Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(531)

Unified Diff: experimental/Intersection/EdgeWalker.cpp

Issue 867213004: remove prototype pathops code (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « experimental/Intersection/EdgeMain.cpp ('k') | experimental/Intersection/EdgeWalkerPolygon4x4_Test.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: experimental/Intersection/EdgeWalker.cpp
diff --git a/experimental/Intersection/EdgeWalker.cpp b/experimental/Intersection/EdgeWalker.cpp
deleted file mode 100644
index be3f57fcdb33d9a209ebc21faf52babbd549f768..0000000000000000000000000000000000000000
--- a/experimental/Intersection/EdgeWalker.cpp
+++ /dev/null
@@ -1,2705 +0,0 @@
-/*
- * Copyright 2012 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "Simplify.h"
-
-#undef SkASSERT
-#define SkASSERT(cond) while (!(cond)) { sk_throw(); }
-
-// FIXME: remove once debugging is complete
-#if 01 // set to 1 for no debugging whatsoever
-
-//const bool gRunTestsInOneThread = false;
-
-#define DEBUG_ACTIVE_LESS_THAN 0
-#define DEBUG_ADD 0
-#define DEBUG_ADD_BOTTOM_TS 0
-#define DEBUG_ADD_INTERSECTING_TS 0
-#define DEBUG_ADJUST_COINCIDENT 0
-#define DEBUG_ASSEMBLE 0
-#define DEBUG_BOTTOM 0
-#define DEBUG_BRIDGE 0
-#define DEBUG_DUMP 0
-#define DEBUG_SORT_HORIZONTAL 0
-#define DEBUG_OUT 0
-#define DEBUG_OUT_LESS_THAN 0
-#define DEBUG_SPLIT 0
-#define DEBUG_STITCH_EDGE 0
-#define DEBUG_TRIM_LINE 0
-
-#else
-
-//const bool gRunTestsInOneThread = true;
-
-#define DEBUG_ACTIVE_LESS_THAN 0
-#define DEBUG_ADD 01
-#define DEBUG_ADD_BOTTOM_TS 0
-#define DEBUG_ADD_INTERSECTING_TS 0
-#define DEBUG_ADJUST_COINCIDENT 1
-#define DEBUG_ASSEMBLE 1
-#define DEBUG_BOTTOM 0
-#define DEBUG_BRIDGE 1
-#define DEBUG_DUMP 1
-#define DEBUG_SORT_HORIZONTAL 01
-#define DEBUG_OUT 01
-#define DEBUG_OUT_LESS_THAN 0
-#define DEBUG_SPLIT 1
-#define DEBUG_STITCH_EDGE 1
-#define DEBUG_TRIM_LINE 1
-
-#endif
-
-#if DEBUG_ASSEMBLE || DEBUG_BRIDGE
-static const char* kLVerbStr[] = {"", "line", "quad", "cubic"};
-#endif
-#if DEBUG_STITCH_EDGE
-static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"};
-#endif
-
-static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
- Intersections& intersections) {
- const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
- const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
- return intersect(aLine, bLine, intersections);
-}
-
-static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2],
- Intersections& intersections) {
- const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
- const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
- intersect(aQuad, bLine, intersections);
- return intersections.fUsed;
-}
-
-static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3],
- Intersections& intersections) {
- const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
- {a[3].fX, a[3].fY}};
- const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
- return intersect(aCubic, bLine, intersections);
-}
-
-static int QuadIntersect(const SkPoint a[3], const SkPoint b[3],
- Intersections& intersections) {
- const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
- const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}};
- intersect2(aQuad, bQuad, intersections);
- return intersections.fUsed;
-}
-
-static int CubicIntersect(const SkPoint a[4], const SkPoint b[4],
- Intersections& intersections) {
- const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
- {a[3].fX, a[3].fY}};
- const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY},
- {b[3].fX, b[3].fY}};
- intersect(aCubic, bCubic, intersections);
- return intersections.fUsed;
-}
-
-static int LineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
- SkScalar y, double aRange[2]) {
- const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
- return horizontalLineIntersect(aLine, left, right, y, aRange);
-}
-
-static int QuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
- SkScalar y, double aRange[3]) {
- const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
- return horizontalIntersect(aQuad, left, right, y, aRange);
-}
-
-static int CubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
- SkScalar y, double aRange[4]) {
- const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
- {a[3].fX, a[3].fY}};
- return horizontalIntersect(aCubic, left, right, y, aRange);
-}
-
-static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) {
- const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
- double x, y;
- xy_at_t(line, t, x, y);
- out->fX = SkDoubleToScalar(x);
- out->fY = SkDoubleToScalar(y);
-}
-
-static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) {
- const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
- double x, y;
- xy_at_t(quad, t, x, y);
- out->fX = SkDoubleToScalar(x);
- out->fY = SkDoubleToScalar(y);
-}
-
-static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) {
- const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
- {a[3].fX, a[3].fY}};
- double x, y;
- xy_at_t(cubic, t, x, y);
- out->fX = SkDoubleToScalar(x);
- out->fY = SkDoubleToScalar(y);
-}
-
-static SkScalar LineYAtT(const SkPoint a[2], double t) {
- const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
- double y;
- xy_at_t(aLine, t, *(double*) 0, y);
- return SkDoubleToScalar(y);
-}
-
-static SkScalar QuadYAtT(const SkPoint a[3], double t) {
- const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
- double y;
- xy_at_t(quad, t, *(double*) 0, y);
- return SkDoubleToScalar(y);
-}
-
-static SkScalar CubicYAtT(const SkPoint a[4], double t) {
- const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
- {a[3].fX, a[3].fY}};
- double y;
- xy_at_t(cubic, t, *(double*) 0, y);
- return SkDoubleToScalar(y);
-}
-
-static void LineSubDivide(const SkPoint a[2], double startT, double endT,
- SkPoint sub[2]) {
- const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
- _Line dst;
- sub_divide(aLine, startT, endT, dst);
- sub[0].fX = SkDoubleToScalar(dst[0].x);
- sub[0].fY = SkDoubleToScalar(dst[0].y);
- sub[1].fX = SkDoubleToScalar(dst[1].x);
- sub[1].fY = SkDoubleToScalar(dst[1].y);
-}
-
-static void QuadSubDivide(const SkPoint a[3], double startT, double endT,
- SkPoint sub[3]) {
- const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
- {a[2].fX, a[2].fY}};
- Quadratic dst;
- sub_divide(aQuad, startT, endT, dst);
- sub[0].fX = SkDoubleToScalar(dst[0].x);
- sub[0].fY = SkDoubleToScalar(dst[0].y);
- sub[1].fX = SkDoubleToScalar(dst[1].x);
- sub[1].fY = SkDoubleToScalar(dst[1].y);
- sub[2].fX = SkDoubleToScalar(dst[2].x);
- sub[2].fY = SkDoubleToScalar(dst[2].y);
-}
-
-static void CubicSubDivide(const SkPoint a[4], double startT, double endT,
- SkPoint sub[4]) {
- const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
- {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
- Cubic dst;
- sub_divide(aCubic, startT, endT, dst);
- sub[0].fX = SkDoubleToScalar(dst[0].x);
- sub[0].fY = SkDoubleToScalar(dst[0].y);
- sub[1].fX = SkDoubleToScalar(dst[1].x);
- sub[1].fY = SkDoubleToScalar(dst[1].y);
- sub[2].fX = SkDoubleToScalar(dst[2].x);
- sub[2].fY = SkDoubleToScalar(dst[2].y);
- sub[3].fX = SkDoubleToScalar(dst[3].x);
- sub[3].fY = SkDoubleToScalar(dst[3].y);
-}
-
-static void QuadSubBounds(const SkPoint a[3], double startT, double endT,
- SkRect& bounds) {
- SkPoint dst[3];
- QuadSubDivide(a, startT, endT, dst);
- bounds.fLeft = bounds.fRight = dst[0].fX;
- bounds.fTop = bounds.fBottom = dst[0].fY;
- for (int index = 1; index < 3; ++index) {
- bounds.growToInclude(dst[index].fX, dst[index].fY);
- }
-}
-
-static void CubicSubBounds(const SkPoint a[4], double startT, double endT,
- SkRect& bounds) {
- SkPoint dst[4];
- CubicSubDivide(a, startT, endT, dst);
- bounds.fLeft = bounds.fRight = dst[0].fX;
- bounds.fTop = bounds.fBottom = dst[0].fY;
- for (int index = 1; index < 4; ++index) {
- bounds.growToInclude(dst[index].fX, dst[index].fY);
- }
-}
-
-static SkPath::Verb QuadReduceOrder(SkPoint a[4]) {
- const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
- {a[2].fX, a[2].fY}};
- Quadratic dst;
- int order = reduceOrder(aQuad, dst, kReduceOrder_TreatAsFill);
- for (int index = 0; index < order; ++index) {
- a[index].fX = SkDoubleToScalar(dst[index].x);
- a[index].fY = SkDoubleToScalar(dst[index].y);
- }
- if (order == 1) { // FIXME: allow returning points, caller should discard
- a[1] = a[0];
- return (SkPath::Verb) order;
- }
- return (SkPath::Verb) (order - 1);
-}
-
-static SkPath::Verb CubicReduceOrder(SkPoint a[4]) {
- const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
- {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
- Cubic dst;
- int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill);
- for (int index = 0; index < order; ++index) {
- a[index].fX = SkDoubleToScalar(dst[index].x);
- a[index].fY = SkDoubleToScalar(dst[index].y);
- }
- if (order == 1) { // FIXME: allow returning points, caller should discard
- a[1] = a[0];
- return (SkPath::Verb) order;
- }
- return (SkPath::Verb) (order - 1);
-}
-
-static bool IsCoincident(const SkPoint a[2], const SkPoint& above,
- const SkPoint& below) {
- const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
- const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}};
- return implicit_matches_ulps(aLine, bLine, 32);
-}
-
-/*
-list of edges
-bounds for edge
-sort
-active T
-
-if a contour's bounds is outside of the active area, no need to create edges
-*/
-
-/* given one or more paths,
- find the bounds of each contour, select the active contours
- for each active contour, compute a set of edges
- each edge corresponds to one or more lines and curves
- leave edges unbroken as long as possible
- when breaking edges, compute the t at the break but leave the control points alone
-
- */
-
-void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray) {
- SkPath::Iter iter(path, false);
- SkPoint pts[4];
- SkPath::Verb verb;
- SkRect bounds;
- bounds.setEmpty();
- int count = 0;
- while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
- switch (verb) {
- case SkPath::kMove_Verb:
- if (!bounds.isEmpty()) {
- *boundsArray.append() = bounds;
- }
- bounds.set(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY);
- count = 0;
- break;
- case SkPath::kLine_Verb:
- count = 1;
- break;
- case SkPath::kQuad_Verb:
- count = 2;
- break;
- case SkPath::kCubic_Verb:
- count = 3;
- break;
- case SkPath::kClose_Verb:
- count = 0;
- break;
- default:
- SkDEBUGFAIL("bad verb");
- return;
- }
- for (int i = 1; i <= count; ++i) {
- bounds.growToInclude(pts[i].fX, pts[i].fY);
- }
- }
-}
-
-static bool extendLine(const SkPoint line[2], const SkPoint& add) {
- // FIXME: allow this to extend lines that have slopes that are nearly equal
- SkScalar dx1 = line[1].fX - line[0].fX;
- SkScalar dy1 = line[1].fY - line[0].fY;
- SkScalar dx2 = add.fX - line[0].fX;
- SkScalar dy2 = add.fY - line[0].fY;
- return dx1 * dy2 == dx2 * dy1;
-}
-
-// OPTIMIZATION: this should point to a list of input data rather than duplicating
-// the line data here. This would reduce the need to assemble the results.
-struct OutEdge {
- bool operator<(const OutEdge& rh) const {
- const SkPoint& first = fPts[0];
- const SkPoint& rhFirst = rh.fPts[0];
- return first.fY == rhFirst.fY
- ? first.fX < rhFirst.fX
- : first.fY < rhFirst.fY;
- }
-
- SkPoint fPts[4];
- int fID; // id of edge generating data
- uint8_t fVerb; // FIXME: not read from everywhere
- bool fCloseCall; // edge is trimmable if not originally coincident
-};
-
-class OutEdgeBuilder {
-public:
- OutEdgeBuilder(bool fill)
- : fFill(fill) {
- }
-
- void addCurve(const SkPoint line[4], SkPath::Verb verb, int id,
- bool closeCall) {
- OutEdge& newEdge = fEdges.push_back();
- memcpy(newEdge.fPts, line, (verb + 1) * sizeof(SkPoint));
- newEdge.fVerb = verb;
- newEdge.fID = id;
- newEdge.fCloseCall = closeCall;
- }
-
- bool trimLine(SkScalar y, int id) {
- size_t count = fEdges.count();
- while (count-- != 0) {
- OutEdge& edge = fEdges[count];
- if (edge.fID != id) {
- continue;
- }
- if (edge.fCloseCall) {
- return false;
- }
- SkASSERT(edge.fPts[0].fY <= y);
- if (edge.fPts[1].fY <= y) {
- continue;
- }
- edge.fPts[1].fX = edge.fPts[0].fX + (y - edge.fPts[0].fY)
- * (edge.fPts[1].fX - edge.fPts[0].fX)
- / (edge.fPts[1].fY - edge.fPts[0].fY);
- edge.fPts[1].fY = y;
-#if DEBUG_TRIM_LINE
- SkDebugf("%s edge=%d %1.9g,%1.9g\n", __FUNCTION__, id,
- edge.fPts[1].fX, y);
-#endif
- return true;
- }
- return false;
- }
-
- void assemble(SkPath& simple) {
- size_t listCount = fEdges.count();
- if (listCount == 0) {
- return;
- }
- do {
- size_t listIndex = 0;
- int advance = 1;
- while (listIndex < listCount && fTops[listIndex] == 0) {
- ++listIndex;
- }
- if (listIndex >= listCount) {
- break;
- }
- int closeEdgeIndex = -listIndex - 1;
- // the curve is deferred and not added right away because the
- // following edge may extend the first curve.
