Index: experimental/Intersection/LineIntersection.cpp |
diff --git a/experimental/Intersection/LineIntersection.cpp b/experimental/Intersection/LineIntersection.cpp |
deleted file mode 100644 |
index ca6a8e4081720bebcba53e9246c52103a09328d8..0000000000000000000000000000000000000000 |
--- a/experimental/Intersection/LineIntersection.cpp |
+++ /dev/null |
@@ -1,338 +0,0 @@ |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
-#include "CurveIntersection.h" |
-#include "Intersections.h" |
-#include "LineIntersection.h" |
-#include "LineUtilities.h" |
- |
-/* Determine the intersection point of two lines. This assumes the lines are not parallel, |
- and that that the lines are infinite. |
- From http://en.wikipedia.org/wiki/Line-line_intersection |
- */ |
-void lineIntersect(const _Line& a, const _Line& b, _Point& p) { |
- double axLen = a[1].x - a[0].x; |
- double ayLen = a[1].y - a[0].y; |
- double bxLen = b[1].x - b[0].x; |
- double byLen = b[1].y - b[0].y; |
- double denom = byLen * axLen - ayLen * bxLen; |
- SkASSERT(denom); |
- double term1 = a[1].x * a[0].y - a[1].y * a[0].x; |
- double term2 = b[1].x * b[0].y - b[1].y * b[0].x; |
- p.x = (term1 * bxLen - axLen * term2) / denom; |
- p.y = (term1 * byLen - ayLen * term2) / denom; |
-} |
- |
-static int computePoints(const _Line& a, int used, Intersections& i) { |
- i.fPt[0] = xy_at_t(a, i.fT[0][0]); |
- if ((i.fUsed = used) == 2) { |
- i.fPt[1] = xy_at_t(a, i.fT[0][1]); |
- } |
- return i.fUsed; |
-} |
- |
-/* |
- Determine the intersection point of two line segments |
- Return FALSE if the lines don't intersect |
- from: http://paulbourke.net/geometry/lineline2d/ |
- */ |
- |
-int intersect(const _Line& a, const _Line& b, Intersections& i) { |
- double axLen = a[1].x - a[0].x; |
- double ayLen = a[1].y - a[0].y; |
- double bxLen = b[1].x - b[0].x; |
- double byLen = b[1].y - b[0].y; |
- /* Slopes match when denom goes to zero: |
- axLen / ayLen == bxLen / byLen |
- (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen |
- byLen * axLen == ayLen * bxLen |
- byLen * axLen - ayLen * bxLen == 0 ( == denom ) |
- */ |
- double denom = byLen * axLen - ayLen * bxLen; |
- double ab0y = a[0].y - b[0].y; |
- double ab0x = a[0].x - b[0].x; |
- double numerA = ab0y * bxLen - byLen * ab0x; |
- double numerB = ab0y * axLen - ayLen * ab0x; |
- bool mayNotOverlap = (numerA < 0 && denom > numerA) || (numerA > 0 && denom < numerA) |
- || (numerB < 0 && denom > numerB) || (numerB > 0 && denom < numerB); |
- numerA /= denom; |
- numerB /= denom; |
- if ((!approximately_zero(denom) || (!approximately_zero_inverse(numerA) |
- && !approximately_zero_inverse(numerB))) && !sk_double_isnan(numerA) |
- && !sk_double_isnan(numerB)) { |
- if (mayNotOverlap) { |
- return 0; |
- } |
- i.fT[0][0] = numerA; |
- i.fT[1][0] = numerB; |
- i.fPt[0] = xy_at_t(a, numerA); |
- return computePoints(a, 1, i); |
- } |
- /* See if the axis intercepts match: |
- ay - ax * ayLen / axLen == by - bx * ayLen / axLen |
- axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen) |
- axLen * ay - ax * ayLen == axLen * by - bx * ayLen |
- */ |
- // FIXME: need to use AlmostEqualUlps variant instead |
- if (!approximately_equal_squared(axLen * a[0].y - ayLen * a[0].x, |
- axLen * b[0].y - ayLen * b[0].x)) { |
- return 0; |
- } |
- const double* aPtr; |
- const double* bPtr; |
- if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) { |
- aPtr = &a[0].x; |
- bPtr = &b[0].x; |
- } else { |
- aPtr = &a[0].y; |
- bPtr = &b[0].y; |
- } |
- double a0 = aPtr[0]; |
- double a1 = aPtr[2]; |
- double b0 = bPtr[0]; |
- double b1 = bPtr[2]; |
- // OPTIMIZATION: restructure to reject before the divide |
- // e.g., if ((a0 - b0) * (a0 - a1) < 0 || abs(a0 - b0) > abs(a0 - a1)) |
- // (except efficient) |
- double aDenom = a0 - a1; |
- if (approximately_zero(aDenom)) { |
- if (!between(b0, a0, b1)) { |
- return 0; |
- } |
- i.fT[0][0] = i.fT[0][1] = 0; |
- } else { |
- double at0 = (a0 - b0) / aDenom; |
- double at1 = (a0 - b1) / aDenom; |
