OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright 2011 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 #include "SkAntiEdge.h" | |
8 #include "SkPoint.h" | |
9 | |
10 /** Returns the signed fraction of a SkFixed | |
11 */ | |
12 static inline SkFixed SkFixedFraction(SkFixed x) | |
13 { | |
14 SkFixed mask = x >> 31 << 16; | |
15 return (x & 0xFFFF) | mask; | |
16 } | |
17 | |
18 void SkAntiEdge::pointOnLine(SkFixed x, SkFixed y) { | |
19 float x0 = SkFixedToFloat(x); | |
20 float y0 = SkFixedToFloat(y); | |
21 float x1 = SkFixedToFloat(fFirstX); | |
22 float y1 = SkFixedToFloat(fFirstY); | |
23 float x2 = SkFixedToFloat(fLastX); | |
24 float y2 = SkFixedToFloat(fLastY); | |
25 float numer = (x2 - x1) * (y1 - y0) - (x1 - x0) * (y2 - y1); | |
26 float denom = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1); | |
27 double dist = fabs(numer) / sqrt(denom); | |
28 SkAssertResult(dist < 0.01); | |
29 } | |
30 | |
31 void SkAntiEdge::pointInLine(SkFixed x, SkFixed y) { | |
32 if (y == SK_MaxS32) { | |
33 return; | |
34 } | |
35 pointOnLine(x, y); | |
36 SkAssertResult(y >= fFirstY && y <= fLastY); | |
37 } | |
38 | |
39 void SkAntiEdge::validate() { | |
40 pointOnLine(fWalkX, fY); | |
41 pointOnLine(fX, fWalkY); | |
42 } | |
43 | |
44 bool SkAntiEdge::setLine(const SkPoint& p0, const SkPoint& p1) { | |
45 fFirstY = SkScalarToFixed(p0.fY); | |
46 fLastY = SkScalarToFixed(p1.fY); | |
47 if (fFirstY == fLastY) { | |
48 return false; | |
49 } | |
50 fFirstX = SkScalarToFixed(p0.fX); | |
51 fLastX = SkScalarToFixed(p1.fX); | |
52 if (fFirstY > fLastY) { | |
53 SkTSwap(fFirstX, fLastX); | |
54 SkTSwap(fFirstY, fLastY); | |
55 fWinding = -1; | |
56 } else { | |
57 fWinding = 1; | |
58 } | |
59 SkFixed dx = fLastX - fFirstX; | |
60 fDXFlipped = dx < 0; | |
61 SkFixed dy = fLastY - fFirstY; | |
62 fDX = SkFixedDiv(dx, dy); | |
63 fDY = dx == 0 ? SK_MaxS32 : SkFixedDiv(dy, SkFixedAbs(dx)); | |
64 fLink = NULL; | |
65 fLinkSet = false; | |
66 return true; | |
67 } | |
68 | |
69 void SkAntiEdge::calcLine() { | |
70 SkFixed yStartFrac = SkFixedFraction(fFirstY); | |
71 if (fDXFlipped) { | |
72 SkFixed vert = SK_Fixed1 - yStartFrac; // distance from y start to x-axi
s | |
73 fX0 = fFirstX + SkFixedMul(fDX, vert); | |
74 SkFixed backupX = fFirstX + SkFixedMul(vert, fDX); // x cell to back up
to | |
75 SkFixed cellX = SkIntToFixed(SkFixedFloor(backupX)); | |
76 SkFixed endX = SkIntToFixed(SkFixedFloor(fLastX)); | |
77 if (cellX < endX) { | |
78 cellX = endX; | |
79 } | |
80 SkFixed distX = fFirstX - cellX; // to y-axis | |
81 fY0 = fFirstY + SkFixedMul(fDY, distX); | |
82 SkFixed rowBottom = SkIntToFixed(SkFixedCeil(fFirstY + 1)); | |
83 if (fLastY > rowBottom) { | |
84 fPartialY = 0; | |
85 fX = fX0; | |
86 fY = rowBottom; | |
87 } else { | |
88 fPartialY = SkFixedFraction(fLastY); | |
89 fX = fLastX; | |
90 fY = fLastY; | |
91 } | |
92 } else { | |
93 fPartialY = yStartFrac; | |
94 fX0 = fFirstX - SkFixedMul(fDX, yStartFrac); | |
95 fY0 = fFirstY; | |
96 if (fDY != SK_MaxS32) { | |
97 SkFixed xStartFrac = SkFixedFraction(fFirstX); | |
98 fY0 -= SkFixedMul(fDY, xStartFrac); | |
99 } | |
100 fX = fFirstX; | |
101 fY = fFirstY; | |
102 } | |
103 fWalkX = fX; | |
104 fWalkY = fY; | |
105 fFinished = false; | |
106 } | |
107 | |
108 static SkFixed SkFixedAddPin(SkFixed a, SkFixed b) { | |
109 SkFixed result = a + b; | |
110 if (((a ^ ~b) & (a ^ result)) >= 0) { // one positive, one negative | |
111 return result; // or all three same sign | |
112 } | |
113 return a < 0 ? -SK_FixedMax : SK_FixedMax; | |
114 } | |
115 | |
116 // edge is increasing in x and y | |
117 uint16_t SkAntiEdge::advanceX(SkFixed left) { | |
118 validate(); | |
119 SkFixed x = SkFixedAddPin(fX0, fDX); | |
120 SkFixed wy = SkIntToFixed(SkFixedFloor(fWalkY + SK_Fixed1)); | |
121 pointOnLine(x, wy); | |
122 SkFixed partial = SK_Fixed1 - fPartialY; | |
123 SkFixed bottomPartial = wy - fLastY; | |
124 if (bottomPartial > 0) { | |
125 partial -= bottomPartial; | |
126 } | |
127 if (x > fLastX) { | |
128 x = fLastX; | |
129 wy = fLastY; | |
130 } | |
131 uint16_t coverage; | |
132 if (left >= x) { | |
133 fFinished = true; | |
134 coverage = partial - 1; // walker is to the right of edge | |
135 } else { | |
136 SkFixed y = SkFixedAddPin(fY0, fDY); | |
137 SkFixed wx = SkIntToFixed(SkFixedFloor(fWalkX + SK_Fixed1)); | |
138 if (fDY != SK_MaxS32) { | |
139 pointOnLine(wx, y); | |
140 } | |
141 if (y > fLastY) { | |
142 y = fLastY; | |
143 wx = fLastX; | |
144 } | |
145 bool topCorner = fWalkX <= fX; | |
146 bool bottomCorner = x <= wx; | |
147 bool halfPlane = !(topCorner ^ bottomCorner); | |
148 if (halfPlane) { | |
149 if (x - SkIntToFixed(SkFixedFloor(fX)) <= SK_Fixed1) { | |
150 coverage = ~((fX + x) >> 1); // avg of fx, fx+dx | |