- SkPoint firstPt, lastCurve[4];
- uint8_t lastVerb;
-#if DEBUG_ASSEMBLE
- int firstIndex, lastIndex;
- const int tab = 8;
-#endif
- bool doMove = true;
- int edgeIndex;
- do {
- SkPoint* ptArray = fEdges[listIndex].fPts;
- uint8_t verb = fEdges[listIndex].fVerb;
- SkPoint* curve[4];
- if (advance < 0) {
- curve[0] = &ptArray[verb];
- if (verb == SkPath::kCubic_Verb) {
- curve[1] = &ptArray[2];
- curve[2] = &ptArray[1];
- }
- curve[verb] = &ptArray[0];
- } else {
- curve[0] = &ptArray[0];
- if (verb == SkPath::kCubic_Verb) {
- curve[1] = &ptArray[1];
- curve[2] = &ptArray[2];
- }
- curve[verb] = &ptArray[verb];
- }
- if (verb == SkPath::kQuad_Verb) {
- curve[1] = &ptArray[1];
- }
- if (doMove) {
- firstPt = *curve[0];
- simple.moveTo(curve[0]->fX, curve[0]->fY);
-#if DEBUG_ASSEMBLE
- SkDebugf("%s %d moveTo (%g,%g)\n", __FUNCTION__,
- listIndex + 1, curve[0]->fX, curve[0]->fY);
- firstIndex = listIndex;
-#endif
- for (int index = 0; index <= verb; ++index) {
- lastCurve[index] = *curve[index];
- }
- doMove = false;
- } else {
- bool gap = lastCurve[lastVerb] != *curve[0];
- if (gap || lastVerb != SkPath::kLine_Verb) { // output the accumulated curve before the gap
- // FIXME: see comment in bridge -- this probably
- // conceals errors
- SkASSERT(fFill && UlpsDiff(lastCurve[lastVerb].fY,
- curve[0]->fY) <= 10);
- switch (lastVerb) {
- case SkPath::kLine_Verb:
- simple.lineTo(lastCurve[1].fX, lastCurve[1].fY);
- break;
- case SkPath::kQuad_Verb:
- simple.quadTo(lastCurve[1].fX, lastCurve[1].fY,
- lastCurve[2].fX, lastCurve[2].fY);
- break;
- case SkPath::kCubic_Verb:
- simple.cubicTo(lastCurve[1].fX, lastCurve[1].fY,
- lastCurve[2].fX, lastCurve[2].fY,
- lastCurve[3].fX, lastCurve[3].fY);
- break;
- }
-#if DEBUG_ASSEMBLE
- SkDebugf("%*s %d %sTo (%g,%g)\n", tab, "", lastIndex + 1,
- kLVerbStr[lastVerb], lastCurve[lastVerb].fX,
- lastCurve[lastVerb].fY);
-#endif
- }
- int firstCopy = 1;
- if (gap || (lastVerb == SkPath::kLine_Verb
- && (verb != SkPath::kLine_Verb
- || !extendLine(lastCurve, *curve[verb])))) {
- // FIXME: see comment in bridge -- this probably
- // conceals errors
- SkASSERT(lastCurve[lastVerb] == *curve[0] ||
- (fFill && UlpsDiff(lastCurve[lastVerb].fY,
- curve[0]->fY) <= 10));
- simple.lineTo(curve[0]->fX, curve[0]->fY);
-#if DEBUG_ASSEMBLE
- SkDebugf("%*s %d gap lineTo (%g,%g)\n", tab, "",
- lastIndex + 1, curve[0]->fX, curve[0]->fY);
-#endif
- firstCopy = 0;
- } else if (lastVerb != SkPath::kLine_Verb) {
- firstCopy = 0;
- }
- for (int index = firstCopy; index <= verb; ++index) {
- lastCurve[index] = *curve[index];
- }
- }
- lastVerb = verb;
-#if DEBUG_ASSEMBLE
- lastIndex = listIndex;
-#endif
- if (advance < 0) {
- edgeIndex = fTops[listIndex];
- fTops[listIndex] = 0;
- } else {
- edgeIndex = fBottoms[listIndex];
- fBottoms[listIndex] = 0;
- }
- if (edgeIndex) {
- listIndex = abs(edgeIndex) - 1;
- if (edgeIndex < 0) {
- fTops[listIndex] = 0;
- } else {
- fBottoms[listIndex] = 0;
- }
- }
- if (edgeIndex == closeEdgeIndex || edgeIndex == 0) {
- switch (lastVerb) {
- case SkPath::kLine_Verb:
- simple.lineTo(lastCurve[1].fX, lastCurve[1].fY);
- break;
- case SkPath::kQuad_Verb:
- simple.quadTo(lastCurve[1].fX, lastCurve[1].fY,
- lastCurve[2].fX, lastCurve[2].fY);
- break;
- case SkPath::kCubic_Verb:
- simple.cubicTo(lastCurve[1].fX, lastCurve[1].fY,
- lastCurve[2].fX, lastCurve[2].fY,
- lastCurve[3].fX, lastCurve[3].fY);
- break;
- }
-#if DEBUG_ASSEMBLE
- SkDebugf("%*s %d %sTo last (%g, %g)\n", tab, "",
- lastIndex + 1, kLVerbStr[lastVerb],
- lastCurve[lastVerb].fX, lastCurve[lastVerb].fY);
-#endif
- if (lastCurve[lastVerb] != firstPt) {
- simple.lineTo(firstPt.fX, firstPt.fY);
-#if DEBUG_ASSEMBLE
- SkDebugf("%*s %d final line (%g, %g)\n", tab, "",
- firstIndex + 1, firstPt.fX, firstPt.fY);
-#endif
- }
- simple.close();
-#if DEBUG_ASSEMBLE
- SkDebugf("%*s close\n", tab, "");
-#endif
- break;
- }
- // if this and next edge go different directions
-#if DEBUG_ASSEMBLE
- SkDebugf("%*s advance=%d edgeIndex=%d flip=%s\n", tab, "",
- advance, edgeIndex, advance > 0 ^ edgeIndex < 0 ?
- "true" : "false");
-#endif
- if (advance > 0 ^ edgeIndex < 0) {
- advance = -advance;
- }
- } while (edgeIndex);
- } while (true);
- }
-
- // sort points by y, then x
- // if x/y is identical, sort bottoms before tops
- // if identical and both tops/bottoms, sort by angle
- static bool lessThan(SkTArray<OutEdge>& edges, const int one,
- const int two) {
- const OutEdge& oneEdge = edges[abs(one) - 1];
- int oneIndex = one < 0 ? 0 : oneEdge.fVerb;
- const SkPoint& startPt1 = oneEdge.fPts[oneIndex];
- const OutEdge& twoEdge = edges[abs(two) - 1];
- int twoIndex = two < 0 ? 0 : twoEdge.fVerb;
- const SkPoint& startPt2 = twoEdge.fPts[twoIndex];
- if (startPt1.fY != startPt2.fY) {
- #if DEBUG_OUT_LESS_THAN
- SkDebugf("%s %d<%d (%g,%g) %s startPt1.fY < startPt2.fY\n", __FUNCTION__,
- one, two, startPt1.fY, startPt2.fY,
- startPt1.fY < startPt2.fY ? "true" : "false");
- #endif
- return startPt1.fY < startPt2.fY;
- }
- if (startPt1.fX != startPt2.fX) {
- #if DEBUG_OUT_LESS_THAN
- SkDebugf("%s %d<%d (%g,%g) %s startPt1.fX < startPt2.fX\n", __FUNCTION__,
- one, two, startPt1.fX, startPt2.fX,
- startPt1.fX < startPt2.fX ? "true" : "false");
- #endif
- return startPt1.fX < startPt2.fX;
- }
- const SkPoint& endPt1 = oneEdge.fPts[oneIndex ^ oneEdge.fVerb];
- const SkPoint& endPt2 = twoEdge.fPts[twoIndex ^ twoEdge.fVerb];
- SkScalar dy1 = startPt1.fY - endPt1.fY;
- SkScalar dy2 = startPt2.fY - endPt2.fY;
- SkScalar dy1y2 = dy1 * dy2;
- if (dy1y2 < 0) { // different signs
- #if DEBUG_OUT_LESS_THAN
- SkDebugf("%s %d<%d %s dy1 > 0\n", __FUNCTION__, one, two,
- dy1 > 0 ? "true" : "false");
- #endif
- return dy1 > 0; // one < two if one goes up and two goes down
- }
- if (dy1y2 == 0) {
- #if DEBUG_OUT_LESS_THAN
- SkDebugf("%s %d<%d %s endPt1.fX < endPt2.fX\n", __FUNCTION__,
- one, two, endPt1.fX < endPt2.fX ? "true" : "false");
- #endif
- return endPt1.fX < endPt2.fX;
- }
- SkScalar dx1y2 = (startPt1.fX - endPt1.fX) * dy2;
- SkScalar dx2y1 = (startPt2.fX - endPt2.fX) * dy1;
- #if DEBUG_OUT_LESS_THAN
- SkDebugf("%s %d<%d %s dy2 < 0 ^ dx1y2 < dx2y1\n", __FUNCTION__,
- one, two, dy2 < 0 ^ dx1y2 < dx2y1 ? "true" : "false");
- #endif
- return dy2 > 0 ^ dx1y2 < dx2y1;
- }
-
- // Sort the indices of paired points and then create more indices so
- // assemble() can find the next edge and connect the top or bottom
- void bridge() {
- size_t index;
- size_t count = fEdges.count();
- if (!count) {
- return;
- }
- SkASSERT(!fFill || count > 1);
- fTops.setCount(count);
- sk_bzero(fTops.begin(), sizeof(fTops[0]) * count);
- fBottoms.setCount(count);
- sk_bzero(fBottoms.begin(), sizeof(fBottoms[0]) * count);
- SkTDArray<int> order;
- for (index = 1; index <= count; ++index) {
- *order.append() = -index;
- }
- for (index = 1; index <= count; ++index) {
- *order.append() = index;
- }
- QSort<SkTArray<OutEdge>, int>(fEdges, order.begin(), order.end() - 1, lessThan);
- int* lastPtr = order.end() - 1;
- int* leftPtr = order.begin();
- while (leftPtr < lastPtr) {
- int leftIndex = *leftPtr;
- int leftOutIndex = abs(leftIndex) - 1;
- const OutEdge& left = fEdges[leftOutIndex];
- int* rightPtr = leftPtr + 1;
- int rightIndex = *rightPtr;
- int rightOutIndex = abs(rightIndex) - 1;
- const OutEdge& right = fEdges[rightOutIndex];
- bool pairUp = fFill;
- if (!pairUp) {
- const SkPoint& leftMatch =
- left.fPts[leftIndex < 0 ? 0 : left.fVerb];
- const SkPoint& rightMatch =
- right.fPts[rightIndex < 0 ? 0 : right.fVerb];
- pairUp = leftMatch == rightMatch;
- } else {
- #if DEBUG_OUT
- // FIXME : not happy that error in low bit is allowed
- // this probably conceals error elsewhere
- if (UlpsDiff(left.fPts[leftIndex < 0 ? 0 : left.fVerb].fY,
- right.fPts[rightIndex < 0 ? 0 : right.fVerb].fY) > 1) {
- *fMismatches.append() = leftIndex;
- if (rightPtr == lastPtr) {
- *fMismatches.append() = rightIndex;
- }
- pairUp = false;
- }
- #else
- SkASSERT(UlpsDiff(left.fPts[leftIndex < 0 ? 0 : left.fVerb].fY,
- right.fPts[rightIndex < 0 ? 0 : right.fVerb].fY) <= 10);
- #endif
- }
- if (pairUp) {
- if (leftIndex < 0) {
- fTops[leftOutIndex] = rightIndex;
- } else {
- fBottoms[leftOutIndex] = rightIndex;
- }
- if (rightIndex < 0) {
- fTops[rightOutIndex] = leftIndex;
- } else {
- fBottoms[rightOutIndex] = leftIndex;
- }
- ++rightPtr;
- }
- leftPtr = rightPtr;
- }
-#if DEBUG_OUT
- int* mismatch = fMismatches.begin();
- while (mismatch != fMismatches.end()) {
- int leftIndex = *mismatch++;
- int leftOutIndex = abs(leftIndex) - 1;
- const OutEdge& left = fEdges[leftOutIndex];
- const SkPoint& leftPt = left.fPts[leftIndex < 0 ? 0 : left.fVerb];
- SkDebugf("%s left=%d %s (%1.9g,%1.9g)\n",
- __FUNCTION__, left.fID, leftIndex < 0 ? "top" : "bot",
- leftPt.fX, leftPt.fY);
- }
- SkASSERT(fMismatches.count() == 0);
-#endif
-#if DEBUG_BRIDGE
- for (index = 0; index < count; ++index) {
- const OutEdge& edge = fEdges[index];
- uint8_t verb = edge.fVerb;
- SkDebugf("%s %d edge=%d %s (%1.9g,%1.9g) (%1.9g,%1.9g)\n",
- index == 0 ? __FUNCTION__ : " ",
- index + 1, edge.fID, kLVerbStr[verb], edge.fPts[0].fX,
- edge.fPts[0].fY, edge.fPts[verb].fX, edge.fPts[verb].fY);
- }
- for (index = 0; index < count; ++index) {
- SkDebugf(" top of % 2d connects to %s of % 2d\n", index + 1,
- fTops[index] < 0 ? "top " : "bottom", abs(fTops[index]));
- SkDebugf(" bottom of % 2d connects to %s of % 2d\n", index + 1,
- fBottoms[index] < 0 ? "top " : "bottom", abs(fBottoms[index]));
- }
-#endif
- }
-
-protected:
- SkTArray<OutEdge> fEdges;
- SkTDArray<int> fTops;
- SkTDArray<int> fBottoms;
- bool fFill;
-#if DEBUG_OUT
- SkTDArray<int> fMismatches;
-#endif
-};
-
-// Bounds, unlike Rect, does not consider a vertical line to be empty.
