| Index: experimental/Intersection/CubicUtilities.cpp
|
| diff --git a/experimental/Intersection/CubicUtilities.cpp b/experimental/Intersection/CubicUtilities.cpp
|
| deleted file mode 100644
|
| index 474dc5e526ce6d5f8ca04e1fe16a5bfc7d24b2ec..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/CubicUtilities.cpp
|
| +++ /dev/null
|
| @@ -1,424 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -#include "CubicUtilities.h"
|
| -#include "Extrema.h"
|
| -#include "LineUtilities.h"
|
| -#include "QuadraticUtilities.h"
|
| -
|
| -const int gPrecisionUnit = 256; // FIXME: arbitrary -- should try different values in test framework
|
| -
|
| -// FIXME: cache keep the bounds and/or precision with the caller?
|
| -double calcPrecision(const Cubic& cubic) {
|
| - _Rect dRect;
|
| - dRect.setBounds(cubic); // OPTIMIZATION: just use setRawBounds ?
|
| - double width = dRect.right - dRect.left;
|
| - double height = dRect.bottom - dRect.top;
|
| - return (width > height ? width : height) / gPrecisionUnit;
|
| -}
|
| -
|
| -#ifdef SK_DEBUG
|
| -double calcPrecision(const Cubic& cubic, double t, double scale) {
|
| - Cubic part;
|
| - sub_divide(cubic, SkTMax(0., t - scale), SkTMin(1., t + scale), part);
|
| - return calcPrecision(part);
|
| -}
|
| -#endif
|
| -
|
| -bool clockwise(const Cubic& c) {
|
| - double sum = (c[0].x - c[3].x) * (c[0].y + c[3].y);
|
| - for (int idx = 0; idx < 3; ++idx){
|
| - sum += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
|
| - }
|
| - return sum <= 0;
|
| -}
|
| -
|
| -void coefficients(const double* cubic, double& A, double& B, double& C, double& D) {
|
| - A = cubic[6]; // d
|
| - B = cubic[4] * 3; // 3*c
|
| - C = cubic[2] * 3; // 3*b
|
| - D = cubic[0]; // a
|
| - A -= D - C + B; // A = -a + 3*b - 3*c + d
|
| - B += 3 * D - 2 * C; // B = 3*a - 6*b + 3*c
|
| - C -= 3 * D; // C = -3*a + 3*b
|
| -}
|
| -
|
| -bool controls_contained_by_ends(const Cubic& c) {
|
| - _Vector startTan = c[1] - c[0];
|
| - if (startTan.x == 0 && startTan.y == 0) {
|
| - startTan = c[2] - c[0];
|
| - }
|
| - _Vector endTan = c[2] - c[3];
|
| - if (endTan.x == 0 && endTan.y == 0) {
|
| - endTan = c[1] - c[3];
|
| - }
|
| - if (startTan.dot(endTan) >= 0) {
|
| - return false;
|
| - }
|
| - _Line startEdge = {c[0], c[0]};
|
| - startEdge[1].x -= startTan.y;
|
| - startEdge[1].y += startTan.x;
|
| - _Line endEdge = {c[3], c[3]};
|
| - endEdge[1].x -= endTan.y;
|
| - endEdge[1].y += endTan.x;
|
| - double leftStart1 = is_left(startEdge, c[1]);
|
| - if (leftStart1 * is_left(startEdge, c[2]) < 0) {
|
| - return false;
|
| - }
|
| - double leftEnd1 = is_left(endEdge, c[1]);
|
| - if (leftEnd1 * is_left(endEdge, c[2]) < 0) {
|
| - return false;
|
| - }
|
| - return leftStart1 * leftEnd1 >= 0;
|
| -}
|
| -
|
| -bool ends_are_extrema_in_x_or_y(const Cubic& c) {
|
| - return (between(c[0].x, c[1].x, c[3].x) && between(c[0].x, c[2].x, c[3].x))
|
| - || (between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y));
|
| -}
|
| -
|
| -bool monotonic_in_y(const Cubic& c) {
|
| - return between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y);
|
| -}
|
| -
|
| -bool serpentine(const Cubic& c) {
|
| - if (!controls_contained_by_ends(c)) {
|
| - return false;
|
| - }
|
| - double wiggle = (c[0].x - c[2].x) * (c[0].y + c[2].y);
|
| - for (int idx = 0; idx < 2; ++idx){
|
| - wiggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
|
| - }
|
| - double waggle = (c[1].x - c[3].x) * (c[1].y + c[3].y);
|
| - for (int idx = 1; idx < 3; ++idx){
|
| - waggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
|
| - }
|
| - return wiggle * waggle < 0;
|
| -}
|
| -
|
| -// cubic roots
|
| -
|
| -const double PI = 4 * atan(1);
|
| -
|
| -// from SkGeometry.cpp (and Numeric Solutions, 5.6)
|
| -int cubicRootsValidT(double A, double B, double C, double D, double t[3]) {
|
| -#if 0
|
| - if (approximately_zero(A)) { // we're just a quadratic
|
| - return quadraticRootsValidT(B, C, D, t);
|
| - }
|
| - double a, b, c;
|
| - {
|
| - double invA = 1 / A;
|
| - a = B * invA;
|
| - b = C * invA;
|
| - c = D * invA;
|
| - }
|
| - double a2 = a * a;
|
| - double Q = (a2 - b * 3) / 9;
|
| - double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
|
| - double Q3 = Q * Q * Q;
|
| - double R2MinusQ3 = R * R - Q3;
|
| - double adiv3 = a / 3;
|
| - double* roots = t;
|
| - double r;
|
| -
|
| - if (R2MinusQ3 < 0) // we have 3 real roots
|
| - {
|
| - double theta = acos(R / sqrt(Q3));
|
| - double neg2RootQ = -2 * sqrt(Q);
|
| -
|
| - r = neg2RootQ * cos(theta / 3) - adiv3;
|
| - if (is_unit_interval(r))
|
| - *roots++ = r;
|
| -
|
| - r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
|
| - if (is_unit_interval(r))
|
| - *roots++ = r;
|
| -
|
| - r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
|
| - if (is_unit_interval(r))
|
| - *roots++ = r;
|
| - }
|
| - else // we have 1 real root
|
| - {
|
| - double A = fabs(R) + sqrt(R2MinusQ3);
|
| - A = cube_root(A);
|
| - if (R > 0) {
|
| - A = -A;
|
| - }
|
| - if (A != 0) {
|
| - A += Q / A;
|
| - }
|
| - r = A - adiv3;
|
| - if (is_unit_interval(r))
|
| - *roots++ = r;
|
| - }
|
| - return (int)(roots - t);
|
| -#else
|
| - double s[3];
|
| - int realRoots = cubicRootsReal(A, B, C, D, s);
|
| - int foundRoots = add_valid_ts(s, realRoots, t);
|
| - return foundRoots;
|
| -#endif
|
| -}
|
| -
|
| -int cubicRootsReal(double A, double B, double C, double D, double s[3]) {
|
| -#ifdef SK_DEBUG
|
| - // create a string mathematica understands
|
| - // GDB set print repe 15 # if repeated digits is a bother
|
| - // set print elements 400 # if line doesn't fit
|
| - char str[1024];
|
| - bzero(str, sizeof(str));
|
| - sprintf(str, "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", A, B, C, D);
|
| - mathematica_ize(str, sizeof(str));
|
| -#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
|
| - SkDebugf("%s\n", str);
|
| -#endif
|
| -#endif
|
| - if (approximately_zero(A)
|
| - && approximately_zero_when_compared_to(A, B)
|
| - && approximately_zero_when_compared_to(A, C)
|
| - && approximately_zero_when_compared_to(A, D)) { // we're just a quadratic
|
| - return quadraticRootsReal(B, C, D, s);
|
| - }
|
| - if (approximately_zero_when_compared_to(D, A)
|
| - && approximately_zero_when_compared_to(D, B)
|
| - && approximately_zero_when_compared_to(D, C)) { // 0 is one root
|
| - int num = quadraticRootsReal(A, B, C, s);
|
| - for (int i = 0; i < num; ++i) {
|
| - if (approximately_zero(s[i])) {
|
| - return num;
|
| - }
|
| - }
|
| - s[num++] = 0;
|
| - return num;
|
| - }
|
| - if (approximately_zero(A + B + C + D)) { // 1 is one root
|
| - int num = quadraticRootsReal(A, A + B, -D, s);
|
| - for (int i = 0; i < num; ++i) {
|
| - if (AlmostEqualUlps(s[i], 1)) {
