Index: experimental/Intersection/QuadraticUtilities.cpp |
diff --git a/experimental/Intersection/QuadraticUtilities.cpp b/experimental/Intersection/QuadraticUtilities.cpp |
deleted file mode 100644 |
index cba722be7f547810c488ae58a265a031d6228434..0000000000000000000000000000000000000000 |
--- a/experimental/Intersection/QuadraticUtilities.cpp |
+++ /dev/null |
@@ -1,255 +0,0 @@ |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
-#include "CubicUtilities.h" |
-#include "Extrema.h" |
-#include "QuadraticUtilities.h" |
-#include "TriangleUtilities.h" |
- |
-// from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html |
-double nearestT(const Quadratic& quad, const _Point& pt) { |
- _Vector pos = quad[0] - pt; |
- // search points P of bezier curve with PM.(dP / dt) = 0 |
- // a calculus leads to a 3d degree equation : |
- _Vector A = quad[1] - quad[0]; |
- _Vector B = quad[2] - quad[1]; |
- B -= A; |
- double a = B.dot(B); |
- double b = 3 * A.dot(B); |
- double c = 2 * A.dot(A) + pos.dot(B); |
- double d = pos.dot(A); |
- double ts[3]; |
- int roots = cubicRootsValidT(a, b, c, d, ts); |
- double d0 = pt.distanceSquared(quad[0]); |
- double d2 = pt.distanceSquared(quad[2]); |
- double distMin = SkTMin(d0, d2); |
- int bestIndex = -1; |
- for (int index = 0; index < roots; ++index) { |
- _Point onQuad; |
- xy_at_t(quad, ts[index], onQuad.x, onQuad.y); |
- double dist = pt.distanceSquared(onQuad); |
- if (distMin > dist) { |
- distMin = dist; |
- bestIndex = index; |
- } |
- } |
- if (bestIndex >= 0) { |
- return ts[bestIndex]; |
- } |
- return d0 < d2 ? 0 : 1; |
-} |
- |
-bool point_in_hull(const Quadratic& quad, const _Point& pt) { |
- return pointInTriangle((const Triangle&) quad, pt); |
-} |
- |
-_Point top(const Quadratic& quad, double startT, double endT) { |
- Quadratic sub; |
- sub_divide(quad, startT, endT, sub); |
- _Point topPt = sub[0]; |
- if (topPt.y > sub[2].y || (topPt.y == sub[2].y && topPt.x > sub[2].x)) { |
- topPt = sub[2]; |
- } |
- if (!between(sub[0].y, sub[1].y, sub[2].y)) { |
- double extremeT; |
- if (findExtrema(sub[0].y, sub[1].y, sub[2].y, &extremeT)) { |
- extremeT = startT + (endT - startT) * extremeT; |
- _Point test; |
- xy_at_t(quad, extremeT, test.x, test.y); |
- if (topPt.y > test.y || (topPt.y == test.y && topPt.x > test.x)) { |
- topPt = test; |
- } |
- } |
- } |
- return topPt; |
-} |
- |
-/* |
-Numeric Solutions (5.6) suggests to solve the quadratic by computing |
- Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) |
-and using the roots |
- t1 = Q / A |
- t2 = C / Q |
-*/ |
-int add_valid_ts(double s[], int realRoots, double* t) { |
- int foundRoots = 0; |
- for (int index = 0; index < realRoots; ++index) { |
- double tValue = s[index]; |
- if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) { |
- if (approximately_less_than_zero(tValue)) { |
- tValue = 0; |
- } else if (approximately_greater_than_one(tValue)) { |
- tValue = 1; |
- } |
- for (int idx2 = 0; idx2 < foundRoots; ++idx2) { |
- if (approximately_equal(t[idx2], tValue)) { |
- goto nextRoot; |
- } |
- } |
- t[foundRoots++] = tValue; |
- } |
-nextRoot: |
- ; |
- } |
- return foundRoots; |
-} |
- |
-// note: caller expects multiple results to be sorted smaller first |
-// note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting |
-// analysis of the quadratic equation, suggesting why the following looks at |
-// the sign of B -- and further suggesting that the greatest loss of precision |
-// is in b squared less two a c |
-int quadraticRootsValidT(double A, double B, double C, double t[2]) { |
-#if 0 |
- B *= 2; |
- double square = B * B - 4 * A * C; |
- if (approximately_negative(square)) { |
- if (!approximately_positive(square)) { |
- return 0; |
- } |
- square = 0; |
- } |
- double squareRt = sqrt(square); |