-struct Bounds : public SkRect {
- static bool Intersects(const Bounds& a, const Bounds& b) {
- return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
- a.fTop <= b.fBottom && b.fTop <= a.fBottom;
- }
-
- bool isEmpty() {
- return fLeft > fRight || fTop > fBottom
- || (fLeft == fRight && fTop == fBottom)
- || isnan(fLeft) || isnan(fRight)
- || isnan(fTop) || isnan(fBottom);
- }
-};
-
-class Intercepts {
-public:
- Intercepts()
- : fTopIntercepts(0)
- , fBottomIntercepts(0)
- , fExplicit(false) {
- }
-
- Intercepts& operator=(const Intercepts& src) {
- fTs = src.fTs;
- fTopIntercepts = src.fTopIntercepts;
- fBottomIntercepts = src.fBottomIntercepts;
- return *this;
- }
-
- // OPTIMIZATION: remove this function if it's never called
- double t(int tIndex) const {
- if (tIndex == 0) {
- return 0;
- }
- if (tIndex > fTs.count()) {
- return 1;
- }
- return fTs[tIndex - 1];
- }
-
-#if DEBUG_DUMP
- void dump(const SkPoint* pts, SkPath::Verb verb) {
- const char className[] = "Intercepts";
- const int tab = 8;
- for (int i = 0; i < fTs.count(); ++i) {
- SkPoint out;
- switch (verb) {
- case SkPath::kLine_Verb:
- LineXYAtT(pts, fTs[i], &out);
- break;
- case SkPath::kQuad_Verb:
- QuadXYAtT(pts, fTs[i], &out);
- break;
- case SkPath::kCubic_Verb:
- CubicXYAtT(pts, fTs[i], &out);
- break;
- default:
- SkASSERT(0);
- }
- SkDebugf("%*s.fTs[%d]=%1.9g (%1.9g,%1.9g)\n", tab + sizeof(className),
- className, i, fTs[i], out.fX, out.fY);
- }
- SkDebugf("%*s.fTopIntercepts=%u\n", tab + sizeof(className),
- className, fTopIntercepts);
- SkDebugf("%*s.fBottomIntercepts=%u\n", tab + sizeof(className),
- className, fBottomIntercepts);
- SkDebugf("%*s.fExplicit=%d\n", tab + sizeof(className),
- className, fExplicit);
- }
-#endif
-
- SkTDArray<double> fTs;
- unsigned char fTopIntercepts; // 0=init state 1=1 edge >1=multiple edges
- unsigned char fBottomIntercepts;
- bool fExplicit; // if set, suppress 0 and 1
-
-};
-
-struct HorizontalEdge {
- bool operator<(const HorizontalEdge& rh) const {
- return fY == rh.fY ? fLeft == rh.fLeft ? fRight < rh.fRight
- : fLeft < rh.fLeft : fY < rh.fY;
- }
-
-#if DEBUG_DUMP
- void dump() {
- const char className[] = "HorizontalEdge";
- const int tab = 4;
- SkDebugf("%*s.fLeft=%1.9g\n", tab + sizeof(className), className, fLeft);
- SkDebugf("%*s.fRight=%1.9g\n", tab + sizeof(className), className, fRight);
- SkDebugf("%*s.fY=%1.9g\n", tab + sizeof(className), className, fY);
- }
-#endif
-
- SkScalar fLeft;
- SkScalar fRight;
- SkScalar fY;
-};
-
-struct InEdge {
- bool operator<(const InEdge& rh) const {
- return fBounds.fTop == rh.fBounds.fTop
- ? fBounds.fLeft < rh.fBounds.fLeft
- : fBounds.fTop < rh.fBounds.fTop;
- }
-
- // Avoid collapsing t values that are close to the same since
- // we walk ts to describe consecutive intersections. Since a pair of ts can
- // be nearly equal, any problems caused by this should be taken care
- // of later.
- int add(double* ts, size_t count, ptrdiff_t verbIndex) {
- // FIXME: in the pathological case where there is a ton of intercepts, binary search?
- bool foundIntercept = false;
- int insertedAt = -1;
- Intercepts& intercepts = fIntercepts[verbIndex];
- for (size_t index = 0; index < count; ++index) {
- double t = ts[index];
- if (t <= 0) {
- intercepts.fTopIntercepts <<= 1;
- fContainsIntercepts |= ++intercepts.fTopIntercepts > 1;
- continue;
- }
- if (t >= 1) {
- intercepts.fBottomIntercepts <<= 1;
- fContainsIntercepts |= ++intercepts.fBottomIntercepts > 1;
- continue;
- }
- fIntersected = true;
- foundIntercept = true;
- size_t tCount = intercepts.fTs.count();
- double delta;
- for (size_t idx2 = 0; idx2 < tCount; ++idx2) {
- if (t <= intercepts.fTs[idx2]) {
- // FIXME: ? if (t < intercepts.fTs[idx2]) // failed
- delta = intercepts.fTs[idx2] - t;
- if (delta > 0) {
- insertedAt = idx2;
- *intercepts.fTs.insert(idx2) = t;
- }
- goto nextPt;
- }
- }
- if (tCount == 0 || (delta = t - intercepts.fTs[tCount - 1]) > 0) {
- insertedAt = tCount;
- *intercepts.fTs.append() = t;
- }
- nextPt:
- ;
- }
- fContainsIntercepts |= foundIntercept;
- return insertedAt;
- }
-
- void addPartial(SkTArray<InEdge>& edges, int ptStart, int ptEnd,
- int verbStart, int verbEnd) {
- InEdge* edge = edges.push_back_n(1);
- int verbCount = verbEnd - verbStart;
- edge->fIntercepts.push_back_n(verbCount);
- // uint8_t* verbs = &fVerbs[verbStart];
- for (int ceptIdx = 0; ceptIdx < verbCount; ++ceptIdx) {
- edge->fIntercepts[ceptIdx] = fIntercepts[verbStart + ceptIdx];
- }
- edge->fPts.append(ptEnd - ptStart, &fPts[ptStart]);
- edge->fVerbs.append(verbCount, &fVerbs[verbStart]);
- edge->setBounds();
- edge->fWinding = fWinding;
- edge->fContainsIntercepts = fContainsIntercepts; // FIXME: may not be correct -- but do we need to know?
- }
-
- void addSplit(SkTArray<InEdge>& edges, SkPoint* pts, uint8_t verb,
- Intercepts& intercepts, int firstT, int lastT, bool flipped) {
- InEdge* edge = edges.push_back_n(1);
- edge->fIntercepts.push_back_n(1);
- if (firstT == 0) {
- *edge->fIntercepts[0].fTs.append() = 0;
- } else {
- *edge->fIntercepts[0].fTs.append() = intercepts.fTs[firstT - 1];
- }
- bool add1 = lastT == intercepts.fTs.count();
- edge->fIntercepts[0].fTs.append(lastT - firstT, &intercepts.fTs[firstT]);
- if (add1) {
- *edge->fIntercepts[0].fTs.append() = 1;
- }
- edge->fIntercepts[0].fExplicit = true;
- edge->fPts.append(verb + 1, pts);
- edge->fVerbs.append(1, &verb);
- // FIXME: bounds could be better for partial Ts
- edge->setSubBounds();
- edge->fContainsIntercepts = fContainsIntercepts; // FIXME: may not be correct -- but do we need to know?
- if (flipped) {
- edge->flipTs();
- edge->fWinding = -fWinding;
- } else {
- edge->fWinding = fWinding;
- }
- }
-
- bool cached(const InEdge* edge) {
- // FIXME: in the pathological case where there is a ton of edges, binary search?
- size_t count = fCached.count();
- for (size_t index = 0; index < count; ++index) {
- if (edge == fCached[index]) {
- return true;
- }
- if (edge < fCached[index]) {
- *fCached.insert(index) = edge;
- return false;
- }
- }
- *fCached.append() = edge;
- return false;
- }
-
- void complete(signed char winding) {
- setBounds();
- fIntercepts.push_back_n(fVerbs.count());
- if ((fWinding = winding) < 0) { // reverse verbs, pts, if bottom to top
- flip();
- }
- fContainsIntercepts = fIntersected = false;
- }
-
- void flip() {
- size_t index;
- size_t last = fPts.count() - 1;
- for (index = 0; index < last; ++index, --last) {
- SkTSwap<SkPoint>(fPts[index], fPts[last]);
- }
- last = fVerbs.count() - 1;
- for (index = 0; index < last; ++index, --last) {
- SkTSwap<uint8_t>(fVerbs[index], fVerbs[last]);
- }
- }
-
- void flipTs() {
- SkASSERT(fIntercepts.count() == 1);
- Intercepts& intercepts = fIntercepts[0];
- SkASSERT(intercepts.fExplicit);
- SkTDArray<double>& ts = intercepts.fTs;
- size_t index;
- size_t last = ts.count() - 1;
- for (index = 0; index < last; ++index, --last) {
- SkTSwap<double>(ts[index], ts[last]);
- }
- }
-
- void reset() {
- fCached.reset();
- fIntercepts.reset();
- fPts.reset();
- fVerbs.reset();
- fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
- fWinding = 0;
- fContainsIntercepts = false;
- fIntersected = false;
- }
-
- void setBounds() {
- SkPoint* ptPtr = fPts.begin();
- SkPoint* ptLast = fPts.end();
- if (ptPtr == ptLast) {
- SkDebugf("%s empty edge\n", __FUNCTION__);
- SkASSERT(0);
- // FIXME: delete empty edge?
