| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2012 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 #include "CurveIntersection.h" | |
| 8 #include "CurveUtilities.h" | |
| 9 #include "IntersectionUtilities.h" | |
| 10 | |
| 11 /* Given a cubic, find the convex hull described by the end and control points. | |
| 12 The hull may have 3 or 4 points. Cubics that degenerate into a point or line | |
| 13 are not considered. | |
| 14 | |
| 15 The hull is computed by assuming that three points, if unique and non-linear, | |
| 16 form a triangle. The fourth point may replace one of the first three, may be | |
| 17 discarded if in the triangle or on an edge, or may be inserted between any of | |
| 18 the three to form a convex quadralateral. | |
| 19 | |
| 20 The indices returned in order describe the convex hull. | |
| 21 */ | |
| 22 int convex_hull(const Cubic& cubic, char order[4]) { | |
| 23 size_t index; | |
| 24 // find top point | |
| 25 size_t yMin = 0; | |
| 26 for (index = 1; index < 4; ++index) { | |
| 27 if (cubic[yMin].y > cubic[index].y || (cubic[yMin].y == cubic[index].y | |
| 28 && cubic[yMin].x > cubic[index].x)) { | |
| 29 yMin = index; | |
| 30 } | |
| 31 } | |
| 32 order[0] = yMin; | |
| 33 int midX = -1; | |
| 34 int backupYMin = -1; | |
| 35 for (int pass = 0; pass < 2; ++pass) { | |
| 36 for (index = 0; index < 4; ++index) { | |
| 37 if (index == yMin) { | |
| 38 continue; | |
| 39 } | |
| 40 // rotate line from (yMin, index) to axis | |
| 41 // see if remaining two points are both above or below | |
| 42 // use this to find mid | |
| 43 int mask = other_two(yMin, index); | |
| 44 int side1 = yMin ^ mask; | |
| 45 int side2 = index ^ mask; | |
| 46 Cubic rotPath; | |
| 47 if (!rotate(cubic, yMin, index, rotPath)) { // ! if cbc[yMin]==cbc[i
dx] | |
| 48 order[1] = side1; | |
| 49 order[2] = side2; | |
| 50 return 3; | |
| 51 } | |
| 52 int sides = side(rotPath[side1].y - rotPath[yMin].y); | |
| 53 sides ^= side(rotPath[side2].y - rotPath[yMin].y); | |
| 54 if (sides == 2) { // '2' means one remaining point <0, one >0 | |
| 55 if (midX >= 0) { | |
| 56 printf("%s unexpected mid\n", __FUNCTION__); // there can be
only one mid | |
| 57 } | |
| 58 midX = index; | |
| 59 } else if (sides == 0) { // '0' means both to one side or the other | |
| 60 backupYMin = index; | |
| 61 } | |
| 62 } | |
| 63 if (midX >= 0) { | |
| 64 break; | |
| 65 } | |
| 66 if (backupYMin < 0) { | |
| 67 break; | |
| 68 } | |
| 69 yMin = backupYMin; | |
| 70 backupYMin = -1; | |
| 71 } | |
| 72 if (midX < 0) { | |
| 73 midX = yMin ^ 3; // choose any other point | |
| 74 } | |
| 75 int mask = other_two(yMin, midX); | |
| 76 int least = yMin ^ mask; | |
| 77 int most = midX ^ mask; | |
| 78 order[0] = yMin; | |
| 79 order[1] = least; | |
| 80 | |
| 81 // see if mid value is on same side of line (least, most) as yMin | |
| 82 Cubic midPath; | |
| 83 if (!rotate(cubic, least, most, midPath)) { // ! if cbc[least]==cbc[most] | |
| 84 order[2] = midX; | |
| 85 return 3; | |
| 86 } | |
| 87 int midSides = side(midPath[yMin].y - midPath[least].y); | |
| 88 midSides ^= side(midPath[midX].y - midPath[least].y); | |
| 89 if (midSides != 2) { // if mid point is not between | |
| 90 order[2] = most; | |
| 91 return 3; // result is a triangle | |
| 92 } | |
| 93 order[2] = midX; | |
| 94 order[3] = most; | |
| 95 return 4; // result is a quadralateral | |
| 96 } | |
| 97 | |
| 98 /* Find the convex hull for cubics with the x-axis interval regularly spaced. | |
| 99 Cubics computed as distance functions are formed this way. | |
| 100 | |
| 101 connectTo0[0], connectTo0[1] are the point indices that cubic[0] connects to. | |
| 102 connectTo3[0], connectTo3[1] are the point indices that cubic[3] connects to. | |
| 103 | |
| 104 Returns true if cubic[1] to cubic[2] also forms part of the hull. | |
| 105 */ | |
| 106 bool convex_x_hull(const Cubic& cubic, char connectTo0[2], char connectTo3[2]) { | |
| 107 double projectedY[4]; | |
| 108 projectedY[0] = 0; | |
| 109 int index; | |
| 110 for (index = 1; index < 4; ++index) { | |
| 111 projectedY[index] = (cubic[index].y - cubic[0].y) * (3.0 / index); | |
| 112 } | |
| 113 int lower0Index = 1; | |
| 114 int upper0Index = 1; | |
| 115 for (index = 2; index < 4; ++index) { | |
| 116 if (approximately_greater_or_equal(projectedY[lower0Index], projectedY[i
ndex])) { | |
| 117 lower0Index = index; | |
| 118 } | |
| 119 if (approximately_lesser_or_equal(projectedY[upper0Index], projectedY[in
dex])) { | |
| 120 upper0Index = index; | |
| 121 } | |
| 122 } | |
| 123 connectTo0[0] = lower0Index; | |
| 124 connectTo0[1] = upper0Index; | |
| 125 for (index = 0; index < 3; ++index) { | |
| 126 projectedY[index] = (cubic[3].y - cubic[index].y) * (3.0 / (3 - index)); | |
| 127 } | |
| 128 projectedY[3] = 0; | |
| 129 int lower3Index = 2; | |
| 130 int upper3Index = 2; | |
| 131 for (index = 1; index > -1; --index) { | |
| 132 if (approximately_greater_or_equal(projectedY[lower3Index], projectedY[i
ndex])) { | |
| 133 lower3Index = index; | |
| 134 } | |
| 135 if (approximately_lesser_or_equal(projectedY[upper3Index], projectedY[in
dex])) { | |
| 136 upper3Index = index; | |
| 137 } | |
| 138 } | |
| 139 connectTo3[0] = lower3Index; | |
| 140 connectTo3[1] = upper3Index; | |
| 141 return (1 << lower0Index | 1 << upper0Index | |
| 142 | 1 << lower3Index | 1 << upper3Index) == 0x0F; | |
| 143 } | |
| OLD | NEW |