| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2012 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 #include "CurveIntersection.h" | |
| 8 #include "Extrema.h" | |
| 9 #include "IntersectionUtilities.h" | |
| 10 #include "LineParameters.h" | |
| 11 | |
| 12 static double interp_quad_coords(double a, double b, double c, double t) | |
| 13 { | |
| 14 double ab = interp(a, b, t); | |
| 15 double bc = interp(b, c, t); | |
| 16 return interp(ab, bc, t); | |
| 17 } | |
| 18 | |
| 19 static int coincident_line(const Quadratic& quad, Quadratic& reduction) { | |
| 20 reduction[0] = reduction[1] = quad[0]; | |
| 21 return 1; | |
| 22 } | |
| 23 | |
| 24 static int vertical_line(const Quadratic& quad, ReduceOrder_Styles reduceStyle, | |
| 25 Quadratic& reduction) { | |
| 26 double tValue; | |
| 27 reduction[0] = quad[0]; | |
| 28 reduction[1] = quad[2]; | |
| 29 if (reduceStyle == kReduceOrder_TreatAsFill) { | |
| 30 return 2; | |
| 31 } | |
| 32 int smaller = reduction[1].y > reduction[0].y; | |
| 33 int larger = smaller ^ 1; | |
| 34 if (findExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue)) { | |
| 35 double yExtrema = interp_quad_coords(quad[0].y, quad[1].y, quad[2].y, tV
alue); | |
| 36 if (reduction[smaller].y > yExtrema) { | |
| 37 reduction[smaller].y = yExtrema; | |
| 38 } else if (reduction[larger].y < yExtrema) { | |
| 39 reduction[larger].y = yExtrema; | |
| 40 } | |
| 41 } | |
| 42 return 2; | |
| 43 } | |
| 44 | |
| 45 static int horizontal_line(const Quadratic& quad, ReduceOrder_Styles reduceStyle
, | |
| 46 Quadratic& reduction) { | |
| 47 double tValue; | |
| 48 reduction[0] = quad[0]; | |
| 49 reduction[1] = quad[2]; | |
| 50 if (reduceStyle == kReduceOrder_TreatAsFill) { | |
| 51 return 2; | |
| 52 } | |
| 53 int smaller = reduction[1].x > reduction[0].x; | |
| 54 int larger = smaller ^ 1; | |
| 55 if (findExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue)) { | |
| 56 double xExtrema = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tV
alue); | |
| 57 if (reduction[smaller].x > xExtrema) { | |
| 58 reduction[smaller].x = xExtrema; | |
| 59 } else if (reduction[larger].x < xExtrema) { | |
| 60 reduction[larger].x = xExtrema; | |
| 61 } | |
| 62 } | |
| 63 return 2; | |
| 64 } | |
| 65 | |
| 66 static int check_linear(const Quadratic& quad, ReduceOrder_Styles reduceStyle, | |
| 67 int minX, int maxX, int minY, int maxY, Quadratic& reduction) { | |
| 68 int startIndex = 0; | |
| 69 int endIndex = 2; | |
| 70 while (quad[startIndex].approximatelyEqual(quad[endIndex])) { | |
| 71 --endIndex; | |
| 72 if (endIndex == 0) { | |
| 73 printf("%s shouldn't get here if all four points are about equal", _
_FUNCTION__); | |
| 74 SkASSERT(0); | |
| 75 } | |
| 76 } | |
| 77 if (!isLinear(quad, startIndex, endIndex)) { | |
| 78 return 0; | |
| 79 } | |
| 80 // four are colinear: return line formed by outside | |
| 81 reduction[0] = quad[0]; | |
| 82 reduction[1] = quad[2]; | |
| 83 if (reduceStyle == kReduceOrder_TreatAsFill) { | |
| 84 return 2; | |
| 85 } | |
| 86 int sameSide; | |
| 87 bool useX = quad[maxX].x - quad[minX].x >= quad[maxY].y - quad[minY].y; | |
| 88 if (useX) { | |
| 89 sameSide = sign(quad[0].x - quad[1].x) + sign(quad[2].x - quad[1].x); | |
| 90 } else { | |
| 91 sameSide = sign(quad[0].y - quad[1].y) + sign(quad[2].y - quad[1].y); | |
| 92 } | |
| 93 if ((sameSide & 3) != 2) { | |
| 94 return 2; | |
| 95 } | |
| 96 double tValue; | |