151 fFinished = true; | |
152 if (x >= left + SK_Fixed1) { | |
153 fWalkX = wx; | |
154 fY = fY0 = y; | |
155 } | |
156 } else { | |
157 SkAssertResult(y - SkIntToFixed(SkFixedFloor(fY)) <= SK_Fixed1); | |
158 coverage = ((fY + y) >> 1); | |
159 fFinished = y == fLastY; | |
160 fWalkX = wx; | |
161 fY = fY0 = y; | |
162 } | |
163 coverage = coverage * partial >> 16; | |
164 } else if (topCorner) { | |
165 SkFixed xDiff = wx - fX; | |
166 SkAssertResult(xDiff >= 0); | |
167 SkAssertResult(xDiff <= SK_Fixed1); | |
168 SkFixed yDiff = y - fWalkY; | |
169 // This may be a very small negative number if error accumulates | |
170 // FIXME: for now, try setting it to zero in that case. | |
171 if (yDiff < 0) { | |
172 fX = fX0 = SkIntToFixed(SkFixedCeil(fX)); | |
173 yDiff = 0; | |
174 } | |
175 SkAssertResult(yDiff >= 0); | |
176 SkAssertResult(yDiff <= SK_Fixed1); | |
177 int xCoverage = xDiff >> 1; // throw away 1 bit so multiply | |
178 int yCoverage = yDiff >> 1; // stays in range | |
179 int triangle = xCoverage * yCoverage; // 30 bits | |
180 SkFixed bottomPartial = y - fLastY; | |
181 fFinished = bottomPartial >= 0; | |
182 if (fFinished) { | |
183 yCoverage = bottomPartial >> 1; | |
184 xCoverage = (wx - fLastX) >> 1; | |
185 triangle -= xCoverage * yCoverage; | |
186 } | |
187 coverage = triangle >> 15; | |
188 fWalkX = wx; | |
189 fY = fY0 = y; | |
190 } else { | |
191 SkAssertResult(bottomCorner); | |
192 SkFixed xDiff = x - fWalkX; | |
193 SkAssertResult(xDiff >= 0); | |
194 SkAssertResult(xDiff <= SK_Fixed1); | |
195 SkFixed yDiff = wy - fY; | |
196 SkAssertResult(yDiff >= 0); | |
197 SkAssertResult(yDiff <= SK_Fixed1); | |
198 int xCoverage = xDiff >> 1; // throw away 1 bit so multiply | |
199 int yCoverage = yDiff >> 1; // stays in range | |
200 int triangle = xCoverage * yCoverage >> 15; | |
201 coverage = partial - 1 - triangle; | |
202 fFinished = true; | |
203 } | |
204 } | |
205 validate(); | |
206 return coverage; | |
207 } | |
208 | |
209 // edge is increasing in x, but decreasing in y | |
210 uint16_t SkAntiEdge::advanceFlippedX(SkFixed left) { | |
211 validate(); | |
212 SkFixed x = SkFixedAddPin(fX0, -fDX); | |
213 SkFixed wy = SkIntToFixed(SkFixedFloor(fWalkY - 1)); | |
214 pointOnLine(x, wy); | |
215 SkFixed partial = fPartialY ? fPartialY : SK_Fixed1; | |
216 SkFixed topPartial = fFirstY - wy; | |
217 if (topPartial > 0) { | |
218 partial -= topPartial; | |
219 } | |
220 if (x > fFirstX) { | |
221 x = fFirstX; | |
222 wy = fFirstY; | |
223 } | |
224 uint16_t coverage; | |
225 if (left >= x) { | |
226 fFinished = true; | |
227 coverage = partial - 1; // walker is to the right of edge | |
228 } else { | |
229 SkFixed y = SkFixedAddPin(fY0, -fDY); | |
230 SkFixed wx = SkIntToFixed(SkFixedFloor(fWalkX + SK_Fixed1)); | |
231 pointOnLine(wx, y); | |
232 if (y < fFirstY) { | |
233 y = fFirstY; | |
234 wx = fFirstX; | |
235 } | |
236 bool bottomCorner = fWalkX <= fX; | |
237 bool topCorner = x <= wx; | |
238 bool halfPlane = !(topCorner ^ bottomCorner); | |
239 if (halfPlane) { | |
240 if (x - SkIntToFixed(SkFixedFloor(fX)) <= SK_Fixed1) { | |
241 coverage = ~((fX + x) >> 1); // avg of fx, fx+dx | |
242 fFinished = true; | |
243 } else { | |
244 SkAssertResult(y - SkIntToFixed(SkFixedFloor(fY)) <= SK_Fixed1); | |
245 coverage = ~((fY + y) >> 1); | |
246 fFinished = y == fY; | |
247 fWalkX = wx; | |
248 fY = fY0 = y; | |
249 } | |
250 coverage = coverage * partial >> 16; | |
251 } else if (bottomCorner) { | |
252 SkFixed xDiff = wx - fX; | |
253 SkAssertResult(xDiff >= 0); | |
254 SkAssertResult(xDiff <= SK_Fixed1); | |
255 SkFixed yDiff = fWalkY - y; | |
256 SkAssertResult(yDiff >= 0); | |
257 SkAssertResult(yDiff <= SK_Fixed1); | |
258 int xCoverage = xDiff >> 1; // throw away 1 bit so multiply | |
259 int yCoverage = yDiff >> 1; // stays in range | |
260 int triangle = xCoverage * yCoverage; // 30 bits | |
261 SkFixed bottomPartial = fFirstY - y; | |
262 fFinished = bottomPartial >= 0; | |
263 if (fFinished) { | |
264 yCoverage = bottomPartial >> 1; | |
265 xCoverage = (wx - fFirstX) >> 1; | |
266 triangle -= xCoverage * yCoverage; | |
267 } | |
268 coverage = triangle >> 15; | |
269 fWalkX = wx; | |
270 fY = fY0 = y; | |
271 } else { | |
272 SkAssertResult(topCorner); | |
273 SkFixed xDiff = x - fWalkX; | |
274 SkAssertResult(xDiff >= 0); | |
275 SkAssertResult(xDiff <= SK_Fixed1); | |
276 SkFixed yDiff = fY - wy; | |
277 SkAssertResult(yDiff >= 0); | |
278 SkAssertResult(yDiff <= SK_Fixed1); | |
279 int xCoverage = xDiff >> 1; // throw away 1 bit so multiply | |
280 int yCoverage = yDiff >> 1; // stays in range | |
281 int triangle = xCoverage * yCoverage >> 15; | |
282 coverage = partial - 1 - triangle; | |
283 fFinished = true; | |
284 } | |
285 } | |
286 validate(); | |
