| Index: experimental/Intersection/LineIntersection.cpp
|
| diff --git a/experimental/Intersection/LineIntersection.cpp b/experimental/Intersection/LineIntersection.cpp
|
| deleted file mode 100644
|
| index ca6a8e4081720bebcba53e9246c52103a09328d8..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/LineIntersection.cpp
|
| +++ /dev/null
|
| @@ -1,338 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -#include "CurveIntersection.h"
|
| -#include "Intersections.h"
|
| -#include "LineIntersection.h"
|
| -#include "LineUtilities.h"
|
| -
|
| -/* Determine the intersection point of two lines. This assumes the lines are not parallel,
|
| - and that that the lines are infinite.
|
| - From http://en.wikipedia.org/wiki/Line-line_intersection
|
| - */
|
| -void lineIntersect(const _Line& a, const _Line& b, _Point& p) {
|
| - double axLen = a[1].x - a[0].x;
|
| - double ayLen = a[1].y - a[0].y;
|
| - double bxLen = b[1].x - b[0].x;
|
| - double byLen = b[1].y - b[0].y;
|
| - double denom = byLen * axLen - ayLen * bxLen;
|
| - SkASSERT(denom);
|
| - double term1 = a[1].x * a[0].y - a[1].y * a[0].x;
|
| - double term2 = b[1].x * b[0].y - b[1].y * b[0].x;
|
| - p.x = (term1 * bxLen - axLen * term2) / denom;
|
| - p.y = (term1 * byLen - ayLen * term2) / denom;
|
| -}
|
| -
|
| -static int computePoints(const _Line& a, int used, Intersections& i) {
|
| - i.fPt[0] = xy_at_t(a, i.fT[0][0]);
|
| - if ((i.fUsed = used) == 2) {
|
| - i.fPt[1] = xy_at_t(a, i.fT[0][1]);
|
| - }
|
| - return i.fUsed;
|
| -}
|
| -
|
| -/*
|
| - Determine the intersection point of two line segments
|
| - Return FALSE if the lines don't intersect
|
| - from: http://paulbourke.net/geometry/lineline2d/
|
| - */
|
| -
|
| -int intersect(const _Line& a, const _Line& b, Intersections& i) {
|
| - double axLen = a[1].x - a[0].x;
|
| - double ayLen = a[1].y - a[0].y;
|
| - double bxLen = b[1].x - b[0].x;
|
| - double byLen = b[1].y - b[0].y;
|
| - /* Slopes match when denom goes to zero:
|
| - axLen / ayLen == bxLen / byLen
|
| - (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
|
| - byLen * axLen == ayLen * bxLen
|
| - byLen * axLen - ayLen * bxLen == 0 ( == denom )
|
| - */
|
| - double denom = byLen * axLen - ayLen * bxLen;
|
| - double ab0y = a[0].y - b[0].y;
|
| - double ab0x = a[0].x - b[0].x;
|
| - double numerA = ab0y * bxLen - byLen * ab0x;
|
| - double numerB = ab0y * axLen - ayLen * ab0x;
|
| - bool mayNotOverlap = (numerA < 0 && denom > numerA) || (numerA > 0 && denom < numerA)
|
| - || (numerB < 0 && denom > numerB) || (numerB > 0 && denom < numerB);
|
| - numerA /= denom;
|
| - numerB /= denom;
|
| - if ((!approximately_zero(denom) || (!approximately_zero_inverse(numerA)
|
| - && !approximately_zero_inverse(numerB))) && !sk_double_isnan(numerA)
|
| - && !sk_double_isnan(numerB)) {
|
| - if (mayNotOverlap) {
|
| - return 0;
|
| - }
|
| - i.fT[0][0] = numerA;
|
| - i.fT[1][0] = numerB;
|
| - i.fPt[0] = xy_at_t(a, numerA);
|
| - return computePoints(a, 1, i);
|
| - }
|
| - /* See if the axis intercepts match:
|
| - ay - ax * ayLen / axLen == by - bx * ayLen / axLen
|
| - axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
|
| - axLen * ay - ax * ayLen == axLen * by - bx * ayLen
|
| - */
|
| - // FIXME: need to use AlmostEqualUlps variant instead
|
| - if (!approximately_equal_squared(axLen * a[0].y - ayLen * a[0].x,
|
| - axLen * b[0].y - ayLen * b[0].x)) {
|
| - return 0;
|
| - }
|
| - const double* aPtr;
|
| - const double* bPtr;
|
| - if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) {
|
| - aPtr = &a[0].x;
|
| - bPtr = &b[0].x;
|
| - } else {
|
| - aPtr = &a[0].y;
|
| - bPtr = &b[0].y;
|
| - }
|
| - double a0 = aPtr[0];
|
| - double a1 = aPtr[2];
|
| - double b0 = bPtr[0];
|
| - double b1 = bPtr[2];
|
| - // OPTIMIZATION: restructure to reject before the divide
|
| - // e.g., if ((a0 - b0) * (a0 - a1) < 0 || abs(a0 - b0) > abs(a0 - a1))
|
| - // (except efficient)
|
| - double aDenom = a0 - a1;
|
| - if (approximately_zero(aDenom)) {
|
| - if (!between(b0, a0, b1)) {
|
| - return 0;
|
| - }
|
| - i.fT[0][0] = i.fT[0][1] = 0;
|
| - } else {
|
| - double at0 = (a0 - b0) / aDenom;
|
| - double at1 = (a0 - b1) / aDenom;
|