- double Q = (B + (B < 0 ? -squareRt : squareRt)) / -2; |
- int foundRoots = 0; |
- double ratio = Q / A; |
- if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) { |
- if (approximately_less_than_zero(ratio)) { |
- ratio = 0; |
- } else if (approximately_greater_than_one(ratio)) { |
- ratio = 1; |
- } |
- t[0] = ratio; |
- ++foundRoots; |
- } |
- ratio = C / Q; |
- if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) { |
- if (approximately_less_than_zero(ratio)) { |
- ratio = 0; |
- } else if (approximately_greater_than_one(ratio)) { |
- ratio = 1; |
- } |
- if (foundRoots == 0 || !approximately_negative(ratio - t[0])) { |
- t[foundRoots++] = ratio; |
- } else if (!approximately_negative(t[0] - ratio)) { |
- t[foundRoots++] = t[0]; |
- t[0] = ratio; |
- } |
- } |
-#else |
- double s[2]; |
- int realRoots = quadraticRootsReal(A, B, C, s); |
- int foundRoots = add_valid_ts(s, realRoots, t); |
-#endif |
- return foundRoots; |
-} |
- |
-// unlike quadratic roots, this does not discard real roots <= 0 or >= 1 |
-int quadraticRootsReal(const double A, const double B, const double C, double s[2]) { |
- const double p = B / (2 * A); |
- const double q = C / A; |
- if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) { |
- if (approximately_zero(B)) { |
- s[0] = 0; |
- return C == 0; |
- } |
- s[0] = -C / B; |
- return 1; |
- } |
- /* normal form: x^2 + px + q = 0 */ |
- const double p2 = p * p; |
-#if 0 |
- double D = AlmostEqualUlps(p2, q) ? 0 : p2 - q; |
- if (D <= 0) { |
- if (D < 0) { |
- return 0; |
- } |
- s[0] = -p; |
- SkDebugf("[%d] %1.9g\n", 1, s[0]); |
- return 1; |
- } |
- double sqrt_D = sqrt(D); |
- s[0] = sqrt_D - p; |
- s[1] = -sqrt_D - p; |
- SkDebugf("[%d] %1.9g %1.9g\n", 2, s[0], s[1]); |
- return 2; |
-#else |
- if (!AlmostEqualUlps(p2, q) && p2 < q) { |
- return 0; |
- } |
- double sqrt_D = 0; |
- if (p2 > q) { |
- sqrt_D = sqrt(p2 - q); |
- } |
- s[0] = sqrt_D - p; |
- s[1] = -sqrt_D - p; |
-#if 0 |
- if (AlmostEqualUlps(s[0], s[1])) { |
- SkDebugf("[%d] %1.9g\n", 1, s[0]); |
- } else { |
- SkDebugf("[%d] %1.9g %1.9g\n", 2, s[0], s[1]); |
- } |
-#endif |
- return 1 + !AlmostEqualUlps(s[0], s[1]); |
-#endif |
-} |
- |
-void toCubic(const Quadratic& quad, Cubic& cubic) { |
- cubic[0] = quad[0]; |
- cubic[2] = quad[1]; |
- cubic[3] = quad[2]; |
- cubic[1].x = (cubic[0].x + cubic[2].x * 2) / 3; |
- cubic[1].y = (cubic[0].y + cubic[2].y * 2) / 3; |
- cubic[2].x = (cubic[3].x + cubic[2].x * 2) / 3; |
- cubic[2].y = (cubic[3].y + cubic[2].y * 2) / 3; |
-} |
- |
-static double derivativeAtT(const double* quad, double t) { |
- double a = t - 1; |
- double b = 1 - 2 * t; |
- double c = t; |
- return a * quad[0] + b * quad[2] + c * quad[4]; |
-} |
- |
-double dx_at_t(const Quadratic& quad, double t) { |
- return derivativeAtT(&quad[0].x, t); |
-} |
- |
-double dy_at_t(const Quadratic& quad, double t) { |
- return derivativeAtT(&quad[0].y, t); |
-} |
- |
-_Vector dxdy_at_t(const Quadratic& quad, double t) { |
- double a = t - 1; |
- double b = 1 - 2 * t; |
- double c = t; |
- _Vector result = { a * quad[0].x + b * quad[1].x + c * quad[2].x, |
- a * quad[0].y + b * quad[1].y + c * quad[2].y }; |
- return result; |
-} |
- |
-void xy_at_t(const Quadratic& quad, double t, double& x, double& y) { |
- double one_t = 1 - t; |
- double a = one_t * one_t; |
- double b = 2 * one_t * t; |
- double c = t * t; |
- if (&x) { |
- x = a * quad[0].x + b * quad[1].x + c * quad[2].x; |
- } |
- if (&y) { |
- y = a * quad[0].y + b * quad[1].y + c * quad[2].y; |
- } |
-} |
- |
-_Point xy_at_t(const Quadratic& quad, double t) { |
- double one_t = 1 - t; |
- double a = one_t * one_t; |
- double b = 2 * one_t * t; |
- double c = t * t; |
- _Point result = { a * quad[0].x + b * quad[1].x + c * quad[2].x, |
- a * quad[0].y + b * quad[1].y + c * quad[2].y }; |
- return result; |
-} |