287 return coverage; | |
288 } | |
289 | |
290 void SkAntiEdge::advanceY(SkFixed top) { | |
291 validate(); | |
292 fX0 = SkFixedAddPin(fX0, fDX); | |
293 fPartialY = 0; | |
294 if (fDXFlipped) { | |
295 if (fX0 < fLastX) { | |
296 fWalkX = fX = fLastX; | |
297 } else { | |
298 fWalkX = fX = fX0; | |
299 } | |
300 SkFixed bottom = top + SK_Fixed1; | |
301 if (bottom > fLastY) { | |
302 bottom = fLastY; | |
303 } | |
304 SkFixed vert = bottom - fFirstY; // distance from y start to x-axis | |
305 SkFixed backupX = fFirstX + SkFixedMul(vert, fDX); // x cell to back up
to | |
306 SkFixed distX = fFirstX - SkIntToFixed(SkFixedFloor(backupX)); // to y-a
xis | |
307 fY0 = fFirstY + SkFixedMul(fDY, distX); | |
308 | |
309 fY = top + SK_Fixed1; | |
310 if (fY > fLastY) { | |
311 fY = fLastY; | |
312 } | |
313 if (fLastY < top + SK_Fixed1) { | |
314 fPartialY = SkFixedFraction(fLastY); | |
315 } | |
316 } else { | |
317 if (fX0 > fLastX) { | |
318 fX0 = fLastX; | |
319 } | |
320 fX = fX0; | |
321 } | |
322 fWalkY = SkIntToFixed(SkFixedFloor(fWalkY + SK_Fixed1)); | |
323 if (fWalkY > fLastY) { | |
324 fWalkY = fLastY; | |
325 } | |
326 validate(); | |
327 fFinished = false; | |
328 } | |
329 | |
330 int SkAntiEdgeBuilder::build(const SkPoint pts[], int count) { | |
331 SkAntiEdge* edge = fEdges.append(); | |
332 for (int index = 0; index < count; ++index) { | |
333 if (edge->setLine(pts[index], pts[(index + 1) % count])) { | |
334 edge = fEdges.append(); | |
335 } | |
336 } | |
337 int result = fEdges.count(); | |
338 fEdges.setCount(--result); | |
339 if (result > 0) { | |
340 sk_bzero(&fHeadEdge, sizeof(fHeadEdge)); | |
341 sk_bzero(&fTailEdge, sizeof(fTailEdge)); | |
342 for (int index = 0; index < result; ++index) { | |
343 *fList.append() = &fEdges[index]; | |
344 } | |
345 } | |
346 return result; | |
347 } | |
348 | |
349 void SkAntiEdgeBuilder::calc() { | |
350 for (SkAntiEdge* active = fEdges.begin(); active != fEdges.end(); ++active)
{ | |
351 active->calcLine(); | |
352 } | |
353 // compute winding sum for edges | |
354 SkAntiEdge* first = fHeadEdge.fNext; | |
355 SkAntiEdge* active; | |
356 SkAntiEdge* listTop = first; | |
357 for (active = first; active != &fTailEdge; active = active->fNext) { | |
358 active->fWindingSum = active->fWinding; | |
359 while (listTop->fLastY < active->fFirstY) { | |
360 listTop = listTop->fNext; | |
361 } | |
362 for (SkAntiEdge* check = listTop; check->fFirstY <= active->fFirstY; che
ck = check->fNext) { | |
363 if (check == active) { | |
364 continue; | |
365 } | |
366 if (check->fLastY <= active->fFirstY) { | |
367 continue; | |
368 } | |
369 if (check->fFirstX > active->fFirstX) { | |
370 continue; | |
371 } | |
372 if (check->fFirstX == active->fFirstX && check->fDX > active->fDX) { | |
373 continue; | |
374 } | |
375 active->fWindingSum += check->fWinding; | |
376 } | |
377 } | |
378 } | |
379 | |
380 extern "C" { | |
381 static int edge_compare(const void* a, const void* b) { | |
382 const SkAntiEdge* edgea = *(const SkAntiEdge**)a; | |
383 const SkAntiEdge* edgeb = *(const SkAntiEdge**)b; | |
384 | |
385 int valuea = edgea->fFirstY; | |
386 int valueb = edgeb->fFirstY; | |
387 | |
388 if (valuea == valueb) { | |
389 valuea = edgea->fFirstX; | |
390 valueb = edgeb->fFirstX; | |
391 } | |
392 | |
393 if (valuea == valueb) { | |
394 valuea = edgea->fDX; | |
395 valueb = edgeb->fDX; | |
396 } | |
397 | |
398 return valuea - valueb; | |
399 } | |
400 } | |
401 | |
402 void SkAntiEdgeBuilder::sort(SkTDArray<SkAntiEdge*>& listOfEdges) { | |
403 SkAntiEdge** list = listOfEdges.begin(); | |
404 int count = listOfEdges.count(); | |
405 qsort(list, count, sizeof(SkAntiEdge*), edge_compare); | |
406 | |
407 // link the edges in sorted order | |
408 for (int i = 1; i < count; i++) { | |
409 list[i - 1]->fNext = list[i]; | |
410 list[i]->fPrev = list[i - 1]; | |
411 } | |
412 } | |
413 | |
414 #define kEDGE_HEAD_XY SK_MinS32 | |
415 #define kEDGE_TAIL_XY SK_MaxS32 | |
416 | |
417 void SkAntiEdgeBuilder::sort() { | |
418 sort(fList); | |
419 SkAntiEdge* last = fList.end()[-1]; | |
420 fHeadEdge.fNext = fList[0]; | |
421 fHeadEdge.fFirstX = fHeadEdge.fFirstY = fHeadEdge.fWalkY = fHeadEdge.fLastY
= kEDGE_HEAD_XY; | |
422 fList[0]->fPrev = &fHeadEdge; | |
423 | |
424 fTailEdge.fPrev = last; | |
425 fTailEdge.fFirstX = fTailEdge.fFirstY = fTailEdge.fWalkY = fTailEdge.fLastY
= kEDGE_TAIL_XY; | |
426 last->fNext = &fTailEdge; | |
427 } | |
428 | |
429 static inline void remove_edge(SkAntiEdge* edge) { | |
430 edge->fPrev->fNext = edge->fNext; | |
431 edge->fNext->fPrev = edge->fPrev; | |
432 } | |
433 | |
434 static inline void swap_edges(SkAntiEdge* prev, SkAntiEdge* next) { | |
435 SkASSERT(prev->fNext == next && next->fPrev == prev); | |
436 | |
437 // remove prev from the list | |