- if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) { |
- return 0; |
- } |
- i.fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0); |
- i.fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0); |
- } |
- double bDenom = b0 - b1; |
- if (approximately_zero(bDenom)) { |
- i.fT[1][0] = i.fT[1][1] = 0; |
- } else { |
- int bIn = aDenom * bDenom < 0; |
- i.fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / bDenom, 1.0), 0.0); |
- i.fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / bDenom, 1.0), 0.0); |
- } |
- bool second = fabs(i.fT[0][0] - i.fT[0][1]) > FLT_EPSILON; |
- SkASSERT((fabs(i.fT[1][0] - i.fT[1][1]) <= FLT_EPSILON) ^ second); |
- return computePoints(a, 1 + second, i); |
-} |
- |
-int horizontalIntersect(const _Line& line, double y, double tRange[2]) { |
- double min = line[0].y; |
- double max = line[1].y; |
- if (min > max) { |
- SkTSwap(min, max); |
- } |
- if (min > y || max < y) { |
- return 0; |
- } |
- if (AlmostEqualUlps(min, max)) { |
- tRange[0] = 0; |
- tRange[1] = 1; |
- return 2; |
- } |
- tRange[0] = (y - line[0].y) / (line[1].y - line[0].y); |
- return 1; |
-} |
- |
-// OPTIMIZATION Given: dy = line[1].y - line[0].y |
-// and: xIntercept / (y - line[0].y) == (line[1].x - line[0].x) / dy |
-// then: xIntercept * dy == (line[1].x - line[0].x) * (y - line[0].y) |
-// Assuming that dy is always > 0, the line segment intercepts if: |
-// left * dy <= xIntercept * dy <= right * dy |
-// thus: left * dy <= (line[1].x - line[0].x) * (y - line[0].y) <= right * dy |
-// (clever as this is, it does not give us the t value, so may be useful only |
-// as a quick reject -- and maybe not then; it takes 3 muls, 3 adds, 2 cmps) |
-int horizontalLineIntersect(const _Line& line, double left, double right, |
- double y, double tRange[2]) { |
- int result = horizontalIntersect(line, y, tRange); |
- if (result != 1) { |
- // FIXME: this is incorrect if result == 2 |
- return result; |
- } |
- double xIntercept = line[0].x + tRange[0] * (line[1].x - line[0].x); |
- if (xIntercept > right || xIntercept < left) { |
- return 0; |
- } |
- return result; |
-} |
- |
-int horizontalIntersect(const _Line& line, double left, double right, |
- double y, bool flipped, Intersections& intersections) { |
- int result = horizontalIntersect(line, y, intersections.fT[0]); |
- switch (result) { |
- case 0: |
- break; |
- case 1: { |
- double xIntercept = line[0].x + intersections.fT[0][0] |
- * (line[1].x - line[0].x); |
- if (xIntercept > right || xIntercept < left) { |
- return 0; |
- } |
- intersections.fT[1][0] = (xIntercept - left) / (right - left); |
- break; |
- } |
- case 2: |
- #if 0 // sorting edges fails to preserve original direction |
- double lineL = line[0].x; |
- double lineR = line[1].x; |
- if (lineL > lineR) { |
- SkTSwap(lineL, lineR); |
- } |
- double overlapL = SkTMax(left, lineL); |
- double overlapR = SkTMin(right, lineR); |
- if (overlapL > overlapR) { |
- return 0; |
- } |
- if (overlapL == overlapR) { |
- result = 1; |
- } |
- intersections.fT[0][0] = (overlapL - line[0].x) / (line[1].x - line[0].x); |
- intersections.fT[1][0] = (overlapL - left) / (right - left); |
- if (result > 1) { |
- intersections.fT[0][1] = (overlapR - line[0].x) / (line[1].x - line[0].x); |
- intersections.fT[1][1] = (overlapR - left) / (right - left); |
- } |
- #else |
- double a0 = line[0].x; |
- double a1 = line[1].x; |
- double b0 = flipped ? right : left; |
- double b1 = flipped ? left : right; |
- // FIXME: share common code below |
- double at0 = (a0 - b0) / (a0 - a1); |
- double at1 = (a0 - b1) / (a0 - a1); |
- if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) { |
- return 0; |
- } |
- intersections.fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0); |
- intersections.fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0); |
- int bIn = (a0 - a1) * (b0 - b1) < 0; |
- intersections.fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1), |
- 1.0), 0.0); |