| 97 int root; | |
| 98 if (useX) { | |
| 99 root = findExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue); | |
| 100 } else { | |
| 101 root = findExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue); | |
| 102 } | |
| 103 if (root) { | |
| 104 _Point extrema; | |
| 105 extrema.x = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue); | |
| 106 extrema.y = interp_quad_coords(quad[0].y, quad[1].y, quad[2].y, tValue); | |
| 107 // sameSide > 0 means mid is smaller than either [0] or [2], so replace
smaller | |
| 108 int replace; | |
| 109 if (useX) { | |
| 110 if (extrema.x < quad[0].x ^ extrema.x < quad[2].x) { | |
| 111 return 2; | |
| 112 } | |
| 113 replace = (extrema.x < quad[0].x | extrema.x < quad[2].x) | |
| 114 ^ (quad[0].x < quad[2].x); | |
| 115 } else { | |
| 116 if (extrema.y < quad[0].y ^ extrema.y < quad[2].y) { | |
| 117 return 2; | |
| 118 } | |
| 119 replace = (extrema.y < quad[0].y | extrema.y < quad[2].y) | |
| 120 ^ (quad[0].y < quad[2].y); | |
| 121 } | |
| 122 reduction[replace] = extrema; | |
| 123 } | |
| 124 return 2; | |
| 125 } | |
| 126 | |
| 127 bool isLinear(const Quadratic& quad, int startIndex, int endIndex) { | |
| 128 LineParameters lineParameters; | |
| 129 lineParameters.quadEndPoints(quad, startIndex, endIndex); | |
| 130 // FIXME: maybe it's possible to avoid this and compare non-normalized | |
| 131 lineParameters.normalize(); | |
| 132 double distance = lineParameters.controlPtDistance(quad); | |
| 133 return approximately_zero(distance); | |
| 134 } | |
| 135 | |
| 136 // reduce to a quadratic or smaller | |
| 137 // look for identical points | |
| 138 // look for all four points in a line | |
| 139 // note that three points in a line doesn't simplify a cubic | |
| 140 // look for approximation with single quadratic | |
| 141 // save approximation with multiple quadratics for later | |
| 142 int reduceOrder(const Quadratic& quad, Quadratic& reduction, ReduceOrder_Styles
reduceStyle) { | |
| 143 int index, minX, maxX, minY, maxY; | |
| 144 int minXSet, minYSet; | |
| 145 minX = maxX = minY = maxY = 0; | |
| 146 minXSet = minYSet = 0; | |
| 147 for (index = 1; index < 3; ++index) { | |
| 148 if (quad[minX].x > quad[index].x) { | |
| 149 minX = index; | |
| 150 } | |
| 151 if (quad[minY].y > quad[index].y) { | |
| 152 minY = index; | |
| 153 } | |
| 154 if (quad[maxX].x < quad[index].x) { | |
| 155 maxX = index; | |
| 156 } | |
| 157 if (quad[maxY].y < quad[index].y) { | |
| 158 maxY = index; | |
| 159 } | |
| 160 } | |
| 161 for (index = 0; index < 3; ++index) { | |
| 162 if (AlmostEqualUlps(quad[index].x, quad[minX].x)) { | |
| 163 minXSet |= 1 << index; | |
| 164 } | |
| 165 if (AlmostEqualUlps(quad[index].y, quad[minY].y)) { | |
| 166 minYSet |= 1 << index; | |
| 167 } | |
| 168 } | |
| 169 if (minXSet == 0x7) { // test for vertical line | |
| 170 if (minYSet == 0x7) { // return 1 if all four are coincident | |
| 171 return coincident_line(quad, reduction); | |
| 172 } | |
| 173 return vertical_line(quad, reduceStyle, reduction); | |
| 174 } | |
| 175 if (minYSet == 0xF) { // test for horizontal line | |
| 176 return horizontal_line(quad, reduceStyle, reduction); | |
| 177 } | |
| 178 int result = check_linear(quad, reduceStyle, minX, maxX, minY, maxY, reducti
on); | |
| 179 if (result) { | |
| 180 return result; | |
| 181 } | |
| 182 memcpy(reduction, quad, sizeof(Quadratic)); | |
| 183 return 3; | |
| 184 } | |
| OLD | NEW |