| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2012 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 #include "DataTypes.h" | |
| 8 #include "Extrema.h" | |
| 9 | |
| 10 static int validUnitDivide(double numer, double denom, double* ratio) | |
| 11 { | |
| 12 if (numer < 0) { | |
| 13 numer = -numer; | |
| 14 denom = -denom; | |
| 15 } | |
| 16 if (denom == 0 || numer == 0 || numer >= denom) | |
| 17 return 0; | |
| 18 double r = numer / denom; | |
| 19 if (r == 0) { // catch underflow if numer <<<< denom | |
| 20 return 0; | |
| 21 } | |
| 22 *ratio = r; | |
| 23 return 1; | |
| 24 } | |
| 25 | |
| 26 /** From Numerical Recipes in C. | |
| 27 | |
| 28 Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C]) | |
| 29 x1 = Q / A | |
| 30 x2 = C / Q | |
| 31 */ | |
| 32 static int findUnitQuadRoots(double A, double B, double C, double roots[2]) | |
| 33 { | |
| 34 if (A == 0) | |
| 35 return validUnitDivide(-C, B, roots); | |
| 36 | |
| 37 double* r = roots; | |
| 38 | |
| 39 double R = B*B - 4*A*C; | |
| 40 if (R < 0) { // complex roots | |
| 41 return 0; | |
| 42 } | |
| 43 R = sqrt(R); | |
| 44 | |
| 45 double Q = (B < 0) ? -(B-R)/2 : -(B+R)/2; | |
| 46 r += validUnitDivide(Q, A, r); | |
| 47 r += validUnitDivide(C, Q, r); | |
| 48 if (r - roots == 2 && AlmostEqualUlps(roots[0], roots[1])) { // nearly-equal
? | |
| 49 r -= 1; // skip the double root | |
| 50 } | |
| 51 return (int)(r - roots); | |
| 52 } | |
| 53 | |
| 54 /** Cubic'(t) = At^2 + Bt + C, where | |
| 55 A = 3(-a + 3(b - c) + d) | |
| 56 B = 6(a - 2b + c) | |
| 57 C = 3(b - a) | |
| 58 Solve for t, keeping only those that fit between 0 < t < 1 | |
| 59 */ | |
| 60 int findExtrema(double a, double b, double c, double d, double tValues[2]) | |
| 61 { | |
| 62 // we divide A,B,C by 3 to simplify | |
| 63 double A = d - a + 3*(b - c); | |
| 64 double B = 2*(a - b - b + c); | |
| 65 double C = b - a; | |
| 66 | |
| 67 return findUnitQuadRoots(A, B, C, tValues); | |
| 68 } | |
| 69 | |
| 70 /** Quad'(t) = At + B, where | |
| 71 A = 2(a - 2b + c) | |
| 72 B = 2(b - a) | |
| 73 Solve for t, only if it fits between 0 < t < 1 | |
| 74 */ | |
| 75 int findExtrema(double a, double b, double c, double tValue[1]) | |
| 76 { | |
| 77 /* At + B == 0 | |
| 78 t = -B / A | |
| 79 */ | |
| 80 return validUnitDivide(a - b, a - b - b + c, tValue); | |
| 81 } | |
| OLD | NEW |