| Index: experimental/Intersection/QuadraticReduceOrder.cpp | 
| diff --git a/experimental/Intersection/QuadraticReduceOrder.cpp b/experimental/Intersection/QuadraticReduceOrder.cpp | 
| deleted file mode 100644 | 
| index 27c7a29bf299be19e9fc2d1dce32f2ba587f919c..0000000000000000000000000000000000000000 | 
| --- a/experimental/Intersection/QuadraticReduceOrder.cpp | 
| +++ /dev/null | 
| @@ -1,184 +0,0 @@ | 
| -/* | 
| - * Copyright 2012 Google Inc. | 
| - * | 
| - * Use of this source code is governed by a BSD-style license that can be | 
| - * found in the LICENSE file. | 
| - */ | 
| -#include "CurveIntersection.h" | 
| -#include "Extrema.h" | 
| -#include "IntersectionUtilities.h" | 
| -#include "LineParameters.h" | 
| - | 
| -static double interp_quad_coords(double a, double b, double c, double t) | 
| -{ | 
| -    double ab = interp(a, b, t); | 
| -    double bc = interp(b, c, t); | 
| -    return interp(ab, bc, t); | 
| -} | 
| - | 
| -static int coincident_line(const Quadratic& quad, Quadratic& reduction) { | 
| -    reduction[0] = reduction[1] = quad[0]; | 
| -    return 1; | 
| -} | 
| - | 
| -static int vertical_line(const Quadratic& quad, ReduceOrder_Styles reduceStyle, | 
| -        Quadratic& reduction) { | 
| -    double tValue; | 
| -    reduction[0] = quad[0]; | 
| -    reduction[1] = quad[2]; | 
| -    if (reduceStyle == kReduceOrder_TreatAsFill) { | 
| -        return 2; | 
| -    } | 
| -    int smaller = reduction[1].y > reduction[0].y; | 
| -    int larger = smaller ^ 1; | 
| -    if (findExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue)) { | 
| -        double yExtrema = interp_quad_coords(quad[0].y, quad[1].y, quad[2].y, tValue); | 
| -        if (reduction[smaller].y > yExtrema) { | 
| -            reduction[smaller].y = yExtrema; | 
| -        } else if (reduction[larger].y < yExtrema) { | 
| -            reduction[larger].y = yExtrema; | 
| -        } | 
| -    } | 
| -    return 2; | 
| -} | 
| - | 
| -static int horizontal_line(const Quadratic& quad, ReduceOrder_Styles reduceStyle, | 
| -        Quadratic& reduction) { | 
| -    double tValue; | 
| -    reduction[0] = quad[0]; | 
| -    reduction[1] = quad[2]; | 
| -    if (reduceStyle == kReduceOrder_TreatAsFill) { | 
| -        return 2; | 
| -    } | 
| -    int smaller = reduction[1].x > reduction[0].x; | 
| -    int larger = smaller ^ 1; | 
| -    if (findExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue)) { | 
| -        double xExtrema = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue); | 
| -        if (reduction[smaller].x > xExtrema) { | 
| -            reduction[smaller].x = xExtrema; | 
| -        }  else if (reduction[larger].x < xExtrema) { | 
| -            reduction[larger].x = xExtrema; | 
| -        } | 
| -    } | 
| -    return 2; | 
| -} | 
| - | 
| -static int check_linear(const Quadratic& quad, ReduceOrder_Styles reduceStyle, | 
| -        int minX, int maxX, int minY, int maxY, Quadratic& reduction) { | 
| -    int startIndex = 0; | 
| -    int endIndex = 2; | 
| -    while (quad[startIndex].approximatelyEqual(quad[endIndex])) { | 
| -        --endIndex; | 
| -        if (endIndex == 0) { | 
| -            printf("%s shouldn't get here if all four points are about equal", __FUNCTION__); | 
| -            SkASSERT(0); | 
| -        } | 
| -    } | 
| -    if (!isLinear(quad, startIndex, endIndex)) { | 
| -        return 0; | 
| -    } | 
| -    // four are colinear: return line formed by outside | 
| -    reduction[0] = quad[0]; | 
| -    reduction[1] = quad[2]; | 
| -    if (reduceStyle == kReduceOrder_TreatAsFill) { | 
| -        return 2; | 
| -    } | 
| -    int sameSide; | 
| -    bool useX = quad[maxX].x - quad[minX].x >= quad[maxY].y - quad[minY].y; | 
| -    if (useX) { | 
| -        sameSide = sign(quad[0].x - quad[1].x) + sign(quad[2].x - quad[1].x); | 
| -    } else { | 