|
| - return num;
|
| - }
|
| - }
|
| - s[num++] = 1;
|
| - return num;
|
| - }
|
| - double a, b, c;
|
| - {
|
| - double invA = 1 / A;
|
| - a = B * invA;
|
| - b = C * invA;
|
| - c = D * invA;
|
| - }
|
| - double a2 = a * a;
|
| - double Q = (a2 - b * 3) / 9;
|
| - double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
|
| - double R2 = R * R;
|
| - double Q3 = Q * Q * Q;
|
| - double R2MinusQ3 = R2 - Q3;
|
| - double adiv3 = a / 3;
|
| - double r;
|
| - double* roots = s;
|
| -#if 0
|
| - if (approximately_zero_squared(R2MinusQ3) && AlmostEqualUlps(R2, Q3)) {
|
| - if (approximately_zero_squared(R)) {/* one triple solution */
|
| - *roots++ = -adiv3;
|
| - } else { /* one single and one double solution */
|
| -
|
| - double u = cube_root(-R);
|
| - *roots++ = 2 * u - adiv3;
|
| - *roots++ = -u - adiv3;
|
| - }
|
| - }
|
| - else
|
| -#endif
|
| - if (R2MinusQ3 < 0) // we have 3 real roots
|
| - {
|
| - double theta = acos(R / sqrt(Q3));
|
| - double neg2RootQ = -2 * sqrt(Q);
|
| -
|
| - r = neg2RootQ * cos(theta / 3) - adiv3;
|
| - *roots++ = r;
|
| -
|
| - r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
|
| - if (!AlmostEqualUlps(s[0], r)) {
|
| - *roots++ = r;
|
| - }
|
| - r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
|
| - if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1], r))) {
|
| - *roots++ = r;
|
| - }
|
| - }
|
| - else // we have 1 real root
|
| - {
|
| - double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
|
| - double A = fabs(R) + sqrtR2MinusQ3;
|
| - A = cube_root(A);
|
| - if (R > 0) {
|
| - A = -A;
|
| - }
|
| - if (A != 0) {
|
| - A += Q / A;
|
| - }
|
| - r = A - adiv3;
|
| - *roots++ = r;
|
| - if (AlmostEqualUlps(R2, Q3)) {
|
| - r = -A / 2 - adiv3;
|
| - if (!AlmostEqualUlps(s[0], r)) {
|
| - *roots++ = r;
|
| - }
|
| - }
|
| - }
|
| - return (int)(roots - s);
|
| -}
|
| -
|
| -// from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
|
| -// c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
|
| -// c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
|
| -// = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
|
| -static double derivativeAtT(const double* cubic, double t) {
|
| - double one_t = 1 - t;
|
| - double a = cubic[0];
|
| - double b = cubic[2];
|
| - double c = cubic[4];
|
| - double d = cubic[6];
|
| - return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
|
| -}
|
| -
|
| -double dx_at_t(const Cubic& cubic, double t) {
|
| - return derivativeAtT(&cubic[0].x, t);
|
| -}
|
| -
|
| -double dy_at_t(const Cubic& cubic, double t) {
|
| - return derivativeAtT(&cubic[0].y, t);
|
| -}
|
| -
|
| -// OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
|
| -_Vector dxdy_at_t(const Cubic& cubic, double t) {
|
| - _Vector result = { derivativeAtT(&cubic[0].x, t), derivativeAtT(&cubic[0].y, t) };
|
| - return result;
|
| -}
|
| -
|
| -// OPTIMIZE? share code with formulate_F1DotF2
|
| -int find_cubic_inflections(const Cubic& src, double tValues[])
|
| -{
|
| - double Ax = src[1].x - src[0].x;
|
| - double Ay = src[1].y - src[0].y;
|
| - double Bx = src[2].x - 2 * src[1].x + src[0].x;
|
| - double By = src[2].y - 2 * src[1].y + src[0].y;
|
| - double Cx = src[3].x + 3 * (src[1].x - src[2].x) - src[0].x;
|
| - double Cy = src[3].y + 3 * (src[1].y - src[2].y) - src[0].y;
|