- intersections.fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1), |
- 1.0), 0.0); |
- bool second = fabs(intersections.fT[0][0] - intersections.fT[0][1]) |
- > FLT_EPSILON; |
- SkASSERT((fabs(intersections.fT[1][0] - intersections.fT[1][1]) |
- <= FLT_EPSILON) ^ second); |
- return computePoints(line, 1 + second, intersections); |
- #endif |
- break; |
- } |
- if (flipped) { |
- // OPTIMIZATION: instead of swapping, pass original line, use [1].x - [0].x |
- for (int index = 0; index < result; ++index) { |
- intersections.fT[1][index] = 1 - intersections.fT[1][index]; |
- } |
- } |
- return computePoints(line, result, intersections); |
-} |
- |
-static int verticalIntersect(const _Line& line, double x, double tRange[2]) { |
- double min = line[0].x; |
- double max = line[1].x; |
- if (min > max) { |
- SkTSwap(min, max); |
- } |
- if (min > x || max < x) { |
- return 0; |
- } |
- if (AlmostEqualUlps(min, max)) { |
- tRange[0] = 0; |
- tRange[1] = 1; |
- return 2; |
- } |
- tRange[0] = (x - line[0].x) / (line[1].x - line[0].x); |
- return 1; |
-} |
- |
-int verticalIntersect(const _Line& line, double top, double bottom, |
- double x, bool flipped, Intersections& intersections) { |
- int result = verticalIntersect(line, x, intersections.fT[0]); |
- switch (result) { |
- case 0: |
- break; |
- case 1: { |
- double yIntercept = line[0].y + intersections.fT[0][0] |
- * (line[1].y - line[0].y); |
- if (yIntercept > bottom || yIntercept < top) { |
- return 0; |
- } |
- intersections.fT[1][0] = (yIntercept - top) / (bottom - top); |
- break; |
- } |
- case 2: |
- #if 0 // sorting edges fails to preserve original direction |
- double lineT = line[0].y; |
- double lineB = line[1].y; |
- if (lineT > lineB) { |
- SkTSwap(lineT, lineB); |
- } |
- double overlapT = SkTMax(top, lineT); |
- double overlapB = SkTMin(bottom, lineB); |
- if (overlapT > overlapB) { |
- return 0; |
- } |
- if (overlapT == overlapB) { |
- result = 1; |
- } |
- intersections.fT[0][0] = (overlapT - line[0].y) / (line[1].y - line[0].y); |
- intersections.fT[1][0] = (overlapT - top) / (bottom - top); |
- if (result > 1) { |
- intersections.fT[0][1] = (overlapB - line[0].y) / (line[1].y - line[0].y); |
- intersections.fT[1][1] = (overlapB - top) / (bottom - top); |
- } |
- #else |
- double a0 = line[0].y; |
- double a1 = line[1].y; |
- double b0 = flipped ? bottom : top; |
- double b1 = flipped ? top : bottom; |
- // FIXME: share common code above |
- double at0 = (a0 - b0) / (a0 - a1); |
- double at1 = (a0 - b1) / (a0 - a1); |
- if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) { |
- return 0; |
- } |
- intersections.fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0); |
- intersections.fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0); |
- int bIn = (a0 - a1) * (b0 - b1) < 0; |
- intersections.fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1), |
- 1.0), 0.0); |
- intersections.fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1), |
- 1.0), 0.0); |
- bool second = fabs(intersections.fT[0][0] - intersections.fT[0][1]) |
- > FLT_EPSILON; |
- SkASSERT((fabs(intersections.fT[1][0] - intersections.fT[1][1]) |
- <= FLT_EPSILON) ^ second); |
- return computePoints(line, 1 + second, intersections); |
- #endif |
- break; |
- } |
- if (flipped) { |
- // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y |
- for (int index = 0; index < result; ++index) { |
- intersections.fT[1][index] = 1 - intersections.fT[1][index]; |
- } |
- } |
- return computePoints(line, result, intersections); |
-} |
- |
-// from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py |
-// 4 subs, 2 muls, 1 cmp |
-static bool ccw(const _Point& A, const _Point& B, const _Point& C) { |
- return (C.y - A.y) * (B.x - A.x) > (B.y - A.y) * (C.x - A.x); |
-} |
- |
-// 16 subs, 8 muls, 6 cmps |
-bool testIntersect(const _Line& a, const _Line& b) { |
- return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1]) |
- && ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]); |
-} |