| -        sameSide = sign(quad[0].y - quad[1].y) + sign(quad[2].y - quad[1].y); | 
| -    } | 
| -    if ((sameSide & 3) != 2) { | 
| -        return 2; | 
| -    } | 
| -    double tValue; | 
| -    int root; | 
| -    if (useX) { | 
| -        root = findExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue); | 
| -    } else { | 
| -        root = findExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue); | 
| -    } | 
| -    if (root) { | 
| -        _Point extrema; | 
| -        extrema.x = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue); | 
| -        extrema.y = interp_quad_coords(quad[0].y, quad[1].y, quad[2].y, tValue); | 
| -        // sameSide > 0 means mid is smaller than either [0] or [2], so replace smaller | 
| -        int replace; | 
| -        if (useX) { | 
| -            if (extrema.x < quad[0].x ^ extrema.x < quad[2].x) { | 
| -                return 2; | 
| -            } | 
| -            replace = (extrema.x < quad[0].x | extrema.x < quad[2].x) | 
| -                    ^ (quad[0].x < quad[2].x); | 
| -        } else { | 
| -            if (extrema.y < quad[0].y ^ extrema.y < quad[2].y) { | 
| -                return 2; | 
| -            } | 
| -            replace = (extrema.y < quad[0].y | extrema.y < quad[2].y) | 
| -                    ^ (quad[0].y < quad[2].y); | 
| -        } | 
| -        reduction[replace] = extrema; | 
| -    } | 
| -    return 2; | 
| -} | 
| - | 
| -bool isLinear(const Quadratic& quad, int startIndex, int endIndex) { | 
| -    LineParameters lineParameters; | 
| -    lineParameters.quadEndPoints(quad, startIndex, endIndex); | 
| -    // FIXME: maybe it's possible to avoid this and compare non-normalized | 
| -    lineParameters.normalize(); | 
| -    double distance = lineParameters.controlPtDistance(quad); | 
| -    return approximately_zero(distance); | 
| -} | 
| - | 
| -// reduce to a quadratic or smaller | 
| -// look for identical points | 
| -// look for all four points in a line | 
| -    // note that three points in a line doesn't simplify a cubic | 
| -// look for approximation with single quadratic | 
| -    // save approximation with multiple quadratics for later | 
| -int reduceOrder(const Quadratic& quad, Quadratic& reduction, ReduceOrder_Styles reduceStyle) { | 
| -    int index, minX, maxX, minY, maxY; | 
| -    int minXSet, minYSet; | 
| -    minX = maxX = minY = maxY = 0; | 
| -    minXSet = minYSet = 0; | 
| -    for (index = 1; index < 3; ++index) { | 
| -        if (quad[minX].x > quad[index].x) { | 
| -            minX = index; | 
| -        } | 
| -        if (quad[minY].y > quad[index].y) { | 
| -            minY = index; | 
| -        } | 
| -        if (quad[maxX].x < quad[index].x) { | 
| -            maxX = index; | 
| -        } | 
| -        if (quad[maxY].y < quad[index].y) { | 
| -            maxY = index; | 
| -        } | 
| -    } | 
| -    for (index = 0; index < 3; ++index) { | 
| -        if (AlmostEqualUlps(quad[index].x, quad[minX].x)) { | 
| -            minXSet |= 1 << index; | 
| -        } | 
| -        if (AlmostEqualUlps(quad[index].y, quad[minY].y)) { | 
| -            minYSet |= 1 << index; | 
| -        } | 
| -    } | 
| -    if (minXSet == 0x7) { // test for vertical line | 
| -        if (minYSet == 0x7) { // return 1 if all four are coincident | 
| -            return coincident_line(quad, reduction); | 
| -        } | 
| -        return vertical_line(quad, reduceStyle, reduction); | 
| -    } | 
| -    if (minYSet == 0xF) { // test for horizontal line | 
| -        return horizontal_line(quad, reduceStyle, reduction); | 
| -    } | 
| -    int result = check_linear(quad, reduceStyle, minX, maxX, minY, maxY, reduction); | 
| -    if (result) { | 
| -        return result; | 
| -    } | 
| -    memcpy(reduction, quad, sizeof(Quadratic)); | 
| -    return 3; | 
| -} | 
|  |