| - return quadraticRootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
|
| -}
|
| -
|
| -static void formulate_F1DotF2(const double src[], double coeff[4])
|
| -{
|
| - double a = src[2] - src[0];
|
| - double b = src[4] - 2 * src[2] + src[0];
|
| - double c = src[6] + 3 * (src[2] - src[4]) - src[0];
|
| - coeff[0] = c * c;
|
| - coeff[1] = 3 * b * c;
|
| - coeff[2] = 2 * b * b + c * a;
|
| - coeff[3] = a * b;
|
| -}
|
| -
|
| -/* from SkGeometry.cpp
|
| - Looking for F' dot F'' == 0
|
| -
|
| - A = b - a
|
| - B = c - 2b + a
|
| - C = d - 3c + 3b - a
|
| -
|
| - F' = 3Ct^2 + 6Bt + 3A
|
| - F'' = 6Ct + 6B
|
| -
|
| - F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
|
| -*/
|
| -int find_cubic_max_curvature(const Cubic& src, double tValues[])
|
| -{
|
| - double coeffX[4], coeffY[4];
|
| - int i;
|
| - formulate_F1DotF2(&src[0].x, coeffX);
|
| - formulate_F1DotF2(&src[0].y, coeffY);
|
| - for (i = 0; i < 4; i++) {
|
| - coeffX[i] = coeffX[i] + coeffY[i];
|
| - }
|
| - return cubicRootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
|
| -}
|
| -
|
| -
|
| -bool rotate(const Cubic& cubic, int zero, int index, Cubic& rotPath) {
|
| - double dy = cubic[index].y - cubic[zero].y;
|
| - double dx = cubic[index].x - cubic[zero].x;
|
| - if (approximately_zero(dy)) {
|
| - if (approximately_zero(dx)) {
|
| - return false;
|
| - }
|
| - memcpy(rotPath, cubic, sizeof(Cubic));
|
| - return true;
|
| - }
|
| - for (int index = 0; index < 4; ++index) {
|
| - rotPath[index].x = cubic[index].x * dx + cubic[index].y * dy;
|
| - rotPath[index].y = cubic[index].y * dx - cubic[index].x * dy;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -#if 0 // unused for now
|
| -double secondDerivativeAtT(const double* cubic, double t) {
|
| - double a = cubic[0];
|
| - double b = cubic[2];
|
| - double c = cubic[4];
|
| - double d = cubic[6];
|
| - return (c - 2 * b + a) * (1 - t) + (d - 2 * c + b) * t;
|
| -}
|
| -#endif
|
| -
|
| -_Point top(const Cubic& cubic, double startT, double endT) {
|
| - Cubic sub;
|
| - sub_divide(cubic, startT, endT, sub);
|
| - _Point topPt = sub[0];
|
| - if (topPt.y > sub[3].y || (topPt.y == sub[3].y && topPt.x > sub[3].x)) {
|
| - topPt = sub[3];
|
| - }
|
| - double extremeTs[2];
|
| - if (!monotonic_in_y(sub)) {
|
| - int roots = findExtrema(sub[0].y, sub[1].y, sub[2].y, sub[3].y, extremeTs);
|
| - for (int index = 0; index < roots; ++index) {
|
| - _Point mid;
|
| - double t = startT + (endT - startT) * extremeTs[index];
|
| - xy_at_t(cubic, t, mid.x, mid.y);
|
| - if (topPt.y > mid.y || (topPt.y == mid.y && topPt.x > mid.x)) {
|
| - topPt = mid;
|
| - }
|
| - }
|
| - }
|
| - return topPt;
|
| -}
|
| -
|
| -// OPTIMIZE: avoid computing the unused half
|
| -void xy_at_t(const Cubic& cubic, double t, double& x, double& y) {
|
| - _Point xy = xy_at_t(cubic, t);
|
| - if (&x) {
|
| - x = xy.x;
|
| - }
|
| - if (&y) {
|
| - y = xy.y;
|
| - }
|
| -}
|
| -
|
| -_Point xy_at_t(const Cubic& cubic, double t) {
|
| - double one_t = 1 - t;
|
| - double one_t2 = one_t * one_t;
|
| - double a = one_t2 * one_t;
|
| - double b = 3 * one_t2 * t;
|
| - double t2 = t * t;
|
| - double c = 3 * one_t * t2;
|
| - double d = t2 * t;
|
| - _Point result = {a * cubic[0].x + b * cubic[1].x + c * cubic[2].x + d * cubic[3].x,
|
| - a * cubic[0].y + b * cubic[1].y + c * cubic[2].y + d * cubic[3].y};
|
| - return result;
|
| -}
|
|
|