- return;
- }
- fBounds.set(ptPtr->fX, ptPtr->fY, ptPtr->fX, ptPtr->fY);
- ++ptPtr;
- while (ptPtr != ptLast) {
- fBounds.growToInclude(ptPtr->fX, ptPtr->fY);
- ++ptPtr;
- }
- }
-
- // recompute bounds based on subrange of T values
- void setSubBounds() {
- SkASSERT(fIntercepts.count() == 1);
- Intercepts& intercepts = fIntercepts[0];
- SkASSERT(intercepts.fExplicit);
- SkASSERT(fVerbs.count() == 1);
- SkTDArray<double>& ts = intercepts.fTs;
- if (fVerbs[0] == SkPath::kQuad_Verb) {
- SkASSERT(fPts.count() == 3);
- QuadSubBounds(fPts.begin(), ts[0], ts[ts.count() - 1], fBounds);
- } else {
- SkASSERT(fVerbs[0] == SkPath::kCubic_Verb);
- SkASSERT(fPts.count() == 4);
- CubicSubBounds(fPts.begin(), ts[0], ts[ts.count() - 1], fBounds);
- }
- }
-
- void splitInflectionPts(SkTArray<InEdge>& edges) {
- if (!fIntersected) {
- return;
- }
- uint8_t* verbs = fVerbs.begin();
- SkPoint* pts = fPts.begin();
- int lastVerb = 0;
- int lastPt = 0;
- uint8_t verb;
- bool edgeSplit = false;
- for (int ceptIdx = 0; ceptIdx < fIntercepts.count(); ++ceptIdx, pts += verb) {
- Intercepts& intercepts = fIntercepts[ceptIdx];
- verb = *verbs++;
- if (verb <= SkPath::kLine_Verb) {
- continue;
- }
- size_t tCount = intercepts.fTs.count();
- if (!tCount) {
- continue;
- }
- size_t tIndex = (size_t) -1;
- SkScalar y = pts[0].fY;
- int lastSplit = 0;
- int firstSplit = -1;
- bool curveSplit = false;
- while (++tIndex < tCount) {
- double nextT = intercepts.fTs[tIndex];
- SkScalar nextY = verb == SkPath::kQuad_Verb
- ? QuadYAtT(pts, nextT) : CubicYAtT(pts, nextT);
- if (nextY < y) {
- edgeSplit = curveSplit = true;
- if (firstSplit < 0) {
- firstSplit = tIndex;
- int nextPt = pts - fPts.begin();
- int nextVerb = verbs - 1 - fVerbs.begin();
- if (lastVerb < nextVerb) {
- addPartial(edges, lastPt, nextPt, lastVerb, nextVerb);
- #if DEBUG_SPLIT
- SkDebugf("%s addPartial 1\n", __FUNCTION__);
- #endif
- }
- lastPt = nextPt;
- lastVerb = nextVerb;
- }
- } else {
- if (firstSplit >= 0) {
- if (lastSplit < firstSplit) {
- addSplit(edges, pts, verb, intercepts,
- lastSplit, firstSplit, false);
- #if DEBUG_SPLIT
- SkDebugf("%s addSplit 1 tIndex=%d,%d\n",
- __FUNCTION__, lastSplit, firstSplit);
- #endif
- }
- addSplit(edges, pts, verb, intercepts,
- firstSplit, tIndex, true);
- #if DEBUG_SPLIT
- SkDebugf("%s addSplit 2 tIndex=%d,%d flip\n",
- __FUNCTION__, firstSplit, tIndex);
- #endif
- lastSplit = tIndex;
- firstSplit = -1;
- }
- }
- y = nextY;
- }
- if (curveSplit) {
- if (firstSplit < 0) {
- firstSplit = lastSplit;
- } else {
- addSplit(edges, pts, verb, intercepts, lastSplit,
- firstSplit, false);
- #if DEBUG_SPLIT
- SkDebugf("%s addSplit 3 tIndex=%d,%d\n", __FUNCTION__,
- lastSplit, firstSplit);
- #endif
- }
- addSplit(edges, pts, verb, intercepts, firstSplit,
- tIndex, pts[verb].fY < y);
- #if DEBUG_SPLIT
- SkDebugf("%s addSplit 4 tIndex=%d,%d %s\n", __FUNCTION__,
- firstSplit, tIndex, pts[verb].fY < y ? "flip" : "");
- #endif
- }
- }
- // collapse remainder -- if there's nothing left, clear it somehow?
- if (edgeSplit) {
- int nextVerb = verbs - 1 - fVerbs.begin();
- if (lastVerb < nextVerb) {
- int nextPt = pts - fPts.begin();
- addPartial(edges, lastPt, nextPt, lastVerb, nextVerb);
- #if DEBUG_SPLIT
- SkDebugf("%s addPartial 2\n", __FUNCTION__);
- #endif
- }
- // OPTIMIZATION: reuse the edge instead of marking it empty
- reset();
- }
- }
-
-#if DEBUG_DUMP
- void dump() {
- int i;
- const char className[] = "InEdge";
- const int tab = 4;
- SkDebugf("InEdge %p (edge=%d)\n", this, fID);
- for (i = 0; i < fCached.count(); ++i) {
- SkDebugf("%*s.fCached[%d]=0x%08x\n", tab + sizeof(className),
- className, i, fCached[i]);
- }
- uint8_t* verbs = fVerbs.begin();
- SkPoint* pts = fPts.begin();
- for (i = 0; i < fIntercepts.count(); ++i) {
- SkDebugf("%*s.fIntercepts[%d]:\n", tab + sizeof(className),
- className, i);
- fIntercepts[i].dump(pts, (SkPath::Verb) *verbs);
- pts += *verbs++;
- }
- for (i = 0; i < fPts.count(); ++i) {
- SkDebugf("%*s.fPts[%d]=(%1.9g,%1.9g)\n", tab + sizeof(className),
- className, i, fPts[i].fX, fPts[i].fY);
- }
- for (i = 0; i < fVerbs.count(); ++i) {
- SkDebugf("%*s.fVerbs[%d]=%d\n", tab + sizeof(className),
- className, i, fVerbs[i]);
- }
- SkDebugf("%*s.fBounds=(%1.9g, %1.9g, %1.9g, %1.9g)\n", tab + sizeof(className),
- className, fBounds.fLeft, fBounds.fTop,
- fBounds.fRight, fBounds.fBottom);
- SkDebugf("%*s.fWinding=%d\n", tab + sizeof(className), className,
- fWinding);
- SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className),
- className, fContainsIntercepts);
- SkDebugf("%*s.fIntersected=%d\n", tab + sizeof(className),
- className, fIntersected);
- }
-#endif
-
- // FIXME: temporary data : move this to a separate struct?
- SkTDArray<const InEdge*> fCached; // list of edges already intercepted
- SkTArray<Intercepts> fIntercepts; // one per verb
-
- // persistent data
- SkTDArray<SkPoint> fPts;
- SkTDArray<uint8_t> fVerbs;
- Bounds fBounds;
- int fID;
- signed char fWinding;
- bool fContainsIntercepts;
- bool fIntersected;
-};
-
-class InEdgeBuilder {
-public:
-
-InEdgeBuilder(const SkPath& path, bool ignoreHorizontal, SkTArray<InEdge>& edges,
- SkTDArray<HorizontalEdge>& horizontalEdges)
- : fPath(path)
- , fCurrentEdge(NULL)
- , fEdges(edges)
- , fHorizontalEdges(horizontalEdges)
- , fIgnoreHorizontal(ignoreHorizontal)
- , fContainsCurves(false)
-{
- walk();
-}
-
-bool containsCurves() const {
- return fContainsCurves;
-}
-
-protected:
-
-void addEdge() {
- SkASSERT(fCurrentEdge);
- fCurrentEdge->fPts.append(fPtCount - fPtOffset, &fPts[fPtOffset]);
- fPtOffset = 1;
- *fCurrentEdge->fVerbs.append() = fVerb;
-}
-
-bool complete() {
- if (fCurrentEdge && fCurrentEdge->fVerbs.count()) {
- fCurrentEdge->complete(fWinding);
- fCurrentEdge = NULL;
- return true;
- }
- return false;
-}
-
-int direction(SkPath::Verb verb) {
- fPtCount = verb + 1;
- if (fIgnoreHorizontal && isHorizontal()) {
- return 0;
- }
- return fPts[0].fY == fPts[verb].fY
- ? fPts[0].fX == fPts[verb].fX ? 0 : fPts[0].fX < fPts[verb].fX
- ? 1 : -1 : fPts[0].fY < fPts[verb].fY ? 1 : -1;
-}
-
-bool isHorizontal() {
- SkScalar y = fPts[0].fY;
- for (int i = 1; i < fPtCount; ++i) {
- if (fPts[i].fY != y) {
- return false;
- }
- }
- return true;
-}
-
-void startEdge() {
- if (!fCurrentEdge) {
- fCurrentEdge = fEdges.push_back_n(1);
- }
- fWinding = 0;
- fPtOffset = 0;
-}
-
-void walk() {
- SkPath::Iter iter(fPath, true);
- int winding = 0;
- while ((fVerb = iter.next(fPts)) != SkPath::kDone_Verb) {
- switch (fVerb) {
- case SkPath::kMove_Verb:
- startEdge();
- continue;
- case SkPath::kLine_Verb:
- winding = direction(SkPath::kLine_Verb);
- break;
- case SkPath::kQuad_Verb:
- fVerb = QuadReduceOrder(fPts);
- winding = direction(fVerb);
- fContainsCurves |= fVerb == SkPath::kQuad_Verb;
- break;
- case SkPath::kCubic_Verb:
- fVerb = CubicReduceOrder(fPts);
- winding = direction(fVerb);
- fContainsCurves |= fVerb >= SkPath::kQuad_Verb;
- break;
- case SkPath::kClose_Verb:
- SkASSERT(fCurrentEdge);
- complete();
- continue;
- default:
- SkDEBUGFAIL("bad verb");
- return;
- }
- if (winding == 0) {
- HorizontalEdge* horizontalEdge = fHorizontalEdges.append();
- // FIXME: for degenerate quads and cubics, compute x extremes
- horizontalEdge->fLeft = fPts[0].fX;
- horizontalEdge->fRight = fPts[fVerb].fX;
- horizontalEdge->fY = fPts[0].fY;
- if (horizontalEdge->fLeft > horizontalEdge->fRight) {
- SkTSwap<SkScalar>(horizontalEdge->fLeft, horizontalEdge->fRight);
- }
- if (complete()) {
- startEdge();
- }
- continue;
- }
- if (fWinding + winding == 0) {
- // FIXME: if prior verb or this verb is a horizontal line, reverse
- // it instead of starting a new edge
- SkASSERT(fCurrentEdge);
- if (complete()) {
- startEdge();
- }
- }
- fWinding = winding;
- addEdge();
- }
- if (!complete()) {
- if (fCurrentEdge) {
- fEdges.pop_back();
- }
- }
-}
-
-private:
- const SkPath& fPath;
- InEdge* fCurrentEdge;
- SkTArray<InEdge>& fEdges;
- SkTDArray<HorizontalEdge>& fHorizontalEdges;
- SkPoint fPts[4];
- SkPath::Verb fVerb;
- int fPtCount;
- int fPtOffset;
- int8_t fWinding;
- bool fIgnoreHorizontal;
- bool fContainsCurves;
-};
-
-struct WorkEdge {
- SkScalar bottom() const {
- return fPts[verb()].fY;
- }
-
- void init(const InEdge* edge) {
- fEdge = edge;
- fPts = edge->fPts.begin();
- fVerb = edge->fVerbs.begin();
- }
-
- bool advance() {
- SkASSERT(fVerb < fEdge->fVerbs.end());
- fPts += *fVerb++;
- return fVerb != fEdge->fVerbs.end();
- }
-
- const SkPoint* lastPoints() const {
- SkASSERT(fPts >= fEdge->fPts.begin() + lastVerb());
- return &fPts[-lastVerb()];
- }
-
- SkPath::Verb lastVerb() const {
- SkASSERT(fVerb > fEdge->fVerbs.begin());
- return (SkPath::Verb) fVerb[-1];
- }
-
- const SkPoint* points() const {
- return fPts;
- }
-
- SkPath::Verb verb() const {
- return (SkPath::Verb) *fVerb;
- }
-
- ptrdiff_t verbIndex() const {
- return fVerb - fEdge->fVerbs.begin();
- }
-
- int winding() const {
- return fEdge->fWinding;
- }
-
- const InEdge* fEdge;
- const SkPoint* fPts;
- const uint8_t* fVerb;
-};
-
-// always constructed with SkTDArray because new edges are inserted
-// this may be a inappropriate optimization, suggesting that a separate array of
-// ActiveEdge* may be faster to insert and search
-
-// OPTIMIZATION: Brian suggests that global sorting should be unnecessary, since
-// as active edges are introduced, only local sorting should be required
-class ActiveEdge {
-public:
- // this logic must be kept in sync with tooCloseToCall
- // callers expect this to only read fAbove, fTangent
- bool operator<(const ActiveEdge& rh) const {
- if (fVerb == rh.fVerb) {
- // FIXME: don't know what to do if verb is quad, cubic
- return abCompare(fAbove, fBelow, rh.fAbove, rh.fBelow);
- }
- // figure out which is quad, line
- // if cached data says line did not intersect quad, use top/bottom
- if (fVerb != SkPath::kLine_Verb ? noIntersect(rh) : rh.noIntersect(*this)) {
- return abCompare(fAbove, fBelow, rh.fAbove, rh.fBelow);
- }
- // use whichever of top/tangent tangent/bottom overlaps more
- // with line top/bot
- // assumes quad/cubic can already be upconverted to cubic/cubic
- const SkPoint* line[2];
- const SkPoint* curve[4];
- if (fVerb != SkPath::kLine_Verb) {
- line[0] = &rh.fAbove;
- line[1] = &rh.fBelow;
- curve[0] = &fAbove;
- curve[1] = &fTangent;
- curve[2] = &fBelow;
- } else {
- line[0] = &fAbove;
- line[1] = &fBelow;
- curve[0] = &rh.fAbove;
- curve[1] = &rh.fTangent;
- curve[2] = &rh.fBelow;
- }
- // FIXME: code has been abandoned, incomplete....