438 prev->fPrev->fNext = next; | |
439 next->fPrev = prev->fPrev; | |
440 | |
441 // insert prev after next | |
442 prev->fNext = next->fNext; | |
443 next->fNext->fPrev = prev; | |
444 next->fNext = prev; | |
445 prev->fPrev = next; | |
446 } | |
447 | |
448 static void backward_insert_edge_based_on_x(SkAntiEdge* edge SkDECLAREPARAM(int,
y)) { | |
449 SkFixed x = edge->fFirstX; | |
450 | |
451 for (;;) { | |
452 SkAntiEdge* prev = edge->fPrev; | |
453 | |
454 // add 1 to curr_y since we may have added new edges (built from curves) | |
455 // that start on the next scanline | |
456 SkASSERT(prev && SkFixedFloor(prev->fWalkY - prev->fDXFlipped) <= y + 1)
; | |
457 | |
458 if (prev->fFirstX <= x) { | |
459 break; | |
460 } | |
461 swap_edges(prev, edge); | |
462 } | |
463 } | |
464 | |
465 static void insert_new_edges(SkAntiEdge* newEdge, SkFixed curr_y) { | |
466 int y = SkFixedFloor(curr_y); | |
467 if (SkFixedFloor(newEdge->fWalkY - newEdge->fDXFlipped) < y) { | |
468 return; | |
469 } | |
470 while (SkFixedFloor(newEdge->fWalkY - newEdge->fDXFlipped) == y) { | |
471 SkAntiEdge* next = newEdge->fNext; | |
472 backward_insert_edge_based_on_x(newEdge SkPARAM(y)); | |
473 newEdge = next; | |
474 } | |
475 } | |
476 | |
477 static int find_active_edges(int y, SkAntiEdge** activeLeft, | |
478 SkAntiEdge** activeLast) { | |
479 SkAntiEdge* first = *activeLeft; | |
480 SkFixed bottom = first->fLastY; | |
481 SkAntiEdge* active = first->fNext; | |
482 first->fLinkSet = false; | |
483 SkFixed yLimit = SkIntToFixed(y + 1); // limiting pixel edge | |
484 for ( ; active->fWalkY != kEDGE_TAIL_XY; active = active->fNext) { | |
485 active->fLinkSet = false; | |
486 if (yLimit <= active->fWalkY - active->fDXFlipped) { | |
487 break; | |
488 } | |
489 if ((*activeLeft)->fWalkX > active->fWalkX) { | |
490 *activeLeft = active; | |
491 } | |
492 if (bottom > active->fLastY) { | |
493 bottom = active->fLastY; | |
494 } | |
495 } | |
496 *activeLast = active; | |
497 return SkFixedCeil(bottom); | |
498 } | |
499 | |
500 // All edges are oriented to increase in y. Link edges with common tops and | |
501 // bottoms so the links can share their winding sum. | |
502 void SkAntiEdgeBuilder::link() { | |
503 SkAntiEdge* tail = fEdges.end(); | |
504 // look for links forwards and backwards | |
505 SkAntiEdge* prev = fEdges.begin(); | |
506 SkAntiEdge* active; | |
507 for (active = prev + 1; active != tail; ++active) { | |
508 if (prev->fWinding == active->fWinding) { | |
509 if (prev->fLastX == active->fFirstX && prev->fLastY == active->fFirs
tY) { | |
510 prev->fLink = active; | |
511 active->fLinkSet = true; | |
512 } else if (active->fLastX == prev->fFirstX && active->fLastY == prev
->fFirstY) { | |
513 active->fLink = prev; | |
514 prev->fLinkSet = true; | |
515 } | |
516 } | |
517 prev = active; | |
518 } | |
519 // look for stragglers | |
520 prev = fEdges.begin() - 1; | |
521 do { | |
522 do { | |
523 if (++prev == tail) { | |
524 return; | |
525 } | |
526 } while (prev->fLinkSet || NULL != prev->fLink); | |
527 for (active = prev + 1; active != tail; ++active) { | |
528 if (active->fLinkSet || NULL != active->fLink) { | |
529 continue; | |
530 } | |
531 if (prev->fWinding != active->fWinding) { | |
532 continue; | |
533 } | |
534 if (prev->fLastX == active->fFirstX && prev->fLastY == active->fFirs
tY) { | |
535 prev->fLink = active; | |
536 active->fLinkSet = true; | |
537 break; | |
538 } | |
539 if (active->fLastX == prev->fFirstX && active->fLastY == prev->fFirs
tY) { | |
540 active->fLink = prev; | |
541 prev->fLinkSet = true; | |
542 break; | |
543 } | |
544 } | |
545 } while (true); | |
546 } | |
547 | |
548 void SkAntiEdgeBuilder::split(SkAntiEdge* edge, SkFixed y) { | |
549 SkPoint upperPoint = {edge->fFirstX, edge->fFirstY}; | |
550 SkPoint midPoint = {edge->fFirstX + SkMulDiv(y - edge->fFirstY, | |
551 edge->fLastX - edge->fFirstX, edge->fLastY - edge->fFirstY), y}; | |
552 SkPoint lowerPoint = {edge->fLastX, edge->fLastY}; | |
553 int8_t winding = edge->fWinding; | |
554 edge->setLine(upperPoint, midPoint); | |
555 edge->fWinding = winding; | |
556 SkAntiEdge* lower = fEdges.append(); | |
557 lower->setLine(midPoint, lowerPoint); | |
558 lower->fWinding = winding; | |
559 insert_new_edges(lower, y); | |
560 } | |
561 | |
562 // An edge computes pixel coverage by considering the integral winding value | |
563 // to its left. If an edge is enclosed by fractional winding, split it. | |
564 // FIXME: This is also a good time to find crossing edges and split them, too. | |
565 void SkAntiEdgeBuilder::split() { | |
566 // create a new set of edges that describe the whole link | |
567 SkTDArray<SkAntiEdge> links; | |
568 SkAntiEdge* first = fHeadEdge.fNext; | |
569 SkAntiEdge* active; | |
