]; |
- return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t); |
-} |
- |
-double dx_at_t(const Cubic& cubic, double t) { |
- return derivativeAtT(&cubic[0].x, t); |
-} |
- |
-double dy_at_t(const Cubic& cubic, double t) { |
- return derivativeAtT(&cubic[0].y, t); |
-} |
- |
-// OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t? |
-_Vector dxdy_at_t(const Cubic& cubic, double t) { |
- _Vector result = { derivativeAtT(&cubic[0].x, t), derivativeAtT(&cubic[0].y, t) }; |
- return result; |
-} |
- |
-// OPTIMIZE? share code with formulate_F1DotF2 |
-int find_cubic_inflections(const Cubic& src, double tValues[]) |
-{ |
- double Ax = src[1].x - src[0].x; |
- double Ay = src[1].y - src[0].y; |
- double Bx = src[2].x - 2 * src[1].x + src[0].x; |
- double By = src[2].y - 2 * src[1].y + src[0].y; |
- double Cx = src[3].x + 3 * (src[1].x - src[2].x) - src[0].x; |
- double Cy = src[3].y + 3 * (src[1].y - src[2].y) - src[0].y; |
- return quadraticRootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues); |
-} |
- |
-static void formulate_F1DotF2(const double src[], double coeff[4]) |
-{ |
- double a = src[2] - src[0]; |
- double b = src[4] - 2 * src[2] + src[0]; |
- double c = src[6] + 3 * (src[2] - src[4]) - src[0]; |
- coeff[0] = c * c; |
- coeff[1] = 3 * b * c; |
- coeff[2] = 2 * b * b + c * a; |
- coeff[3] = a * b; |
-} |
- |
-/* from SkGeometry.cpp |
- Looking for F' dot F'' == 0 |
- |
- A = b - a |
- B = c - 2b + a |
- C = d - 3c + 3b - a |
- |
- F' = 3Ct^2 + 6Bt + 3A |
- F'' = 6Ct + 6B |
- |
- F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB |
-*/ |
-int find_cubic_max_curvature(const Cubic& src, double tValues[]) |
-{ |
- double coeffX[4], coeffY[4]; |
- int i; |
- formulate_F1DotF2(&src[0].x, coeffX); |
- formulate_F1DotF2(&src[0].y, coeffY); |
- for (i = 0; i < 4; i++) { |
- coeffX[i] = coeffX[i] + coeffY[i]; |
- } |
- return cubicRootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues); |
-} |
- |
- |
-bool rotate(const Cubic& cubic, int zero, int index, Cubic& rotPath) { |
- double dy = cubic[index].y - cubic[zero].y; |
- double dx = cubic[index].x - cubic[zero].x; |
- if (approximately_zero(dy)) { |
- if (approximately_zero(dx)) { |
- return false; |
- } |
- memcpy(rotPath, cubic, sizeof(Cubic)); |
- return true; |
- } |
- for (int index = 0; index < 4; ++index) { |
- rotPath[index].x = cubic[index].x * dx + cubic[index].y * dy; |
- rotPath[index].y = cubic[index].y * dx - cubic[index].x * dy; |
- } |
- return true; |
-} |
- |
-#if 0 // unused for now |
-double secondDerivativeAtT(const double* cubic, double t) { |
- double a = cubic[0]; |
- double b = cubic[2]; |
- double c = cubic[4]; |
- double d = cubic[6]; |
- return (c - 2 * b + a) * (1 - t) + (d - 2 * c + b) * t; |
-} |
-#endif |
- |
-_Point top(const Cubic& cubic, double startT, double endT) { |
- Cubic sub; |
- sub_divide(cubic, startT, endT, sub); |
- _Point topPt = sub[0]; |
- if (topPt.y > sub[3].y || (topPt.y == sub[3].y && topPt.x > sub[3].x)) { |
- topPt = sub[3]; |
- } |
- double extremeTs[2]; |
- if (!monotonic_in_y(sub)) { |
- int roots = findExtrema(sub[0].y, sub[1].y, sub[2].y, sub[3].y, extremeTs); |
- for (int index = 0; index < roots; ++index) { |
- _Point mid; |
- double t = startT + (endT - startT) * extremeTs[index]; |
- xy_at_t(cubic, t, mid.x, mid.y); |
- if (topPt.y > mid.y || (topPt.y == mid.y && topPt.x > mid.x)) { |
- topPt = mid; |
- } |
- } |
- } |
- return topPt; |
-} |
- |
-// OPTIMIZE: avoid computing the unused half |
-void xy_at_t(const Cubic& cubic, double t, double& x, double& y) { |
- _Point xy = xy_at_t(cubic, t); |
- if (&x) { |
- x = xy.x; |
- } |
- if (&y) { |
- y = xy.y; |
- } |
-} |
- |
-_Point xy_at_t(const Cubic& cubic, double t) { |
- double one_t = 1 - t; |
- double one_t2 = one_t * one_t; |
- double a = one_t2 * one_t; |
- double b = 3 * one_t2 * t; |
- double t2 = t * t; |
- double c = 3 * one_t * t2; |
- double d = t2 * t; |
- _Point result = {a * cubic[0].x + b * cubic[1].x + c * cubic[2].x + d * cubic[3].x, |
- a * cubic[0].y + b * cubic[1].y + c * cubic[2].y + d * cubic[3].y}; |
- return result; |
-} |