- return false;
- }
-
- bool abCompare(const SkPoint& a1, const SkPoint& a2, const SkPoint& b1,
- const SkPoint& b2) const {
- double topD = a1.fX - b1.fX;
- if (b1.fY < a1.fY) {
- topD = (b2.fY - b1.fY) * topD - (a1.fY - b1.fY) * (b2.fX - b1.fX);
- } else if (b1.fY > a1.fY) {
- topD = (a2.fY - a1.fY) * topD + (b1.fY - a1.fY) * (a2.fX - a1.fX);
- }
- double botD = a2.fX - b2.fX;
- if (b2.fY > a2.fY) {
- botD = (b2.fY - b1.fY) * botD - (a2.fY - b2.fY) * (b2.fX - b1.fX);
- } else if (b2.fY < a2.fY) {
- botD = (a2.fY - a1.fY) * botD + (b2.fY - a2.fY) * (a2.fX - a1.fX);
- }
- // return sign of greater absolute value
- return (fabs(topD) > fabs(botD) ? topD : botD) < 0;
- }
-
- // If a pair of edges are nearly coincident for some span, add a T in the
- // edge so it can be shortened to match the other edge. Note that another
- // approach is to trim the edge after it is added to the OutBuilder list --
- // FIXME: since this has no effect if the edge is already done (i.e.,
- // fYBottom >= y) maybe this can only be done by calling trimLine later.
- void addTatYBelow(SkScalar y) {
- if (fBelow.fY <= y || fYBottom >= y) {
- return;
- }
- addTatYInner(y);
- fFixBelow = true;
- }
-
- void addTatYAbove(SkScalar y) {
- if (fBelow.fY <= y) {
- return;
- }
- addTatYInner(y);
- }
-
- void addTatYInner(SkScalar y) {
- if (fWorkEdge.fPts[0].fY > y) {
- backup(y);
- }
- SkScalar left = fWorkEdge.fPts[0].fX;
- SkScalar right = fWorkEdge.fPts[1].fX;
- if (left > right) {
- SkTSwap(left, right);
- }
- double ts[2];
- SkASSERT(fWorkEdge.fVerb[0] == SkPath::kLine_Verb);
- int pts = LineIntersect(fWorkEdge.fPts, left, right, y, ts);
- SkASSERT(pts == 1);
- // An ActiveEdge or WorkEdge has no need to modify the T values computed
- // in the InEdge, except in the following case. If a pair of edges are
- // nearly coincident, this may not be detected when the edges are
- // intersected. Later, when sorted, and this near-coincidence is found,
- // an additional t value must be added, requiring the cast below.
- InEdge* writable = const_cast<InEdge*>(fWorkEdge.fEdge);
- int insertedAt = writable->add(ts, pts, fWorkEdge.verbIndex());
- #if DEBUG_ADJUST_COINCIDENT
- SkDebugf("%s edge=%d y=%1.9g t=%1.9g\n", __FUNCTION__, ID(), y, ts[0]);
- #endif
- if (insertedAt >= 0) {
- if (insertedAt + 1 < fTIndex) {
- SkASSERT(insertedAt + 2 == fTIndex);
- --fTIndex;
- }
- }
- }
-
- bool advanceT() {
- SkASSERT(fTIndex <= fTs->count() - fExplicitTs);
- return ++fTIndex <= fTs->count() - fExplicitTs;
- }
-
- bool advance() {
- // FIXME: flip sense of next
- bool result = fWorkEdge.advance();
- fDone = !result;
- initT();
- return result;
- }
-
- void backup(SkScalar y) {
- do {
- SkASSERT(fWorkEdge.fEdge->fVerbs.begin() < fWorkEdge.fVerb);
- fWorkEdge.fPts -= *--fWorkEdge.fVerb;
- SkASSERT(fWorkEdge.fEdge->fPts.begin() <= fWorkEdge.fPts);
- } while (fWorkEdge.fPts[0].fY >= y);
- initT();
- SkASSERT(!fExplicitTs);
- fTIndex = fTs->count() + 1;
- }
-
- void calcAboveBelow(double tAbove, double tBelow) {
- fVerb = fWorkEdge.verb();
- switch (fVerb) {
- case SkPath::kLine_Verb:
- LineXYAtT(fWorkEdge.fPts, tAbove, &fAbove);
- LineXYAtT(fWorkEdge.fPts, tBelow, &fTangent);
- fBelow = fTangent;
- break;
- case SkPath::kQuad_Verb:
- // FIXME: put array in struct to avoid copy?
- SkPoint quad[3];
- QuadSubDivide(fWorkEdge.fPts, tAbove, tBelow, quad);
- fAbove = quad[0];
- fTangent = quad[0] != quad[1] ? quad[1] : quad[2];
- fBelow = quad[2];
- break;
- case SkPath::kCubic_Verb:
- SkPoint cubic[3];
- CubicSubDivide(fWorkEdge.fPts, tAbove, tBelow, cubic);
- fAbove = cubic[0];
- // FIXME: can't see how quad logic for how tangent is used
- // extends to cubic
- fTangent = cubic[0] != cubic[1] ? cubic[1]
- : cubic[0] != cubic[2] ? cubic[2] : cubic[3];
- fBelow = cubic[3];
- break;
- default:
- SkASSERT(0);
- }
- }
-
- void calcLeft(SkScalar y) {
- // OPTIMIZE: put a kDone_Verb at the end of the verb list?
- if (fDone || fBelow.fY > y) {
- return; // nothing to do; use last
- }
- calcLeft();
- if (fAbove.fY == fBelow.fY) {
- SkDebugf("%s edge=%d fAbove.fY != fBelow.fY %1.9g\n", __FUNCTION__,
- ID(), fAbove.fY);
- }
- }
-
- void calcLeft() {
- int add = (fTIndex <= fTs->count() - fExplicitTs) - 1;
- double tAbove = t(fTIndex + add);
- double tBelow = t(fTIndex - ~add);
- // OPTIMIZATION: if fAbove, fBelow have already been computed
- // for the fTIndex, don't do it again
- calcAboveBelow(tAbove, tBelow);
- // For identical x, this lets us know which edge is first.
- // If both edges have T values < 1, check x at next T (fBelow).
- SkASSERT(tAbove != tBelow);
- // FIXME: this can loop forever
- // need a break if we hit the end
- // FIXME: in unit test, figure out how explicit Ts work as well
- while (fAbove.fY == fBelow.fY) {
- if (add < 0 || fTIndex == fTs->count()) {
- add -= 1;
- SkASSERT(fTIndex + add >= 0);
- tAbove = t(fTIndex + add);
- } else {
- add += 1;
- SkASSERT(fTIndex - ~add <= fTs->count() + 1);
- tBelow = t(fTIndex - ~add);
- }
- calcAboveBelow(tAbove, tBelow);
- }
- fTAbove = tAbove;
- fTBelow = tBelow;
- }
-
- bool done(SkScalar bottom) const {
- return fDone || fYBottom >= bottom;
- }
-
- void fixBelow() {
- if (fFixBelow) {
- fTBelow = nextT();
- calcAboveBelow(fTAbove, fTBelow);
- fFixBelow = false;
- }
- }
-
- void init(const InEdge* edge) {
- fWorkEdge.init(edge);
- fDone = false;
- initT();
- fBelow.fY = SK_ScalarMin;
- fYBottom = SK_ScalarMin;
- }
-
- void initT() {
- const Intercepts& intercepts = fWorkEdge.fEdge->fIntercepts.front();
- SkASSERT(fWorkEdge.verbIndex() <= fWorkEdge.fEdge->fIntercepts.count());
- const Intercepts* interceptPtr = &intercepts + fWorkEdge.verbIndex();
- fTs = &interceptPtr->fTs;
- fExplicitTs = interceptPtr->fExplicit;
- // the above is conceptually the same as
- // fTs = &fWorkEdge.fEdge->fIntercepts[fWorkEdge.verbIndex()].fTs;
- // but templated arrays don't allow returning a pointer to the end() element
- fTIndex = 0;
- if (!fDone) {
- fVerb = fWorkEdge.verb();
- }
- SkASSERT(fVerb > SkPath::kMove_Verb);
- }
-
- // OPTIMIZATION: record if two edges are coincident when the are intersected
- // It's unclear how to do this -- seems more complicated than recording the
- // t values, since the same t values could exist intersecting non-coincident
- // edges.
- bool isCoincidentWith(const ActiveEdge* edge) const {
- if (fAbove != edge->fAbove || fBelow != edge->fBelow) {
- return false;
- }
- if (fVerb != edge->fVerb) {
- return false;
- }
- switch (fVerb) {
- case SkPath::kLine_Verb:
- return true;
- default:
- // FIXME: add support for quads, cubics
- SkASSERT(0);
- return false;
- }
- return false;
- }
-
- bool isUnordered(const ActiveEdge* edge) const {
- return fAbove == edge->fAbove && fBelow == edge->fBelow;
- }
-
-// SkPath::Verb lastVerb() const {
-// return fDone ? fWorkEdge.lastVerb() : fWorkEdge.verb();
-// }
-
- const SkPoint* lastPoints() const {
- return fDone ? fWorkEdge.lastPoints() : fWorkEdge.points();
- }
-
- bool noIntersect(const ActiveEdge& ) const {
- // incomplete
- return false;
- }
-
- // The shortest close call edge should be moved into a position where
- // it contributes if the winding is transitioning to or from zero.
- bool swapClose(const ActiveEdge* next, int prev, int wind, int mask) const {
-#if DEBUG_ADJUST_COINCIDENT
- SkDebugf("%s edge=%d (%g) next=%d (%g) prev=%d wind=%d nextWind=%d\n",
- __FUNCTION__, ID(), fBelow.fY, next->ID(), next->fBelow.fY,
- prev, wind, wind + next->fWorkEdge.winding());
-#endif
- if ((prev & mask) == 0 || (wind & mask) == 0) {
- return next->fBelow.fY < fBelow.fY;
- }
- int nextWinding = wind + next->fWorkEdge.winding();
- if ((nextWinding & mask) == 0) {
- return fBelow.fY < next->fBelow.fY;
- }
- return false;
- }
-
- bool swapCoincident(const ActiveEdge* edge, SkScalar bottom) const {
- if (fBelow.fY >= bottom || fDone || edge->fDone) {
- return false;
- }
- ActiveEdge thisWork = *this;
- ActiveEdge edgeWork = *edge;
- while ((thisWork.advanceT() || thisWork.advance())
- && (edgeWork.advanceT() || edgeWork.advance())) {
- thisWork.calcLeft();
- edgeWork.calcLeft();
- if (thisWork < edgeWork) {
- return false;
- }
- if (edgeWork < thisWork) {
- return true;
- }
- }
- return false;
- }
-
- bool swapUnordered(const ActiveEdge* edge, SkScalar /* bottom */) const {
- SkASSERT(fVerb != SkPath::kLine_Verb
- || edge->fVerb != SkPath::kLine_Verb);
- if (fDone || edge->fDone) {
- return false;
- }
- ActiveEdge thisWork, edgeWork;
- extractAboveBelow(thisWork);
- edge->extractAboveBelow(edgeWork);
- return edgeWork < thisWork;
- }
-
- bool tooCloseToCall(const ActiveEdge* edge) const {
- int ulps;
- double t1, t2, b1, b2;
- // This logic must be kept in sync with operator <
- if (edge->fAbove.fY < fAbove.fY) {
- t1 = (edge->fTangent.fY - edge->fAbove.fY) * (fAbove.fX - edge->fAbove.fX);
- t2 = (fAbove.fY - edge->fAbove.fY) * (edge->fTangent.fX - edge->fAbove.fX);
- } else if (edge->fAbove.fY > fAbove.fY) {
- t1 = (fTangent.fY - fAbove.fY) * (fAbove.fX - edge->fAbove.fX);
- t2 = (fAbove.fY - edge->fAbove.fY) * (fTangent.fX - fAbove.fX);
- } else {
- t1 = fAbove.fX;
- t2 = edge->fAbove.fX;
- }
- if (edge->fTangent.fY > fTangent.fY) {
- b1 = (edge->fTangent.fY - edge->fAbove.fY) * (fTangent.fX - edge->fTangent.fX);
- b2 = (fTangent.fY - edge->fTangent.fY) * (edge->fTangent.fX - edge->fAbove.fX);
- } else if (edge->fTangent.fY < fTangent.fY) {
- b1 = (fTangent.fY - fAbove.fY) * (fTangent.fX - edge->fTangent.fX);
- b2 = (fTangent.fY - edge->fTangent.fY) * (fTangent.fX - fAbove.fX);
- } else {
- b1 = fTangent.fX;
- b2 = edge->fTangent.fX;
- }
- if (fabs(t1 - t2) > fabs(b1 - b2)) {
- ulps = UlpsDiff((float) t1, (float) t2);
- } else {
- ulps = UlpsDiff((float) b1, (float) b2);
- }
-#if DEBUG_ADJUST_COINCIDENT
- SkDebugf("%s this=%d edge=%d ulps=%d\n", __FUNCTION__, ID(), edge->ID(),
- ulps);
-#endif
- if (ulps < 0 || ulps > 32) {
- return false;
- }
- if (fVerb == SkPath::kLine_Verb && edge->fVerb == SkPath::kLine_Verb) {
- return true;
- }
- if (fVerb != SkPath::kLine_Verb && edge->fVerb != SkPath::kLine_Verb) {
- return false;
- }
-
- double ts[2];
- bool isLine = true;
- bool curveQuad = true;
- if (fVerb == SkPath::kCubic_Verb) {
- ts[0] = (fTAbove * 2 + fTBelow) / 3;
- ts[1] = (fTAbove + fTBelow * 2) / 3;
- curveQuad = isLine = false;
- } else if (edge->fVerb == SkPath::kCubic_Verb) {
- ts[0] = (edge->fTAbove * 2 + edge->fTBelow) / 3;
- ts[1] = (edge->fTAbove + edge->fTBelow * 2) / 3;
- curveQuad = false;
- } else if (fVerb == SkPath::kQuad_Verb) {
- ts[0] = fTAbove;
- ts[1] = (fTAbove + fTBelow) / 2;
- isLine = false;
- } else {
- SkASSERT(edge->fVerb == SkPath::kQuad_Verb);
- ts[0] = edge->fTAbove;
- ts[1] = (edge->fTAbove + edge->fTBelow) / 2;
- }
- const SkPoint* curvePts = isLine ? edge->lastPoints() : lastPoints();
- const ActiveEdge* lineEdge = isLine ? this : edge;
- SkPoint curveSample[2];
- for (int index = 0; index < 2; ++index) {
- if (curveQuad) {
- QuadXYAtT(curvePts, ts[index], &curveSample[index]);
- } else {
- CubicXYAtT(curvePts, ts[index], &curveSample[index]);
- }
- }
- return IsCoincident(curveSample, lineEdge->fAbove, lineEdge->fBelow);
- }
-
- double nextT() const {
- SkASSERT(fTIndex <= fTs->count() - fExplicitTs);
- return t(fTIndex + 1);
- }
-
- double t() const {
- return t(fTIndex);
- }
-
- double t(int tIndex) const {
- if (fExplicitTs) {
- SkASSERT(tIndex < fTs->count());
- return (*fTs)[tIndex];
- }
- if (tIndex == 0) {
- return 0;
- }
- if (tIndex > fTs->count()) {
- return 1;
- }
- return (*fTs)[tIndex - 1];
- }
-
- // FIXME: debugging only
- int ID() const {
- return fWorkEdge.fEdge->fID;
- }
-
-private:
- // utility used only by swapUnordered
- void extractAboveBelow(ActiveEdge& extracted) const {
- SkPoint curve[4];
- switch (fVerb) {
- case SkPath::kLine_Verb:
- extracted.fAbove = fAbove;
- extracted.fTangent = fTangent;
- return;
- case SkPath::kQuad_Verb:
- QuadSubDivide(lastPoints(), fTAbove, fTBelow, curve);
- break;
- case SkPath::kCubic_Verb:
- CubicSubDivide(lastPoints(), fTAbove, fTBelow, curve);
- break;
- default:
- SkASSERT(0);
- }
- extracted.fAbove = curve[0];
- extracted.fTangent = curve[1];
- }
-
-public:
- WorkEdge fWorkEdge;
- const SkTDArray<double>* fTs;
- SkPoint fAbove;
- SkPoint fTangent;
- SkPoint fBelow;
- double fTAbove; // OPTIMIZATION: only required if edge has quads or cubics
- double fTBelow;
- SkScalar fYBottom;
- int fCoincident;
- int fTIndex;
- SkPath::Verb fVerb;
- bool fSkip; // OPTIMIZATION: use bitfields?