570 for (active = first; active != &fTailEdge; active = active->fNext) { | |
571 if (active->fLinkSet || NULL == active->fLink) { | |
572 continue; | |
573 } | |
574 SkAntiEdge* link = links.append(); | |
575 link->fFirstX = active->fFirstX; | |
576 link->fFirstY = active->fFirstY; | |
577 SkAntiEdge* linkEnd; | |
578 SkAntiEdge* next = active; | |
579 do { | |
580 linkEnd = next; | |
581 next = next->fLink; | |
582 } while (NULL != next); | |
583 link->fLastX = linkEnd->fLastX; | |
584 link->fLastY = linkEnd->fLastY; | |
585 } | |
586 // create a list of all edges, links and singletons | |
587 SkTDArray<SkAntiEdge*> list; | |
588 for (active = links.begin(); active != links.end(); ++active) { | |
589 *list.append() = active; | |
590 } | |
591 for (active = first; active != &fTailEdge; active = active->fNext) { | |
592 if (!active->fLinkSet && NULL == active->fLink) { | |
593 SkAntiEdge* link = links.append(); | |
594 link->fFirstX = active->fFirstX; | |
595 link->fFirstY = active->fFirstY; | |
596 link->fLastX = active->fLastX; | |
597 link->fLastY = active->fLastY; | |
598 *list.append() = link; | |
599 } | |
600 } | |
601 SkAntiEdge tail; | |
602 tail.fFirstY = tail.fLastY = kEDGE_TAIL_XY; | |
603 *list.append() = &tail; | |
604 sort(list); | |
605 // walk the list, splitting edges partially occluded on the left | |
606 SkAntiEdge* listTop = list[0]; | |
607 for (active = first; active != &fTailEdge; active = active->fNext) { | |
608 while (listTop->fLastY < active->fFirstY) { | |
609 listTop = listTop->fNext; | |
610 } | |
611 for (SkAntiEdge* check = listTop; check->fFirstY < active->fLastY; check
= check->fNext) { | |
612 if (check->fFirstX > active->fFirstX) { | |
613 continue; | |
614 } | |
615 if (check->fFirstX == active->fFirstX && check->fDX > active->fDX) { | |
616 continue; | |
617 } | |
618 if (check->fFirstY > active->fFirstY) { | |
619 split(active, check->fFirstY); | |
620 } | |
621 if (check->fLastY < active->fLastY) { | |
622 split(active, check->fLastY); | |
623 } | |
624 } | |
625 } | |
626 } | |
627 | |
628 static inline uint8_t coverage_to_8(int coverage) { | |
629 uint16_t x = coverage < 0 ? 0 : coverage > 0xFFFF ? 0xFFFF : coverage; | |
630 // for values 0x7FFF and smaller, add (0x7F - high byte) and trunc | |
631 // for values 0x8000 and larger, subtract (high byte - 0x80) and trunc | |
632 return (x + 0x7f + (x >> 15) - (x >> 8)) >> 8; | |
633 } | |
634 | |
635 void SkAntiEdgeBuilder::walk(uint8_t* result, int rowBytes, int height) { | |
636 SkAntiEdge* first = fHeadEdge.fNext; | |
637 SkFixed top = first->fWalkY - first->fDXFlipped; | |
638 int y = SkFixedFloor(top); | |
639 do { | |
640 SkAntiEdge* activeLeft = first; | |
641 SkAntiEdge* activeLast, * active; | |
642 int yLast = find_active_edges(y, &activeLeft, &activeLast); | |
643 while (y < yLast) { | |
644 SkAssertResult(y >= 0); | |
645 SkAssertResult(y < height); | |
646 SkFixed left = activeLeft->fWalkX; | |
647 int x = SkFixedFloor(left); | |
648 uint8_t* resultPtr = &result[y * rowBytes + x]; | |
649 bool finished; | |
650 do { | |
651 left = SkIntToFixed(x); | |
652 SkAssertResult(x >= 0); | |
653 // SkAssertResult(x < pixelCol); | |
654 if (x >= rowBytes) { // FIXME: cumulative error in fX += fDX | |
655 break; // fails to set fFinished early enough | |
656 } // see test 6 (dy<dx) | |
657 finished = true; | |
658 int coverage = 0; | |
659 for (active = first; active != activeLast; active = active->fNex
t) { | |
660 if (left + SK_Fixed1 <= active->fX) { | |
661 finished = false; | |
662 continue; // walker is to the left of edge | |
663 } | |
664 int cover = active->fDXFlipped ? | |
665 active->advanceFlippedX(left) : active->advanceX(left); | |
666 if (0 == active->fWindingSum) { | |
667 cover = -cover; | |
668 } | |
669 coverage += cover; | |
670 finished &= active->fFinished; | |
671 } | |
672 uint8_t old = *resultPtr; | |
673 uint8_t pix = coverage_to_8(coverage); | |
674 uint8_t blend = old > pix ? old : pix; | |
675 *resultPtr++ = blend; | |
676 ++x; | |
677 } while (!finished); | |
678 ++y; | |
679 top = SkIntToFixed(y); | |
680 SkFixed topLimit = top + SK_Fixed1; | |
681 SkFixed xSort = -SK_FixedMax; | |
682 for (active = first; active != activeLast; active = active->fNext) { | |
683 if (xSort > active->fX || topLimit > active->fLastY) { | |
684 yLast = y; // recompute bottom after all Ys are advanced | |
685 } | |
686 xSort = active->fX; | |
687 if (active->fWalkY < active->fLastY) { | |
688 active->advanceY(top); | |
689 } | |
690 } | |
691 for (active = first; active != activeLast; ) { | |
692 SkAntiEdge* next = active->fNext; | |
693 if (top >= active->fLastY) { | |
694 remove_edge(active); | |
695 } | |
696 active = next; | |
697 } | |
698 first = fHeadEdge.fNext; | |
699 } | |
700 SkAntiEdge* prev = activeLast->fPrev; | |
