| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2012 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 #include "DataTypes.h" | |
| 8 | |
| 9 // Sources | |
| 10 // computer-aided design - volume 22 number 9 november 1990 pp 538 - 549 | |
| 11 // online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf | |
| 12 | |
| 13 // This turns a line segment into a parameterized line, of the form | |
| 14 // ax + by + c = 0 | |
| 15 // When a^2 + b^2 == 1, the line is normalized. | |
| 16 // The distance to the line for (x, y) is d(x,y) = ax + by + c | |
| 17 // | |
| 18 // Note that the distances below are not necessarily normalized. To get the true | |
| 19 // distance, it's necessary to either call normalize() after xxxEndPoints(), or | |
| 20 // divide the result of xxxDistance() by sqrt(normalSquared()) | |
| 21 | |
| 22 class LineParameters { | |
| 23 public: | |
| 24 void cubicEndPoints(const Cubic& pts) { | |
| 25 cubicEndPoints(pts, 0, 3); | |
| 26 } | |
| 27 | |
| 28 void cubicEndPoints(const Cubic& pts, int s, int e) { | |
| 29 a = approximately_pin(pts[s].y - pts[e].y); | |
| 30 b = approximately_pin(pts[e].x - pts[s].x); | |
| 31 c = pts[s].x * pts[e].y - pts[e].x * pts[s].y; | |
| 32 } | |
| 33 | |
| 34 void lineEndPoints(const _Line& pts) { | |
| 35 a = approximately_pin(pts[0].y - pts[1].y); | |
| 36 b = approximately_pin(pts[1].x - pts[0].x); | |
| 37 c = pts[0].x * pts[1].y - pts[1].x * pts[0].y; | |
| 38 } | |
| 39 | |
| 40 void quadEndPoints(const Quadratic& pts) { | |
| 41 quadEndPoints(pts, 0, 2); | |
| 42 } | |
| 43 | |
| 44 void quadEndPoints(const Quadratic& pts, int s, int e) { | |
| 45 a = approximately_pin(pts[s].y - pts[e].y); | |
| 46 b = approximately_pin(pts[e].x - pts[s].x); | |
| 47 c = pts[s].x * pts[e].y - pts[e].x * pts[s].y; | |
| 48 } | |
| 49 | |
| 50 double normalSquared() const { | |
| 51 return a * a + b * b; | |
| 52 } | |
| 53 | |
| 54 bool normalize() { | |
| 55 double normal = sqrt(normalSquared()); | |
| 56 if (approximately_zero(normal)) { | |
| 57 a = b = c = 0; | |
| 58 return false; | |
| 59 } | |
| 60 double reciprocal = 1 / normal; | |
| 61 a *= reciprocal; | |
| 62 b *= reciprocal; | |
| 63 c *= reciprocal; | |
| 64 return true; | |
| 65 } | |
| 66 | |
| 67 void cubicDistanceY(const Cubic& pts, Cubic& distance) const { | |
| 68 double oneThird = 1 / 3.0; | |
| 69 for (int index = 0; index < 4; ++index) { | |
| 70 distance[index].x = index * oneThird; | |
| 71 distance[index].y = a * pts[index].x + b * pts[index].y + c; | |
| 72 } | |
| 73 } | |
| 74 | |
| 75 void quadDistanceY(const Quadratic& pts, Quadratic& distance) const { | |
| 76 double oneHalf = 1 / 2.0; | |
| 77 for (int index = 0; index < 3; ++index) { | |
| 78 distance[index].x = index * oneHalf; | |
| 79 distance[index].y = a * pts[index].x + b * pts[index].y + c; | |
| 80 } | |
| 81 } | |
| 82 | |
| 83 double controlPtDistance(const Cubic& pts, int index) const { | |
| 84 SkASSERT(index == 1 || index == 2); | |
| 85 return a * pts[index].x + b * pts[index].y + c; | |
| 86 } | |
| 87 | |
| 88 double controlPtDistance(const Quadratic& pts) const { | |
| 89 return a * pts[1].x + b * pts[1].y + c; | |
| 90 } | |
| 91 | |
| 92 double pointDistance(const _Point& pt) const { | |
| 93 return a * pt.x + b * pt.y + c; | |
| 94 } | |
| 95 | |
| 96 double dx() const { | |
| 97 return b; | |
| 98 } | |
| 99 | |
| 100 double dy() const { | |
| 101 return -a; | |
| 102 } | |
| 103 | |
| 104 private: | |
| 105 double a; | |
| 106 double b; | |
| 107 double c; | |
| 108 }; | |
| OLD | NEW |