- bool fCloseCall;
- bool fDone;
- bool fFixBelow;
- bool fExplicitTs;
-};
-
-static void addToActive(SkTDArray<ActiveEdge>& activeEdges, const InEdge* edge) {
- size_t count = activeEdges.count();
- for (size_t index = 0; index < count; ++index) {
- if (edge == activeEdges[index].fWorkEdge.fEdge) {
- return;
- }
- }
- ActiveEdge* active = activeEdges.append();
- active->init(edge);
-}
-
-// Find any intersections in the range of active edges. A pair of edges, on
-// either side of another edge, may change the winding contribution for part of
-// the edge.
-// Keep horizontal edges just for
-// the purpose of computing when edges change their winding contribution, since
-// this is essentially computing the horizontal intersection.
-static void addBottomT(InEdge** currentPtr, InEdge** lastPtr,
- HorizontalEdge** horizontal) {
- InEdge** testPtr = currentPtr - 1;
- HorizontalEdge* horzEdge = *horizontal;
- SkScalar left = horzEdge->fLeft;
- SkScalar bottom = horzEdge->fY;
- while (++testPtr != lastPtr) {
- InEdge* test = *testPtr;
- if (test->fBounds.fBottom <= bottom || test->fBounds.fRight <= left) {
- continue;
- }
- WorkEdge wt;
- wt.init(test);
- do {
- HorizontalEdge** sorted = horizontal;
- horzEdge = *sorted;
- do {
- double wtTs[4];
- int pts;
- uint8_t verb = wt.verb();
- switch (verb) {
- case SkPath::kLine_Verb:
- pts = LineIntersect(wt.fPts, horzEdge->fLeft,
- horzEdge->fRight, horzEdge->fY, wtTs);
- break;
- case SkPath::kQuad_Verb:
- pts = QuadIntersect(wt.fPts, horzEdge->fLeft,
- horzEdge->fRight, horzEdge->fY, wtTs);
- break;
- case SkPath::kCubic_Verb:
- pts = CubicIntersect(wt.fPts, horzEdge->fLeft,
- horzEdge->fRight, horzEdge->fY, wtTs);
- break;
- }
- if (pts) {
-#if DEBUG_ADD_BOTTOM_TS
- for (int x = 0; x < pts; ++x) {
- SkDebugf("%s y=%g wtTs[0]=%g (%g,%g", __FUNCTION__,
- horzEdge->fY, wtTs[x], wt.fPts[0].fX, wt.fPts[0].fY);
- for (int y = 0; y < verb; ++y) {
- SkDebugf(" %g,%g", wt.fPts[y + 1].fX, wt.fPts[y + 1].fY));
- }
- SkDebugf(")\n");
- }
- if (pts > verb) {
- SkASSERT(0); // FIXME ? should this work?
- SkDebugf("%s wtTs[1]=%g\n", __FUNCTION__, wtTs[1]);
- }
-#endif
- test->add(wtTs, pts, wt.verbIndex());
- }
- horzEdge = *++sorted;
- } while (horzEdge->fY == bottom
- && horzEdge->fLeft <= test->fBounds.fRight);
- } while (wt.advance());
- }
-}
-
-#if DEBUG_ADD_INTERSECTING_TS
-static void debugShowLineIntersection(int pts, const WorkEdge& wt,
- const WorkEdge& wn, const double wtTs[2], const double wnTs[2]) {
- if (!pts) {
- return;
- }
- SkPoint wtOutPt, wnOutPt;
- LineXYAtT(wt.fPts, wtTs[0], &wtOutPt);
- LineXYAtT(wn.fPts, wnTs[0], &wnOutPt);
- SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n",
- __FUNCTION__,
- wtTs[0], wt.fPts[0].fX, wt.fPts[0].fY,
- wt.fPts[1].fX, wt.fPts[1].fY, wtOutPt.fX, wtOutPt.fY);
- if (pts == 2) {
- SkDebugf("%s wtTs[1]=%g\n", __FUNCTION__, wtTs[1]);
- }
- SkDebugf("%s wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n",
- __FUNCTION__,
- wnTs[0], wn.fPts[0].fX, wn.fPts[0].fY,
- wn.fPts[1].fX, wn.fPts[1].fY, wnOutPt.fX, wnOutPt.fY);
- if (pts == 2) {
- SkDebugf("%s wnTs[1]=%g\n", __FUNCTION__, wnTs[1]);
- }
-}
-#else
-static void debugShowLineIntersection(int , const WorkEdge& ,
- const WorkEdge& , const double [2], const double [2]) {
-}
-#endif
-
-static void addIntersectingTs(InEdge** currentPtr, InEdge** lastPtr) {
- InEdge** testPtr = currentPtr - 1;
- // FIXME: lastPtr should be past the point of interest, so
- // test below should be lastPtr - 2
- // that breaks testSimplifyTriangle22, so further investigation is needed
- while (++testPtr != lastPtr - 1) {
- InEdge* test = *testPtr;
- InEdge** nextPtr = testPtr;
- do {
- InEdge* next = *++nextPtr;
- // FIXME: this compares against the sentinel sometimes
- // OPTIMIZATION: this may never be needed since this gets called
- // in two passes now. Verify that double hits are appropriate.
- if (test->cached(next)) {
- continue;
- }
- if (!Bounds::Intersects(test->fBounds, next->fBounds)) {
- continue;
- }
- WorkEdge wt, wn;
- wt.init(test);
- wn.init(next);
- do {
- int pts;
- Intersections ts;
- bool swap = false;
- switch (wt.verb()) {
- case SkPath::kLine_Verb:
- switch (wn.verb()) {
- case SkPath::kLine_Verb: {
- pts = LineIntersect(wt.fPts, wn.fPts, ts);
- debugShowLineIntersection(pts, wt, wn,
- ts.fT[0], ts.fT[1]);
- break;
- }
- case SkPath::kQuad_Verb: {
- swap = true;
- pts = QuadLineIntersect(wn.fPts, wt.fPts, ts);
- break;
- }
- case SkPath::kCubic_Verb: {
- swap = true;
- pts = CubicLineIntersect(wn.fPts, wt.fPts, ts);
- break;
- }
- default:
- SkASSERT(0);
- }
- break;
- case SkPath::kQuad_Verb:
- switch (wn.verb()) {
- case SkPath::kLine_Verb: {
- pts = QuadLineIntersect(wt.fPts, wn.fPts, ts);
- break;
- }
- case SkPath::kQuad_Verb: {
- pts = QuadIntersect(wt.fPts, wn.fPts, ts);
- break;
- }
- case SkPath::kCubic_Verb: {
- // FIXME: promote quad to cubic
- pts = CubicIntersect(wt.fPts, wn.fPts, ts);
- break;
- }
- default:
- SkASSERT(0);
- }
- break;
- case SkPath::kCubic_Verb:
- switch (wn.verb()) {
- case SkPath::kLine_Verb: {
- pts = CubicLineIntersect(wt.fPts, wn.fPts, ts);
- break;
- }
- case SkPath::kQuad_Verb: {
- // FIXME: promote quad to cubic
- pts = CubicIntersect(wt.fPts, wn.fPts, ts);
- break;
- }
- case SkPath::kCubic_Verb: {
- pts = CubicIntersect(wt.fPts, wn.fPts, ts);
- break;
- }
- default:
- SkASSERT(0);
- }
- break;
- default:
- SkASSERT(0);
- }
- test->add(ts.fT[swap], pts, wt.verbIndex());
- next->add(ts.fT[!swap], pts, wn.verbIndex());
- } while (wt.bottom() <= wn.bottom() ? wt.advance() : wn.advance());
- } while (nextPtr != lastPtr);
- }
-}
-
-static InEdge** advanceEdges(SkTDArray<ActiveEdge>* activeEdges,
- InEdge** currentPtr, InEdge** lastPtr, SkScalar y) {
- InEdge** testPtr = currentPtr - 1;
- while (++testPtr != lastPtr) {
- if ((*testPtr)->fBounds.fBottom > y) {
- continue;
- }
- if (activeEdges) {
- InEdge* test = *testPtr;
- ActiveEdge* activePtr = activeEdges->begin() - 1;
- ActiveEdge* lastActive = activeEdges->end();
- while (++activePtr != lastActive) {
- if (activePtr->fWorkEdge.fEdge == test) {
- activeEdges->remove(activePtr - activeEdges->begin());
- break;
- }
- }
- }
- if (testPtr == currentPtr) {
- ++currentPtr;
- }
- }
- return currentPtr;
-}
-
-// OPTIMIZE: inline?