701 if (prev != &fHeadEdge) { | |
702 insert_new_edges(prev, top); | |
703 first = fHeadEdge.fNext; | |
704 } | |
705 } while (first->fWalkY < kEDGE_TAIL_XY); | |
706 } | |
707 | |
708 void SkAntiEdgeBuilder::process(const SkPoint* points, int ptCount, | |
709 uint8_t* result, int pixelCol, int pixelRow) { | |
710 if (ptCount < 3) { | |
711 return; | |
712 } | |
713 int count = build(points, ptCount); | |
714 if (count == 0) { | |
715 return; | |
716 } | |
717 SkAssertResult(count > 1); | |
718 link(); | |
719 sort(); | |
720 split(); | |
721 calc(); | |
722 walk(result, pixelCol, pixelRow); | |
723 } | |
724 | |
725 //////////////////////////////////////////////////////////////////////////////// | |
726 | |
727 int test3by3_test; | |
728 | |
729 // input is a rectangle | |
730 static void test_3_by_3() { | |
731 const int pixelRow = 3; | |
732 const int pixelCol = 3; | |
733 const int ptCount = 4; | |
734 const int pixelCount = pixelRow * pixelCol; | |
735 const SkPoint tests[][ptCount] = { | |
736 {{2.0f, 1.0f}, {1.0f, 1.0f}, {1.0f, 2.0f}, {2.0f, 2.0f}}, // 0: full rec
t | |
737 {{2.5f, 1.0f}, {1.5f, 1.0f}, {1.5f, 2.0f}, {2.5f, 2.0f}}, // 1: y edge | |
738 {{2.0f, 1.5f}, {1.0f, 1.5f}, {1.0f, 2.5f}, {2.0f, 2.5f}}, // 2: x edge | |
739 {{2.5f, 1.5f}, {1.5f, 1.5f}, {1.5f, 2.5f}, {2.5f, 2.5f}}, // 3: x/y edge | |
740 {{2.8f, 0.2f}, {0.2f, 0.2f}, {0.2f, 2.8f}, {2.8f, 2.8f}}, // 4: large | |
741 {{1.8f, 1.2f}, {1.2f, 1.2f}, {1.2f, 1.8f}, {1.8f, 1.8f}}, // 5: small | |
742 {{0.0f, 0.0f}, {0.0f, 1.0f}, {3.0f, 2.0f}, {3.0f, 1.0f}}, // 6: dy<dx | |
743 {{3.0f, 0.0f}, {0.0f, 1.0f}, {0.0f, 2.0f}, {3.0f, 1.0f}}, // 7: dy<-dx | |
744 {{1.0f, 0.0f}, {0.0f, 0.0f}, {1.0f, 3.0f}, {2.0f, 3.0f}}, // 8: dy>dx | |
745 {{2.0f, 0.0f}, {1.0f, 0.0f}, {0.0f, 3.0f}, {1.0f, 3.0f}}, // 9: dy>-dx | |
746 {{0.5f, 0.5f}, {0.5f, 1.5f}, {2.5f, 2.5f}, {2.5f, 1.5f}}, // 10: dy<dx 2 | |
747 {{2.5f, 0.5f}, {0.5f, 1.5f}, {0.5f, 2.5f}, {2.5f, 1.5f}}, // 11: dy<-dx
2 | |
748 {{0.0f, 0.0f}, {2.0f, 0.0f}, {2.0f, 2.0f}, {0.0f, 2.0f}}, // 12: 2x2 | |
749 {{0.0f, 0.0f}, {3.0f, 0.0f}, {3.0f, 3.0f}, {0.0f, 3.0f}}, // 13: 3x3 | |
750 {{1.75f, 0.25f}, {2.75f, 1.25f}, {1.25f, 2.75f}, {0.25f, 1.75f}}, // 14 | |
751 {{2.25f, 0.25f}, {2.75f, 0.75f}, {0.75f, 2.75f}, {0.25f, 2.25f}}, // 15 | |
752 {{0.25f, 0.75f}, {0.75f, 0.25f}, {2.75f, 2.25f}, {2.25f, 2.75f}}, // 16 | |
753 {{1.25f, 0.50f}, {1.75f, 0.25f}, {2.75f, 2.25f}, {2.25f, 2.50f}}, // 17 | |
754 {{1.00f, 0.75f}, {2.00f, 0.50f}, {2.00f, 1.50f}, {1.00f, 1.75f}}, // 18 | |
755 {{1.00f, 0.50f}, {2.00f, 0.75f}, {2.00f, 1.75f}, {1.00f, 1.50f}}, // 19 | |
756 {{1.00f, 0.75f}, {1.00f, 1.75f}, {2.00f, 1.50f}, {2.00f, 0.50f}}, // 20 | |
757 {{1.00f, 0.50f}, {1.00f, 1.50f}, {2.00f, 1.75f}, {2.00f, 0.75f}}, // 21 | |
758 }; | |
759 const uint8_t results[][pixelCount] = { | |
760 {0x00, 0x00, 0x00, // 0: 1 pixel rect | |
761 0x00, 0xFF, 0x00, | |
762 0x00, 0x00, 0x00}, | |
763 {0x00, 0x00, 0x00, // 1: y edge | |
764 0x00, 0x7F, 0x80, | |
765 0x00, 0x00, 0x00}, | |
766 {0x00, 0x00, 0x00, // 2: x edge | |
767 0x00, 0x7F, 0x00, | |
768 0x00, 0x7F, 0x00}, | |
769 {0x00, 0x00, 0x00, // 3: x/y edge | |
770 0x00, 0x40, 0x40, | |
771 0x00, 0x40, 0x40}, | |
772 {0xA3, 0xCC, 0xA3, // 4: large | |
773 0xCC, 0xFF, 0xCC, | |
774 0xA3, 0xCC, 0xA3}, | |
775 {0x00, 0x00, 0x00, // 5: small | |
776 0x00, 0x5C, 0x00, | |
777 0x00, 0x00, 0x00}, | |
778 {0xD5, 0x80, 0x2B, // 6: dy<dx | |
779 0x2A, 0x7F, 0xD4, | |
780 0x00, 0x00, 0x00}, | |
781 {0x2B, 0x80, 0xD5, // 7: dy<-dx | |
782 0xD4, 0x7F, 0x2A, | |
783 0x00, 0x00, 0x00}, | |
784 {0xD5, 0x2A, 0x00, // 8: dy>dx | |
785 0x80, 0x7F, 0x00, | |
786 0x2B, 0xD4, 0x00}, | |
787 {0x2A, 0xD5, 0x00, // 9: dy>-dx | |
788 0x7F, 0x80, 0x00, | |
789 0xD4, 0x2B, 0x00}, | |
790 {0x30, 0x10, 0x00, // 10: dy<dx 2 | |
791 0x50, 0xDF, 0x50, | |
792 0x00, 0x10, 0x30}, | |
793 {0x00, 0x10, 0x30, // 11: dy<-dx 2 | |
794 0x50, 0xDF, 0x50, | |
795 0x30, 0x10, 0x00}, | |
796 {0xFF, 0xFF, 0x00, // 12: 2x2 | |
797 0xFF, 0xFF, 0x00, | |
798 0x00, 0x00, 0x00}, | |
799 {0xFF, 0xFF, 0xFF, // 13: 3x3 | |
800 0xFF, 0xFF, 0xFF, | |
801 0xFF, 0xFF, 0xFF}, | |
802 {0x00, 0x70, 0x20, // 14 | |
803 0x70, 0xFF, 0x70, | |
804 0x20, 0x70, 0x00}, | |
805 {0x00, 0x20, 0x60, // 15 | |
806 0x20, 0xBF, 0x20, | |
807 0x60, 0x20, 0x00}, | |
808 {0x60, 0x20, 0x00, // 16 | |
809 0x20, 0xBF, 0x20, | |
810 0x00, 0x20, 0x60}, | |
811 {0x00, 0x60, 0x04, // 17 | |
812 0x00, 0x40, 0x60, | |
813 0x00, 0x00, 0x3C}, | |
814 {0x00, 0x60, 0x00, // 18 | |
815 0x00, 0x9F, 0x00, | |
816 0x00, 0x00, 0x00}, | |
817 {0x00, 0x60, 0x00, // 19 | |
818 0x00, 0x9F, 0x00, | |
819 0x00, 0x00, 0x00}, | |
820 {0x00, 0x60, 0x00, // 20 | |
821 0x00, 0x9F, 0x00, | |
822 0x00, 0x00, 0x00}, | |
823 {0x00, 0x60, 0x00, // 21 | |