| - if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
|
| - return 0;
|
| - }
|
| - i.fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
|
| - i.fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
|
| - }
|
| - double bDenom = b0 - b1;
|
| - if (approximately_zero(bDenom)) {
|
| - i.fT[1][0] = i.fT[1][1] = 0;
|
| - } else {
|
| - int bIn = aDenom * bDenom < 0;
|
| - i.fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / bDenom, 1.0), 0.0);
|
| - i.fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / bDenom, 1.0), 0.0);
|
| - }
|
| - bool second = fabs(i.fT[0][0] - i.fT[0][1]) > FLT_EPSILON;
|
| - SkASSERT((fabs(i.fT[1][0] - i.fT[1][1]) <= FLT_EPSILON) ^ second);
|
| - return computePoints(a, 1 + second, i);
|
| -}
|
| -
|
| -int horizontalIntersect(const _Line& line, double y, double tRange[2]) {
|
| - double min = line[0].y;
|
| - double max = line[1].y;
|
| - if (min > max) {
|
| - SkTSwap(min, max);
|
| - }
|
| - if (min > y || max < y) {
|
| - return 0;
|
| - }
|
| - if (AlmostEqualUlps(min, max)) {
|
| - tRange[0] = 0;
|
| - tRange[1] = 1;
|
| - return 2;
|
| - }
|
| - tRange[0] = (y - line[0].y) / (line[1].y - line[0].y);
|
| - return 1;
|
| -}
|
| -
|
| -// OPTIMIZATION Given: dy = line[1].y - line[0].y
|
| -// and: xIntercept / (y - line[0].y) == (line[1].x - line[0].x) / dy
|
| -// then: xIntercept * dy == (line[1].x - line[0].x) * (y - line[0].y)
|
| -// Assuming that dy is always > 0, the line segment intercepts if:
|
| -// left * dy <= xIntercept * dy <= right * dy
|
| -// thus: left * dy <= (line[1].x - line[0].x) * (y - line[0].y) <= right * dy
|
| -// (clever as this is, it does not give us the t value, so may be useful only
|
| -// as a quick reject -- and maybe not then; it takes 3 muls, 3 adds, 2 cmps)
|
| -int horizontalLineIntersect(const _Line& line, double left, double right,
|
| - double y, double tRange[2]) {
|
| - int result = horizontalIntersect(line, y, tRange);
|
| - if (result != 1) {
|
| - // FIXME: this is incorrect if result == 2
|
| - return result;
|
| - }
|
| - double xIntercept = line[0].x + tRange[0] * (line[1].x - line[0].x);
|
| - if (xIntercept > right || xIntercept < left) {
|
| - return 0;
|
| - }
|
| - return result;
|
| -}
|
| -
|
| -int horizontalIntersect(const _Line& line, double left, double right,
|
| - double y, bool flipped, Intersections& intersections) {
|
| - int result = horizontalIntersect(line, y, intersections.fT[0]);
|
| - switch (result) {
|
| - case 0:
|
| - break;
|
| - case 1: {
|
| - double xIntercept = line[0].x + intersections.fT[0][0]
|
| - * (line[1].x - line[0].x);
|
| - if (xIntercept > right || xIntercept < left) {
|
| - return 0;
|
| - }
|
| - intersections.fT[1][0] = (xIntercept - left) / (right - left);
|
| - break;
|
| - }
|
| - case 2:
|
| - #if 0 // sorting edges fails to preserve original direction
|
| - double lineL = line[0].x;
|
| - double lineR = line[1].x;
|
| - if (lineL > lineR) {
|
| - SkTSwap(lineL, lineR);
|
| - }
|
| - double overlapL = SkTMax(left, lineL);
|
| - double overlapR = SkTMin(right, lineR);
|
| - if (overlapL > overlapR) {
|
| - return 0;
|
| - }
|
| - if (overlapL == overlapR) {
|
| - result = 1;
|
| - }
|
| - intersections.fT[0][0] = (overlapL - line[0].x) / (line[1].x - line[0].x);
|
| - intersections.fT[1][0] = (overlapL - left) / (right - left);
|
| - if (result > 1) {
|
| - intersections.fT[0][1] = (overlapR - line[0].x) / (line[1].x - line[0].x);
|
| - intersections.fT[1][1] = (overlapR - left) / (right - left);
|
| - }
|
| - #else
|
| - double a0 = line[0].x;
|
| - double a1 = line[1].x;
|
| - double b0 = flipped ? right : left;
|
| - double b1 = flipped ? left : right;
|
| - // FIXME: share common code below
|
| - double at0 = (a0 - b0) / (a0 - a1);
|
| - double at1 = (a0 - b1) / (a0 - a1);
|
| - if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
|
| - return 0;
|
| - }
|
| - intersections.fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
|
| - intersections.fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
|
| - int bIn = (a0 - a1) * (b0 - b1) < 0;
|
| - intersections.fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1),
|
| - 1.0), 0.0);
|
| - intersections.fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1),