-static HorizontalEdge** advanceHorizontal(HorizontalEdge** edge, SkScalar y) {
- while ((*edge)->fY < y) {
- ++edge;
- }
- return edge;
-}
-
-// compute bottom taking into account any intersected edges
-static SkScalar computeInterceptBottom(SkTDArray<ActiveEdge>& activeEdges,
- SkScalar y, SkScalar bottom) {
- ActiveEdge* activePtr = activeEdges.begin() - 1;
- ActiveEdge* lastActive = activeEdges.end();
- while (++activePtr != lastActive) {
- const InEdge* test = activePtr->fWorkEdge.fEdge;
- if (!test->fContainsIntercepts) {
- continue;
- }
- WorkEdge wt;
- wt.init(test);
- do {
- const Intercepts& intercepts = test->fIntercepts[wt.verbIndex()];
- if (intercepts.fTopIntercepts > 1) {
- SkScalar yTop = wt.fPts[0].fY;
- if (yTop > y && bottom > yTop) {
- bottom = yTop;
- }
- }
- if (intercepts.fBottomIntercepts > 1) {
- SkScalar yBottom = wt.fPts[wt.verb()].fY;
- if (yBottom > y && bottom > yBottom) {
- bottom = yBottom;
- }
- }
- const SkTDArray<double>& fTs = intercepts.fTs;
- size_t count = fTs.count();
- for (size_t index = 0; index < count; ++index) {
- SkScalar yIntercept;
- switch (wt.verb()) {
- case SkPath::kLine_Verb: {
- yIntercept = LineYAtT(wt.fPts, fTs[index]);
- break;
- }
- case SkPath::kQuad_Verb: {
- yIntercept = QuadYAtT(wt.fPts, fTs[index]);
- break;
- }
- case SkPath::kCubic_Verb: {
- yIntercept = CubicYAtT(wt.fPts, fTs[index]);
- break;
- }
- default:
- SkASSERT(0); // should never get here
- }
- if (yIntercept > y && bottom > yIntercept) {
- bottom = yIntercept;
- }
- }
- } while (wt.advance());
- }
-#if DEBUG_BOTTOM
- SkDebugf("%s bottom=%1.9g\n", __FUNCTION__, bottom);
-#endif
- return bottom;
-}
-
-static SkScalar findBottom(InEdge** currentPtr,
- InEdge** edgeListEnd, SkTDArray<ActiveEdge>* activeEdges, SkScalar y,
- bool /*asFill*/, InEdge**& testPtr) {
- InEdge* current = *currentPtr;
- SkScalar bottom = current->fBounds.fBottom;
-
- // find the list of edges that cross y
- InEdge* test = *testPtr;
- while (testPtr != edgeListEnd) {
- SkScalar testTop = test->fBounds.fTop;
- if (bottom <= testTop) {
- break;
- }
- SkScalar testBottom = test->fBounds.fBottom;
- // OPTIMIZATION: Shortening the bottom is only interesting when filling
- // and when the edge is to the left of a longer edge. If it's a framing
- // edge, or part of the right, it won't effect the longer edges.
- if (testTop > y) {
- bottom = testTop;
- break;
- }
- if (y < testBottom) {
- if (bottom > testBottom) {
- bottom = testBottom;
- }
- if (activeEdges) {
- addToActive(*activeEdges, test);
- }
- }
- test = *++testPtr;
- }
-#if DEBUG_BOTTOM
- SkDebugf("%s %d bottom=%1.9g\n", __FUNCTION__, activeEdges ? 2 : 1, bottom);
-#endif
- return bottom;
-}
-
-static void makeEdgeList(SkTArray<InEdge>& edges, InEdge& edgeSentinel,
- SkTDArray<InEdge*>& edgeList) {
- size_t edgeCount = edges.count();
- if (edgeCount == 0) {
- return;
- }
- int id = 0;
- for (size_t index = 0; index < edgeCount; ++index) {
- InEdge& edge = edges[index];
- if (!edge.fWinding) {
- continue;
- }
- edge.fID = ++id;
- *edgeList.append() = &edge;
- }
- *edgeList.append() = &edgeSentinel;
- QSort<InEdge>(edgeList.begin(), edgeList.end() - 1);
-}
-
-static void makeHorizontalList(SkTDArray<HorizontalEdge>& edges,
- HorizontalEdge& edgeSentinel, SkTDArray<HorizontalEdge*>& edgeList) {
- size_t edgeCount = edges.count();
- if (edgeCount == 0) {
- return;
- }
- for (size_t index = 0; index < edgeCount; ++index) {
- *edgeList.append() = &edges[index];
- }
- edgeSentinel.fLeft = edgeSentinel.fRight = edgeSentinel.fY = SK_ScalarMax;
- *edgeList.append() = &edgeSentinel;
- QSort<HorizontalEdge>(edgeList.begin(), edgeList.end() - 1);
-}
-
-static void skipCoincidence(int lastWinding, int winding, int windingMask,
- ActiveEdge* activePtr, ActiveEdge* firstCoincident) {
- if (((lastWinding & windingMask) == 0) ^ ((winding & windingMask) != 0)) {
- return;
- }
- // FIXME: ? shouldn't this be if (lastWinding & windingMask) ?
- if (lastWinding) {
-#if DEBUG_ADJUST_COINCIDENT
- SkDebugf("%s edge=%d 1 set skip=false\n", __FUNCTION__, activePtr->ID());
-#endif
- activePtr->fSkip = false;
- } else {
-#if DEBUG_ADJUST_COINCIDENT
- SkDebugf("%s edge=%d 2 set skip=false\n", __FUNCTION__, firstCoincident->ID());
-#endif
- firstCoincident->fSkip = false;
- }
-}
-
-static void sortHorizontal(SkTDArray<ActiveEdge>& activeEdges,
- SkTDArray<ActiveEdge*>& edgeList, SkScalar y) {
- size_t edgeCount = activeEdges.count();
- if (edgeCount == 0) {
- return;
- }
-#if DEBUG_SORT_HORIZONTAL
- const int tab = 3; // FIXME: debugging only
- SkDebugf("%s y=%1.9g\n", __FUNCTION__, y);
-#endif
- size_t index;
- for (index = 0; index < edgeCount; ++index) {
- ActiveEdge& activeEdge = activeEdges[index];
- do {
- activeEdge.calcLeft(y);
- // skip segments that don't span y
- if (activeEdge.fAbove != activeEdge.fBelow) {
- break;
- }
- if (activeEdge.fDone) {
-#if DEBUG_SORT_HORIZONTAL
- SkDebugf("%*s edge=%d done\n", tab, "", activeEdge.ID());
-#endif
- goto nextEdge;
- }
-#if DEBUG_SORT_HORIZONTAL
- SkDebugf("%*s edge=%d above==below\n", tab, "", activeEdge.ID());
-#endif
- } while (activeEdge.advanceT() || activeEdge.advance());
-#if DEBUG_SORT_HORIZONTAL
- SkDebugf("%*s edge=%d above=(%1.9g,%1.9g) (%1.9g) below=(%1.9g,%1.9g)"
- " (%1.9g)\n", tab, "", activeEdge.ID(),
- activeEdge.fAbove.fX, activeEdge.fAbove.fY, activeEdge.fTAbove,
- activeEdge.fBelow.fX, activeEdge.fBelow.fY, activeEdge.fTBelow);
-#endif
- activeEdge.fSkip = activeEdge.fCloseCall = activeEdge.fFixBelow = false;
- *edgeList.append() = &activeEdge;
-nextEdge:
- ;
- }
- QSort<ActiveEdge>(edgeList.begin(), edgeList.end() - 1);
-}
-
-// remove coincident edges
-// OPTIMIZE: remove edges? This is tricky because the current logic expects
-// the winding count to be maintained while skipping coincident edges. In
-// addition to removing the coincident edges, the remaining edges would need
-// to have a different winding value, possibly different per intercept span.
-static SkScalar adjustCoincident(SkTDArray<ActiveEdge*>& edgeList,
- int windingMask, SkScalar y, SkScalar bottom, OutEdgeBuilder& outBuilder)
-{
-#if DEBUG_ADJUST_COINCIDENT
- SkDebugf("%s y=%1.9g bottom=%1.9g\n", __FUNCTION__, y, bottom);
-#endif
- size_t edgeCount = edgeList.count();
- if (edgeCount == 0) {
- return bottom;
- }
- ActiveEdge* activePtr, * nextPtr = edgeList[0];
- size_t index;
- bool foundCoincident = false;
- size_t firstIndex = 0;
- for (index = 1; index < edgeCount; ++index) {
- activePtr = nextPtr;
- nextPtr = edgeList[index];
- if (firstIndex != index - 1 && activePtr->fVerb > SkPath::kLine_Verb
- && nextPtr->fVerb == SkPath::kLine_Verb
- && activePtr->isUnordered(nextPtr)) {
- // swap the line with the curve
- // back up to the previous edge and retest
- SkTSwap<ActiveEdge*>(edgeList[index - 1], edgeList[index]);
- SkASSERT(index > 1);
- index -= 2;
- nextPtr = edgeList[index];
- continue;
- }
- bool closeCall = false;
- activePtr->fCoincident = firstIndex;
- if (activePtr->isCoincidentWith(nextPtr)
- || (closeCall = activePtr->tooCloseToCall(nextPtr))) {
- activePtr->fSkip = nextPtr->fSkip = foundCoincident = true;
- activePtr->fCloseCall = nextPtr->fCloseCall = closeCall;
- } else if (activePtr->isUnordered(nextPtr)) {
- foundCoincident = true;
- } else {
- firstIndex = index;
- }
- }
- nextPtr->fCoincident = firstIndex;
- if (!foundCoincident) {
- return bottom;
- }
- int winding = 0;
- nextPtr = edgeList[0];
- for (index = 1; index < edgeCount; ++index) {
- int priorWinding = winding;
- winding += activePtr->fWorkEdge.winding();
- activePtr = nextPtr;
- nextPtr = edgeList[index];
- SkASSERT(activePtr == edgeList[index - 1]);
- SkASSERT(nextPtr == edgeList[index]);
- if (activePtr->fCoincident != nextPtr->fCoincident) {
- continue;
- }
- // the coincident edges may not have been sorted above -- advance
- // the edges and resort if needed
- // OPTIMIZE: if sorting is done incrementally as new edges are added
- // and not all at once as is done here, fold this test into the
- // current less than test.