824 0x00, 0x9F, 0x00, | |
825 0x00, 0x00, 0x00}, | |
826 }; | |
827 const int testCount = sizeof(tests) / sizeof(tests[0]); | |
828 SkAssertResult(testCount == sizeof(results) / sizeof(results[0])); | |
829 int testFirst = test3by3_test < 0 ? 0 : test3by3_test; | |
830 int testLast = test3by3_test < 0 ? testCount : test3by3_test + 1; | |
831 for (int testIndex = testFirst; testIndex < testLast; ++testIndex) { | |
832 uint8_t result[pixelRow][pixelCol]; | |
833 sk_bzero(result, sizeof(result)); | |
834 const SkPoint* rect = tests[testIndex]; | |
835 SkAntiEdgeBuilder builder; | |
836 builder.process(rect, ptCount, result[0], pixelCol, pixelRow); | |
837 SkAssertResult(memcmp(results[testIndex], result[0], pixelCount) == 0); | |
838 } | |
839 } | |
840 | |
841 // input has arbitrary number of points | |
842 static void test_arbitrary_3_by_3() { | |
843 const int pixelRow = 3; | |
844 const int pixelCol = 3; | |
845 const int pixelCount = pixelRow * pixelCol; | |
846 const SkPoint t1[] = { {1,1}, {2,1}, {2,1.5f}, {1,1.5f}, {1,2}, {2,2}, | |
847 {2,1.5f}, {1,1.5f}, {1,1} }; | |
848 const SkPoint* tests[] = { t1 }; | |
849 size_t testPts[] = { sizeof(t1) / sizeof(t1[0]) }; | |
850 const uint8_t results[][pixelCount] = { | |
851 {0x00, 0x00, 0x00, // 0: 1 pixel rect | |
852 0x00, 0xFF, 0x00, | |
853 0x00, 0x00, 0x00}, | |
854 }; | |
855 const int testCount = sizeof(tests) / sizeof(tests[0]); | |
856 SkAssertResult(testCount == sizeof(results) / sizeof(results[0])); | |
857 int testFirst = test3by3_test < 0 ? 0 : test3by3_test; | |
858 int testLast = test3by3_test < 0 ? testCount : test3by3_test + 1; | |
859 for (int testIndex = testFirst; testIndex < testLast; ++testIndex) { | |
860 uint8_t result[pixelRow][pixelCol]; | |
861 sk_bzero(result, sizeof(result)); | |
862 const SkPoint* pts = tests[testIndex]; | |
863 size_t ptCount = testPts[testIndex]; | |
864 SkAntiEdgeBuilder builder; | |
865 builder.process(pts, ptCount, result[0], pixelCol, pixelRow); | |
866 SkAssertResult(memcmp(results[testIndex], result[0], pixelCount) == 0); | |
867 } | |
868 } | |
869 | |
870 #include "SkRect.h" | |
871 #include "SkPath.h" | |
872 | |
873 int testsweep_test; | |
874 | |
875 static void create_sweep(uint8_t* result, int pixelRow, int pixelCol, SkScalar r
ectWidth) { | |
876 const int ptCount = 4; | |
877 SkRect refRect = {pixelCol / 2 - rectWidth / 2, 5, | |
878 pixelCol / 2 + rectWidth / 2, pixelRow / 2 - 5}; | |
879 SkPath refPath; | |
880 refPath.addRect(refRect); | |
881 SkScalar angleFirst = testsweep_test < 0 ? 0 : testsweep_test; | |
882 SkScalar angleLast = testsweep_test < 0 ? 360 : testsweep_test + 1; | |
883 for (SkScalar angle = angleFirst; angle < angleLast; angle += 12) { | |
884 SkPath rotPath; | |
885 SkMatrix matrix; | |
886 matrix.setRotate(angle, SkIntToScalar(pixelCol) / 2, | |
887 SkIntToScalar(pixelRow) / 2); | |
888 refPath.transform(matrix, &rotPath); | |
889 SkPoint rect[ptCount], temp[2]; | |
890 SkPath::Iter iter(rotPath, false); | |
891 int index = 0; | |
892 for (;;) { | |
893 SkPath::Verb verb = iter.next(temp); | |
894 if (verb == SkPath::kMove_Verb) { | |
895 continue; | |
896 } | |
897 if (verb == SkPath::kClose_Verb) { | |
898 break; | |
899 } | |
900 SkAssertResult(SkPath::kLine_Verb == verb); | |
901 rect[index++] = temp[0]; | |
902 } | |
903 SkAntiEdgeBuilder builder; | |
904 builder.process(rect, ptCount, result, pixelCol, pixelRow); | |
905 } | |
906 } | |
907 | |
908 static void create_horz(uint8_t* result, int pixelRow, int pixelCol) { | |
909 const int ptCount = 4; | |
910 for (SkScalar x = 0; x < 100; x += 5) { | |
911 SkPoint rect[ptCount]; | |
912 rect[0].fX = 0; rect[0].fY = x; | |
913 rect[1].fX = 100; rect[1].fY = x; | |
914 rect[2].fX = 100; rect[2].fY = x + x / 50; | |
915 rect[3].fX = 0; rect[3].fY = x + x / 50; | |
916 SkAntiEdgeBuilder builder; | |
917 builder.process(rect, ptCount, result, pixelCol, pixelRow); | |
918 } | |
919 } | |
920 | |
921 static void create_vert(uint8_t* result, int pixelRow, int pixelCol) { | |
922 const int ptCount = 4; | |
923 for (SkScalar x = 0; x < 100; x += 5) { | |
924 SkPoint rect[ptCount]; | |
925 rect[0].fY = 0; rect[0].fX = x; | |
926 rect[1].fY = 100; rect[1].fX = x; | |
927 rect[2].fY = 100; rect[2].fX = x + x / 50; | |
928 rect[3].fY = 0; rect[3].fX = x + x / 50; | |
929 SkAntiEdgeBuilder builder; | |
930 builder.process(rect, ptCount, result, pixelCol, pixelRow); | |
931 } | |
932 } | |
933 | |
934 static void create_angle(uint8_t* result, int pixelRow, int pixelCol, SkScalar a
ngle) { | |
935 const int ptCount = 4; | |
936 SkRect refRect = {25, 25, 125, 125}; | |
937 SkPath refPath; | |
938 for (SkScalar x = 30; x < 125; x += 5) { | |
939 refRect.fTop = x; | |
940 refRect.fBottom = x + (x - 25) / 50; | |
