| Index: experimental/Intersection/QuadraticUtilities.cpp
|
| diff --git a/experimental/Intersection/QuadraticUtilities.cpp b/experimental/Intersection/QuadraticUtilities.cpp
|
| deleted file mode 100644
|
| index cba722be7f547810c488ae58a265a031d6228434..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/QuadraticUtilities.cpp
|
| +++ /dev/null
|
| @@ -1,255 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -#include "CubicUtilities.h"
|
| -#include "Extrema.h"
|
| -#include "QuadraticUtilities.h"
|
| -#include "TriangleUtilities.h"
|
| -
|
| -// from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html
|
| -double nearestT(const Quadratic& quad, const _Point& pt) {
|
| - _Vector pos = quad[0] - pt;
|
| - // search points P of bezier curve with PM.(dP / dt) = 0
|
| - // a calculus leads to a 3d degree equation :
|
| - _Vector A = quad[1] - quad[0];
|
| - _Vector B = quad[2] - quad[1];
|
| - B -= A;
|
| - double a = B.dot(B);
|
| - double b = 3 * A.dot(B);
|
| - double c = 2 * A.dot(A) + pos.dot(B);
|
| - double d = pos.dot(A);
|
| - double ts[3];
|
| - int roots = cubicRootsValidT(a, b, c, d, ts);
|
| - double d0 = pt.distanceSquared(quad[0]);
|
| - double d2 = pt.distanceSquared(quad[2]);
|
| - double distMin = SkTMin(d0, d2);
|
| - int bestIndex = -1;
|
| - for (int index = 0; index < roots; ++index) {
|
| - _Point onQuad;
|
| - xy_at_t(quad, ts[index], onQuad.x, onQuad.y);
|
| - double dist = pt.distanceSquared(onQuad);
|
| - if (distMin > dist) {
|
| - distMin = dist;
|
| - bestIndex = index;
|
| - }
|
| - }
|
| - if (bestIndex >= 0) {
|
| - return ts[bestIndex];
|
| - }
|
| - return d0 < d2 ? 0 : 1;
|
| -}
|
| -
|
| -bool point_in_hull(const Quadratic& quad, const _Point& pt) {
|
| - return pointInTriangle((const Triangle&) quad, pt);
|
| -}
|
| -
|
| -_Point top(const Quadratic& quad, double startT, double endT) {
|
| - Quadratic sub;
|
| - sub_divide(quad, startT, endT, sub);
|
| - _Point topPt = sub[0];
|
| - if (topPt.y > sub[2].y || (topPt.y == sub[2].y && topPt.x > sub[2].x)) {
|
| - topPt = sub[2];
|
| - }
|
| - if (!between(sub[0].y, sub[1].y, sub[2].y)) {
|
| - double extremeT;
|
| - if (findExtrema(sub[0].y, sub[1].y, sub[2].y, &extremeT)) {
|
| - extremeT = startT + (endT - startT) * extremeT;
|
| - _Point test;
|
| - xy_at_t(quad, extremeT, test.x, test.y);
|
| - if (topPt.y > test.y || (topPt.y == test.y && topPt.x > test.x)) {
|
| - topPt = test;
|
| - }
|
| - }
|
| - }
|
| - return topPt;
|
| -}
|
| -
|
| -/*
|
| -Numeric Solutions (5.6) suggests to solve the quadratic by computing
|
| - Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))
|
| -and using the roots
|
| - t1 = Q / A
|
| - t2 = C / Q
|
| -*/
|
| -int add_valid_ts(double s[], int realRoots, double* t) {
|
| - int foundRoots = 0;
|
| - for (int index = 0; index < realRoots; ++index) {
|
| - double tValue = s[index];
|
| - if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) {
|
| - if (approximately_less_than_zero(tValue)) {
|
| - tValue = 0;
|
| - } else if (approximately_greater_than_one(tValue)) {
|
| - tValue = 1;
|
| - }
|
| - for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
|
| - if (approximately_equal(t[idx2], tValue)) {
|
| - goto nextRoot;
|
| - }
|
| - }
|
| - t[foundRoots++] = tValue;
|
| - }
|
| -nextRoot:
|
| - ;
|
| - }
|
| - return foundRoots;
|
| -}
|
| -
|
| -// note: caller expects multiple results to be sorted smaller first
|
| -// note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting
|
| -// analysis of the quadratic equation, suggesting why the following looks at
|
| -// the sign of B -- and further suggesting that the greatest loss of precision
|
| -// is in b squared less two a c
|
| -int quadraticRootsValidT(double A, double B, double C, double t[2]) {
|
| -#if 0
|
| - B *= 2;
|
| - double square = B * B - 4 * A * C;
|
| - if (approximately_negative(square)) {
|
| - if (!approximately_positive(square)) {
|
| - return 0;
|
| - }
|
| - square = 0;
|
| - }
|
| - double squareRt = sqrt(square);
|
| - double Q = (B + (B < 0 ? -squareRt : squareRt)) / -2;
|