- while ((!activePtr->fSkip || !nextPtr->fSkip)
- && activePtr->fCoincident == nextPtr->fCoincident) {
- if (activePtr->swapUnordered(nextPtr, bottom)) {
- winding -= activePtr->fWorkEdge.winding();
- SkASSERT(activePtr == edgeList[index - 1]);
- SkASSERT(nextPtr == edgeList[index]);
- SkTSwap<ActiveEdge*>(edgeList[index - 1], edgeList[index]);
- if (--index == 0) {
- winding += activePtr->fWorkEdge.winding();
- break;
- }
- // back up one
- activePtr = edgeList[index - 1];
- continue;
- }
- SkASSERT(activePtr == edgeList[index - 1]);
- SkASSERT(nextPtr == edgeList[index]);
- break;
- }
- if (activePtr->fSkip && nextPtr->fSkip) {
- if (activePtr->fCloseCall ? activePtr->swapClose(nextPtr,
- priorWinding, winding, windingMask)
- : activePtr->swapCoincident(nextPtr, bottom)) {
- winding -= activePtr->fWorkEdge.winding();
- SkASSERT(activePtr == edgeList[index - 1]);
- SkASSERT(nextPtr == edgeList[index]);
- SkTSwap<ActiveEdge*>(edgeList[index - 1], edgeList[index]);
- SkTSwap<ActiveEdge*>(activePtr, nextPtr);
- winding += activePtr->fWorkEdge.winding();
- SkASSERT(activePtr == edgeList[index - 1]);
- SkASSERT(nextPtr == edgeList[index]);
- }
- }
- }
- int firstCoincidentWinding = 0;
- ActiveEdge* firstCoincident = NULL;
- winding = 0;
- activePtr = edgeList[0];
- for (index = 1; index < edgeCount; ++index) {
- int priorWinding = winding;
- winding += activePtr->fWorkEdge.winding();
- nextPtr = edgeList[index];
- if (activePtr->fSkip && nextPtr->fSkip
- && activePtr->fCoincident == nextPtr->fCoincident) {
- if (!firstCoincident) {
- firstCoincident = activePtr;
- firstCoincidentWinding = priorWinding;
- }
- if (activePtr->fCloseCall) {
- // If one of the edges has already been added to out as a non
- // coincident edge, trim it back to the top of this span
- if (outBuilder.trimLine(y, activePtr->ID())) {
- activePtr->addTatYAbove(y);
- #if DEBUG_ADJUST_COINCIDENT
- SkDebugf("%s 1 edge=%d y=%1.9g (was fYBottom=%1.9g)\n",
- __FUNCTION__, activePtr->ID(), y, activePtr->fYBottom);
- #endif
- activePtr->fYBottom = y;
- }
- if (outBuilder.trimLine(y, nextPtr->ID())) {
- nextPtr->addTatYAbove(y);
- #if DEBUG_ADJUST_COINCIDENT
- SkDebugf("%s 2 edge=%d y=%1.9g (was fYBottom=%1.9g)\n",
- __FUNCTION__, nextPtr->ID(), y, nextPtr->fYBottom);
- #endif
- nextPtr->fYBottom = y;
- }
- // add missing t values so edges can be the same length
- SkScalar testY = activePtr->fBelow.fY;
- nextPtr->addTatYBelow(testY);
- if (bottom > testY && testY > y) {
- #if DEBUG_ADJUST_COINCIDENT
- SkDebugf("%s 3 edge=%d bottom=%1.9g (was bottom=%1.9g)\n",
- __FUNCTION__, activePtr->ID(), testY, bottom);
- #endif
- bottom = testY;
- }
- testY = nextPtr->fBelow.fY;
- activePtr->addTatYBelow(testY);
- if (bottom > testY && testY > y) {
- #if DEBUG_ADJUST_COINCIDENT
- SkDebugf("%s 4 edge=%d bottom=%1.9g (was bottom=%1.9g)\n",
- __FUNCTION__, nextPtr->ID(), testY, bottom);
- #endif
- bottom = testY;
- }
- }
- } else if (firstCoincident) {
- skipCoincidence(firstCoincidentWinding, winding, windingMask,
- activePtr, firstCoincident);
- firstCoincident = NULL;
- }
- activePtr = nextPtr;
- }
- if (firstCoincident) {
- winding += activePtr->fWorkEdge.winding();
- skipCoincidence(firstCoincidentWinding, winding, windingMask, activePtr,
- firstCoincident);
- }
- // fix up the bottom for close call edges. OPTIMIZATION: maybe this could
- // be in the loop above, but moved here since loop above reads fBelow and
- // it felt unsafe to write it in that loop
- for (index = 0; index < edgeCount; ++index) {
- (edgeList[index])->fixBelow();
- }
- return bottom;
-}
-
-// stitch edge and t range that satisfies operation
-static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar
-#if DEBUG_STITCH_EDGE
-y
-#endif
-,
- SkScalar bottom, int windingMask, bool fill, OutEdgeBuilder& outBuilder) {
- int winding = 0;
- ActiveEdge** activeHandle = edgeList.begin() - 1;
- ActiveEdge** lastActive = edgeList.end();
-#if DEBUG_STITCH_EDGE
- const int tab = 7; // FIXME: debugging only
- SkDebugf("%s y=%1.9g bottom=%1.9g\n", __FUNCTION__, y, bottom);
-#endif
- while (++activeHandle != lastActive) {
- ActiveEdge* activePtr = *activeHandle;
- const WorkEdge& wt = activePtr->fWorkEdge;
- int lastWinding = winding;
- winding += wt.winding();
-#if DEBUG_STITCH_EDGE
- SkDebugf("%*s edge=%d lastWinding=%d winding=%d skip=%d close=%d"
- " above=%1.9g below=%1.9g\n",
- tab-4, "", activePtr->ID(), lastWinding,
- winding, activePtr->fSkip, activePtr->fCloseCall,
- activePtr->fTAbove, activePtr->fTBelow);
-#endif
- if (activePtr->done(bottom)) {
-#if DEBUG_STITCH_EDGE
- SkDebugf("%*s fDone=%d || fYBottom=%1.9g >= bottom\n", tab, "",
- activePtr->fDone, activePtr->fYBottom);
-#endif
- continue;
- }
- int opener = (lastWinding & windingMask) == 0;
- bool closer = (winding & windingMask) == 0;
- SkASSERT(!opener | !closer);
- bool inWinding = opener | closer;
- SkPoint clippedPts[4];
- const SkPoint* clipped = NULL;
- bool moreToDo, aboveBottom;
- do {
- double currentT = activePtr->t();
- const SkPoint* points = wt.fPts;
- double nextT;
- SkPath::Verb verb = activePtr->fVerb;
- do {
- nextT = activePtr->nextT();
- // FIXME: obtuse: want efficient way to say
- // !currentT && currentT != 1 || !nextT && nextT != 1
- if (currentT * nextT != 0 || currentT + nextT != 1) {
- // OPTIMIZATION: if !inWinding, we only need
- // clipped[1].fY
- switch (verb) {
- case SkPath::kLine_Verb:
- LineSubDivide(points, currentT, nextT, clippedPts);
- break;
- case SkPath::kQuad_Verb:
- QuadSubDivide(points, currentT, nextT, clippedPts);
- break;
- case SkPath::kCubic_Verb:
- CubicSubDivide(points, currentT, nextT, clippedPts);
- break;
- default:
- SkASSERT(0);
- break;
- }
- clipped = clippedPts;
- } else {
- clipped = points;
- }
- if (inWinding && !activePtr->fSkip && (fill ? clipped[0].fY
- != clipped[verb].fY : clipped[0] != clipped[verb])) {
-#if DEBUG_STITCH_EDGE
- SkDebugf("%*s add%s %1.9g,%1.9g %1.9g,%1.9g edge=%d"
- " v=%d t=(%1.9g,%1.9g)\n", tab, "",
- kUVerbStr[verb], clipped[0].fX, clipped[0].fY,
- clipped[verb].fX, clipped[verb].fY,
- activePtr->ID(),
- activePtr->fWorkEdge.fVerb
- - activePtr->fWorkEdge.fEdge->fVerbs.begin(),
- currentT, nextT);
-#endif
- outBuilder.addCurve(clipped, (SkPath::Verb) verb,
- activePtr->fWorkEdge.fEdge->fID,
- activePtr->fCloseCall);
- } else {
-#if DEBUG_STITCH_EDGE
- SkDebugf("%*s skip%s %1.9g,%1.9g %1.9g,%1.9g"
- " edge=%d v=%d t=(%1.9g,%1.9g)\n", tab, "",
- kUVerbStr[verb], clipped[0].fX, clipped[0].fY,
- clipped[verb].fX, clipped[verb].fY,
- activePtr->ID(),
- activePtr->fWorkEdge.fVerb
- - activePtr->fWorkEdge.fEdge->fVerbs.begin(),
- currentT, nextT);
-#endif
- }
- // by advancing fAbove/fBelow, the next call to sortHorizontal
- // will use these values if they're still valid instead of
- // recomputing
- if (clipped[verb].fY > activePtr->fBelow.fY
- && bottom >= activePtr->fBelow.fY
- && verb == SkPath::kLine_Verb) {
- activePtr->fAbove = activePtr->fBelow;
- activePtr->fBelow = activePtr->fTangent = clipped[verb];
- activePtr->fTAbove = activePtr->fTBelow < 1
- ? activePtr->fTBelow : 0;
- activePtr->fTBelow = nextT;
- }
- currentT = nextT;
- moreToDo = activePtr->advanceT();
- activePtr->fYBottom = clipped[verb].fY; // was activePtr->fCloseCall ? bottom :
-
- // clearing the fSkip/fCloseCall bit here means that trailing edges
- // fall out of sync, if one edge is long and another is a series of short pieces
- // if fSkip/fCloseCall is set, need to recompute coincidence/too-close-to-call
- // after advancing
- // another approach would be to restrict bottom to smaller part of close call
- // maybe this is already happening with coincidence when intersection is computed,
- // and needs to be added to the close call computation as well
- // this is hard to do because that the bottom is important is not known when
- // the lines are intersected; only when the computation for edge sorting is done
- // does the need for new bottoms become apparent.
- // maybe this is good incentive to scrap the current sort and do an insertion
- // sort that can take this into consideration when the x value is computed
-
- // FIXME: initialized in sortHorizontal, cleared here as well so
- // that next edge is not skipped -- but should skipped edges ever
- // continue? (probably not)
- aboveBottom = clipped[verb].fY < bottom;
- if (clipped[0].fY != clipped[verb].fY) {
- activePtr->fSkip = false;
- activePtr->fCloseCall = false;
- aboveBottom &= !activePtr->fCloseCall;
- }
-#if DEBUG_STITCH_EDGE
- else {
- if (activePtr->fSkip || activePtr->fCloseCall) {
- SkDebugf("%s skip or close == %1.9g\n", __FUNCTION__,
- clippedPts[0].fY);
- }
- }
-#endif
- } while (moreToDo & aboveBottom);
- } while ((moreToDo || activePtr->advance()) & aboveBottom);
- }
-}
-
-#if DEBUG_DUMP
-static void dumpEdgeList(const SkTDArray<InEdge*>& edgeList,
- const InEdge& edgeSentinel) {
- InEdge** debugPtr = edgeList.begin();
- do {
- (*debugPtr++)->dump();
- } while (*debugPtr != &edgeSentinel);
-}
-#else
-static void dumpEdgeList(const SkTDArray<InEdge*>& ,
- const InEdge& ) {
-}
-#endif
-
-void simplify(const SkPath& path, bool asFill, SkPath& simple) {
- // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
- int windingMask = (path.getFillType() & 1) ? 1 : -1;
- simple.reset();
- simple.setFillType(SkPath::kEvenOdd_FillType);
- // turn path into list of edges increasing in y
- // if an edge is a quad or a cubic with a y extrema, note it, but leave it
- // unbroken. Once we have a list, sort it, then walk the list (walk edges
- // twice that have y extrema's on top) and detect crossings -- look for raw
- // bounds that cross over, then tight bounds that cross
- SkTArray<InEdge> edges;
- SkTDArray<HorizontalEdge> horizontalEdges;
- InEdgeBuilder builder(path, asFill, edges, horizontalEdges);
- SkTDArray<InEdge*> edgeList;
- InEdge edgeSentinel;
- edgeSentinel.reset();
- makeEdgeList(edges, edgeSentinel, edgeList);
- SkTDArray<HorizontalEdge*> horizontalList;
- HorizontalEdge horizontalSentinel;
- makeHorizontalList(horizontalEdges, horizontalSentinel, horizontalList);
- InEdge** currentPtr = edgeList.begin();
- if (!currentPtr) {
- return;
- }
- // find all intersections between edges
-// beyond looking for horizontal intercepts, we need to know if any active edges
-// intersect edges below 'bottom', but above the active edge segment.
-// maybe it makes more sense to compute all intercepts before doing anything
-// else, since the intercept list is long-lived, at least in the current design.
- SkScalar y = (*currentPtr)->fBounds.fTop;
- HorizontalEdge** currentHorizontal = horizontalList.begin();
- do {
- InEdge** lastPtr = currentPtr; // find the edge below the bottom of the first set
- SkScalar bottom = findBottom(currentPtr, edgeList.end(),
- NULL, y, asFill, lastPtr);
- if (lastPtr > currentPtr) {
- if (currentHorizontal) {
- if ((*currentHorizontal)->fY < SK_ScalarMax) {
- addBottomT(currentPtr, lastPtr, currentHorizontal);
- }
- currentHorizontal = advanceHorizontal(currentHorizontal, bottom);
- }
- addIntersectingTs(currentPtr, lastPtr);
- }
- y = bottom;
- currentPtr = advanceEdges(NULL, currentPtr, lastPtr, y);
- } while (*currentPtr != &edgeSentinel);
- // if a quadratic or cubic now has an intermediate T value, see if the Ts
- // on either side cause the Y values to monotonically increase. If not, split
- // the curve at the new T.
-
- // try an alternate approach which does not split curves or stitch edges
- // (may still need adjustCoincident, though)
- // the idea is to output non-intersecting contours, then figure out their
- // respective winding contribution
- // each contour will need to know whether it is CW or CCW, and then whether
- // a ray from that contour hits any a contour that contains it. The ray can
- // move to the left and then arbitrarily move up or down (as long as it never
- // moves to the right) to find a reference sibling contour or containing
- // contour. If the contour is part of an intersection, the companion contour
- // that is part of the intersection can determine the containership.
- if (builder.containsCurves()) {
- currentPtr = edgeList.begin();
- SkTArray<InEdge> splits;
- do {
- (*currentPtr)->splitInflectionPts(splits);
- } while (*++currentPtr != &edgeSentinel);
- if (splits.count()) {
- for (int index = 0; index < splits.count(); ++index) {
- edges.push_back(splits[index]);
- }
- edgeList.reset();
- makeEdgeList(edges, edgeSentinel, edgeList);
- }
- }
- dumpEdgeList(edgeList, edgeSentinel);
- // walk the sorted edges from top to bottom, computing accumulated winding
- SkTDArray<ActiveEdge> activeEdges;
- OutEdgeBuilder outBuilder(asFill);
- currentPtr = edgeList.begin();
- y = (*currentPtr)->fBounds.fTop;
- do {
- InEdge** lastPtr = currentPtr; // find the edge below the bottom of the first set
- SkScalar bottom = findBottom(currentPtr, edgeList.end(),
- &activeEdges, y, asFill, lastPtr);
- if (lastPtr > currentPtr) {
- bottom = computeInterceptBottom(activeEdges, y, bottom);
- SkTDArray<ActiveEdge*> activeEdgeList;
- sortHorizontal(activeEdges, activeEdgeList, y);
- bottom = adjustCoincident(activeEdgeList, windingMask, y, bottom,
- outBuilder);
- stitchEdge(activeEdgeList, y, bottom, windingMask, asFill, outBuilder);
- }
- y = bottom;
- // OPTIMIZATION: as edges expire, InEdge allocations could be released
- currentPtr = advanceEdges(&activeEdges, currentPtr, lastPtr, y);
- } while (*currentPtr != &edgeSentinel);
- // assemble output path from string of pts, verbs
- outBuilder.bridge();
- outBuilder.assemble(simple);
-}
« no previous file with comments | « experimental/Intersection/EdgeMain.cpp ('k') | experimental/Intersection/EdgeWalkerPolygon4x4_Test.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698