941 refPath.addRect(refRect); | |
942 } | |
943 SkPath rotPath; | |
944 SkMatrix matrix; | |
945 matrix.setRotate(angle, 75, 75); | |
946 refPath.transform(matrix, &rotPath); | |
947 SkPath::Iter iter(rotPath, false); | |
948 for (SkScalar x = 30; x < 125; x += 5) { | |
949 SkPoint rect[ptCount], temp[2]; | |
950 int index = 0; | |
951 for (;;) { | |
952 SkPath::Verb verb = iter.next(temp); | |
953 if (verb == SkPath::kMove_Verb) { | |
954 continue; | |
955 } | |
956 if (verb == SkPath::kClose_Verb) { | |
957 break; | |
958 } | |
959 SkAssertResult(SkPath::kLine_Verb == verb); | |
960 rect[index++] = temp[0]; | |
961 } | |
962 // if ((x == 30 || x == 75) && angle == 12) continue; | |
963 SkAntiEdgeBuilder builder; | |
964 builder.process(rect, ptCount, result, pixelCol, pixelRow); | |
965 } | |
966 } | |
967 | |
968 static void test_sweep() { | |
969 const int pixelRow = 100; | |
970 const int pixelCol = 100; | |
971 uint8_t result[pixelRow][pixelCol]; | |
972 sk_bzero(result, sizeof(result)); | |
973 create_sweep(result[0], pixelRow, pixelCol, 1); | |
974 } | |
975 | |
976 static void test_horz() { | |
977 const int pixelRow = 100; | |
978 const int pixelCol = 100; | |
979 uint8_t result[pixelRow][pixelCol]; | |
980 sk_bzero(result, sizeof(result)); | |
981 create_horz(result[0], pixelRow, pixelCol); | |
982 } | |
983 | |
984 static void test_vert() { | |
985 const int pixelRow = 100; | |
986 const int pixelCol = 100; | |
987 uint8_t result[pixelRow][pixelCol]; | |
988 sk_bzero(result, sizeof(result)); | |
989 create_vert(result[0], pixelRow, pixelCol); | |
990 } | |
991 | |
992 static void test_angle(SkScalar angle) { | |
993 const int pixelRow = 150; | |
994 const int pixelCol = 150; | |
995 uint8_t result[pixelRow][pixelCol]; | |
996 sk_bzero(result, sizeof(result)); | |
997 create_angle(result[0], pixelRow, pixelCol, angle); | |
998 } | |
999 | |
1000 #include "SkBitmap.h" | |
1001 | |
1002 void CreateSweep(SkBitmap* sweep, SkScalar rectWidth) { | |
1003 const int pixelRow = 100; | |
1004 const int pixelCol = 100; | |
1005 sweep->setConfig(SkBitmap::kA8_Config, pixelCol, pixelRow); | |
1006 sweep->allocPixels(); | |
1007 sweep->eraseColor(SK_ColorTRANSPARENT); | |
1008 sweep->lockPixels(); | |
1009 void* pixels = sweep->getPixels(); | |
1010 create_sweep((uint8_t*) pixels, pixelRow, pixelCol, rectWidth); | |
1011 sweep->unlockPixels(); | |
1012 } | |
1013 | |
1014 void CreateHorz(SkBitmap* sweep) { | |
1015 const int pixelRow = 100; | |
1016 const int pixelCol = 100; | |
1017 sweep->setConfig(SkBitmap::kA8_Config, pixelCol, pixelRow); | |
1018 sweep->allocPixels(); | |
1019 sweep->eraseColor(SK_ColorTRANSPARENT); | |
1020 sweep->lockPixels(); | |
1021 void* pixels = sweep->getPixels(); | |
1022 create_horz((uint8_t*) pixels, pixelRow, pixelCol); | |
1023 sweep->unlockPixels(); | |
1024 } | |
1025 | |
1026 void CreateVert(SkBitmap* sweep) { | |
1027 const int pixelRow = 100; | |
1028 const int pixelCol = 100; | |
1029 sweep->setConfig(SkBitmap::kA8_Config, pixelCol, pixelRow); | |
1030 sweep->allocPixels(); | |
1031 sweep->eraseColor(SK_ColorTRANSPARENT); | |
1032 sweep->lockPixels(); | |
1033 void* pixels = sweep->getPixels(); | |
1034 create_vert((uint8_t*) pixels, pixelRow, pixelCol); | |
1035 sweep->unlockPixels(); | |
1036 } | |
1037 | |
1038 void CreateAngle(SkBitmap* sweep, SkScalar angle) { | |
1039 const int pixelRow = 150; | |
1040 const int pixelCol = 150; | |
1041 sweep->setConfig(SkBitmap::kA8_Config, pixelCol, pixelRow); | |
1042 sweep->allocPixels(); | |
1043 sweep->eraseColor(SK_ColorTRANSPARENT); | |
1044 sweep->lockPixels(); | |
1045 void* pixels = sweep->getPixels(); | |
1046 create_angle((uint8_t*) pixels, pixelRow, pixelCol, angle); | |
1047 sweep->unlockPixels(); | |
1048 } | |
1049 | |
1050 #include "SkCanvas.h" | |
1051 | |
1052 static void testPng() { | |
1053 SkBitmap device; | |
1054 device.setConfig(SkBitmap::kARGB_8888_Config, 4, 4); | |
1055 device.allocPixels(); | |
1056 device.eraseColor(0xFFFFFFFF); | |
1057 | |
1058 SkCanvas canvas(device); | |
1059 canvas.drawARGB(167, 0, 0, 0); | |
1060 | |
1061 device.lockPixels(); | |
1062 unsigned char* pixels = (unsigned char*) device.getPixels(); | |
1063 SkDebugf("%02x%02x%02x%02x", pixels[3], pixels[2], pixels[1], pixels[0]); | |
1064 } | |
1065 | |
1066 void SkAntiEdge_Test() { | |
1067 testPng(); | |
1068 test_arbitrary_3_by_3(); | |
1069 test_angle(12); | |
1070 #if 0 | |
1071 test3by3_test = 18; | |
1072 #else | |
1073 test3by3_test = -1; | |
1074 #endif | |
1075 #if 0 | |
1076 testsweep_test = 7 * 12; | |
1077 #else | |
1078 testsweep_test = -1; | |
1079 #endif | |
1080 if (testsweep_test == -1) { | |
1081 test_3_by_3(); | |
1082 } | |
1083 test_sweep(); | |
1084 test_horz(); | |
1085 test_vert(); | |
1086 } | |
OLD | NEW |