|
| - 1.0), 0.0);
|
| - bool second = fabs(intersections.fT[0][0] - intersections.fT[0][1])
|
| - > FLT_EPSILON;
|
| - SkASSERT((fabs(intersections.fT[1][0] - intersections.fT[1][1])
|
| - <= FLT_EPSILON) ^ second);
|
| - return computePoints(line, 1 + second, intersections);
|
| - #endif
|
| - break;
|
| - }
|
| - if (flipped) {
|
| - // OPTIMIZATION: instead of swapping, pass original line, use [1].x - [0].x
|
| - for (int index = 0; index < result; ++index) {
|
| - intersections.fT[1][index] = 1 - intersections.fT[1][index];
|
| - }
|
| - }
|
| - return computePoints(line, result, intersections);
|
| -}
|
| -
|
| -static int verticalIntersect(const _Line& line, double x, double tRange[2]) {
|
| - double min = line[0].x;
|
| - double max = line[1].x;
|
| - if (min > max) {
|
| - SkTSwap(min, max);
|
| - }
|
| - if (min > x || max < x) {
|
| - return 0;
|
| - }
|
| - if (AlmostEqualUlps(min, max)) {
|
| - tRange[0] = 0;
|
| - tRange[1] = 1;
|
| - return 2;
|
| - }
|
| - tRange[0] = (x - line[0].x) / (line[1].x - line[0].x);
|
| - return 1;
|
| -}
|
| -
|
| -int verticalIntersect(const _Line& line, double top, double bottom,
|
| - double x, bool flipped, Intersections& intersections) {
|
| - int result = verticalIntersect(line, x, intersections.fT[0]);
|
| - switch (result) {
|
| - case 0:
|
| - break;
|
| - case 1: {
|
| - double yIntercept = line[0].y + intersections.fT[0][0]
|
| - * (line[1].y - line[0].y);
|
| - if (yIntercept > bottom || yIntercept < top) {
|
| - return 0;
|
| - }
|
| - intersections.fT[1][0] = (yIntercept - top) / (bottom - top);
|
| - break;
|
| - }
|
| - case 2:
|
| - #if 0 // sorting edges fails to preserve original direction
|
| - double lineT = line[0].y;
|
| - double lineB = line[1].y;
|
| - if (lineT > lineB) {
|
| - SkTSwap(lineT, lineB);
|
| - }
|
| - double overlapT = SkTMax(top, lineT);
|
| - double overlapB = SkTMin(bottom, lineB);
|
| - if (overlapT > overlapB) {
|
| - return 0;
|
| - }
|
| - if (overlapT == overlapB) {
|
| - result = 1;
|
| - }
|
| - intersections.fT[0][0] = (overlapT - line[0].y) / (line[1].y - line[0].y);
|
| - intersections.fT[1][0] = (overlapT - top) / (bottom - top);
|
| - if (result > 1) {
|
| - intersections.fT[0][1] = (overlapB - line[0].y) / (line[1].y - line[0].y);
|
| - intersections.fT[1][1] = (overlapB - top) / (bottom - top);
|
| - }
|
| - #else
|
| - double a0 = line[0].y;
|
| - double a1 = line[1].y;
|
| - double b0 = flipped ? bottom : top;
|
| - double b1 = flipped ? top : bottom;
|
| - // FIXME: share common code above
|
| - double at0 = (a0 - b0) / (a0 - a1);
|
| - double at1 = (a0 - b1) / (a0 - a1);
|
| - if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
|
| - return 0;
|
| - }
|
| - intersections.fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
|
| - intersections.fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
|
| - int bIn = (a0 - a1) * (b0 - b1) < 0;
|
| - intersections.fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1),
|
| - 1.0), 0.0);
|
| - intersections.fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1),
|
| - 1.0), 0.0);
|
| - bool second = fabs(intersections.fT[0][0] - intersections.fT[0][1])
|
| - > FLT_EPSILON;
|
| - SkASSERT((fabs(intersections.fT[1][0] - intersections.fT[1][1])
|
| - <= FLT_EPSILON) ^ second);
|
| - return computePoints(line, 1 + second, intersections);
|
| - #endif
|
| - break;
|
| - }
|
| - if (flipped) {
|
| - // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y
|
| - for (int index = 0; index < result; ++index) {
|
| - intersections.fT[1][index] = 1 - intersections.fT[1][index];
|
| - }
|
| - }
|
| - return computePoints(line, result, intersections);
|
| -}
|
| -
|
| -// from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py
|
| -// 4 subs, 2 muls, 1 cmp
|
| -static bool ccw(const _Point& A, const _Point& B, const _Point& C) {
|
| - return (C.y - A.y) * (B.x - A.x) > (B.y - A.y) * (C.x - A.x);
|
| -}
|
| -
|
| -// 16 subs, 8 muls, 6 cmps
|
| -bool testIntersect(const _Line& a, const _Line& b) {
|
| - return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1])
|
| - && ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]);
|
| -}
|
|
|