| - int foundRoots = 0;
|
| - double ratio = Q / A;
|
| - if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) {
|
| - if (approximately_less_than_zero(ratio)) {
|
| - ratio = 0;
|
| - } else if (approximately_greater_than_one(ratio)) {
|
| - ratio = 1;
|
| - }
|
| - t[0] = ratio;
|
| - ++foundRoots;
|
| - }
|
| - ratio = C / Q;
|
| - if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) {
|
| - if (approximately_less_than_zero(ratio)) {
|
| - ratio = 0;
|
| - } else if (approximately_greater_than_one(ratio)) {
|
| - ratio = 1;
|
| - }
|
| - if (foundRoots == 0 || !approximately_negative(ratio - t[0])) {
|
| - t[foundRoots++] = ratio;
|
| - } else if (!approximately_negative(t[0] - ratio)) {
|
| - t[foundRoots++] = t[0];
|
| - t[0] = ratio;
|
| - }
|
| - }
|
| -#else
|
| - double s[2];
|
| - int realRoots = quadraticRootsReal(A, B, C, s);
|
| - int foundRoots = add_valid_ts(s, realRoots, t);
|
| -#endif
|
| - return foundRoots;
|
| -}
|
| -
|
| -// unlike quadratic roots, this does not discard real roots <= 0 or >= 1
|
| -int quadraticRootsReal(const double A, const double B, const double C, double s[2]) {
|
| - const double p = B / (2 * A);
|
| - const double q = C / A;
|
| - if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) {
|
| - if (approximately_zero(B)) {
|
| - s[0] = 0;
|
| - return C == 0;
|
| - }
|
| - s[0] = -C / B;
|
| - return 1;
|
| - }
|
| - /* normal form: x^2 + px + q = 0 */
|
| - const double p2 = p * p;
|
| -#if 0
|
| - double D = AlmostEqualUlps(p2, q) ? 0 : p2 - q;
|
| - if (D <= 0) {
|
| - if (D < 0) {
|
| - return 0;
|
| - }
|
| - s[0] = -p;
|
| - SkDebugf("[%d] %1.9g\n", 1, s[0]);
|
| - return 1;
|
| - }
|
| - double sqrt_D = sqrt(D);
|
| - s[0] = sqrt_D - p;
|
| - s[1] = -sqrt_D - p;
|
| - SkDebugf("[%d] %1.9g %1.9g\n", 2, s[0], s[1]);
|
| - return 2;
|
| -#else
|
| - if (!AlmostEqualUlps(p2, q) && p2 < q) {
|
| - return 0;
|
| - }
|
| - double sqrt_D = 0;
|
| - if (p2 > q) {
|
| - sqrt_D = sqrt(p2 - q);
|
| - }
|
| - s[0] = sqrt_D - p;
|
| - s[1] = -sqrt_D - p;
|
| -#if 0
|
| - if (AlmostEqualUlps(s[0], s[1])) {
|
| - SkDebugf("[%d] %1.9g\n", 1, s[0]);
|
| - } else {
|
| - SkDebugf("[%d] %1.9g %1.9g\n", 2, s[0], s[1]);
|
| - }
|
| -#endif
|
| - return 1 + !AlmostEqualUlps(s[0], s[1]);
|
| -#endif
|
| -}
|
| -
|
| -void toCubic(const Quadratic& quad, Cubic& cubic) {
|
| - cubic[0] = quad[0];
|
| - cubic[2] = quad[1];
|
| - cubic[3] = quad[2];
|
| - cubic[1].x = (cubic[0].x + cubic[2].x * 2) / 3;
|
| - cubic[1].y = (cubic[0].y + cubic[2].y * 2) / 3;
|
| - cubic[2].x = (cubic[3].x + cubic[2].x * 2) / 3;
|
| - cubic[2].y = (cubic[3].y + cubic[2].y * 2) / 3;
|
| -}
|
| -
|
| -static double derivativeAtT(const double* quad, double t) {
|
| - double a = t - 1;
|
| - double b = 1 - 2 * t;
|
| - double c = t;
|
| - return a * quad[0] + b * quad[2] + c * quad[4];
|
| -}
|
| -
|
| -double dx_at_t(const Quadratic& quad, double t) {
|
| - return derivativeAtT(&quad[0].x, t);
|
| -}
|
| -
|
| -double dy_at_t(const Quadratic& quad, double t) {
|
| - return derivativeAtT(&quad[0].y, t);
|
| -}
|
| -
|
| -_Vector dxdy_at_t(const Quadratic& quad, double t) {
|
| - double a = t - 1;
|
| - double b = 1 - 2 * t;
|
| - double c = t;
|
| - _Vector result = { a * quad[0].x + b * quad[1].x + c * quad[2].x,
|
| - a * quad[0].y + b * quad[1].y + c * quad[2].y };
|
| - return result;
|
| -}
|
| -
|
| -void xy_at_t(const Quadratic& quad, double t, double& x, double& y) {
|
| - double one_t = 1 - t;
|
| - double a = one_t * one_t;
|
| - double b = 2 * one_t * t;
|
| - double c = t * t;
|
| - if (&x) {
|
| - x = a * quad[0].x + b * quad[1].x + c * quad[2].x;
|
| - }
|
| - if (&y) {
|
| - y = a * quad[0].y + b * quad[1].y + c * quad[2].y;
|
| - }
|
| -}
|
| -
|
| -_Point xy_at_t(const Quadratic& quad, double t) {
|
| - double one_t = 1 - t;
|
| - double a = one_t * one_t;
|
| - double b = 2 * one_t * t;
|
| - double c = t * t;
|
| - _Point result = { a * quad[0].x + b * quad[1].x + c * quad[2].x,
|
| - a * quad[0].y + b * quad[1].y + c * quad[2].y };
|
| - return result;
|
| -}
|
|
|