Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(48)

Unified Diff: experimental/Intersection/QuadraticParameterization.cpp

Issue 867213004: remove prototype pathops code (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: experimental/Intersection/QuadraticParameterization.cpp
diff --git a/experimental/Intersection/QuadraticParameterization.cpp b/experimental/Intersection/QuadraticParameterization.cpp
deleted file mode 100644
index 76441aa4d5c1fb1269c3079a1717254a4cc08c8b..0000000000000000000000000000000000000000
--- a/experimental/Intersection/QuadraticParameterization.cpp
+++ /dev/null
@@ -1,135 +0,0 @@
-/*
- * Copyright 2012 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-#include "CurveIntersection.h"
-#include "QuadraticParameterization.h"
-#include "QuadraticUtilities.h"
-
-/* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1
- *
- * This paper proves that Syvester's method can compute the implicit form of
- * the quadratic from the parameterized form.
- *
- * Given x = a*t*t + b*t + c (the parameterized form)
- * y = d*t*t + e*t + f
- *
- * we want to find an equation of the implicit form:
- *
- * A*x*x + B*x*y + C*y*y + D*x + E*y + F = 0
- *
- * The implicit form can be expressed as a 4x4 determinant, as shown.
- *
- * The resultant obtained by Syvester's method is
- *
- * | a b (c - x) 0 |
- * | 0 a b (c - x) |
- * | d e (f - y) 0 |
- * | 0 d e (f - y) |
- *
- * which expands to
- *
- * d*d*x*x + -2*a*d*x*y + a*a*y*y
- * + (-2*c*d*d + b*e*d - a*e*e + 2*a*f*d)*x
- * + (-2*f*a*a + e*b*a - d*b*b + 2*d*c*a)*y
- * +
- * | a b c 0 |
- * | 0 a b c | == 0.
- * | d e f 0 |
- * | 0 d e f |
- *
- * Expanding the constant determinant results in
- *
- * | a b c | | b c 0 |
- * a*| e f 0 | + d*| a b c | ==
- * | d e f | | d e f |
- *
- * a*(a*f*f + c*e*e - c*f*d - b*e*f) + d*(b*b*f + c*c*d - c*a*f - c*e*b)
- *
- */
-
-
-static bool straight_forward = true;
-
-QuadImplicitForm::QuadImplicitForm(const Quadratic& q) {
- double a, b, c;
- set_abc(&q[0].x, a, b, c);
- double d, e, f;
- set_abc(&q[0].y, d, e, f);
- // compute the implicit coefficients
- if (straight_forward) { // 42 muls, 13 adds
- p[xx_coeff] = d * d;
- p[xy_coeff] = -2 * a * d;
- p[yy_coeff] = a * a;
- p[x_coeff] = -2*c*d*d + b*e*d - a*e*e + 2*a*f*d;
- p[y_coeff] = -2*f*a*a + e*b*a - d*b*b + 2*d*c*a;
- p[c_coeff] = a*(a*f*f + c*e*e - c*f*d - b*e*f)
- + d*(b*b*f + c*c*d - c*a*f - c*e*b);
- } else { // 26 muls, 11 adds
- double aa = a * a;
- double ad = a * d;
- double dd = d * d;
- p[xx_coeff] = dd;
- p[xy_coeff] = -2 * ad;
- p[yy_coeff] = aa;
- double be = b * e;
- double bde = be * d;
- double cdd = c * dd;
- double ee = e * e;
- p[x_coeff] = -2*cdd + bde - a*ee + 2*ad*f;
- double aaf = aa * f;
- double abe = a * be;
- double ac = a * c;
- double bb_2ac = b*b - 2*ac;
- p[y_coeff] = -2*aaf + abe - d*bb_2ac;
- p[c_coeff] = aaf*f + ac*ee + d*f*bb_2ac - abe*f + c*cdd - c*bde;
- }
-}
-
- /* Given a pair of quadratics, determine their parametric coefficients.
- * If the scaled coefficients are nearly equal, then the part of the quadratics
- * may be coincident.
- * FIXME: optimization -- since comparison short-circuits on no match,
- * lazily compute the coefficients, comparing the easiest to compute first.
- * xx and yy first; then xy; and so on.
- */
-bool QuadImplicitForm::implicit_match(const QuadImplicitForm& p2) const {
- int first = 0;
- for (int index = 0; index < coeff_count; ++index) {
- if (approximately_zero(p[index]) && approximately_zero(p2.p[index])) {
- first += first == index;
- continue;
- }
- if (first == index) {
- continue;
- }
- if (!AlmostEqualUlps(p[index] * p2.p[first], p[first] * p2.p[index])) {
- return false;
- }
- }
- return true;
-}
-
-bool implicit_matches(const Quadratic& quad1, const Quadratic& quad2) {
- QuadImplicitForm i1(quad1); // a'xx , b'xy , c'yy , d'x , e'y , f
- QuadImplicitForm i2(quad2);
- return i1.implicit_match(i2);
-}
-
-static double tangent(const double* quadratic, double t) {
- double a, b, c;
- set_abc(quadratic, a, b, c);
- return 2 * a * t + b;
-}
-
-void tangent(const Quadratic& quadratic, double t, _Point& result) {
- result.x = tangent(&quadratic[0].x, t);
- result.y = tangent(&quadratic[0].y, t);
-}
-
-
-
-// unit test to return and validate parametric coefficients
-#include "QuadraticParameterization_TestUtility.cpp"
« no previous file with comments | « experimental/Intersection/QuadraticParameterization.h ('k') | experimental/Intersection/QuadraticParameterization_Test.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698